11.07.2015 Views

Pigment Reduction in Corn Gluten Meal and Its Effects on Muscle ...

Pigment Reduction in Corn Gluten Meal and Its Effects on Muscle ...

Pigment Reduction in Corn Gluten Meal and Its Effects on Muscle ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<str<strong>on</strong>g>Pigment</str<strong>on</strong>g> <str<strong>on</strong>g>Reducti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>Corn</str<strong>on</strong>g> <str<strong>on</strong>g>Gluten</str<strong>on</strong>g> <str<strong>on</strong>g>Meal</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Its</str<strong>on</strong>g> <str<strong>on</strong>g>Effects</str<strong>on</strong>g> <strong>on</strong> <strong>Muscle</strong><str<strong>on</strong>g>Pigment</str<strong>on</strong>g>ati<strong>on</strong> of Ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow Trout (Oncorhynchus mykiss)byPatricio J SaezA ThesisPresented toThe University of GuelphIn partial fulfillment of requirementsFor the degree ofDoctor <str<strong>on</strong>g>in</str<strong>on</strong>g> Philosophy<str<strong>on</strong>g>in</str<strong>on</strong>g>Animal <str<strong>on</strong>g>and</str<strong>on</strong>g> Poultry ScienceGuelph, Ontario, Canada© Patricio J Saez, May, 2013


ABSTRACTPIGMENT REDUCTION OF CORN GLUTEN MEAL AND ITS EFFECTS ONMUSCLE PIGMENTATION OF RAINBOW TROUT (Oncorhynchus mykiss)Patricio J SaezUniversity of Guelph, 2013Advisor:Professor DP Bureau<str<strong>on</strong>g>Corn</str<strong>on</strong>g> gluten meal (CGM) is a high prote<str<strong>on</strong>g>in</str<strong>on</strong>g> (60% crude prote<str<strong>on</strong>g>in</str<strong>on</strong>g>), highly digestible feed<str<strong>on</strong>g>in</str<strong>on</strong>g>gredient widely used <str<strong>on</strong>g>in</str<strong>on</strong>g> diets for salm<strong>on</strong>ids, however its use has been related to reducti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>muscle pigmentati<strong>on</strong> possibly due to pigment <str<strong>on</strong>g>in</str<strong>on</strong>g>teracti<strong>on</strong>. Therefore, laboratory scale <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> vivotrials were c<strong>on</strong>ducted to reduce pigment level <str<strong>on</strong>g>in</str<strong>on</strong>g> CGM <str<strong>on</strong>g>and</str<strong>on</strong>g> to assess its effect <strong>on</strong> fish musclepigmentati<strong>on</strong>, respectively. In the first chapter, a bench-scale study was carried out to <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigatefactors that affect bleach<str<strong>on</strong>g>in</str<strong>on</strong>g>g of carotenoids <str<strong>on</strong>g>in</str<strong>on</strong>g> CGM, us<str<strong>on</strong>g>in</str<strong>on</strong>g>g white soy flake flour (WSFF) as alipoxygenase (LOX) source. Plackett-Burman <str<strong>on</strong>g>and</str<strong>on</strong>g> Box-Behnken designs were used to screen <str<strong>on</strong>g>and</str<strong>on</strong>g>optimize factors, respectively. Furthermore, a 12-week growth trial was c<strong>on</strong>ducted <str<strong>on</strong>g>in</str<strong>on</strong>g> order toassess the effects of dietary regular <str<strong>on</strong>g>and</str<strong>on</strong>g> pigment bleached CGM <strong>on</strong> growth <str<strong>on</strong>g>and</str<strong>on</strong>g> musclepigmentati<strong>on</strong> of ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow. In the sec<strong>on</strong>d chapter, a 24-week growth trial was carried out <str<strong>on</strong>g>in</str<strong>on</strong>g> orderto assess the effects of <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g levels of CGM <strong>on</strong> growth <str<strong>on</strong>g>and</str<strong>on</strong>g> muscle pigment depositi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow trout. In the third chapter, a bench-scale (10 g) corn wet mill<str<strong>on</strong>g>in</str<strong>on</strong>g>g procedure was used toassess the bleach<str<strong>on</strong>g>in</str<strong>on</strong>g>g of carotenoids from CGM dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g steep<str<strong>on</strong>g>in</str<strong>on</strong>g>g. Studies from this thesisc<strong>on</strong>firmed the negative effects of CGM <strong>on</strong> fillet pigmentati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> highlighted the need forevaluati<strong>on</strong> of muscle quality traits such as colour <str<strong>on</strong>g>in</str<strong>on</strong>g> resp<strong>on</strong>se to <str<strong>on</strong>g>in</str<strong>on</strong>g>clusi<strong>on</strong> of new feed


<str<strong>on</strong>g>in</str<strong>on</strong>g>gredients. Furthermore, this thesis gives <str<strong>on</strong>g>in</str<strong>on</strong>g>sight <strong>on</strong> how to reduce pigments from corn glutenmeal us<str<strong>on</strong>g>in</str<strong>on</strong>g>g cost-effective <str<strong>on</strong>g>and</str<strong>on</strong>g> practical bleach<str<strong>on</strong>g>in</str<strong>on</strong>g>g approaches.


ACKNOWLEDGEMENTSI would like to thanks my academic advisor Dr. Dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ique Bureau for his guidance,c<strong>on</strong>structive criticism <str<strong>on</strong>g>and</str<strong>on</strong>g> support dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the c<strong>on</strong>ducti<strong>on</strong> of my thesis project. There are notenough words to thank you Dom for the opportunity you gave me to be a part of the FishNutriti<strong>on</strong> Research Laboratory.I express my utmost gratitude to Dr. El-Sayed Abdel-Aal from the Agriculture Agri-FoodCanada, Guelph, for the extraord<str<strong>on</strong>g>in</str<strong>on</strong>g>ary help <str<strong>on</strong>g>and</str<strong>on</strong>g> guidance provided for the development of mythesis project.I would also extend my gratitude to the committee member of my thesis project Dr. JimAtk<str<strong>on</strong>g>in</str<strong>on</strong>g>s<strong>on</strong> for his guidance <str<strong>on</strong>g>and</str<strong>on</strong>g> support.Thanks to the additi<strong>on</strong>al thesis external member Dr. Am<str<strong>on</strong>g>and</str<strong>on</strong>g>a Wright <str<strong>on</strong>g>and</str<strong>on</strong>g> the thesisexternal exam<str<strong>on</strong>g>in</str<strong>on</strong>g>er Dr. R<strong>on</strong>ald Hardy for their valuable comments <strong>on</strong> my thesis manuscript <str<strong>on</strong>g>and</str<strong>on</strong>g>the time they <str<strong>on</strong>g>in</str<strong>on</strong>g>vest to be part of my thesis defense.I would like to thank Mrs. Iw<strong>on</strong>a Rabalski from the Agriculture Agri-Food Canada,Guelph, for all her help <str<strong>on</strong>g>and</str<strong>on</strong>g> guidance through all the many chemical analysis I have to c<strong>on</strong>duct <str<strong>on</strong>g>in</str<strong>on</strong>g>order to complete the studies of my thesis project. The help of Mr. Michael Burke <str<strong>on</strong>g>and</str<strong>on</strong>g> all thestaff from th Alma Research Stati<strong>on</strong> is also highly appreciated for all their help dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g thec<strong>on</strong>ducti<strong>on</strong> of large scale <str<strong>on</strong>g>in</str<strong>on</strong>g> vivo trial.Thanks to Dr. Aliro Borquez, Dr. Patricio Dantagnan <str<strong>on</strong>g>and</str<strong>on</strong>g> Dr. Adrian Hern<str<strong>on</strong>g>and</str<strong>on</strong>g>ez for alltheir important support <str<strong>on</strong>g>in</str<strong>on</strong>g> many aspects.iv


Thanks to all my colleagues, friends, volunteers <str<strong>on</strong>g>and</str<strong>on</strong>g> visit<str<strong>on</strong>g>in</str<strong>on</strong>g>g scientist from the FishNutriti<strong>on</strong> Research Laboratory for all their help <str<strong>on</strong>g>and</str<strong>on</strong>g> support <strong>on</strong> every step of my thesis.At last but def<str<strong>on</strong>g>in</str<strong>on</strong>g>itely not least, I would like to thanks my wife Elena for all her support<str<strong>on</strong>g>and</str<strong>on</strong>g> love. Thanks to my parents Jose <str<strong>on</strong>g>and</str<strong>on</strong>g> Maria, <str<strong>on</strong>g>and</str<strong>on</strong>g> my family members for all their love <str<strong>on</strong>g>and</str<strong>on</strong>g>support. Thanks to all my friends from Chile <str<strong>on</strong>g>and</str<strong>on</strong>g> the <strong>on</strong>es I have met <str<strong>on</strong>g>in</str<strong>on</strong>g> Guelph, your friendshiphas been really important to me.v


TABLE OF CONTENTSACKNOWLEDGEMENTS ....................................................................................................... ivTABLE OF CONTENTS ........................................................................................................... viLIST OF TABLES ..................................................................................................................... ixLIST OF FIGURES ................................................................................................................... xiCHAPTER - 1 GENERAL INTRODUCTION .......................................................................... 11.1 Objectives ......................................................................................................................... 3CHAPTER - 2 LITERATURE REVIEW .................................................................................. 42.1 Introducti<strong>on</strong> ...................................................................................................................... 42.2 Evoluti<strong>on</strong> of diet formulati<strong>on</strong> for salm<strong>on</strong>id fish <str<strong>on</strong>g>and</str<strong>on</strong>g> flesh quality assessment ................ 62.3 Fish muscle <str<strong>on</strong>g>and</str<strong>on</strong>g> quality st<str<strong>on</strong>g>and</str<strong>on</strong>g>ards .................................................................................... 72.4 Salm<strong>on</strong>id fish fillet colour <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>sumers’ percepti<strong>on</strong> .................................................... 82.5 Ec<strong>on</strong>omic implicati<strong>on</strong>s of salm<strong>on</strong>id muscle pigmentati<strong>on</strong> .............................................. 92.6 <strong>Muscle</strong> pigmentati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> salm<strong>on</strong>id fish ........................................................................... 102.6.1 Carotenoid pigments ............................................................................................... 102.6.2 Metabolism of carotenoids <str<strong>on</strong>g>in</str<strong>on</strong>g> salm<strong>on</strong>id fish ........................................................... 112.7 <str<strong>on</strong>g>Corn</str<strong>on</strong>g> fracti<strong>on</strong>ati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> implicati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> animal nutriti<strong>on</strong> ................................................ 142.7.1 <str<strong>on</strong>g>Corn</str<strong>on</strong>g> mill<str<strong>on</strong>g>in</str<strong>on</strong>g>g ............................................................................................................ 142.7.2 <str<strong>on</strong>g>Corn</str<strong>on</strong>g> gluten meal producti<strong>on</strong> .................................................................................. 162.7.3 <str<strong>on</strong>g>Corn</str<strong>on</strong>g> gluten meal: nutriti<strong>on</strong>al value <str<strong>on</strong>g>and</str<strong>on</strong>g> use <str<strong>on</strong>g>in</str<strong>on</strong>g> animal diets ................................... 172.7.4 Use of corn gluten meal <str<strong>on</strong>g>in</str<strong>on</strong>g> diets for terrestrial animals .......................................... 172.8 Use of corn gluten meal <str<strong>on</strong>g>in</str<strong>on</strong>g> diets for fish ........................................................................ 192.9 <str<strong>on</strong>g>Effects</str<strong>on</strong>g> of dietary corn gluten meal <strong>on</strong> salm<strong>on</strong>id fish muscle pigmentati<strong>on</strong> .................. 212.10 Bleach<str<strong>on</strong>g>in</str<strong>on</strong>g>g of yellow xanthophylls from plant prote<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>gredients ............................. 22vi


2.10.1 Enzymatic treatments .............................................................................................. 222.10.2 Other enzymes ........................................................................................................ 272.10.3 Chemical reagents as pigment bleach<str<strong>on</strong>g>in</str<strong>on</strong>g>g agents ..................................................... 272.11 C<strong>on</strong>clusi<strong>on</strong> .................................................................................................................. 28CHAPTER - 3 OPTIMIZATION OF THE REDUCTION OF CAROTENOIDS IN CORNGLUTEN MEAL FOR EVALUATION ON GROWTH AND MUSCLE PIGMENTATIONOF RAINBOW TROUT (Oncorhynchus mykiss) ................................................................... 333.1 Introducti<strong>on</strong> .................................................................................................................... 343.2 Materials <str<strong>on</strong>g>and</str<strong>on</strong>g> methods ................................................................................................... 363.2.1 Bleach<str<strong>on</strong>g>in</str<strong>on</strong>g>g of carotenoids......................................................................................... 363.2.2 Fish muscle pigmentati<strong>on</strong> trial ................................................................................ 373.2.3 Analytical methods ................................................................................................. 403.2.4 Statistical analysis ................................................................................................... 443.3 Results <str<strong>on</strong>g>and</str<strong>on</strong>g> discussi<strong>on</strong> .................................................................................................... 443.3.1 <str<strong>on</strong>g>Pigment</str<strong>on</strong>g> bleach<str<strong>on</strong>g>in</str<strong>on</strong>g>g trial ........................................................................................... 443.3.2 Fish muscle pigmentati<strong>on</strong> trial ................................................................................ 48CHAPTER - 4 EFFECTS OF FEEDING INCREASING LEVELS OF CORN GLUTENMEAL ON GROWTH AND MUSCLE PIGMENTATION OF RAINBOW TROUT(Oncorhynchus mykiss) .............................................................................................................. 734.1 Introducti<strong>on</strong> .................................................................................................................... 754.2 Materials <str<strong>on</strong>g>and</str<strong>on</strong>g> methods ................................................................................................... 774.2.1 Fish husb<str<strong>on</strong>g>and</str<strong>on</strong>g>ry <str<strong>on</strong>g>and</str<strong>on</strong>g> experimental c<strong>on</strong>diti<strong>on</strong>s .......................................................... 774.2.2 Experimental diets .................................................................................................. 784.2.3 Chemical analysis ................................................................................................... 794.2.4 <strong>Muscle</strong> colour determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> .................................................................................. 814.2.5 Calculati<strong>on</strong>s............................................................................................................. 814.2.6 Statistical analysis ................................................................................................... 83vii


4.3 Results ............................................................................................................................ 834.4 Discussi<strong>on</strong> ...................................................................................................................... 84CHAPTER - 5 BLEACHING OF CAROTENOIDS FROM CORN GLUTEN MEALTHROUGH A MODIFIED STEEPING PROCESS TO IMPROVE ITS VALUE AS ASALMONID FISH INGREDIENT: EFFECTS OF KERNEL VARIETY, HYDROGENPEROXIDE AND STEEPWATER PH .................................................................................. 1055.1 Introducti<strong>on</strong> .................................................................................................................. 1075.2 Materials <str<strong>on</strong>g>and</str<strong>on</strong>g> methods ................................................................................................. 1095.2.1 Bench-scale maize wet mill<str<strong>on</strong>g>in</str<strong>on</strong>g>g ............................................................................. 1095.2.2 General analysis methods ..................................................................................... 1105.2.3 Statistical analysis ................................................................................................. 1125.3 Results .......................................................................................................................... 1125.4 Discussi<strong>on</strong> .................................................................................................................... 114CHAPTER - 6 GENERAL DISCUSSION ............................................................................. 1326.1 Metabolism of carotenoids <str<strong>on</strong>g>in</str<strong>on</strong>g> fish ................................................................................ 1366.2 Factors other than carotenoids <str<strong>on</strong>g>in</str<strong>on</strong>g> corn gluten meal reduc<str<strong>on</strong>g>in</str<strong>on</strong>g>g astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> muscledepositi<strong>on</strong> ................................................................................................................................ 1376.3 Future research ............................................................................................................. 138viii


LIST OF TABLESTable 3. 1 - Factors <str<strong>on</strong>g>and</str<strong>on</strong>g> levels for screen<str<strong>on</strong>g>in</str<strong>on</strong>g>g us<str<strong>on</strong>g>in</str<strong>on</strong>g>g Plackett-Burman design ............................... 53Table 3. 2 - Experimental design us<str<strong>on</strong>g>in</str<strong>on</strong>g>g Plackett-Burman design for screen<str<strong>on</strong>g>in</str<strong>on</strong>g>g of factors ........... 54Table 3. 3 - Summary of variables for the Box-Behnken experimental design ............................ 55Table 3. 4 - Analysed proximate compositi<strong>on</strong> of regular <str<strong>on</strong>g>and</str<strong>on</strong>g> bio-bleached CGM ....................... 56Table 3. 5 - Formulati<strong>on</strong>, analyzed proximate compositi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> pigment c<strong>on</strong>tent of experimentaldiets ............................................................................................................................................... 57Table 3. 6 - Plackett-Burman design results ................................................................................. 59Table 3. 7 - Lipoxygenase activity <str<strong>on</strong>g>in</str<strong>on</strong>g> different <str<strong>on</strong>g>in</str<strong>on</strong>g>gredients .......................................................... 60Table 3. 8 - Box-Behnken experimental design ............................................................................ 61Table 3. 9 - Box-Behnken design l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear, quadratic <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>teracti<strong>on</strong> effects .................................. 63Table 3. 10 - HPLC carotenoid profile of regular <str<strong>on</strong>g>and</str<strong>on</strong>g> bleached CGM ......................................... 64Table 3. 11 - Growth performance <str<strong>on</strong>g>and</str<strong>on</strong>g> fed efficiency of ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow trout (IBW=132 g fish -1 ) fedexperimental diets for 12 weeks ................................................................................................... 65Table 3. 12 - Reta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed levels <str<strong>on</strong>g>and</str<strong>on</strong>g> retenti<strong>on</strong> efficiencies of nitrogen <str<strong>on</strong>g>and</str<strong>on</strong>g> energy by ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow trout(IBW=132 g fish -1 ) fed experimental diets for 12 weeks ............................................................. 66Table 3. 13 - Proximate compositi<strong>on</strong> of the carcass of ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow trout a (IBW=132 g fish -1 ) fedexperimental diets for 12 weeks ................................................................................................... 67Table 3. 14 - Fillet carotenoid c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> colour attributes from ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow trout a (IBW=132g fish -1 ) fed experimental diets for 12 weeks ................................................................................ 68Table 4. 1 - Formulati<strong>on</strong>, analyzed proximate compositi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> pigment c<strong>on</strong>tent of experimentaldiets ............................................................................................................................................... 89Table 4. 2 - Growth performance of ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow trout (IBW= 549 g fish -1 ) fed experimental diets for24 weeks........................................................................................................................................ 92Table 4. 3 - Carcass chemical proximate compositi<strong>on</strong> of ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow trout b (IBW= 549 g fish -1 ) fedexperimental diets for 24 weeks ................................................................................................... 94Table 4. 4 - Reta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed levels <str<strong>on</strong>g>and</str<strong>on</strong>g> retenti<strong>on</strong> efficiencies of nitrogen <str<strong>on</strong>g>and</str<strong>on</strong>g> energy by ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow trout(IBW= 549 g fish -1 ) fed experimental diets for 24 weeks ............................................................ 96ix


Table 4. 5 - <str<strong>on</strong>g>Pigment</str<strong>on</strong>g> c<strong>on</strong>tent <str<strong>on</strong>g>in</str<strong>on</strong>g> muscle of ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow trout (IBW= 549 g fish -1 ) fed experimentaldiets for 24 weeks ......................................................................................................................... 98Table 4. 6 - Colour attributes <str<strong>on</strong>g>in</str<strong>on</strong>g> muscle from ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow trout a (IBW= 549 g fish -1 ) fedexperimental diets for 24 weeks ................................................................................................. 100Table 5. 1 - Analyzed proximate compositi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> pigment c<strong>on</strong>tent of the two corn kernelvarieties used <str<strong>on</strong>g>in</str<strong>on</strong>g> the study ........................................................................................................... 120Table 5. 2 - Yields of different fracti<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> mass balance of dry matter obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed us<str<strong>on</strong>g>in</str<strong>on</strong>g>g thelaboratory scale corn wet mill<str<strong>on</strong>g>in</str<strong>on</strong>g>g under different steep<str<strong>on</strong>g>in</str<strong>on</strong>g>g c<strong>on</strong>diti<strong>on</strong>s ....................................... 121Table 5. 3 - Total starch <str<strong>on</strong>g>and</str<strong>on</strong>g> crude prote<str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>tent <str<strong>on</strong>g>in</str<strong>on</strong>g> starch <str<strong>on</strong>g>and</str<strong>on</strong>g> gluten fracti<strong>on</strong>s ..................... 123Table 5. 4 - Carotenoids profile <str<strong>on</strong>g>in</str<strong>on</strong>g> corn gluten meal fracti<strong>on</strong> produced under experimentalc<strong>on</strong>diti<strong>on</strong>s .................................................................................................................................... 125Table 5. 5 - Mass balance of total starch <str<strong>on</strong>g>and</str<strong>on</strong>g> crude prote<str<strong>on</strong>g>in</str<strong>on</strong>g> obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed us<str<strong>on</strong>g>in</str<strong>on</strong>g>g the laboratory-scalecorn wet mill<str<strong>on</strong>g>in</str<strong>on</strong>g>g .......................................................................................................................... 127Table 5. 6 - Mass balance of carotenoids obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> the laboratory-scale corn wet mill<str<strong>on</strong>g>in</str<strong>on</strong>g>g ..... 129Table 5. 7 - Significance of s<str<strong>on</strong>g>in</str<strong>on</strong>g>gle effect as well as of two-way <str<strong>on</strong>g>and</str<strong>on</strong>g> three-way <str<strong>on</strong>g>in</str<strong>on</strong>g>teracti<strong>on</strong> offactors <strong>on</strong> carotenoids mass balance ........................................................................................... 131x


LIST OF FIGURESFigure 2. 1 - Molecular structure of some important carotenoids founds <str<strong>on</strong>g>in</str<strong>on</strong>g> nature...................... 29Figure 2. 2 - Schematic representati<strong>on</strong> of the corn wet mill<str<strong>on</strong>g>in</str<strong>on</strong>g>g process. ...................................... 30Figure 2. 3 - Schematic representati<strong>on</strong> of the dry corn mill<str<strong>on</strong>g>in</str<strong>on</strong>g>g process. ...................................... 31Figure 2. 4 - Schematic representati<strong>on</strong> of the mode of acti<strong>on</strong> of lipoxygenase dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g lipidoxidati<strong>on</strong> (Taylor <str<strong>on</strong>g>and</str<strong>on</strong>g> Morris 1983). a) Penta-1,4-cis-diene system with<str<strong>on</strong>g>in</str<strong>on</strong>g> l<str<strong>on</strong>g>in</str<strong>on</strong>g>oleic acid, b)Intermediate peroxy radical resp<strong>on</strong>sible for carotenoid pigments co-oxidati<strong>on</strong>, c) hydroperoxide,the f<str<strong>on</strong>g>in</str<strong>on</strong>g>al product of the enzyme-catalyzed lipid oxidati<strong>on</strong>............................................................ 32Figure 3. 1 - Typical trend for spectrophotometric measurement of lipoxygenase activityobta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed for WSFF <str<strong>on</strong>g>in</str<strong>on</strong>g> the present study. ...................................................................................... 69Figure 3. 2 - Bleach<str<strong>on</strong>g>in</str<strong>on</strong>g>g pattern of carotenoids observed over time (120 m<str<strong>on</strong>g>in</str<strong>on</strong>g>) for the optimumfactor comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>, PS = 90 m<str<strong>on</strong>g>in</str<strong>on</strong>g>, RT = 15°C, BP = 600 ppm <str<strong>on</strong>g>and</str<strong>on</strong>g> SO = 5% <str<strong>on</strong>g>in</str<strong>on</strong>g>clusi<strong>on</strong>. .............. 70Figure 3. 3 - Resp<strong>on</strong>se surface plot show<str<strong>on</strong>g>in</str<strong>on</strong>g>g the effect of SO <str<strong>on</strong>g>and</str<strong>on</strong>g> BP <strong>on</strong> CGM carotenoidsbleach<str<strong>on</strong>g>in</str<strong>on</strong>g>g, keep<str<strong>on</strong>g>in</str<strong>on</strong>g>g PS fixed at 90 m<str<strong>on</strong>g>in</str<strong>on</strong>g> at three different RT: 20, 15 <str<strong>on</strong>g>and</str<strong>on</strong>g> 10°C for A, B <str<strong>on</strong>g>and</str<strong>on</strong>g> C,respectively. .................................................................................................................................. 71Figure 3. 4 - Growth curve of ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow trout fed the experimental diets for 12 weeks. D1 (Diet 1,C<strong>on</strong>trol), D2 (Diet 2, regular CGM), D3 (Diet 3, Bleached CGM. .............................................. 72Figure 4. 1 - Growth curves of ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow trout fed the experimental diets for 24 weeks. ............ 102Figure 4. 2 - <strong>Muscle</strong> pigment c<strong>on</strong>centrati<strong>on</strong> to graded levels of corn gluten meal <str<strong>on</strong>g>in</str<strong>on</strong>g> ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow troutfed the experimental diets for 24 weeks. Larger markers <strong>on</strong> each trend l<str<strong>on</strong>g>in</str<strong>on</strong>g>e represent resultsobta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by diets where <str<strong>on</strong>g>in</str<strong>on</strong>g>clusi<strong>on</strong> of corn gluten meal was at expense of soy prote<str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>centrate<strong>on</strong>ly (0, 9 <str<strong>on</strong>g>and</str<strong>on</strong>g> 18% CGM <str<strong>on</strong>g>in</str<strong>on</strong>g>clusi<strong>on</strong>). .......................................................................................... 103Figure 4. 3 - <strong>Muscle</strong> colour attributes to graded levels of corn gluten meal <str<strong>on</strong>g>in</str<strong>on</strong>g> ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow trout fedthe experimental diets for 24 weeks. Larger markers <strong>on</strong> each trend l<str<strong>on</strong>g>in</str<strong>on</strong>g>e represent results obta<str<strong>on</strong>g>in</str<strong>on</strong>g>edby diets where <str<strong>on</strong>g>in</str<strong>on</strong>g>clusi<strong>on</strong> of corn gluten meal was at expense of soy prote<str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>centrate <strong>on</strong>ly (0, 9<str<strong>on</strong>g>and</str<strong>on</strong>g> 18% CGM <str<strong>on</strong>g>in</str<strong>on</strong>g>clusi<strong>on</strong>). .......................................................................................................... 104xi


CHAPTER - 1 GENERAL INTRODUCTIONAquaculture, a fast grow<str<strong>on</strong>g>in</str<strong>on</strong>g>g food supply<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>dustry, produced about 64 milli<strong>on</strong> MT offish <str<strong>on</strong>g>in</str<strong>on</strong>g> 2011, account<str<strong>on</strong>g>in</str<strong>on</strong>g>g for nearly 50% of c<strong>on</strong>sumed fish food globally (FAO, 2012). Producti<strong>on</strong>is expected to <str<strong>on</strong>g>in</str<strong>on</strong>g>crease up to 60% by 2020. These producti<strong>on</strong> levels are currently achieved by theculture of more than 300 different species, with various carp species dom<str<strong>on</strong>g>in</str<strong>on</strong>g>at<str<strong>on</strong>g>in</str<strong>on</strong>g>g globalaquaculture producti<strong>on</strong>. In 2010, salm<strong>on</strong>id fish, Atlantic salm<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow trout (Salmo salar<str<strong>on</strong>g>and</str<strong>on</strong>g> Oncorhynchus mykiss, respectively) producti<strong>on</strong> share represented a 3.5% of the worldaquaculture producti<strong>on</strong> of fish, crustaceans <str<strong>on</strong>g>and</str<strong>on</strong>g> molluscs valued at US$1.4 billi<strong>on</strong> (FAO, 2012).Flesh quality <str<strong>on</strong>g>in</str<strong>on</strong>g> f<str<strong>on</strong>g>in</str<strong>on</strong>g>al products from salm<strong>on</strong>id fish is determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by a comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> ofseveral factors <str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g colour. This quality trait is positively correlated to product price asc<strong>on</strong>sumers associate colour with freshness, higher quality <str<strong>on</strong>g>and</str<strong>on</strong>g> better flavour (Alfnes et al., 2006).In the wild, salm<strong>on</strong>id fish obta<str<strong>on</strong>g>in</str<strong>on</strong>g> carotenoid from prey they c<strong>on</strong>sume. In salm<strong>on</strong>id fish culture,premixes c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g synthetic <str<strong>on</strong>g>and</str<strong>on</strong>g> naturally occurr<str<strong>on</strong>g>in</str<strong>on</strong>g>g pigments, ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ly astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g>, must be<str<strong>on</strong>g>in</str<strong>on</strong>g>cluded <str<strong>on</strong>g>in</str<strong>on</strong>g> the feed as salm<strong>on</strong>ids are not able to synthetize carotenoids de novo. <str<strong>on</strong>g>Pigment</str<strong>on</strong>g>premixes are very expensive <str<strong>on</strong>g>and</str<strong>on</strong>g> carotenoid supplementati<strong>on</strong> represents up to 15% of f<str<strong>on</strong>g>in</str<strong>on</strong>g>al feedcosts (Bjerkeng, 2000; Choubert et al., 2009).Formulati<strong>on</strong> of diets for salm<strong>on</strong>id fish has evolved <str<strong>on</strong>g>in</str<strong>on</strong>g> order to <str<strong>on</strong>g>in</str<strong>on</strong>g>crease <str<strong>on</strong>g>in</str<strong>on</strong>g>clusi<strong>on</strong> levels ofcost-effective prote<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>gredients due to the better underst<str<strong>on</strong>g>and</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g of nutriti<strong>on</strong>al requirements.Large amounts of research have been c<strong>on</strong>ducted <str<strong>on</strong>g>in</str<strong>on</strong>g> order to assess the effects of different<str<strong>on</strong>g>in</str<strong>on</strong>g>gredients <strong>on</strong> growth performance, <str<strong>on</strong>g>and</str<strong>on</strong>g> nutrient utilizati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the last five decades. Howevernegligible efforts have been c<strong>on</strong>ducted <strong>on</strong> the effects of these <str<strong>on</strong>g>in</str<strong>on</strong>g>gredients <strong>on</strong> f<str<strong>on</strong>g>in</str<strong>on</strong>g>al productquality.1


Ingredients comm<strong>on</strong>ly <str<strong>on</strong>g>in</str<strong>on</strong>g>cluded <str<strong>on</strong>g>in</str<strong>on</strong>g> formulati<strong>on</strong> for fish are fish meal, poultry by-productmeal, meat <str<strong>on</strong>g>and</str<strong>on</strong>g> b<strong>on</strong>e meal, soybean meal, soy prote<str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>centrates <str<strong>on</strong>g>and</str<strong>on</strong>g> corn gluten meal (Alexiset al., 1985; Cha et al., 2000; de Francesco et al., 2004). <str<strong>on</strong>g>Corn</str<strong>on</strong>g> gluten meal, is a high prote<str<strong>on</strong>g>in</str<strong>on</strong>g>(~60% crude prote<str<strong>on</strong>g>in</str<strong>on</strong>g>), highly digestible by product of the corn wet mill<str<strong>on</strong>g>in</str<strong>on</strong>g>g process<str<strong>on</strong>g>in</str<strong>on</strong>g>g that iswidely utilized <str<strong>on</strong>g>in</str<strong>on</strong>g> diets for many fish species. <str<strong>on</strong>g>Corn</str<strong>on</strong>g> wet mill<str<strong>on</strong>g>in</str<strong>on</strong>g>g is an <str<strong>on</strong>g>in</str<strong>on</strong>g>dustrial process aim<str<strong>on</strong>g>in</str<strong>on</strong>g>g tofracti<strong>on</strong>ate corn kernel ma<str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>stituents (i.e. starch, prote<str<strong>on</strong>g>in</str<strong>on</strong>g>, germ <str<strong>on</strong>g>and</str<strong>on</strong>g> fiber) <str<strong>on</strong>g>and</str<strong>on</strong>g> furtherprocess/ref<str<strong>on</strong>g>in</str<strong>on</strong>g>e them <str<strong>on</strong>g>in</str<strong>on</strong>g> order to produce high quality products for food, feed <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>dustrialpurposes. Dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g wet mill<str<strong>on</strong>g>in</str<strong>on</strong>g>g, naturally occurr<str<strong>on</strong>g>in</str<strong>on</strong>g>g yellow pigments from corn rema<str<strong>on</strong>g>in</str<strong>on</strong>g> with theprote<str<strong>on</strong>g>in</str<strong>on</strong>g> fracti<strong>on</strong>. C<strong>on</strong>sequently corn gluten meal c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>s substantial amount of yellowxanthophylls (200 – 550 mg kg -1 ), ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ly lute<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> zeaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> (Sk<strong>on</strong>berg et al., 1998; Park etal., 1997).Anecdotal evidence from fish farmers <str<strong>on</strong>g>in</str<strong>on</strong>g>dicates that high <str<strong>on</strong>g>in</str<strong>on</strong>g>clusi<strong>on</strong> levels of CGM havebeen related to reducti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> muscle pigmentati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> salm<strong>on</strong>id fish. Results from few scientificstudies suggest that yellow xanthophylls from CGM might <str<strong>on</strong>g>in</str<strong>on</strong>g>duce ‘yellowish’ appearance <str<strong>on</strong>g>in</str<strong>on</strong>g>fillets but also a reducti<strong>on</strong> of astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> muscle depositi<strong>on</strong> (Sk<strong>on</strong>berg et al., 1998). Fillets fromAtlantic salm<strong>on</strong> presented a significant reducti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> pigmentati<strong>on</strong> (measured us<str<strong>on</strong>g>in</str<strong>on</strong>g>g SalmoFancolorimetric analysis) <str<strong>on</strong>g>in</str<strong>on</strong>g> resp<strong>on</strong>se to graded levels of a vegetable prote<str<strong>on</strong>g>in</str<strong>on</strong>g> blend (CGM <str<strong>on</strong>g>and</str<strong>on</strong>g> full fatsoybean meal <str<strong>on</strong>g>in</str<strong>on</strong>g> a 2:1 ratio) <str<strong>on</strong>g>in</str<strong>on</strong>g> diets supplemented with astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> (Mundheim et al., 2004).Higher yellowish hue was determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> fillets from ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow trout fed a high CGM diet with nopigment supplementati<strong>on</strong> compared with those from fish fed a high CGM <str<strong>on</strong>g>and</str<strong>on</strong>g> supplementedsynthetic canthaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> (Sk<strong>on</strong>berg et al., 1998).Given the lipid soluble nature <str<strong>on</strong>g>and</str<strong>on</strong>g> the similarities of molecular structure shared byastaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> yellow xanthophylls from corn gluten meal, an <str<strong>on</strong>g>in</str<strong>on</strong>g>teracti<strong>on</strong>/competiti<strong>on</strong> am<strong>on</strong>g2


these pigments have been hypothesized to occur before/dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al absorpti<strong>on</strong>, transportwith<str<strong>on</strong>g>in</str<strong>on</strong>g> bloodstream <str<strong>on</strong>g>and</str<strong>on</strong>g>/or muscle depositi<strong>on</strong>.<str<strong>on</strong>g>Reducti<strong>on</strong></str<strong>on</strong>g> of yellow pigments from corn gluten meal has been assessed us<str<strong>on</strong>g>in</str<strong>on</strong>g>g differentapproaches <str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g lipoxygenase-catalyzed oxidati<strong>on</strong> (Cha et al., 2000; Gél<str<strong>on</strong>g>in</str<strong>on</strong>g>as et al., 1998;Park et al., 1997). Lipoxygenases (LOX) are n<strong>on</strong>heme ir<strong>on</strong>-c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g dioxygenases (EC1.13.11.12) that catalyze the oxygenati<strong>on</strong> of polyunsaturated fatty acids c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g a cis-cis-1, 4-pentadiene system. More than 60% of total yellow carotenoids pigments c<strong>on</strong>tent was bleachedwhen 5% of soy flour as LOX source was mixed with wet CGM <str<strong>on</strong>g>in</str<strong>on</strong>g> an aqueous medium at pH 6.5(Park et al., 1997). However, n<strong>on</strong>e of these studies have evaluated the <str<strong>on</strong>g>in</str<strong>on</strong>g>clusi<strong>on</strong> of pigmentbleachedcorn gluten meal <strong>on</strong> muscle astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> depositi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> salm<strong>on</strong>id fish.1.1 ObjectivesThe ma<str<strong>on</strong>g>in</str<strong>on</strong>g> objectives of this thesis were 1) to assess the effect of dietary corn gluten meal <str<strong>on</strong>g>and</str<strong>on</strong>g>treated corn gluten meal <strong>on</strong> astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> depositi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> muscle colour attributes <str<strong>on</strong>g>in</str<strong>on</strong>g> ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow trout(O. mykiss). And 2) to develop practical, laboratory-scale (10-20 g) process<str<strong>on</strong>g>in</str<strong>on</strong>g>g methods for thereducti<strong>on</strong> of carotenoid c<strong>on</strong>tent <str<strong>on</strong>g>in</str<strong>on</strong>g> corn gluten meal for its use <str<strong>on</strong>g>in</str<strong>on</strong>g> formulated diets for ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bowtrout (O. mykiss).3


CHAPTER - 2 LITERATURE REVIEW2.1 Introducti<strong>on</strong>The aquaculture <str<strong>on</strong>g>in</str<strong>on</strong>g>dustry is fac<str<strong>on</strong>g>in</str<strong>on</strong>g>g major challenges to manage producti<strong>on</strong> cost <str<strong>on</strong>g>and</str<strong>on</strong>g> toachieve high quality st<str<strong>on</strong>g>and</str<strong>on</strong>g>ards of their products. As a result of the high cost <str<strong>on</strong>g>and</str<strong>on</strong>g> volatile supplyof fish meal <str<strong>on</strong>g>and</str<strong>on</strong>g> oil, formulati<strong>on</strong> of aquaculture feeds has evolved <str<strong>on</strong>g>in</str<strong>on</strong>g> order to <str<strong>on</strong>g>in</str<strong>on</strong>g>crease the<str<strong>on</strong>g>in</str<strong>on</strong>g>clusi<strong>on</strong> levels of more cost-effective <str<strong>on</strong>g>in</str<strong>on</strong>g>gredients. Numerous scientific studies have addressedthe effects of new feed <str<strong>on</strong>g>in</str<strong>on</strong>g>gredients <strong>on</strong> growth <str<strong>on</strong>g>and</str<strong>on</strong>g> feed utilizati<strong>on</strong>; n<strong>on</strong>etheless there is a lack ofresearch focus<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> how these raw materials might affect muscle quality traits.The characteristic red or p<str<strong>on</strong>g>in</str<strong>on</strong>g>k colour <str<strong>on</strong>g>in</str<strong>on</strong>g> the muscle of salm<strong>on</strong>id fish is the result ofcarotenoid, ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ly astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g>, depositi<strong>on</strong> with<str<strong>on</strong>g>in</str<strong>on</strong>g> muscle fibers. This quality attribute is closelyrelated to the ec<strong>on</strong>omic value of this product. Fish must obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> from dietarysources as they are unable to synthesize it de novo. While wild fish obta<str<strong>on</strong>g>in</str<strong>on</strong>g> astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> from preythey <str<strong>on</strong>g>in</str<strong>on</strong>g>gest. Formulated diets for farmed salm<strong>on</strong>id fish must be supplemented with natural orsynthetic pigment. Astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> premixes are very expensive <str<strong>on</strong>g>and</str<strong>on</strong>g> supplementati<strong>on</strong> accounts for15% - 20% of f<str<strong>on</strong>g>in</str<strong>on</strong>g>al feed cost.One of the most comm<strong>on</strong>ly utilized <str<strong>on</strong>g>in</str<strong>on</strong>g>gredients for aquaculture feeds is corn gluten meal, aprote<str<strong>on</strong>g>in</str<strong>on</strong>g>-rich (60% crude prote<str<strong>on</strong>g>in</str<strong>on</strong>g>) by-product of the corn wet mill<str<strong>on</strong>g>in</str<strong>on</strong>g>g process. <str<strong>on</strong>g>Corn</str<strong>on</strong>g> wet mill<str<strong>on</strong>g>in</str<strong>on</strong>g>g isan <str<strong>on</strong>g>in</str<strong>on</strong>g>dustrial process aim<str<strong>on</strong>g>in</str<strong>on</strong>g>g to split the corn kernels major c<strong>on</strong>stituents (starch, prote<str<strong>on</strong>g>in</str<strong>on</strong>g>, germ<str<strong>on</strong>g>and</str<strong>on</strong>g> fiber) <str<strong>on</strong>g>in</str<strong>on</strong>g>to fairly purified fracti<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> to further ref<str<strong>on</strong>g>in</str<strong>on</strong>g>ed them for feed, food <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>dustrialpurposes. Dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g wet mill<str<strong>on</strong>g>in</str<strong>on</strong>g>g, most of the naturally occurr<str<strong>on</strong>g>in</str<strong>on</strong>g>g pigments <str<strong>on</strong>g>in</str<strong>on</strong>g> corn kernels rema<str<strong>on</strong>g>in</str<strong>on</strong>g>4


embedded with<str<strong>on</strong>g>in</str<strong>on</strong>g> the gluten fracti<strong>on</strong>; c<strong>on</strong>sequently this commodity c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>s substantial amountof pigments (200 – 550 mg kg -1 ), ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ly lute<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> zeaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g>.Negative effects related to dietary corn gluten meal <strong>on</strong> muscle astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> depositi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g>colour attributes are supported by anecdotal evidence from fish farmers al<strong>on</strong>g with a few studies.<str<strong>on</strong>g>Reducti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> colour attributes was determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> fillets from Atlantic salm<strong>on</strong> (Salmo salar) feddiets formulated to c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g levels of a plant prote<str<strong>on</strong>g>in</str<strong>on</strong>g> blend (CGM <str<strong>on</strong>g>and</str<strong>on</strong>g> full fat soybeanmeal <str<strong>on</strong>g>in</str<strong>on</strong>g> a 2:1 ratio) <str<strong>on</strong>g>and</str<strong>on</strong>g> 64 mg kg -1 of astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> after an 11-week feed<str<strong>on</strong>g>in</str<strong>on</strong>g>g trial (Mundheim etal., 2004). High values <str<strong>on</strong>g>in</str<strong>on</strong>g> yellowness (based <strong>on</strong> tristimulus colour analysis) were determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g>fillets from ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow trout fed a high CGM diet (22.5%) compared to those from fish fed a highCGM diet (22.5%) supplemented with 100 mg kg -1 canthaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> for 12 weeks (Sk<strong>on</strong>berg et al.,1998).<str<strong>on</strong>g>Reducti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> depositi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> colour attributes <str<strong>on</strong>g>in</str<strong>on</strong>g> muscle from salm<strong>on</strong>id fish feddiets c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g CGM has been associated with the substantial amount of yellow carotenoidsc<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> this commodity. Even though the metabolic pathways of carotenoids <str<strong>on</strong>g>in</str<strong>on</strong>g> fish are notfully understood, <str<strong>on</strong>g>in</str<strong>on</strong>g>teracti<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g>/or competiti<strong>on</strong> between different types of pigments dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g<str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al absorpti<strong>on</strong>, transport with<str<strong>on</strong>g>in</str<strong>on</strong>g> bloodstream <str<strong>on</strong>g>and</str<strong>on</strong>g>/or depositi<strong>on</strong> with<str<strong>on</strong>g>in</str<strong>on</strong>g> muscle cells arehypothesized based <strong>on</strong> hydrophobic properties <str<strong>on</strong>g>and</str<strong>on</strong>g> molecular structure similarities shared byastaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> yellow xanthophylls from CGM.Bleach<str<strong>on</strong>g>in</str<strong>on</strong>g>g of yellow pigments from CGM, for its <str<strong>on</strong>g>in</str<strong>on</strong>g>clusi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> salm<strong>on</strong>id fish formulated diets,has been assessed us<str<strong>on</strong>g>in</str<strong>on</strong>g>g different practical process<str<strong>on</strong>g>in</str<strong>on</strong>g>g approaches (i.e. natural maturati<strong>on</strong>,enzymatic oxidati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> solvent extracti<strong>on</strong>), with diverse results (Park et al., 1997; Gél<str<strong>on</strong>g>in</str<strong>on</strong>g>as et al.,1998; Cha et al., 2000). Up to 70% of the total yellow carotenoids pigments c<strong>on</strong>tent <str<strong>on</strong>g>in</str<strong>on</strong>g> CGM was5


leached when 5% of soy flour as LOX source was mixed with wet CGM <str<strong>on</strong>g>in</str<strong>on</strong>g> an aqueous mediumat pH 6.5 (Cha et al., 2000; Park et al., 1997).The aims of this literature review are 1) to c<strong>on</strong>tribute to a better underst<str<strong>on</strong>g>and</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> the effectsof <str<strong>on</strong>g>in</str<strong>on</strong>g>clusi<strong>on</strong> of plant-prote<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>gredients, specifically corn gluten meal, <strong>on</strong> muscle quality traitssuch colour <str<strong>on</strong>g>and</str<strong>on</strong>g> 2) to <str<strong>on</strong>g>in</str<strong>on</strong>g>troduce some practical process<str<strong>on</strong>g>in</str<strong>on</strong>g>g methods for corn gluten meal <str<strong>on</strong>g>in</str<strong>on</strong>g> orderto reduce its pigment c<strong>on</strong>tent <str<strong>on</strong>g>and</str<strong>on</strong>g> reduce its negative effect <strong>on</strong> muscle pigmentati<strong>on</strong> of salm<strong>on</strong>idfish.2.2 Evoluti<strong>on</strong> of diet formulati<strong>on</strong> for salm<strong>on</strong>id fish <str<strong>on</strong>g>and</str<strong>on</strong>g> flesh quality assessmentHistorically, aquaculture feeds have relied up<strong>on</strong> fish meal as a major prote<str<strong>on</strong>g>in</str<strong>on</strong>g> source due tothe high nutritive value of this commodity. Producti<strong>on</strong> of salm<strong>on</strong>id feed has shown a fast growth<str<strong>on</strong>g>in</str<strong>on</strong>g> the last decade, the annual global producti<strong>on</strong> of formulated diets for salm<strong>on</strong>id fish <str<strong>on</strong>g>in</str<strong>on</strong>g> 2006 wasestimated at about 2.6 MMT (Tac<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Metian, 2009). The steady <str<strong>on</strong>g>in</str<strong>on</strong>g>crease of price <str<strong>on</strong>g>and</str<strong>on</strong>g> variableavailability of fisheries by-products observed dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the last three decades had forced salm<strong>on</strong>idfeed formulators to <str<strong>on</strong>g>in</str<strong>on</strong>g>crease <str<strong>on</strong>g>in</str<strong>on</strong>g>clusi<strong>on</strong> levels of more available <str<strong>on</strong>g>and</str<strong>on</strong>g> cost-effective feed <str<strong>on</strong>g>in</str<strong>on</strong>g>gredients<str<strong>on</strong>g>in</str<strong>on</strong>g> order to manage their producti<strong>on</strong> costs.Ingredients which have found wide use <str<strong>on</strong>g>in</str<strong>on</strong>g> aquaculture feeds are poultry by-product meal,meat <str<strong>on</strong>g>and</str<strong>on</strong>g> b<strong>on</strong>e meal, soybean meal, soy prote<str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>centrates <str<strong>on</strong>g>and</str<strong>on</strong>g> corn gluten meal (Alexis et al.,1985; Cha et al., 2000; de Francesco et al., 2004). Numerous scientific studies assess<str<strong>on</strong>g>in</str<strong>on</strong>g>g theeffects of these <str<strong>on</strong>g>in</str<strong>on</strong>g>gredients (<str<strong>on</strong>g>and</str<strong>on</strong>g> many other new potentially useful <strong>on</strong>es) <strong>on</strong> growth, digestibility<str<strong>on</strong>g>and</str<strong>on</strong>g> nutrient retenti<strong>on</strong> have been published <str<strong>on</strong>g>in</str<strong>on</strong>g> the last decades. On the other h<str<strong>on</strong>g>and</str<strong>on</strong>g>, <strong>on</strong>ly a fewscientific publicati<strong>on</strong>s address<str<strong>on</strong>g>in</str<strong>on</strong>g>g the effects of these commodities <strong>on</strong> flesh quality <str<strong>on</strong>g>in</str<strong>on</strong>g> salm<strong>on</strong>idfish are available. Inclusi<strong>on</strong> of soy prote<str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>centrate <str<strong>on</strong>g>and</str<strong>on</strong>g> soybean meal (62 <str<strong>on</strong>g>and</str<strong>on</strong>g> 42% <str<strong>on</strong>g>in</str<strong>on</strong>g>clusi<strong>on</strong>6


level, respectively) resulted <str<strong>on</strong>g>in</str<strong>on</strong>g> significant different values for colour attributes <str<strong>on</strong>g>and</str<strong>on</strong>g> texture(expressed as maximum shear strength) <str<strong>on</strong>g>in</str<strong>on</strong>g> fillet from ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow trout fed n<strong>on</strong>-pigmentsupplemented experimental diets for 12 weeks (Kaushik et al., 1995). Higher hardness, lesssweetness <str<strong>on</strong>g>and</str<strong>on</strong>g> odour <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity, <str<strong>on</strong>g>and</str<strong>on</strong>g> a trend to lower juic<str<strong>on</strong>g>in</str<strong>on</strong>g>ess, as well as significant differences <str<strong>on</strong>g>in</str<strong>on</strong>g>redness (a*) <str<strong>on</strong>g>and</str<strong>on</strong>g> yellowness (b*) <str<strong>on</strong>g>in</str<strong>on</strong>g> different secti<strong>on</strong>s (dorsal, ventral <str<strong>on</strong>g>and</str<strong>on</strong>g> caudal site) weredeterm<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> fillets from ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow trout fed a diet supplemented with 70% of a plant prote<str<strong>on</strong>g>in</str<strong>on</strong>g>blend composed of corn gluten meal, wheat gluten meal, extruded peas <str<strong>on</strong>g>and</str<strong>on</strong>g> rapeseed meal (<str<strong>on</strong>g>in</str<strong>on</strong>g> a2:2:2:1 ratio) compared to those obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed from fish fed a fish meal based diet c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g 0.01%of astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> for 24 weeks (de Francesco et al., 2004).2.3 Fish muscle <str<strong>on</strong>g>and</str<strong>on</strong>g> quality st<str<strong>on</strong>g>and</str<strong>on</strong>g>ards<strong>Muscle</strong> is the soft, c<strong>on</strong>tractile tissue resp<strong>on</strong>sible for produc<str<strong>on</strong>g>in</str<strong>on</strong>g>g force <str<strong>on</strong>g>and</str<strong>on</strong>g> caus<str<strong>on</strong>g>in</str<strong>on</strong>g>g moti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>animals. Three different types of muscle tissue are recognized <str<strong>on</strong>g>in</str<strong>on</strong>g> vertebrates, skeletal or‘voluntary’ muscle c<strong>on</strong>troll<str<strong>on</strong>g>in</str<strong>on</strong>g>g locomoti<strong>on</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g> two types of ‘<str<strong>on</strong>g>in</str<strong>on</strong>g>voluntary muscle, smooth found<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>ternal organs (i.e. esophagus, stomach, am<strong>on</strong>g others) <str<strong>on</strong>g>and</str<strong>on</strong>g> cardiac muscle, found <strong>on</strong>ly <str<strong>on</strong>g>in</str<strong>on</strong>g> theheart.The major edible part of fish fillets is composed by ‘W’ shaped stacks of skeletal musclecalled myomeres. These muscle blocks are separated from adjacent myomeres by th<str<strong>on</strong>g>in</str<strong>on</strong>g> horiz<strong>on</strong>tal(myosepta) <str<strong>on</strong>g>and</str<strong>on</strong>g> vertical (myocommata) layers of c<strong>on</strong>nective tissue. Three different types ofskeletal muscle have been described <str<strong>on</strong>g>in</str<strong>on</strong>g> fish based <strong>on</strong> their metabolic <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>tractilecharacteristics: 1) red muscle (slow twitch or type 1 cells): composed of superficial cells with ahigh capacity for aerobic energy supply, 2) white muscle (fast twitch or type 2b cells): formed by7


deep <str<strong>on</strong>g>and</str<strong>on</strong>g> fast glycolytic cells, <str<strong>on</strong>g>and</str<strong>on</strong>g> 3) p<str<strong>on</strong>g>in</str<strong>on</strong>g>k muscle (located between red <str<strong>on</strong>g>and</str<strong>on</strong>g> white muscle),shar<str<strong>on</strong>g>in</str<strong>on</strong>g>g metabolic properties of red <str<strong>on</strong>g>and</str<strong>on</strong>g> white muscle (Fauc<strong>on</strong>neau et al., 1997).Myofibers (myocytes, muscle cells or muscle fibers) are cyl<str<strong>on</strong>g>in</str<strong>on</strong>g>drical mult<str<strong>on</strong>g>in</str<strong>on</strong>g>ucleated cellsarranged with<str<strong>on</strong>g>in</str<strong>on</strong>g> myomeres <str<strong>on</strong>g>in</str<strong>on</strong>g> clusters of cells called fascicles. Myofibers are composed of l<strong>on</strong>gc<strong>on</strong>tractile prote<str<strong>on</strong>g>in</str<strong>on</strong>g> bundles (c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g act<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> myos<str<strong>on</strong>g>in</str<strong>on</strong>g> complexes) called myofribrils. Act<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>and</str<strong>on</strong>g> myos<str<strong>on</strong>g>in</str<strong>on</strong>g> are organized with<str<strong>on</strong>g>in</str<strong>on</strong>g> myofibrils <str<strong>on</strong>g>in</str<strong>on</strong>g> units of repetiti<strong>on</strong> named sarcomeres.Flesh quality is determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by a comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> of muscle characteristics <str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g fleshfirmness <str<strong>on</strong>g>and</str<strong>on</strong>g> colour (Anders<strong>on</strong>, 2000). Flesh quality traits dramatically <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence the price of thef<str<strong>on</strong>g>in</str<strong>on</strong>g>al product, thus achiev<str<strong>on</strong>g>in</str<strong>on</strong>g>g high st<str<strong>on</strong>g>and</str<strong>on</strong>g>ards <str<strong>on</strong>g>in</str<strong>on</strong>g> flesh quality will result <str<strong>on</strong>g>in</str<strong>on</strong>g> premium price. On theother h<str<strong>on</strong>g>and</str<strong>on</strong>g>, fillets present<str<strong>on</strong>g>in</str<strong>on</strong>g>g poor physical characteristic will be downgraded (i.e. reducti<strong>on</strong> ofthe ec<strong>on</strong>omic value of the product) at process<str<strong>on</strong>g>in</str<strong>on</strong>g>g plants (Johnst<strong>on</strong> et al., 2006).2.4 Salm<strong>on</strong>id fish fillet colour <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>sumers’ percepti<strong>on</strong>The c<strong>on</strong>spicuous red to p<str<strong>on</strong>g>in</str<strong>on</strong>g>k colour <str<strong>on</strong>g>in</str<strong>on</strong>g> fillets from salm<strong>on</strong>id fish is an important qualityparameter. Colour has been positively related to c<strong>on</strong>sumer purchas<str<strong>on</strong>g>in</str<strong>on</strong>g>g decisi<strong>on</strong> at sell<str<strong>on</strong>g>in</str<strong>on</strong>g>g po<str<strong>on</strong>g>in</str<strong>on</strong>g>ts.C<strong>on</strong>sumers associate colour with characteristics such as age, orig<str<strong>on</strong>g>in</str<strong>on</strong>g>, expected flavour/texture <str<strong>on</strong>g>and</str<strong>on</strong>g>freshness (Anders<strong>on</strong>, 2000).<str<strong>on</strong>g>Reducti<strong>on</strong></str<strong>on</strong>g> of expected colour <str<strong>on</strong>g>in</str<strong>on</strong>g> muscle from salm<strong>on</strong>id fish negatively affects its appeal <str<strong>on</strong>g>and</str<strong>on</strong>g>reduces its ec<strong>on</strong>omic value as c<strong>on</strong>sumers relate this treat with a more expensive product. There isa clear preference from c<strong>on</strong>sumers for redder fillets compare to pale <strong>on</strong>es. C<strong>on</strong>sumers’will<str<strong>on</strong>g>in</str<strong>on</strong>g>gness to pay (WTP) was positively correlated to fillet redness <str<strong>on</strong>g>in</str<strong>on</strong>g> a real choice experiment,8


ased <strong>on</strong> a sensory panel evaluat<str<strong>on</strong>g>in</str<strong>on</strong>g>g colour variati<strong>on</strong> (expressed as SalmoFan TM scores, rang<str<strong>on</strong>g>in</str<strong>on</strong>g>gfrom score 21 to 29). Fillets with colour scores below 23 were identified as hard to sell at anyprice (Alfnes et al., 2006).2.5 Ec<strong>on</strong>omic implicati<strong>on</strong>s of salm<strong>on</strong>id muscle pigmentati<strong>on</strong>Astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> is by far the most expensive commodity <str<strong>on</strong>g>in</str<strong>on</strong>g>cluded <str<strong>on</strong>g>in</str<strong>on</strong>g> formulated diets forsalm<strong>on</strong>id fish, its price may vary from 1500 to 2000 USD kg -1 (Bjerkeng, 2008). <str<strong>on</strong>g>Pigment</str<strong>on</strong>g>supplementati<strong>on</strong> generally represents up to 10-20% of the feed <str<strong>on</strong>g>in</str<strong>on</strong>g>gredients’ cost (Bjerkeng,2000; Choubert et al., 2009), however these expensive pigments are poorly utilized by fish.Astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> flesh depositi<strong>on</strong> rate is <str<strong>on</strong>g>in</str<strong>on</strong>g> general very low (


observed <str<strong>on</strong>g>in</str<strong>on</strong>g> ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow trout with an <str<strong>on</strong>g>in</str<strong>on</strong>g>itial body weight of 550 g fed a commercial diet c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g60 mg kg -1 of astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> for 56 days (Ytrestoyl <str<strong>on</strong>g>and</str<strong>on</strong>g> Bjerkeng 2007).Differences of 30 to 50% have been reported between digested astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> (ADC) <str<strong>on</strong>g>and</str<strong>on</strong>g>astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> muscle depositi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow trout (958 g, f<str<strong>on</strong>g>in</str<strong>on</strong>g>al body weight) fed a diet c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g52 mg of astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> per kg after a 6 weeks feed<str<strong>on</strong>g>in</str<strong>on</strong>g>g trial (No <str<strong>on</strong>g>and</str<strong>on</strong>g> Storebakken, 1991).2.6 <strong>Muscle</strong> pigmentati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> salm<strong>on</strong>id fish2.6.1 Carotenoid pigmentsCarotenoids are hydrophobic, isoprene derivatives, pigments bio-synthetized by plants,algae <str<strong>on</strong>g>and</str<strong>on</strong>g> photosynthetic bacteria; more than 600 of these compounds have been identified,characterized <str<strong>on</strong>g>and</str<strong>on</strong>g> isolated from natural sources.On a molecular basis, all carotenoids are characterized by a C 40 carb<strong>on</strong> skelet<strong>on</strong>. Thiscarb<strong>on</strong> backb<strong>on</strong>e c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>s 3 to 13 c<strong>on</strong>jugated double bounds (polyene), <str<strong>on</strong>g>and</str<strong>on</strong>g> may be cyclized at<strong>on</strong>e or both ends. Figure 2.1 shows the structures of some important carotenoids found <str<strong>on</strong>g>in</str<strong>on</strong>g> nature.Carotenoids are classified <str<strong>on</strong>g>in</str<strong>on</strong>g>to two major groups accord<str<strong>on</strong>g>in</str<strong>on</strong>g>g to their chemical compositi<strong>on</strong>: (1)carotenes, when <strong>on</strong>ly carb<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> hydrogen atoms are present <str<strong>on</strong>g>in</str<strong>on</strong>g> their structure, <str<strong>on</strong>g>and</str<strong>on</strong>g> (2)xanthophylls, when <strong>on</strong>e or more oxygen molecules are c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed with<str<strong>on</strong>g>in</str<strong>on</strong>g> their moleculararrangement (Brenna <str<strong>on</strong>g>and</str<strong>on</strong>g> Berardo, 2004).<str<strong>on</strong>g>Pigment</str<strong>on</strong>g>s are widely distributed <str<strong>on</strong>g>in</str<strong>on</strong>g> nature <str<strong>on</strong>g>and</str<strong>on</strong>g> are resp<strong>on</strong>sible for the yellow, orange <str<strong>on</strong>g>and</str<strong>on</strong>g>red colourati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> many fruits, birds, fish <str<strong>on</strong>g>and</str<strong>on</strong>g> crustacea. Animals are unable to synthesise10


carotenoids de novo, hence they must rely up<strong>on</strong> dietary sources <str<strong>on</strong>g>in</str<strong>on</strong>g> order to access them (Furr <str<strong>on</strong>g>and</str<strong>on</strong>g>Clark, 1997; Y<strong>on</strong>ekura <str<strong>on</strong>g>and</str<strong>on</strong>g> Nagao, 2007).2.6.2 Metabolism of carotenoids <str<strong>on</strong>g>in</str<strong>on</strong>g> salm<strong>on</strong>id fishCarotenoids are lipid soluble compounds, c<strong>on</strong>sequently they are metabolized (i.e.digested, absorbed <str<strong>on</strong>g>and</str<strong>on</strong>g> transported) accord<str<strong>on</strong>g>in</str<strong>on</strong>g>g to the matabolic pathways followed by lipidmolecules (Castenmiller <str<strong>on</strong>g>and</str<strong>on</strong>g> West, 1998; Rajas<str<strong>on</strong>g>in</str<strong>on</strong>g>gh et al., 2006).Carotenoids are solubilized <str<strong>on</strong>g>in</str<strong>on</strong>g> lipid droplets after be<str<strong>on</strong>g>in</str<strong>on</strong>g>g released from feed with<str<strong>on</strong>g>in</str<strong>on</strong>g> thestomach. Lipid aggregates are further emulsified by liver-secreted bile <str<strong>on</strong>g>in</str<strong>on</strong>g> the duodenum.Emulsified lipids are then hydrolysed (by pancreatic lipases) <str<strong>on</strong>g>in</str<strong>on</strong>g>to free fatty acids <str<strong>on</strong>g>and</str<strong>on</strong>g>m<strong>on</strong>oglycerols, which rema<str<strong>on</strong>g>in</str<strong>on</strong>g> associated with carotenoids, other lipids <str<strong>on</strong>g>and</str<strong>on</strong>g> bile acids <str<strong>on</strong>g>in</str<strong>on</strong>g>structures called mixed micelles. Polar xanthophylls are found <str<strong>on</strong>g>in</str<strong>on</strong>g> the surface of lipid emulsi<strong>on</strong>s<str<strong>on</strong>g>and</str<strong>on</strong>g> mixed micelles. On the other h<str<strong>on</strong>g>and</str<strong>on</strong>g>, less polar carotenes are located with<str<strong>on</strong>g>in</str<strong>on</strong>g> the hydrophobiccore from these assemblies (Borel et al., 1996; Furr <str<strong>on</strong>g>and</str<strong>on</strong>g> Clarck, 1997). Molecules positi<strong>on</strong>edwith<str<strong>on</strong>g>in</str<strong>on</strong>g> surface of this lipid structures can be sp<strong>on</strong>taneously transferred as opposed to comp<strong>on</strong>entattached to the core, which need digesti<strong>on</strong> before be<str<strong>on</strong>g>in</str<strong>on</strong>g>g released (Borel et al., 1996).Carotenoids with<str<strong>on</strong>g>in</str<strong>on</strong>g> micelles are absorbed, al<strong>on</strong>g with other lipids, by <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al cells(enterocytes) through simple diffusi<strong>on</strong>. With<str<strong>on</strong>g>in</str<strong>on</strong>g> the enterocyte, carotenoids are aggregated <str<strong>on</strong>g>in</str<strong>on</strong>g>totriglyceride-rich lipoprote<str<strong>on</strong>g>in</str<strong>on</strong>g>s called chylomicr<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> released <str<strong>on</strong>g>in</str<strong>on</strong>g>to the lymph <str<strong>on</strong>g>and</str<strong>on</strong>g> eventually<str<strong>on</strong>g>in</str<strong>on</strong>g>to the blood stream for deliver to peripheral tissue <str<strong>on</strong>g>and</str<strong>on</strong>g> liver.11


Chylomicr<strong>on</strong> c<strong>on</strong>stituents are removed by lipoprote<str<strong>on</strong>g>in</str<strong>on</strong>g> lipase <str<strong>on</strong>g>and</str<strong>on</strong>g> distributed <str<strong>on</strong>g>in</str<strong>on</strong>g> peripheraltissue. Chylomicr<strong>on</strong> remnants are then taken up by the liver <str<strong>on</strong>g>and</str<strong>on</strong>g> rema<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g carotenoids are eithermetabolized or assembled <str<strong>on</strong>g>in</str<strong>on</strong>g>to lipoprote<str<strong>on</strong>g>in</str<strong>on</strong>g>s <str<strong>on</strong>g>and</str<strong>on</strong>g> sent aga<str<strong>on</strong>g>in</str<strong>on</strong>g> to the bloodstream toward peripheraltissue (Jacks<strong>on</strong> et al., 2008).The liver has been reported as a major site for metabolism <str<strong>on</strong>g>and</str<strong>on</strong>g> excreti<strong>on</strong> of carotenoids <str<strong>on</strong>g>in</str<strong>on</strong>g>fish. The occurrence of high levels of 14 C-labelled canthaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> (96 h after a s<str<strong>on</strong>g>in</str<strong>on</strong>g>gle forcefeed<str<strong>on</strong>g>in</str<strong>on</strong>g>g) <str<strong>on</strong>g>and</str<strong>on</strong>g> no detectable levels of canthaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> bile from ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow trout (400 g fish -1 )suggests that digested canthaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> was metabolized <str<strong>on</strong>g>in</str<strong>on</strong>g>to different compounds <str<strong>on</strong>g>in</str<strong>on</strong>g> the liver <str<strong>on</strong>g>and</str<strong>on</strong>g>excreted with<str<strong>on</strong>g>in</str<strong>on</strong>g> the bile (Hardy et al., 1990). Similarly, biliary excreti<strong>on</strong> of cantaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> wasreported for Atlantic salm<strong>on</strong> (1,000 – 1,400 g fish -1 ) fed diets supplemented with 14 C-labelled<str<strong>on</strong>g>and</str<strong>on</strong>g> regular canthaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> (Torrissen <str<strong>on</strong>g>and</str<strong>on</strong>g> Ingebrigtsen, 1992).Carotenoids not metabolized or excreted by the liver are re-<str<strong>on</strong>g>in</str<strong>on</strong>g>corporated <str<strong>on</strong>g>in</str<strong>on</strong>g>to lipoprote<str<strong>on</strong>g>in</str<strong>on</strong>g>sbefore be<str<strong>on</strong>g>in</str<strong>on</strong>g>g released from the liver <str<strong>on</strong>g>in</str<strong>on</strong>g>to the blood stream (Rajas<str<strong>on</strong>g>in</str<strong>on</strong>g>gh et al., 2006). Astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g>has been reported to b<str<strong>on</strong>g>in</str<strong>on</strong>g>d to high density lipoprote<str<strong>on</strong>g>in</str<strong>on</strong>g>s <str<strong>on</strong>g>in</str<strong>on</strong>g> ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow trout (250 g fish -1 ) fed a dietsupplemented with 80 mg kg -1 of astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> for 1 m<strong>on</strong>th (Choubert et al., 1995). Canthaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g>was bound to three serum lipoprote<str<strong>on</strong>g>in</str<strong>on</strong>g> classes although was transported ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ly by low densitylipoprote<str<strong>on</strong>g>in</str<strong>on</strong>g>s <str<strong>on</strong>g>in</str<strong>on</strong>g> ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow trout (195 g fish -1 ) fed a diet supplemented with 80 mg kg -1ofcanthaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> for 6 weeks (Salvador et al., 2009). In Atlantic salm<strong>on</strong>, astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> was reportedto be transported by both high <str<strong>on</strong>g>and</str<strong>on</strong>g> low density lipoprote<str<strong>on</strong>g>in</str<strong>on</strong>g>s <str<strong>on</strong>g>and</str<strong>on</strong>g> b<strong>on</strong>d to a serum prote<str<strong>on</strong>g>in</str<strong>on</strong>g>hypothesised to be album<str<strong>on</strong>g>in</str<strong>on</strong>g> (Aas et al., 1999).Astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> is deposited <str<strong>on</strong>g>in</str<strong>on</strong>g> fish flesh <str<strong>on</strong>g>in</str<strong>on</strong>g> its free form (Schiedt et al., 1985). A subcellularfracti<strong>on</strong>ati<strong>on</strong> study c<strong>on</strong>ducted <str<strong>on</strong>g>in</str<strong>on</strong>g> muscle samples from wild chum <str<strong>on</strong>g>and</str<strong>on</strong>g> sockeye salm<strong>on</strong>12


(Oncorhynchus keta <str<strong>on</strong>g>and</str<strong>on</strong>g> Oncorhynchus nerka, respectively), <str<strong>on</strong>g>and</str<strong>on</strong>g> farmed coho salm<strong>on</strong>(Oncorhynchus kisutch), dem<strong>on</strong>strated that carotenoids exist <str<strong>on</strong>g>in</str<strong>on</strong>g> myofibril filaments of musclecells, be<str<strong>on</strong>g>in</str<strong>on</strong>g>g part of a pigment-actomyos<str<strong>on</strong>g>in</str<strong>on</strong>g> complex (Henmi et al., 1987). Carotenoids areattached to the prote<str<strong>on</strong>g>in</str<strong>on</strong>g> surface through a weak hydrophobic b<strong>on</strong>d. It was proposed that the β-i<strong>on</strong><strong>on</strong>e r<str<strong>on</strong>g>in</str<strong>on</strong>g>g from the pigment molecule is bound to the bottom of a hydrophobic hole <str<strong>on</strong>g>in</str<strong>on</strong>g> thehydrophobic b<str<strong>on</strong>g>in</str<strong>on</strong>g>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g site <strong>on</strong> the actomyos<str<strong>on</strong>g>in</str<strong>on</strong>g> prote<str<strong>on</strong>g>in</str<strong>on</strong>g> complex, <str<strong>on</strong>g>and</str<strong>on</strong>g> that the pigment-prote<str<strong>on</strong>g>in</str<strong>on</strong>g>comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> strength is determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by the number of hydrogen b<strong>on</strong>ds (Henmi et al., 1989). Morerecently, the development of a method capable of detect<str<strong>on</strong>g>in</str<strong>on</strong>g>g aff<str<strong>on</strong>g>in</str<strong>on</strong>g>ity of myofibrillar prote<str<strong>on</strong>g>in</str<strong>on</strong>g>s forastaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> muscle from Atlantic salm<strong>on</strong>, dem<strong>on</strong>strated that α-act<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g> was the <strong>on</strong>ly prote<str<strong>on</strong>g>in</str<strong>on</strong>g>correlat<str<strong>on</strong>g>in</str<strong>on</strong>g>g significantly (p


<strong>Muscle</strong> growth <str<strong>on</strong>g>in</str<strong>on</strong>g> ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow trout is characterized by an <str<strong>on</strong>g>in</str<strong>on</strong>g>crease <str<strong>on</strong>g>in</str<strong>on</strong>g> the number of fibercells (hyperplasia) <str<strong>on</strong>g>and</str<strong>on</strong>g> hypertrophy (enlargement of cell size). Hyperplasia reaches a plateau at~40% of fork length, whereas hypertrophy accounts for growth until fish reach sexual maturati<strong>on</strong>(Johnst<strong>on</strong> et al., 2006). Whether the <str<strong>on</strong>g>in</str<strong>on</strong>g>crease <str<strong>on</strong>g>in</str<strong>on</strong>g> pigment depositi<strong>on</strong> rate <str<strong>on</strong>g>in</str<strong>on</strong>g> salm<strong>on</strong>id fish isrelated to the <str<strong>on</strong>g>in</str<strong>on</strong>g>tense muscle fiber hypertrophy (<str<strong>on</strong>g>and</str<strong>on</strong>g> the subsequent <str<strong>on</strong>g>in</str<strong>on</strong>g>crease <str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>tractile prote<str<strong>on</strong>g>in</str<strong>on</strong>g>act<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> myos<str<strong>on</strong>g>in</str<strong>on</strong>g>) <str<strong>on</strong>g>in</str<strong>on</strong>g> fish rema<str<strong>on</strong>g>in</str<strong>on</strong>g>s to be determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed.When salm<strong>on</strong>id fish reach sexual maturati<strong>on</strong>, carotenoids deposited <str<strong>on</strong>g>in</str<strong>on</strong>g> the flesh areredistributed to both the sk<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> ovaries. As a result, a significant reducti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g>muscle c<strong>on</strong>centrati<strong>on</strong> is observed <str<strong>on</strong>g>in</str<strong>on</strong>g> mature fish (Leclercq et al., 2010). In chum salm<strong>on</strong> areductive metabolic pathway for astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>to zeaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> has been determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed for mature<str<strong>on</strong>g>in</str<strong>on</strong>g>dividuals. Carotenoids were determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed to be transported with<str<strong>on</strong>g>in</str<strong>on</strong>g> lipoprote<str<strong>on</strong>g>in</str<strong>on</strong>g>s with<str<strong>on</strong>g>in</str<strong>on</strong>g> the bloodstream (Ando <str<strong>on</strong>g>and</str<strong>on</strong>g> Hatano, 1988).2.7 <str<strong>on</strong>g>Corn</str<strong>on</strong>g> fracti<strong>on</strong>ati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> implicati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> animal nutriti<strong>on</strong>2.7.1 <str<strong>on</strong>g>Corn</str<strong>on</strong>g> mill<str<strong>on</strong>g>in</str<strong>on</strong>g>g<str<strong>on</strong>g>Corn</str<strong>on</strong>g> (Zea mays L.), after rice (Oryza sativa L.) <str<strong>on</strong>g>and</str<strong>on</strong>g> wheat (Triticum sp. L., respectively),is the most important cereal gra<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> the world. <str<strong>on</strong>g>Corn</str<strong>on</strong>g> world producti<strong>on</strong> is about 815 milli<strong>on</strong>metric t<strong>on</strong>s (USDA, 2011). This gra<str<strong>on</strong>g>in</str<strong>on</strong>g> is usually processed by dry mill<str<strong>on</strong>g>in</str<strong>on</strong>g>g, alkal<str<strong>on</strong>g>in</str<strong>on</strong>g>e process<str<strong>on</strong>g>in</str<strong>on</strong>g>g,wet mill<str<strong>on</strong>g>in</str<strong>on</strong>g>g or dry gr<str<strong>on</strong>g>in</str<strong>on</strong>g>d process. Dry mill<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>and</str<strong>on</strong>g> alkal<str<strong>on</strong>g>in</str<strong>on</strong>g>e processed corn result <str<strong>on</strong>g>in</str<strong>on</strong>g> ‘human grade’products such as corn flour, corn meal, tortilla <str<strong>on</strong>g>and</str<strong>on</strong>g> related foods. The major product of the cornwet mill<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>and</str<strong>on</strong>g> dry gr<str<strong>on</strong>g>in</str<strong>on</strong>g>d processes is ethanol, even though many high quality by-products for14


food, feed <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>dustrial purposes are obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed through these processes. Figures 2.2 <str<strong>on</strong>g>and</str<strong>on</strong>g> 2.3show a schematic representati<strong>on</strong> of the corn wet <str<strong>on</strong>g>and</str<strong>on</strong>g> dry mill<str<strong>on</strong>g>in</str<strong>on</strong>g>g, respectively.<str<strong>on</strong>g>Corn</str<strong>on</strong>g> kernels are composed of three different secti<strong>on</strong>s: pericarp (ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ly fibre), endosperm(starch <str<strong>on</strong>g>and</str<strong>on</strong>g> prote<str<strong>on</strong>g>in</str<strong>on</strong>g>s) <str<strong>on</strong>g>and</str<strong>on</strong>g> germ (prote<str<strong>on</strong>g>in</str<strong>on</strong>g>s <str<strong>on</strong>g>and</str<strong>on</strong>g> oil). Ma<str<strong>on</strong>g>in</str<strong>on</strong>g> prote<str<strong>on</strong>g>in</str<strong>on</strong>g>s found <str<strong>on</strong>g>in</str<strong>on</strong>g> corn kernel arealbum<str<strong>on</strong>g>in</str<strong>on</strong>g>s, globul<str<strong>on</strong>g>in</str<strong>on</strong>g>s, glutel<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> ze<str<strong>on</strong>g>in</str<strong>on</strong>g>. Album<str<strong>on</strong>g>in</str<strong>on</strong>g>s <str<strong>on</strong>g>and</str<strong>on</strong>g> globul<str<strong>on</strong>g>in</str<strong>on</strong>g>s are c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> the germ,glutel<str<strong>on</strong>g>in</str<strong>on</strong>g> is homogenously distributed between germ <str<strong>on</strong>g>and</str<strong>on</strong>g> endosperm, <str<strong>on</strong>g>and</str<strong>on</strong>g> ze<str<strong>on</strong>g>in</str<strong>on</strong>g> is c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ly<str<strong>on</strong>g>in</str<strong>on</strong>g> the endosperm (Shukla <str<strong>on</strong>g>and</str<strong>on</strong>g> Cheryan, 2001). Xanthophyll pigments <str<strong>on</strong>g>in</str<strong>on</strong>g> corn kernels areembedded with<str<strong>on</strong>g>in</str<strong>on</strong>g> prote<str<strong>on</strong>g>in</str<strong>on</strong>g> complexes. The total xanthophyll c<strong>on</strong>tent <str<strong>on</strong>g>in</str<strong>on</strong>g> whole corn ranges from 11to 30 mg kg -1 (Moros et al., 2002).<str<strong>on</strong>g>Corn</str<strong>on</strong>g> gluten meal <str<strong>on</strong>g>and</str<strong>on</strong>g> corn gluten feed are the by-products from the wet mill<str<strong>on</strong>g>in</str<strong>on</strong>g>g withhigher prote<str<strong>on</strong>g>in</str<strong>on</strong>g> level (around 60% <str<strong>on</strong>g>and</str<strong>on</strong>g> 23% of prote<str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>tent <strong>on</strong> a dry matter basis, respectively).Dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the wet mill<str<strong>on</strong>g>in</str<strong>on</strong>g>g, naturally occurr<str<strong>on</strong>g>in</str<strong>on</strong>g>g xanthophylls rema<str<strong>on</strong>g>in</str<strong>on</strong>g> attached to the gluten fracti<strong>on</strong>(ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ly ze<str<strong>on</strong>g>in</str<strong>on</strong>g>) which is ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ly recovered <str<strong>on</strong>g>in</str<strong>on</strong>g> corn gluten meal. C<strong>on</strong>sequently, this commodityc<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>s high levels (224 to 550 mg kg -1 <strong>on</strong> a dry matter basis) of yellow carotenoids (Park et al.,1997; Moros et al., 2002), ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ly lute<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> zeaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g>. <str<strong>on</strong>g>Corn</str<strong>on</strong>g> gluten feed <strong>on</strong> the other h<str<strong>on</strong>g>and</str<strong>on</strong>g>,c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>s a level of yellow pigment similar to that found <str<strong>on</strong>g>in</str<strong>on</strong>g> corn kernels (Tucker <str<strong>on</strong>g>and</str<strong>on</strong>g> Hargreaves,2004).Dried distiller gra<str<strong>on</strong>g>in</str<strong>on</strong>g>s (DDG) <str<strong>on</strong>g>and</str<strong>on</strong>g> DDG plus soluble (DDGS) are the dry gra<str<strong>on</strong>g>in</str<strong>on</strong>g> mill<str<strong>on</strong>g>in</str<strong>on</strong>g>g byproductswith higher prote<str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>tent (around 23%) (Shukla <str<strong>on</strong>g>and</str<strong>on</strong>g> Cheryan, 2001). Xanthophyllc<strong>on</strong>tent <str<strong>on</strong>g>in</str<strong>on</strong>g> these by-products range from 22 to 40 mg kg -1 (Li et al., 2011).15


2.7.2 <str<strong>on</strong>g>Corn</str<strong>on</strong>g> gluten meal producti<strong>on</strong><str<strong>on</strong>g>Corn</str<strong>on</strong>g> gluten meal is a high prote<str<strong>on</strong>g>in</str<strong>on</strong>g> (~60% crude prote<str<strong>on</strong>g>in</str<strong>on</strong>g>, <strong>on</strong> a dry matter basis), highlydigestible, by-product of the corn wet mill<str<strong>on</strong>g>in</str<strong>on</strong>g>g. <str<strong>on</strong>g>Corn</str<strong>on</strong>g> wet mill<str<strong>on</strong>g>in</str<strong>on</strong>g>g is an <str<strong>on</strong>g>in</str<strong>on</strong>g>dustrial ref<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g process<str<strong>on</strong>g>in</str<strong>on</strong>g> which the four major c<strong>on</strong>stituents of the corn kernel (i.e. starch, germ, prote<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> fiber) areisolated <str<strong>on</strong>g>in</str<strong>on</strong>g>to relatively pure fracti<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> transformed <str<strong>on</strong>g>in</str<strong>on</strong>g>to high quality products. Use of corn bythe wet mill<str<strong>on</strong>g>in</str<strong>on</strong>g>g process <str<strong>on</strong>g>in</str<strong>on</strong>g> the U.S. has grown an average of 1.2 milli<strong>on</strong> bushels (unit of dryvolume, 1 bushel = 35.2 litres) per m<strong>on</strong>th, reach<str<strong>on</strong>g>in</str<strong>on</strong>g>g up to 90 - 96 milli<strong>on</strong> bushels from January2007 to November 2009 (O’Brien, 2009).The major by-products from the corn wet mill<str<strong>on</strong>g>in</str<strong>on</strong>g>g used for animal feeds are steep liquor,bran, germ <str<strong>on</strong>g>and</str<strong>on</strong>g> gluten meal, represent<str<strong>on</strong>g>in</str<strong>on</strong>g>g about 30% of the total processed corn. An averageyield from the wet mill<str<strong>on</strong>g>in</str<strong>on</strong>g>g process gives 56% starch, 22% corn gluten feed, 3% corn gluten meal<str<strong>on</strong>g>and</str<strong>on</strong>g> 2% corn oil (Davis, 2001). Figure 2.2 shows the wet mill<str<strong>on</strong>g>in</str<strong>on</strong>g>g process overview. Briefly, afterclean<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>and</str<strong>on</strong>g> removal of impurities, corn kernels are placed <str<strong>on</strong>g>in</str<strong>on</strong>g>to large sta<str<strong>on</strong>g>in</str<strong>on</strong>g>less still tanks(steep<str<strong>on</strong>g>in</str<strong>on</strong>g>g tanks) to be soaked <str<strong>on</strong>g>in</str<strong>on</strong>g> steepwater (diluted sulphur dioxide soluti<strong>on</strong>) for 30-50 hours at52 -54 °C. Soak<str<strong>on</strong>g>in</str<strong>on</strong>g>g softens the kernel <str<strong>on</strong>g>and</str<strong>on</strong>g> the diluted sulphurous reduces the occurrence offermentati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> assists <str<strong>on</strong>g>in</str<strong>on</strong>g> separati<strong>on</strong> of the starch <str<strong>on</strong>g>and</str<strong>on</strong>g> prote<str<strong>on</strong>g>in</str<strong>on</strong>g> bounds (Galitsky et al., 2003).Dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g soak<str<strong>on</strong>g>in</str<strong>on</strong>g>g, soluble nutrients from corn are transferred <str<strong>on</strong>g>in</str<strong>on</strong>g>to the steep water. This water isfurther evaporated <str<strong>on</strong>g>in</str<strong>on</strong>g> order to c<strong>on</strong>centrate those nutrients <str<strong>on</strong>g>and</str<strong>on</strong>g> recovered them as c<strong>on</strong>densed cornfermented extractives or corn steep liquor.After steep<str<strong>on</strong>g>in</str<strong>on</strong>g>g is completed, kernels are coarsely ground <str<strong>on</strong>g>and</str<strong>on</strong>g> oil-rich germ is removed.Oil is extracted from germ <str<strong>on</strong>g>and</str<strong>on</strong>g> the de-oiled germ leftovers are recovered as corn germ meal.Germless corn kernels are then f<str<strong>on</strong>g>in</str<strong>on</strong>g>ely ground <str<strong>on</strong>g>and</str<strong>on</strong>g> hulls are screen removed <str<strong>on</strong>g>and</str<strong>on</strong>g> recovered as corngluten feed.16


Rema<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g starch <str<strong>on</strong>g>and</str<strong>on</strong>g> gluten are centrifuged to form a two layer system (denser starch <str<strong>on</strong>g>in</str<strong>on</strong>g>the hypo phase <str<strong>on</strong>g>and</str<strong>on</strong>g> lighter prote<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> the epi phase). Prote<str<strong>on</strong>g>in</str<strong>on</strong>g>-rich gluten is further c<strong>on</strong>centrated,dried <str<strong>on</strong>g>and</str<strong>on</strong>g> recovered as corn gluten meal. Starch is further processed <str<strong>on</strong>g>and</str<strong>on</strong>g> ref<str<strong>on</strong>g>in</str<strong>on</strong>g>ed for feed, food<str<strong>on</strong>g>and</str<strong>on</strong>g>/or <str<strong>on</strong>g>in</str<strong>on</strong>g>dustrial processes (i.e. ethanol, sweeteners, etc) (Davis, 2001).2.7.3 <str<strong>on</strong>g>Corn</str<strong>on</strong>g> gluten meal: nutriti<strong>on</strong>al value <str<strong>on</strong>g>and</str<strong>on</strong>g> use <str<strong>on</strong>g>in</str<strong>on</strong>g> animal diets<str<strong>on</strong>g>Corn</str<strong>on</strong>g> gluten meal (CMG) is a high prote<str<strong>on</strong>g>in</str<strong>on</strong>g> (60% m<str<strong>on</strong>g>in</str<strong>on</strong>g>imum), highly digestible by-productof the corn wet mill<str<strong>on</strong>g>in</str<strong>on</strong>g>g. Prote<str<strong>on</strong>g>in</str<strong>on</strong>g> from corn gluten meal is composed ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ly of ze<str<strong>on</strong>g>in</str<strong>on</strong>g> (68%),glutel<str<strong>on</strong>g>in</str<strong>on</strong>g> (27%) <str<strong>on</strong>g>and</str<strong>on</strong>g> small amounts of globul<str<strong>on</strong>g>in</str<strong>on</strong>g>s (1.2%) (Cha et al., 2000). Compared to fish meal,corn gluten meal has an imbalanced am<str<strong>on</strong>g>in</str<strong>on</strong>g>o acid profile with lys<str<strong>on</strong>g>in</str<strong>on</strong>g>e, methi<strong>on</strong><str<strong>on</strong>g>in</str<strong>on</strong>g>e <str<strong>on</strong>g>and</str<strong>on</strong>g> tryptophanbe<str<strong>on</strong>g>in</str<strong>on</strong>g>g the more deficient <strong>on</strong>es compared to fish meal.CGM is a rich source of vitam<str<strong>on</strong>g>in</str<strong>on</strong>g> B complex <str<strong>on</strong>g>and</str<strong>on</strong>g> E source <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>s low amounts ofphosphorus (Sk<strong>on</strong>berg et al., 1998). Dewatered or wet CGM c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>s 35 – 40% solids. Howeverbefore be<str<strong>on</strong>g>in</str<strong>on</strong>g>g marketed it is dried to obta<str<strong>on</strong>g>in</str<strong>on</strong>g> a ~90% of dry matter c<strong>on</strong>tent (Park et al., 1997).Due to its high nutriti<strong>on</strong>al value, low cost <str<strong>on</strong>g>and</str<strong>on</strong>g> relatively good availability, CGM isgenerally utilized as a feed <str<strong>on</strong>g>in</str<strong>on</strong>g>gredient for a wide variety of rum<str<strong>on</strong>g>in</str<strong>on</strong>g>ant <str<strong>on</strong>g>and</str<strong>on</strong>g> m<strong>on</strong>o gastric animals<str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g fish.2.7.4 Use of corn gluten meal <str<strong>on</strong>g>in</str<strong>on</strong>g> diets for terrestrial animals<str<strong>on</strong>g>Corn</str<strong>on</strong>g> gluten meal is widely utilized <str<strong>on</strong>g>in</str<strong>on</strong>g> diets for terrestrial animals, ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ly due to its highprote<str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>tent, elevated yellow pigment level <str<strong>on</strong>g>and</str<strong>on</strong>g> relative low cost (<str<strong>on</strong>g>Corn</str<strong>on</strong>g> Ref<str<strong>on</strong>g>in</str<strong>on</strong>g>ers Associati<strong>on</strong>,17


2010). However, due to its imbalanced am<str<strong>on</strong>g>in</str<strong>on</strong>g>o acid profile, it must be mixed with differentcommodities or supplemented with synthetic am<str<strong>on</strong>g>in</str<strong>on</strong>g>o acids <str<strong>on</strong>g>in</str<strong>on</strong>g> order to reach am<str<strong>on</strong>g>in</str<strong>on</strong>g>o acidrequirements (Peter et al., 2000).CGM has been comm<strong>on</strong>ly <str<strong>on</strong>g>in</str<strong>on</strong>g>cluded <str<strong>on</strong>g>in</str<strong>on</strong>g> formulated diets for poultry as a yellowxanthophyll pigment source <str<strong>on</strong>g>in</str<strong>on</strong>g> order to enhance sk<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> yolk pigmentati<strong>on</strong> (Sasse <str<strong>on</strong>g>and</str<strong>on</strong>g> Baker,1973). Carotenoid c<strong>on</strong>tent <str<strong>on</strong>g>in</str<strong>on</strong>g> eggs from birds fed a CGM based diet varied from 24 to 30 µg g -1 ,<str<strong>on</strong>g>and</str<strong>on</strong>g> xanthophyll c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> body tissues <str<strong>on</strong>g>and</str<strong>on</strong>g> egg yolk are well correlated with those present<str<strong>on</strong>g>in</str<strong>on</strong>g> the diet (Surai et al., 2001).Inclusi<strong>on</strong> of corn gluten meal <str<strong>on</strong>g>in</str<strong>on</strong>g> diets for grow<str<strong>on</strong>g>in</str<strong>on</strong>g>g chicks as a prote<str<strong>on</strong>g>in</str<strong>on</strong>g> source has showedno negative effects <strong>on</strong> growth. No differences <str<strong>on</strong>g>in</str<strong>on</strong>g> weight ga<str<strong>on</strong>g>in</str<strong>on</strong>g>, feed <str<strong>on</strong>g>in</str<strong>on</strong>g>take, or feed efficiency(ga<str<strong>on</strong>g>in</str<strong>on</strong>g>:feed ratio) were observed for chicks fed an am<str<strong>on</strong>g>in</str<strong>on</strong>g>o acid fortified CGM based diet (18%<str<strong>on</strong>g>in</str<strong>on</strong>g>clusi<strong>on</strong>), compared to birds fed a corn-soybean positive c<strong>on</strong>trol diet dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g a 12 days trial(Peter et al., 2000).In rum<str<strong>on</strong>g>in</str<strong>on</strong>g>ant nutriti<strong>on</strong>, CGM is c<strong>on</strong>sidered an effective source of bypass (slowlydegrad<str<strong>on</strong>g>in</str<strong>on</strong>g>g) prote<str<strong>on</strong>g>in</str<strong>on</strong>g>. A comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> of CGM (3%) <str<strong>on</strong>g>and</str<strong>on</strong>g> dehydrated alfalfa (15%) resulted <str<strong>on</strong>g>in</str<strong>on</strong>g> ahigher daily ga<str<strong>on</strong>g>in</str<strong>on</strong>g> when compared to a soybean meal (9%) based diet <str<strong>on</strong>g>in</str<strong>on</strong>g> grow<str<strong>on</strong>g>in</str<strong>on</strong>g>g steers (200 kg,<str<strong>on</strong>g>in</str<strong>on</strong>g>itial body weight) dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g a 112 days growth trial (Rock et al., 1983).In dairy cows, a dietary <str<strong>on</strong>g>in</str<strong>on</strong>g>clusi<strong>on</strong> of 6% of CGM <str<strong>on</strong>g>and</str<strong>on</strong>g> blood meal <str<strong>on</strong>g>in</str<strong>on</strong>g> a 50:50 comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>ratio, resulted <str<strong>on</strong>g>in</str<strong>on</strong>g> multiparous Holste<str<strong>on</strong>g>in</str<strong>on</strong>g> cows (614 kg, average <str<strong>on</strong>g>in</str<strong>on</strong>g>itial weight) c<strong>on</strong>sum<str<strong>on</strong>g>in</str<strong>on</strong>g>g more drymatter <str<strong>on</strong>g>and</str<strong>on</strong>g> produc<str<strong>on</strong>g>in</str<strong>on</strong>g>g milk with higher prote<str<strong>on</strong>g>in</str<strong>on</strong>g> percentage compared to those fed a c<strong>on</strong>trol dietbased c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g urea (0.2%) after a four week trial period (De Gracia et al., 1989).18


CGM is <str<strong>on</strong>g>in</str<strong>on</strong>g>cluded <str<strong>on</strong>g>in</str<strong>on</strong>g> low amounts (less than 5%) <str<strong>on</strong>g>in</str<strong>on</strong>g> diets for sows <str<strong>on</strong>g>and</str<strong>on</strong>g> grow<str<strong>on</strong>g>in</str<strong>on</strong>g>g pigs. Drydiets for cats have are usually supplemented with corn gluten meal due to its am<str<strong>on</strong>g>in</str<strong>on</strong>g>o acidscompositi<strong>on</strong> (Funaba et al., 2002).2.8 Use of corn gluten meal <str<strong>on</strong>g>in</str<strong>on</strong>g> diets for fishCGM <str<strong>on</strong>g>in</str<strong>on</strong>g>clusi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> formulated diets for fish results <str<strong>on</strong>g>in</str<strong>on</strong>g> feed <str<strong>on</strong>g>in</str<strong>on</strong>g>take, nutrient digestibility<str<strong>on</strong>g>and</str<strong>on</strong>g> growth rates similar to those obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed with fish meal based diets. Due to its imbalancedam<str<strong>on</strong>g>in</str<strong>on</strong>g>o acid profile, CGM is generally blended with complementary <str<strong>on</strong>g>in</str<strong>on</strong>g>gredients <str<strong>on</strong>g>in</str<strong>on</strong>g> order to<str<strong>on</strong>g>in</str<strong>on</strong>g>crease limit<str<strong>on</strong>g>in</str<strong>on</strong>g>g am<str<strong>on</strong>g>in</str<strong>on</strong>g>o acid availability (especially lys<str<strong>on</strong>g>in</str<strong>on</strong>g>e) <str<strong>on</strong>g>and</str<strong>on</strong>g> reach species specificrequirements.No differences <str<strong>on</strong>g>in</str<strong>on</strong>g> weight ga<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> higher prote<str<strong>on</strong>g>in</str<strong>on</strong>g> productive value (PPV) compare to afish meal based diet, were obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed with ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow trout (2 g fish -1 <str<strong>on</strong>g>in</str<strong>on</strong>g>itial body weight) fed a fishmeal free diet c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g corn gluten meal (20%), poultry by-product meal (30%) <str<strong>on</strong>g>and</str<strong>on</strong>g> carob seedgerm meal (12%) as a prote<str<strong>on</strong>g>in</str<strong>on</strong>g> source <str<strong>on</strong>g>and</str<strong>on</strong>g> supplemented with lys<str<strong>on</strong>g>in</str<strong>on</strong>g>e (2%) for 197 days (Alexis etal., 1985). No significant effects (P>0.05) <str<strong>on</strong>g>in</str<strong>on</strong>g> f<str<strong>on</strong>g>in</str<strong>on</strong>g>al weight, feed c<strong>on</strong>versi<strong>on</strong> rate (FCR), prote<str<strong>on</strong>g>in</str<strong>on</strong>g>efficiency ratio (PER) or PPV were reported for ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow trout (30g fish -1 <str<strong>on</strong>g>in</str<strong>on</strong>g>itial body weight) fedgraded levels (20, 30 <str<strong>on</strong>g>and</str<strong>on</strong>g> 40%) of corn gluten meal <str<strong>on</strong>g>in</str<strong>on</strong>g> a 8-week growth trial (Moyano et al.,1991). Significantly lower (p


No differences <str<strong>on</strong>g>in</str<strong>on</strong>g> f<str<strong>on</strong>g>in</str<strong>on</strong>g>al weight, feed c<strong>on</strong>versi<strong>on</strong> rate or apparent prote<str<strong>on</strong>g>in</str<strong>on</strong>g> digestibility weredeterm<str<strong>on</strong>g>in</str<strong>on</strong>g>ed for Atlantic salm<strong>on</strong> (15 g fish -1 <str<strong>on</strong>g>in</str<strong>on</strong>g>itial body weight) fed diets supplemented up to50% with corn gluten meal <str<strong>on</strong>g>and</str<strong>on</strong>g> no synthetic am<str<strong>on</strong>g>in</str<strong>on</strong>g>o acid supplementati<strong>on</strong> dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g a 40-day trial.However, high fish meal <str<strong>on</strong>g>in</str<strong>on</strong>g>clusi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> all experimental diets (27% <str<strong>on</strong>g>in</str<strong>on</strong>g> the diet with highest CGM<str<strong>on</strong>g>in</str<strong>on</strong>g>clusi<strong>on</strong>) <str<strong>on</strong>g>in</str<strong>on</strong>g> this trial may expla<str<strong>on</strong>g>in</str<strong>on</strong>g> that Atlantic salm<strong>on</strong> lys<str<strong>on</strong>g>in</str<strong>on</strong>g>e requirement was reached (Menteet al., 2003).Inclusi<strong>on</strong> of CGM <str<strong>on</strong>g>in</str<strong>on</strong>g> diets for carnivorous fish (other than salm<strong>on</strong>ids), with no negativeeffects <strong>on</strong> growth parameters, has been reported to be feasible up to a certa<str<strong>on</strong>g>in</str<strong>on</strong>g> level. Graded levelsof CGM (11, 16 <str<strong>on</strong>g>and</str<strong>on</strong>g> 21%) <str<strong>on</strong>g>and</str<strong>on</strong>g> no am<str<strong>on</strong>g>in</str<strong>on</strong>g>o acid supplementati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> diets for sea bream (Sparusaurata), 40g fish -1 <str<strong>on</strong>g>in</str<strong>on</strong>g>itial body weight, did not show significant (p>0.05) differences <str<strong>on</strong>g>in</str<strong>on</strong>g> f<str<strong>on</strong>g>in</str<strong>on</strong>g>albody weight, prote<str<strong>on</strong>g>in</str<strong>on</strong>g> efficiency ratio (PER), prote<str<strong>on</strong>g>in</str<strong>on</strong>g> productive value (PPV), f<str<strong>on</strong>g>in</str<strong>on</strong>g>al carcassproximate compositi<strong>on</strong>, liver histology or total, prote<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> lipids ADC compared to fish fed afish meal based c<strong>on</strong>trol after a 13-week growth trial (Roba<str<strong>on</strong>g>in</str<strong>on</strong>g>a et al., 1997).No significant differences (p>0.05) <str<strong>on</strong>g>in</str<strong>on</strong>g> f<str<strong>on</strong>g>in</str<strong>on</strong>g>al body weight, st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard growth rate or feedefficiency were observed <str<strong>on</strong>g>in</str<strong>on</strong>g> turbot (Psetta maxima) 66 g fish -1 <str<strong>on</strong>g>in</str<strong>on</strong>g>itial body weight, fed a dietsupplemented with 20% CGM <str<strong>on</strong>g>and</str<strong>on</strong>g> no am<str<strong>on</strong>g>in</str<strong>on</strong>g>o acid supplementati<strong>on</strong> compared to those fish fed afish meal based c<strong>on</strong>trol. However, growth parameters <str<strong>on</strong>g>and</str<strong>on</strong>g> ADC for prote<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> energy weresignificantly (p


2.9 <str<strong>on</strong>g>Effects</str<strong>on</strong>g> of dietary corn gluten meal <strong>on</strong> salm<strong>on</strong>id fish muscle pigmentati<strong>on</strong>Anecdotal evidence from fish farmers al<strong>on</strong>g with a small number of scientific studies suggesta negative effect of dietary CGM <strong>on</strong> muscle astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> depositi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> colour attributes <str<strong>on</strong>g>in</str<strong>on</strong>g> filletsfrom salm<strong>on</strong>id fish. This phenomen<strong>on</strong> has been related to the high c<strong>on</strong>tent of yellow xanthophyllcarotenoids, ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ly lute<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> zeaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g>, present <str<strong>on</strong>g>in</str<strong>on</strong>g> this commodity (220 to 550 mg kg -1 <strong>on</strong> adry matter basis). Naturally occurr<str<strong>on</strong>g>in</str<strong>on</strong>g>g xanthophylls from CGM have been proposed to<str<strong>on</strong>g>in</str<strong>on</strong>g>teract/compete with astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g pigment metabolism (digesti<strong>on</strong>, absorpti<strong>on</strong>, transport<str<strong>on</strong>g>and</str<strong>on</strong>g>/or depositi<strong>on</strong>) due to hydrophobic properties <str<strong>on</strong>g>and</str<strong>on</strong>g> molecular characteristics shared by thesecarotenoids (Aas et al., 1999; Furr <str<strong>on</strong>g>and</str<strong>on</strong>g> Clark, 1997; Henmi et al., 1987; Matthews et al., 2006;Salvador et al., 2007).Depositi<strong>on</strong> of different types of pigments <str<strong>on</strong>g>in</str<strong>on</strong>g> muscle from salm<strong>on</strong>id fish has been previouslyreported. Results from a subcellular fracti<strong>on</strong>ati<strong>on</strong> study us<str<strong>on</strong>g>in</str<strong>on</strong>g>g salm<strong>on</strong> muscle samples <str<strong>on</strong>g>in</str<strong>on</strong>g>dicatedthat actomyos<str<strong>on</strong>g>in</str<strong>on</strong>g> (astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> b<str<strong>on</strong>g>in</str<strong>on</strong>g>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g prote<str<strong>on</strong>g>in</str<strong>on</strong>g> complex <str<strong>on</strong>g>in</str<strong>on</strong>g> salm<strong>on</strong>ids) is able to comb<str<strong>on</strong>g>in</str<strong>on</strong>g>e withcarotenoids other than astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> or canthaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g>, i.e. lute<str<strong>on</strong>g>in</str<strong>on</strong>g>, zeaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> β-carotene(Henmi et al., 1987; 1989). Zeaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> has been reported to occur <str<strong>on</strong>g>in</str<strong>on</strong>g> muscle from wild masu(Oncorhynchus masou B.), coho (Oncorhynchus kisutch W.), p<str<strong>on</strong>g>in</str<strong>on</strong>g>k (Oncorhynchus gorbuschaW.), sockeye (Oncorhynchus nerka W.) <str<strong>on</strong>g>and</str<strong>on</strong>g> chum (Oncorhynchus keta W.) salm<strong>on</strong> (Kitahara1983, 1984). On the other h<str<strong>on</strong>g>and</str<strong>on</strong>g>, lute<str<strong>on</strong>g>in</str<strong>on</strong>g> (3 mg kg -1 ) was determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> muscle from ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow trout(360 g fish -1 ) fed an astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g>-free diet supplemented with 8 mg kg -1 of lute<str<strong>on</strong>g>in</str<strong>on</strong>g> from algal orig<str<strong>on</strong>g>in</str<strong>on</strong>g>(Caldophora glomerata) for 40 days (Welker et al., 2001).A significant (p


supplemented with 42% of a vegetable prote<str<strong>on</strong>g>in</str<strong>on</strong>g> blend (corn gluten meal <str<strong>on</strong>g>and</str<strong>on</strong>g> full fat soybean meal<str<strong>on</strong>g>in</str<strong>on</strong>g> a 2:1 ratio) <str<strong>on</strong>g>and</str<strong>on</strong>g> 64 mg kg -1 astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g a 11-week growth trial (Mundheim et al., 2004).Ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow trout (320g fish -1 , body weight) fed a diet supplemented with 23% CGM <str<strong>on</strong>g>and</str<strong>on</strong>g> nosynthetic pigment <str<strong>on</strong>g>in</str<strong>on</strong>g>clusi<strong>on</strong> for 12 weeks showed fillets with yellowish appearance (b* values,tristimulus color analysis) (Sk<strong>on</strong>berg et al., 1998). C<strong>on</strong>versely, <str<strong>on</strong>g>in</str<strong>on</strong>g>clusi<strong>on</strong> of 23% of syntheticlute<str<strong>on</strong>g>in</str<strong>on</strong>g> did not significantly affect (P>0.05) astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> blood level <str<strong>on</strong>g>and</str<strong>on</strong>g> muscle depositi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>Atlantic salm<strong>on</strong> (1260 g f<str<strong>on</strong>g>in</str<strong>on</strong>g>al body weight) fed a diet supplemented with 54 mg kg -1 of <str<strong>on</strong>g>and</str<strong>on</strong>g>astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g>, respectively <str<strong>on</strong>g>in</str<strong>on</strong>g> a 138-days study. However, a n<strong>on</strong>-significant (p>0.05) tendency oflower<str<strong>on</strong>g>in</str<strong>on</strong>g>g both muscle <str<strong>on</strong>g>and</str<strong>on</strong>g> blood astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>tent was observed, moreover lute<str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>tent <str<strong>on</strong>g>in</str<strong>on</strong>g>blood <str<strong>on</strong>g>and</str<strong>on</strong>g> muscle showed a significant positive correlati<strong>on</strong> with dietary <str<strong>on</strong>g>in</str<strong>on</strong>g>clusi<strong>on</strong> level (Olsen<str<strong>on</strong>g>and</str<strong>on</strong>g> Baker, 2006).2.10 Bleach<str<strong>on</strong>g>in</str<strong>on</strong>g>g of yellow xanthophylls from plant prote<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>gredients2.10.1 Enzymatic treatments2.10.1.1 Natural bleach<str<strong>on</strong>g>in</str<strong>on</strong>g>g<str<strong>on</strong>g>Reducti<strong>on</strong></str<strong>on</strong>g> of colour <str<strong>on</strong>g>in</str<strong>on</strong>g> flours by ag<str<strong>on</strong>g>in</str<strong>on</strong>g>g is a practice used by millers for centuries. <str<strong>on</strong>g>Pigment</str<strong>on</strong>g>c<strong>on</strong>tent <str<strong>on</strong>g>in</str<strong>on</strong>g> flour would be bleached <str<strong>on</strong>g>in</str<strong>on</strong>g> approximately 2 to 3 weeks <str<strong>on</strong>g>in</str<strong>on</strong>g> a process called atmosphericoxidati<strong>on</strong> (Saunders et al., 2008, Mercier <str<strong>on</strong>g>and</str<strong>on</strong>g> Gel<str<strong>on</strong>g>in</str<strong>on</strong>g>as, 2001). Due to the l<strong>on</strong>g periods of time <str<strong>on</strong>g>in</str<strong>on</strong>g>storage needed for the bleach<str<strong>on</strong>g>in</str<strong>on</strong>g>g reacti<strong>on</strong> to complete, this method is less applicable <strong>on</strong> acommercial scale.22


2.10.1.2 LipoxygenasesLipoxygenases (LOX) (l<str<strong>on</strong>g>in</str<strong>on</strong>g>olate:oxygen oxidoreductase, EC 1.13.11.12) are n<strong>on</strong>heme,ir<strong>on</strong>-c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g enzymes that catalyze the regio <str<strong>on</strong>g>and</str<strong>on</strong>g> stereo selective dioxygenati<strong>on</strong> ofpolyunsaturated fatty acids c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g a (Z,Z)-1,4-pentadiene system. This oxidative reacti<strong>on</strong>produces an optically active, c<strong>on</strong>jugated (Z,E) diene hydroperoxy derivative (Bar<strong>on</strong>e et al., 1999;Gӧkmen et al., 2002; Junqueira et al., 2007). LOX is widely distributed <str<strong>on</strong>g>in</str<strong>on</strong>g> plants <str<strong>on</strong>g>and</str<strong>on</strong>g> animals(Axelrod et al., 1981). Plant-orig<str<strong>on</strong>g>in</str<strong>on</strong>g> LOX have been related to flavour <str<strong>on</strong>g>and</str<strong>on</strong>g> odour formati<strong>on</strong>, fruitripen<str<strong>on</strong>g>in</str<strong>on</strong>g>g, <str<strong>on</strong>g>and</str<strong>on</strong>g> wound repair am<strong>on</strong>g many other physiological functi<strong>on</strong>s. In animals, lipoxygenaseforms precursors for chemical messengers such as leukotrienes or lipox<str<strong>on</strong>g>in</str<strong>on</strong>g>s (Bar<strong>on</strong>e et al., 1999;Saunders et al., 2008).On a molecular basis, the lipoxygenase-catalyzed lipid oxidati<strong>on</strong> is characterized by theabstracti<strong>on</strong> of a stereospecific hydrogen from a poly-unsaturated fatty acid (positi<strong>on</strong> 3 of thepenta-1,4-diene system with<str<strong>on</strong>g>in</str<strong>on</strong>g> the backb<strong>on</strong>e of the lipid molecule). The <str<strong>on</strong>g>in</str<strong>on</strong>g>termediate fatty acidradical (generated after the hydrogen withdrawal) reacts with molecular oxygen (triplet state) toform a peroxy radical product. The oxidative reacti<strong>on</strong> is completed when the peroxy radical istransformed <str<strong>on</strong>g>in</str<strong>on</strong>g>to a peroxy ani<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> further prot<strong>on</strong>ated to give a hydroperoxide molecule.Figure 2.4 shows a schematic representati<strong>on</strong> of the lipoxygenase mediated fatty acid oxidati<strong>on</strong>(Taylor <str<strong>on</strong>g>and</str<strong>on</strong>g> Morris, 1983). The <str<strong>on</strong>g>in</str<strong>on</strong>g>termediate peroxy radical products formed dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the LOXcatalizedreacti<strong>on</strong>s are able to co-oxidize pigment molecules. The chromophore arrangementwith<str<strong>on</strong>g>in</str<strong>on</strong>g> the pigment molecule is cleaved. C<strong>on</strong>sequently its chemical properties are changed <str<strong>on</strong>g>and</str<strong>on</strong>g>colour <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity is reduced.23


Soybean seeds are the richest known source of lipoxygenase. Four (4) isoforms oflipoxygenase have been isolated from this raw material: L1, L2, L3a, <str<strong>on</strong>g>and</str<strong>on</strong>g> L3b. L3a <str<strong>on</strong>g>and</str<strong>on</strong>g> L3b arevery similar <str<strong>on</strong>g>in</str<strong>on</strong>g> their properties for determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> purposes both are usually referred to as L3(Axelrod et al., 1981). Different lipoxygenase isoforms differ <str<strong>on</strong>g>in</str<strong>on</strong>g> pH optima, substrate specificity<str<strong>on</strong>g>and</str<strong>on</strong>g> product formati<strong>on</strong>. L1 optimum pH is ~ 9.0 <str<strong>on</strong>g>and</str<strong>on</strong>g> is characterized by a low capacity forbleach<str<strong>on</strong>g>in</str<strong>on</strong>g>g of pigment. On the other h<str<strong>on</strong>g>and</str<strong>on</strong>g>, L2 <str<strong>on</strong>g>and</str<strong>on</strong>g> L3 have a pH optimum of 6.1 <str<strong>on</strong>g>and</str<strong>on</strong>g> 6.5,respectively, <str<strong>on</strong>g>and</str<strong>on</strong>g> they show a high pigment bleach<str<strong>on</strong>g>in</str<strong>on</strong>g>g properties (Junqueira et al., 2007). Based<strong>on</strong> its pigment bleach<str<strong>on</strong>g>in</str<strong>on</strong>g>g capacity, hereafter L3 lipoxgenase iso-enzyme is go<str<strong>on</strong>g>in</str<strong>on</strong>g>g to be referred aslipoxygenase (LOX).L<str<strong>on</strong>g>in</str<strong>on</strong>g>oleic acid is the specific substrate for lipoxygenase <str<strong>on</strong>g>and</str<strong>on</strong>g> its presence is essential forlipid oxidati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> the subsequent co-oxidati<strong>on</strong> reacti<strong>on</strong>s to occur. Substantial pigment oxidati<strong>on</strong>(expressed as pigment disappearance rate) was observed <strong>on</strong>ly when a lipoxygenase crude extractfrom pepper fruit <str<strong>on</strong>g>and</str<strong>on</strong>g> pure l<str<strong>on</strong>g>in</str<strong>on</strong>g>oleic acid were simultaneously comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> the reacti<strong>on</strong> mediumdur<str<strong>on</strong>g>in</str<strong>on</strong>g>g a lipoxygenase catalyzed pigment bleach<str<strong>on</strong>g>in</str<strong>on</strong>g>g study. On the other h<str<strong>on</strong>g>and</str<strong>on</strong>g>, m<str<strong>on</strong>g>in</str<strong>on</strong>g>imal pigmentreducti<strong>on</strong> was observed when each oxidant promoter was tested separately or when pigment autooxidati<strong>on</strong> was evaluated (Jaren-Galan <str<strong>on</strong>g>and</str<strong>on</strong>g> M<str<strong>on</strong>g>in</str<strong>on</strong>g>guez-Mosquera, 1999). The rate of lipoxygenasecatalizedpigment co-oxidati<strong>on</strong> is dependent <strong>on</strong> substrate c<strong>on</strong>centrati<strong>on</strong>. At fixed l<str<strong>on</strong>g>in</str<strong>on</strong>g>oleic acid(l<str<strong>on</strong>g>in</str<strong>on</strong>g>oleate) c<strong>on</strong>centrati<strong>on</strong>, soybean lipoxygenase showed a reducti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> both c<strong>on</strong>jugated dienesformati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> bleach<str<strong>on</strong>g>in</str<strong>on</strong>g>g rate of β- carotene <str<strong>on</strong>g>and</str<strong>on</strong>g> chlorophyll a dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g a pigment bleach<str<strong>on</strong>g>in</str<strong>on</strong>g>g assay(Cohen et al., 1985).Lipoxygenase activity is dependent <strong>on</strong> oxygen availability <str<strong>on</strong>g>in</str<strong>on</strong>g> the reacti<strong>on</strong> medium. Verylow enzymatic activity was determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> an anaerobic envir<strong>on</strong>ment (compared to those obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed<str<strong>on</strong>g>in</str<strong>on</strong>g> aerobic c<strong>on</strong>diti<strong>on</strong>s) when the <str<strong>on</strong>g>in</str<strong>on</strong>g>teracti<strong>on</strong> between soybean lipoxygenase <str<strong>on</strong>g>and</str<strong>on</strong>g> pigments (β-24


carotene <str<strong>on</strong>g>and</str<strong>on</strong>g> chlorophyll a) was addressed <str<strong>on</strong>g>in</str<strong>on</strong>g> a study with different LOX iso-enzymes (Cohen etal., 1985).2.10.1.3 Bleach<str<strong>on</strong>g>in</str<strong>on</strong>g>g of yellow xanthophylls us<str<strong>on</strong>g>in</str<strong>on</strong>g>g lipoxygenaseResearch focus<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> the lipoxygenase-catalyzed pigment co-oxidati<strong>on</strong> has beenc<strong>on</strong>ducted for many years, primarily due to its applicati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> vegetable <str<strong>on</strong>g>in</str<strong>on</strong>g>gredient process<str<strong>on</strong>g>in</str<strong>on</strong>g>g,primarily for the bakery <str<strong>on</strong>g>and</str<strong>on</strong>g> pasta <str<strong>on</strong>g>in</str<strong>on</strong>g>dustries. More than 66% of carotenoid (lute<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g>zeaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g>) c<strong>on</strong>tent was reduced <str<strong>on</strong>g>in</str<strong>on</strong>g> whole gra<str<strong>on</strong>g>in</str<strong>on</strong>g> bread wheat (Triticum aestivum) flour (<str<strong>on</strong>g>in</str<strong>on</strong>g>itialcarotenoid c<strong>on</strong>tent of 1 µg g -1 ) after knead<str<strong>on</strong>g>in</str<strong>on</strong>g>g dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g a bread mak<str<strong>on</strong>g>in</str<strong>on</strong>g>g trial, the oxygen <str<strong>on</strong>g>in</str<strong>on</strong>g>crease <str<strong>on</strong>g>in</str<strong>on</strong>g>the dough is hypothesised to facilitate the lipoxygenase catalized carotenoid oxidati<strong>on</strong>.Furthermore a l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear positive relati<strong>on</strong>ship (r 2 = 0.97) was determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed between carotenoid loss (%)dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g knead<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>and</str<strong>on</strong>g> lipoxygenase activity <str<strong>on</strong>g>in</str<strong>on</strong>g> 3 Triticum wheat species (Leenhardt et al., 2006).A highly significant (p


2.10.1.4 Bleach<str<strong>on</strong>g>in</str<strong>on</strong>g>g of yellow pigment from corn gluten meal us<str<strong>on</strong>g>in</str<strong>on</strong>g>g lipoxygenaseWet (67% moisture basis) corn gluten meal was bleached us<str<strong>on</strong>g>in</str<strong>on</strong>g>g soy flour as alipoxygenase source. CGM (95%) <str<strong>on</strong>g>and</str<strong>on</strong>g> soy flour (5%) were mixed <strong>on</strong> a 20g scale <str<strong>on</strong>g>and</str<strong>on</strong>g> 75 mL ofdistilled water were added to create slurry. 48% carotenoids (determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed us<str<strong>on</strong>g>in</str<strong>on</strong>g>g AACC method14-50) were bleached when the slurry was stirred for 120 m<str<strong>on</strong>g>in</str<strong>on</strong>g> at pH 6.5. Aerati<strong>on</strong> through thereacti<strong>on</strong> medium <str<strong>on</strong>g>in</str<strong>on</strong>g>creased pigment bleach<str<strong>on</strong>g>in</str<strong>on</strong>g>g whereas soy flour pre-soak<str<strong>on</strong>g>in</str<strong>on</strong>g>g resulted <str<strong>on</strong>g>in</str<strong>on</strong>g> very lowpigment reducti<strong>on</strong>, n<strong>on</strong>etheless a synergistic effect was observed when these two factors wereapplied simultaneously reach<str<strong>on</strong>g>in</str<strong>on</strong>g>g a 52% of carotenoids loss. Carotenoid bleach<str<strong>on</strong>g>in</str<strong>on</strong>g>g sped up dur<str<strong>on</strong>g>in</str<strong>on</strong>g>gthe reacti<strong>on</strong> first m<str<strong>on</strong>g>in</str<strong>on</strong>g>utes, when soy flour <str<strong>on</strong>g>in</str<strong>on</strong>g>clusi<strong>on</strong> level was <str<strong>on</strong>g>in</str<strong>on</strong>g>creased to 10 <str<strong>on</strong>g>and</str<strong>on</strong>g> 15%, howeverthis difference was not observed after 30 m<str<strong>on</strong>g>in</str<strong>on</strong>g>. Lipoxygenase activity ranged from 5 to 10 unitsmg of sample, however small differences <str<strong>on</strong>g>in</str<strong>on</strong>g> carotenoid bleach<str<strong>on</strong>g>in</str<strong>on</strong>g>g (1 to 3%) were observed.Spray-dry<str<strong>on</strong>g>in</str<strong>on</strong>g>g (130 °C for 60 m<str<strong>on</strong>g>in</str<strong>on</strong>g>) resulted <str<strong>on</strong>g>in</str<strong>on</strong>g> additi<strong>on</strong>al 18% of carotenoid bleach<str<strong>on</strong>g>in</str<strong>on</strong>g>g (Park et al.,1997).Us<str<strong>on</strong>g>in</str<strong>on</strong>g>g the proposed methodology of Park et al., (1997), the effect of different factors (pHvariati<strong>on</strong>, lipoxygenase activity, spray dry<str<strong>on</strong>g>in</str<strong>on</strong>g>g temperature, reacti<strong>on</strong> time, experimental scale <str<strong>on</strong>g>and</str<strong>on</strong>g>stirr<str<strong>on</strong>g>in</str<strong>on</strong>g>g speed) <strong>on</strong> wet CGM lipoxygenase <str<strong>on</strong>g>in</str<strong>on</strong>g>duce pigment bleach<str<strong>on</strong>g>in</str<strong>on</strong>g>g was studied us<str<strong>on</strong>g>in</str<strong>on</strong>g>g acomplete r<str<strong>on</strong>g>and</str<strong>on</strong>g>omized design. 65% of carotenoids from wet corn gluten meal (520 mg·kg -1 <str<strong>on</strong>g>in</str<strong>on</strong>g>itialcarotenoid c<strong>on</strong>tent) were bleached at pH 6.5. <str<strong>on</strong>g>Pigment</str<strong>on</strong>g> reducti<strong>on</strong> was 19% <str<strong>on</strong>g>and</str<strong>on</strong>g> 15% lower whenpH was acidified (pH 5.0) <str<strong>on</strong>g>and</str<strong>on</strong>g> alkal<str<strong>on</strong>g>in</str<strong>on</strong>g>ized (pH 8), respectively. No effect of <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g reacti<strong>on</strong>scale up to 2500 g was observed as l<strong>on</strong>g as appropriate mechanical stirr<str<strong>on</strong>g>in</str<strong>on</strong>g>g level was applied.Increas<str<strong>on</strong>g>in</str<strong>on</strong>g>g of mechanical stirr<str<strong>on</strong>g>in</str<strong>on</strong>g>g resulted <str<strong>on</strong>g>in</str<strong>on</strong>g> higher pigment reducti<strong>on</strong> (70% pigment bleach<str<strong>on</strong>g>in</str<strong>on</strong>g>g),<str<strong>on</strong>g>and</str<strong>on</strong>g> pigment bleach<str<strong>on</strong>g>in</str<strong>on</strong>g>g maximum rates were reached faster. Spray-dry<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>duced additi<strong>on</strong>alpigment bleach<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> wet corn gluten meal from 9% to 26% when temperature was <str<strong>on</strong>g>in</str<strong>on</strong>g>creased26


from 160 to 250 °C. Additi<strong>on</strong> of soy flour to CGM resulted <str<strong>on</strong>g>in</str<strong>on</strong>g> a slight <str<strong>on</strong>g>in</str<strong>on</strong>g>crease <str<strong>on</strong>g>in</str<strong>on</strong>g> prote<str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>tent<str<strong>on</strong>g>and</str<strong>on</strong>g> improv<str<strong>on</strong>g>in</str<strong>on</strong>g>g wet CGM am<str<strong>on</strong>g>in</str<strong>on</strong>g>o acid balance, ea. lys<str<strong>on</strong>g>in</str<strong>on</strong>g>e (Cha et al., 2000).2.10.2 Other enzymesA total reducti<strong>on</strong> of β-carotene from bread dough (prepared with 100 g of wheat flour)was obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed with 3,000 <str<strong>on</strong>g>and</str<strong>on</strong>g> 815 U of peroxidase (from soybeans) <str<strong>on</strong>g>and</str<strong>on</strong>g> lipase <str<strong>on</strong>g>in</str<strong>on</strong>g> the presence ofl<str<strong>on</strong>g>in</str<strong>on</strong>g>oleic acid (Gel<str<strong>on</strong>g>in</str<strong>on</strong>g>as et al., 1998).2.10.3 Chemical reagents as pigment bleach<str<strong>on</strong>g>in</str<strong>on</strong>g>g agents2.10.3.1 Benzoyl peroxideBenzoyl peroxide is widely utilized <str<strong>on</strong>g>in</str<strong>on</strong>g> mill<str<strong>on</strong>g>in</str<strong>on</strong>g>g plants from Canada <str<strong>on</strong>g>and</str<strong>on</strong>g> the U.S. as ableach<str<strong>on</strong>g>in</str<strong>on</strong>g>g agent for the yellow pigment c<strong>on</strong>tent <str<strong>on</strong>g>in</str<strong>on</strong>g> wheat flour (Mercier <str<strong>on</strong>g>and</str<strong>on</strong>g> Gel<str<strong>on</strong>g>in</str<strong>on</strong>g>as, 2001). Thisproduct is a free radical <str<strong>on</strong>g>in</str<strong>on</strong>g>itiator that <str<strong>on</strong>g>in</str<strong>on</strong>g>duces the oxidati<strong>on</strong> of carotenoid molecules by a typicalfree radical reacti<strong>on</strong>. Dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g pigment bleach<str<strong>on</strong>g>in</str<strong>on</strong>g>g, part of the benzoyl peroxide is c<strong>on</strong>verted <str<strong>on</strong>g>in</str<strong>on</strong>g>tobenzoic acid (Saiz et al., 2001).2.10.3.2 Hydrogen peroxideHydrogen peroxide (HP) is widely utilized as a food additive. Alkal<str<strong>on</strong>g>in</str<strong>on</strong>g>e HP (pH 11.5)reduced more than half of the colour (expressed as colour difference) <str<strong>on</strong>g>in</str<strong>on</strong>g> wheat distillers’ gra<str<strong>on</strong>g>in</str<strong>on</strong>g>,when 60 g of this commodity was suspended <str<strong>on</strong>g>in</str<strong>on</strong>g> 300 ml of an aqueous HP soluti<strong>on</strong> (0.3 M) for 2hours (Abdel-Aal et al., 1996).27


2.11 C<strong>on</strong>clusi<strong>on</strong>Inclusi<strong>on</strong> of <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g levels of cost-effective plant-orig<str<strong>on</strong>g>in</str<strong>on</strong>g> commodities <str<strong>on</strong>g>in</str<strong>on</strong>g>to formulated dietsfor salm<strong>on</strong>id fish is a comm<strong>on</strong> practice widely utilized <str<strong>on</strong>g>in</str<strong>on</strong>g> order to susta<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g producti<strong>on</strong>levels.Colour <str<strong>on</strong>g>in</str<strong>on</strong>g> fillet from salm<strong>on</strong>id fish is determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by the depositi<strong>on</strong> of carotenoid pigments,ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ly astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g>, with<str<strong>on</strong>g>in</str<strong>on</strong>g> fiber muscles. This colour attribute plays a key role <strong>on</strong> c<strong>on</strong>sumer’spercepti<strong>on</strong> as well as <strong>on</strong> will<str<strong>on</strong>g>in</str<strong>on</strong>g>gness to pay. Salm<strong>on</strong>id fish are unable to synthetize carotenoid denovo, hence formulated diets are supplemented with expensive pigment premix.Anecdotal evidence from fish farmers al<strong>on</strong>g with a few scientific studies support a reducti<strong>on</strong><str<strong>on</strong>g>in</str<strong>on</strong>g> astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> depositi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> reducti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> color attributes <str<strong>on</strong>g>in</str<strong>on</strong>g> fillets from ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow trout fed dietsc<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g corn gluten meal. This commodity, a highly digestible high prote<str<strong>on</strong>g>in</str<strong>on</strong>g> (~60% <strong>on</strong> a drymatter basis) by-product of the corn wet mill<str<strong>on</strong>g>in</str<strong>on</strong>g>g c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g substantial levels of yellowxanthophylls (200 – 550 mg kg -1 ), ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ly lute<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> zeaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g>. The effects related to the<str<strong>on</strong>g>in</str<strong>on</strong>g>clusi<strong>on</strong> of substantial levels of corn gluten meal <strong>on</strong> muscle pigmentati<strong>on</strong> need to be addressed<str<strong>on</strong>g>in</str<strong>on</strong>g> order to avoid potential reducti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> utilizati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> colour expressi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> muscleform ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow trout.The development of straight-forward/cost-effective process<str<strong>on</strong>g>in</str<strong>on</strong>g>g techniques, aim<str<strong>on</strong>g>in</str<strong>on</strong>g>g to reduceyellow xanthophylls c<strong>on</strong>tent <str<strong>on</strong>g>in</str<strong>on</strong>g> corn gluten meal <str<strong>on</strong>g>and</str<strong>on</strong>g> to <str<strong>on</strong>g>in</str<strong>on</strong>g>crease this commodity’s nutriti<strong>on</strong>alvalue for salm<strong>on</strong>id fish are highly necessary. The use of comm<strong>on</strong> bleach<str<strong>on</strong>g>in</str<strong>on</strong>g>g agents, eitherapplied directly to corn gluten meal or to corn kernels dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the corn wet mill<str<strong>on</strong>g>in</str<strong>on</strong>g>g process canbecome a practical tool <str<strong>on</strong>g>in</str<strong>on</strong>g> order to <str<strong>on</strong>g>in</str<strong>on</strong>g>crease the feed<str<strong>on</strong>g>in</str<strong>on</strong>g>g value of corn gluten meal.28


FiguresFigure 2. 1 - Molecular structure of some important carotenoids founds <str<strong>on</strong>g>in</str<strong>on</strong>g> nature.29


4.0%*68%* 5.6%* 12%* 3.5%* 6.5%*Figure 2. 2 - Schematic representati<strong>on</strong> of the wet mill<str<strong>on</strong>g>in</str<strong>on</strong>g>g of corn. * Typical f<str<strong>on</strong>g>in</str<strong>on</strong>g>al product yields.30


**44%* 39%* 3%*Figure 2. 3 - Schematic representati<strong>on</strong> of the dry mill<str<strong>on</strong>g>in</str<strong>on</strong>g>g of corn. * Typical f<str<strong>on</strong>g>in</str<strong>on</strong>g>al product yields.** Approximately 10 L of ethyl alcohol are produced from 1 bushel (35.2 L) of corn kernels.31


Figure 2. 4 - Schematic representati<strong>on</strong> of the mode of acti<strong>on</strong> of lipoxygenase dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g lipidoxidati<strong>on</strong> (Taylor <str<strong>on</strong>g>and</str<strong>on</strong>g> Morris 1983). a) Penta-1,4-cis-diene system with<str<strong>on</strong>g>in</str<strong>on</strong>g> l<str<strong>on</strong>g>in</str<strong>on</strong>g>oleic acid, b)Intermediate peroxy radical resp<strong>on</strong>sible for carotenoid pigments co-oxidati<strong>on</strong>, c) hydroperoxide,the f<str<strong>on</strong>g>in</str<strong>on</strong>g>al product of the enzyme-catalyzed lipid oxidati<strong>on</strong>.32


CHAPTER - 3 OPTIMIZATION OF THE REDUCTION OF CAROTENOIDS IN CORNGLUTEN MEAL FOR EVALUATION ON GROWTH AND MUSCLE PIGMENTATIONOF RAINBOW TROUT (Oncorhynchus mykiss)Abstract<str<strong>on</strong>g>Corn</str<strong>on</strong>g> gluten meal (CGM) is a comm<strong>on</strong> feed <str<strong>on</strong>g>in</str<strong>on</strong>g>gredient that is widely <str<strong>on</strong>g>in</str<strong>on</strong>g>cluded <str<strong>on</strong>g>in</str<strong>on</strong>g> aquaculturediets. CGM has been related to the reducti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> pigmentati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the muscle of salm<strong>on</strong>id fish dueto <str<strong>on</strong>g>in</str<strong>on</strong>g>terference am<strong>on</strong>g carotenoids. Therefore, a bench-scale study was carried out to optimizethe reducti<strong>on</strong> of lute<str<strong>on</strong>g>in</str<strong>on</strong>g>, zeaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g>, β-cryptoxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> β-carotene <str<strong>on</strong>g>in</str<strong>on</strong>g> CGM, us<str<strong>on</strong>g>in</str<strong>on</strong>g>g white soyflake flour lipoxygenase as bleach<str<strong>on</strong>g>in</str<strong>on</strong>g>g agent. A 12-week growth trial was c<strong>on</strong>ducted to assess theeffects of regular or treated CGM <strong>on</strong> growth <str<strong>on</strong>g>and</str<strong>on</strong>g> muscle astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> depositi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow trout(Oncorhynchus mykiss). Results <str<strong>on</strong>g>in</str<strong>on</strong>g>dicated that lute<str<strong>on</strong>g>in</str<strong>on</strong>g>, zeaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g>, β-cryptoxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> β-carotenewere reduced by 86%, 97%, 100% <str<strong>on</strong>g>and</str<strong>on</strong>g> 100%, respectively <str<strong>on</strong>g>in</str<strong>on</strong>g> the treated CGM. Highly reactiveperoxy radicals produced dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the reducti<strong>on</strong> of yellow carotenoids <str<strong>on</strong>g>in</str<strong>on</strong>g> the treated CGM <str<strong>on</strong>g>in</str<strong>on</strong>g>ducedlipid rancidity <str<strong>on</strong>g>and</str<strong>on</strong>g> the oxidative destructi<strong>on</strong> of astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> the diet supplemented with thiscommodity. A significant (p


3.1 Introducti<strong>on</strong>The characteristic p<str<strong>on</strong>g>in</str<strong>on</strong>g>k or red colour <str<strong>on</strong>g>in</str<strong>on</strong>g> fillets of salm<strong>on</strong>id fish is the result of depositi<strong>on</strong>of dietary carotenoids pigments with<str<strong>on</strong>g>in</str<strong>on</strong>g> muscle cells. This quality trait dramatically affects f<str<strong>on</strong>g>in</str<strong>on</strong>g>alproduct quality <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>fluences costumers’ percepti<strong>on</strong>. Fish are unable to synthesise carotenoidsde novo, therefore formulated diets for farmed salm<strong>on</strong>id fish must be supplemented withsynthetic or natural-orig<str<strong>on</strong>g>in</str<strong>on</strong>g> carotenoids, ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ly astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g>. These pigments are expensive <str<strong>on</strong>g>and</str<strong>on</strong>g>represent about 10-20% of total feed costs (Bjerkeng, 2000; Choubert et al., 2009).Aquaculture feed formulati<strong>on</strong>s have evolved to lessen dependence <strong>on</strong> expensive<str<strong>on</strong>g>in</str<strong>on</strong>g>gredients derived from mar<str<strong>on</strong>g>in</str<strong>on</strong>g>e resources by <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>clusi<strong>on</strong> level of cost-effective plantorig<str<strong>on</strong>g>in</str<strong>on</strong>g>commodities as alternatives prote<str<strong>on</strong>g>in</str<strong>on</strong>g> sources. <str<strong>on</strong>g>Corn</str<strong>on</strong>g> gluten meal (CGM), a prote<str<strong>on</strong>g>in</str<strong>on</strong>g> rich (60%crude prote<str<strong>on</strong>g>in</str<strong>on</strong>g>), highly palatable <str<strong>on</strong>g>and</str<strong>on</strong>g> digestible by-product of the corn (maize) wet mill<str<strong>on</strong>g>in</str<strong>on</strong>g>g, iscomm<strong>on</strong>ly <str<strong>on</strong>g>in</str<strong>on</strong>g>cluded <str<strong>on</strong>g>in</str<strong>on</strong>g> formulated feeds for many farmed fish. <str<strong>on</strong>g>Corn</str<strong>on</strong>g> wet mill<str<strong>on</strong>g>in</str<strong>on</strong>g>g is a process bywhich the ma<str<strong>on</strong>g>in</str<strong>on</strong>g> structural comp<strong>on</strong>ents of corn kernels (i.e. starch, gluten, germ <str<strong>on</strong>g>and</str<strong>on</strong>g> fiber) areseparated <str<strong>on</strong>g>in</str<strong>on</strong>g>to different fracti<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> further ref<str<strong>on</strong>g>in</str<strong>on</strong>g>ed to manufacture high quality products forfood, feed <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>dustrial uses. Dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g corn wet mill<str<strong>on</strong>g>in</str<strong>on</strong>g>g yellow xanthophylls present with<str<strong>on</strong>g>in</str<strong>on</strong>g>endosperm are recovered <str<strong>on</strong>g>in</str<strong>on</strong>g> CGM, c<strong>on</strong>sequently this commodity frequently c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>s significantamounts of these carotenoids (200-500 mg kg -1 ), ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ly as lute<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> zeaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> (Sk<strong>on</strong>berg etal., 1998; Park et al., 1997).Anecdotal evidence from fish farmers al<strong>on</strong>g with a small number of scientific studieshave reported lower astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> depositi<strong>on</strong> rates as well as higher yellow colour attributes <str<strong>on</strong>g>in</str<strong>on</strong>g>fillets of salm<strong>on</strong>id fish fed formulated diets c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g substantial amounts of CGM (Mundheimet al., 2004; Sk<strong>on</strong>berg et al., 1998). A significant (p


us<str<strong>on</strong>g>in</str<strong>on</strong>g>g SalmoFan colorimetric analysis) was observed <str<strong>on</strong>g>in</str<strong>on</strong>g> fillets of Atlantic salm<strong>on</strong> (Salmosalar) as graded levels of a vegetable prote<str<strong>on</strong>g>in</str<strong>on</strong>g> blend (CGM <str<strong>on</strong>g>and</str<strong>on</strong>g> full fat soybean meal <str<strong>on</strong>g>in</str<strong>on</strong>g> a 2:1ratio) were <str<strong>on</strong>g>in</str<strong>on</strong>g>cluded <str<strong>on</strong>g>in</str<strong>on</strong>g> diets supplemented with 64 mg kg -1 of astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> (Mundheim et al.,2004). Fillets of ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow trout fed a high CGM (22.5%) diet with no pigment supplementati<strong>on</strong>for 12 weeks presented yellowish colorati<strong>on</strong> (b* values, tristimulus color analysis) comparedwith those from fish fed a high CGM (22.5%) supplemented with 100 mg kg -1 syntheticcanthaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> (Sk<strong>on</strong>berg et al., 1998).Before absorpti<strong>on</strong> through <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al epithelial cells, carotenoids are emulsified <str<strong>on</strong>g>and</str<strong>on</strong>g>further solubilized <str<strong>on</strong>g>in</str<strong>on</strong>g>to lipid mixed micelles, assembled <str<strong>on</strong>g>in</str<strong>on</strong>g>to chilomicr<strong>on</strong>s (very low densitylipoprote<str<strong>on</strong>g>in</str<strong>on</strong>g>s) with<str<strong>on</strong>g>in</str<strong>on</strong>g> enterocytes, released <str<strong>on</strong>g>in</str<strong>on</strong>g>to the blood stream <str<strong>on</strong>g>and</str<strong>on</strong>g> eventually bound to an α-act<str<strong>on</strong>g>in</str<strong>on</strong>g> molecule with<str<strong>on</strong>g>in</str<strong>on</strong>g> muscle fiber (Aas et al., 1999; Furr <str<strong>on</strong>g>and</str<strong>on</strong>g> Clark, 1997; Henmi et al., 1987;Matthews et al., 2006; Salvador et al., 2007). Based <strong>on</strong> hydrophobic properties <str<strong>on</strong>g>and</str<strong>on</strong>g> molecularsimilarities shared by astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> xanthophylls from CGM <str<strong>on</strong>g>and</str<strong>on</strong>g> the reported presence oflute<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> zeaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> with<str<strong>on</strong>g>in</str<strong>on</strong>g> salm<strong>on</strong>id fish muscle (Kitahara, 1983), a potential<str<strong>on</strong>g>in</str<strong>on</strong>g>teracti<strong>on</strong>/competiti<strong>on</strong> am<strong>on</strong>g these carotenoids dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al absorpti<strong>on</strong>, transport with<str<strong>on</strong>g>in</str<strong>on</strong>g>bloodstream <str<strong>on</strong>g>and</str<strong>on</strong>g>/or muscle depositi<strong>on</strong> can be hypothesized when substantial amounts of thiscommodity are used <str<strong>on</strong>g>in</str<strong>on</strong>g> formulated diets for salm<strong>on</strong>id fish.Lipoxygenases (LOX) are n<strong>on</strong>heme ir<strong>on</strong>-c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g dioxygenases (EC 1.13.11.12) thatcatalyze the oxygenati<strong>on</strong> of polyunsaturated fatty acids c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g a cis-cis-1, 4-pentadienesystem. LOX-catalyzed bleach<str<strong>on</strong>g>in</str<strong>on</strong>g>g of carotenoids from CGM has been successfully achieved <str<strong>on</strong>g>in</str<strong>on</strong>g>the past. More than 60% of total carotenoids pigments c<strong>on</strong>tent was bleached when 5% of soyflour as LOX source was mixed with wet CGM <str<strong>on</strong>g>in</str<strong>on</strong>g> an aqueous medium at pH 6.5 (Cha et al.,2000; Park et al., 1997). <str<strong>on</strong>g>Pigment</str<strong>on</strong>g> bleach<str<strong>on</strong>g>in</str<strong>on</strong>g>g ability of LOX has been reported as dependent up<strong>on</strong>35


many factors such as LOX source level, LOX source pre-soak<str<strong>on</strong>g>in</str<strong>on</strong>g>g, aerati<strong>on</strong> through the reacti<strong>on</strong>medium, ascorbic acid additi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> reacti<strong>on</strong> temperature (Park et al., 1997).Therefore, the objectives of this study were to (1) optimize the reducti<strong>on</strong> of lute<str<strong>on</strong>g>in</str<strong>on</strong>g>, zeaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g>, β-cryptoxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> β-carotene <str<strong>on</strong>g>in</str<strong>on</strong>g> CGM through a practical <str<strong>on</strong>g>and</str<strong>on</strong>g> cost-effective pigment bleach<str<strong>on</strong>g>in</str<strong>on</strong>g>gprocess, us<str<strong>on</strong>g>in</str<strong>on</strong>g>g white soy flake flour (WSFF) LOX as bleach<str<strong>on</strong>g>in</str<strong>on</strong>g>g agent <str<strong>on</strong>g>and</str<strong>on</strong>g> (2) assess the effects ofregular <str<strong>on</strong>g>and</str<strong>on</strong>g> treated CGM <strong>on</strong> growth <str<strong>on</strong>g>and</str<strong>on</strong>g> muscle pigmentati<strong>on</strong> of ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow trout.3.2 Materials <str<strong>on</strong>g>and</str<strong>on</strong>g> methods3.2.1 Bleach<str<strong>on</strong>g>in</str<strong>on</strong>g>g of carotenoidsCGM (Casco Canada, L<strong>on</strong>d<strong>on</strong>, ON, Canada) was bleached us<str<strong>on</strong>g>in</str<strong>on</strong>g>g a bench-scale proceduredeveloped accord<str<strong>on</strong>g>in</str<strong>on</strong>g>g to Cha et al (2000) with some modificati<strong>on</strong>s. CGM (20 g) was suspended <str<strong>on</strong>g>in</str<strong>on</strong>g>distilled water (75 ml) <str<strong>on</strong>g>in</str<strong>on</strong>g> a 250 ml Erlenmeyer flask. Soluti<strong>on</strong> pH was adjusted to 6.5 <str<strong>on</strong>g>and</str<strong>on</strong>g> whitesoy flakes flour (WSFF) (Bunge Canada, Hamilt<strong>on</strong>, ON, Canada) was added to the mixture;flasks were then placed <strong>on</strong> a shak<str<strong>on</strong>g>in</str<strong>on</strong>g>g water bath (120 m<str<strong>on</strong>g>in</str<strong>on</strong>g>, 110 r m<str<strong>on</strong>g>in</str<strong>on</strong>g> -1 ). Potential factorsaffect<str<strong>on</strong>g>in</str<strong>on</strong>g>g bleach<str<strong>on</strong>g>in</str<strong>on</strong>g>g of pigments from CGM were applied to the slurry as described <str<strong>on</strong>g>in</str<strong>on</strong>g> theexperimental design secti<strong>on</strong>.Samples of the slurry were taken at 0, 60, <str<strong>on</strong>g>and</str<strong>on</strong>g> 120 m<str<strong>on</strong>g>in</str<strong>on</strong>g> of reacti<strong>on</strong> progress <str<strong>on</strong>g>and</str<strong>on</strong>g>centrifuged at 4,000 x g per 20 m<str<strong>on</strong>g>in</str<strong>on</strong>g> (Eppendorf, centrifuge 5810r). Supernatant was discarded<str<strong>on</strong>g>and</str<strong>on</strong>g> result<str<strong>on</strong>g>in</str<strong>on</strong>g>g sediment was kept frozen (-20 °C) until analysis. Heat-treated (deactivated) WSSF,prepared by heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g soy WSFF <str<strong>on</strong>g>in</str<strong>on</strong>g> an oven at 85 °C for 90 m<str<strong>on</strong>g>in</str<strong>on</strong>g>, was used as a c<strong>on</strong>trol. Carotenoidbleach<str<strong>on</strong>g>in</str<strong>on</strong>g>g rate was determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed as the ratio of carotenoid c<strong>on</strong>tent <str<strong>on</strong>g>in</str<strong>on</strong>g> processed samples (i.e. 60 or120 m<str<strong>on</strong>g>in</str<strong>on</strong>g>) to the pigment c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the <str<strong>on</strong>g>in</str<strong>on</strong>g>itial sample (0 m<str<strong>on</strong>g>in</str<strong>on</strong>g>). All trials were run <str<strong>on</strong>g>in</str<strong>on</strong>g>triplicate.36


Experimental designs. A Plackett-Burman Screen<str<strong>on</strong>g>in</str<strong>on</strong>g>g Design (PBSD) was used toevaluate significance of seven potential factors affect<str<strong>on</strong>g>in</str<strong>on</strong>g>g bleach<str<strong>on</strong>g>in</str<strong>on</strong>g>g of carotenoids from CGM.Seven variables or factors were tried out <str<strong>on</strong>g>in</str<strong>on</strong>g> this experiment. For each variable a low (-) <str<strong>on</strong>g>and</str<strong>on</strong>g> high(+) level were tested (Table 3.1). The rows <str<strong>on</strong>g>in</str<strong>on</strong>g> Table 3.2 represent different trials or scenarios,<str<strong>on</strong>g>and</str<strong>on</strong>g> each column represents a different variable or factor. A Box-Behnken design (BBD) wasapplied to determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e the quadratic effect of factors screened as active <strong>on</strong> CGM carotenoidsbleach<str<strong>on</strong>g>in</str<strong>on</strong>g>g. This resp<strong>on</strong>se surface design led to study the effect of the four factors <str<strong>on</strong>g>in</str<strong>on</strong>g> a s<str<strong>on</strong>g>in</str<strong>on</strong>g>gleblock of 27 sets of test c<strong>on</strong>diti<strong>on</strong>s with three central po<str<strong>on</strong>g>in</str<strong>on</strong>g>ts. Experiments order was fullyr<str<strong>on</strong>g>and</str<strong>on</strong>g>omized. Three levels were attributed to each factor (low, medium <str<strong>on</strong>g>and</str<strong>on</strong>g> high) coded as -1, 0,+1 (Table 3.3).3.2.2 Fish muscle pigmentati<strong>on</strong> trialFish husb<str<strong>on</strong>g>and</str<strong>on</strong>g>ry <str<strong>on</strong>g>and</str<strong>on</strong>g> experimental c<strong>on</strong>diti<strong>on</strong>s. Ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow trout (O. mykiss) obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed fromthe Alma Aquaculture Research Stati<strong>on</strong> (Elora, ON, Canada) were adapted to experimentalc<strong>on</strong>diti<strong>on</strong>s for two weeks before start<str<strong>on</strong>g>in</str<strong>on</strong>g>g the trial. Dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g that period, fish were fed a commercialdiet (Mart<str<strong>on</strong>g>in</str<strong>on</strong>g> Mills Inc, Elora, ON, Canada) <strong>on</strong>ce per day.Groups of twenty five fish (125 g fish -1 , <str<strong>on</strong>g>in</str<strong>on</strong>g>itial body weight) were r<str<strong>on</strong>g>and</str<strong>on</strong>g>omly distributed<str<strong>on</strong>g>in</str<strong>on</strong>g>to 6 (500 L) fibreglass tanks <str<strong>on</strong>g>and</str<strong>on</strong>g> the 3 experimental diets were assigned r<str<strong>on</strong>g>and</str<strong>on</strong>g>omly to tanks.Fish were ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> a fresh water recirculated system, provided with filtered well water at anapproximately 10 L m<str<strong>on</strong>g>in</str<strong>on</strong>g> -1 rate. Water was c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>uously aerated <str<strong>on</strong>g>and</str<strong>on</strong>g> temperature was c<strong>on</strong>trolledthermostatically at 15 °C. Fish were held under artificial light, with a photoperiod regime of 12 hlight: 12 h dark. The experimental protocol used <str<strong>on</strong>g>in</str<strong>on</strong>g> this trial was developed <str<strong>on</strong>g>in</str<strong>on</strong>g> accordance withboth the guidel<str<strong>on</strong>g>in</str<strong>on</strong>g>e of the Canadian Council <strong>on</strong> Animal Care (CCAC, 1984) as well as theUniversity of Guelph Animal Care Committee.37


Dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the 12-week experimental period all fish were h<str<strong>on</strong>g>and</str<strong>on</strong>g>-fed to near-satiety two timesa day <strong>on</strong> weekdays <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>on</strong>ce daily <strong>on</strong> weekends. Feed c<strong>on</strong>sumpti<strong>on</strong> was recorded <strong>on</strong> a weeklybasis. Bulk weight of the fish <str<strong>on</strong>g>in</str<strong>on</strong>g> each tank was recorded every four weeks. Before start<str<strong>on</strong>g>in</str<strong>on</strong>g>g thetrial, a sample of ten <str<strong>on</strong>g>and</str<strong>on</strong>g> five fish was taken for determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> of the <str<strong>on</strong>g>in</str<strong>on</strong>g>itial carcass compositi<strong>on</strong><str<strong>on</strong>g>and</str<strong>on</strong>g> for <str<strong>on</strong>g>in</str<strong>on</strong>g>itial muscle pigment c<strong>on</strong>tent <str<strong>on</strong>g>and</str<strong>on</strong>g> colour determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>, respectively. At the end of trial,four <str<strong>on</strong>g>and</str<strong>on</strong>g> five fish from each tank were r<str<strong>on</strong>g>and</str<strong>on</strong>g>omly taken for the determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> of f<str<strong>on</strong>g>in</str<strong>on</strong>g>al carcasscompositi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> f<str<strong>on</strong>g>in</str<strong>on</strong>g>al muscle pigment c<strong>on</strong>tent <str<strong>on</strong>g>and</str<strong>on</strong>g> colour, respectively. Fish were killed by anoverdose of trica<str<strong>on</strong>g>in</str<strong>on</strong>g>e methane sulf<strong>on</strong>ate (200 mg L -1 water). Fish sampled for carcass compositi<strong>on</strong>determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> were autoclaved, ground <str<strong>on</strong>g>in</str<strong>on</strong>g>to an homogenous slurry, freeze-dried, ground <str<strong>on</strong>g>in</str<strong>on</strong>g>to apowder <str<strong>on</strong>g>and</str<strong>on</strong>g> stored at -20 °C until analysis. Fish sampled for muscle pigment <str<strong>on</strong>g>and</str<strong>on</strong>g> colourdeterm<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> were sk<str<strong>on</strong>g>in</str<strong>on</strong>g>ned <str<strong>on</strong>g>and</str<strong>on</strong>g> colour was determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <strong>on</strong> the right h<str<strong>on</strong>g>and</str<strong>on</strong>g> side fillet right afterslaughter; muscle samples were kept at -80 °C until analysis.Ingredients <str<strong>on</strong>g>and</str<strong>on</strong>g> experimental diets. Bleached CGM (14 batches of 200 g) was preparedas described <str<strong>on</strong>g>in</str<strong>on</strong>g> the bleach<str<strong>on</strong>g>in</str<strong>on</strong>g>g of carotenoids secti<strong>on</strong>. Proximate <str<strong>on</strong>g>and</str<strong>on</strong>g> carotenoid compositi<strong>on</strong> ofregular <str<strong>on</strong>g>and</str<strong>on</strong>g> pigment bleached CGM is presented <str<strong>on</strong>g>in</str<strong>on</strong>g> Tables 3.4 <str<strong>on</strong>g>and</str<strong>on</strong>g> 3.10 respectively). Threediets were formulated to be is<strong>on</strong>itrogenous (48 % crude prote<str<strong>on</strong>g>in</str<strong>on</strong>g>) <str<strong>on</strong>g>and</str<strong>on</strong>g> isoenergetic (20 MJ DE kg -1 ) <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g> no (Diet 1, C<strong>on</strong>trol diet), 19% CGM (Diet 2) or 19% bleached CGM (Diet 3) <str<strong>on</strong>g>and</str<strong>on</strong>g>to meet all the nutriti<strong>on</strong>al requirements for ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow trout based <strong>on</strong> NRC (2011) (Table 3.5). Alldiets were supplemented with 50 mg kg -1 astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> (Carophyll®p<str<strong>on</strong>g>in</str<strong>on</strong>g>k, 8% astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g>, DSMNutriti<strong>on</strong>al Products, ON, Canada). All <str<strong>on</strong>g>in</str<strong>on</strong>g>gredients were mixed us<str<strong>on</strong>g>in</str<strong>on</strong>g>g a Hobart mixer (HobartLtd, D<strong>on</strong> Mills, ON, Canada). The three diets were steam pelleted to appropriate size us<str<strong>on</strong>g>in</str<strong>on</strong>g>g alaboratory pellet mill (California Pellet Mill, San Francisco, CA, USA). Pellets were then driedovernight under forced-air at 60 °C, sieved to appropriate size, <str<strong>on</strong>g>and</str<strong>on</strong>g> stored at 4 °C until used.38


Calculati<strong>on</strong>s. Growth rate (thermal unit growth coefficient, TGC), was assessed for eachtank as: (1) TGC = 100×[(FBW 1/3 −IBW 1/3 )×(sum T×D) −1 ], where: FBW = f<str<strong>on</strong>g>in</str<strong>on</strong>g>al body weight (gfish -1 ); IBW = <str<strong>on</strong>g>in</str<strong>on</strong>g>itial body weight (g fish -1 ); sum T×D = sum degrees Celsius×days.Feed efficiency (FE, ga<str<strong>on</strong>g>in</str<strong>on</strong>g>:feed) for each tank was determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed as: (2) FE = live bodyweight ga<str<strong>on</strong>g>in</str<strong>on</strong>g>/dry feed <str<strong>on</strong>g>in</str<strong>on</strong>g>take, where: feed <str<strong>on</strong>g>in</str<strong>on</strong>g>take=total dry feed/number of fish; live body weightga<str<strong>on</strong>g>in</str<strong>on</strong>g> = (FBW/f<str<strong>on</strong>g>in</str<strong>on</strong>g>al number of fish)−(IBW/<str<strong>on</strong>g>in</str<strong>on</strong>g>itial number of fish); FBW = f<str<strong>on</strong>g>in</str<strong>on</strong>g>al body weight (g);IBW = <str<strong>on</strong>g>in</str<strong>on</strong>g>itial body weight (g). Reta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed nitrogen (RN, g fish -1 ) <str<strong>on</strong>g>and</str<strong>on</strong>g> recovered energy (RE, kJfish -1 ) for each tank were assessed as: (3) RN = (FBW×N c<strong>on</strong>tent f<str<strong>on</strong>g>in</str<strong>on</strong>g>al )−(IBW×N c<strong>on</strong>tent <str<strong>on</strong>g>in</str<strong>on</strong>g>itial ) <str<strong>on</strong>g>and</str<strong>on</strong>g>(4) RE = (FBW×GE c<strong>on</strong>tent f<str<strong>on</strong>g>in</str<strong>on</strong>g>al )−(IBW×GE c<strong>on</strong>tent <str<strong>on</strong>g>in</str<strong>on</strong>g>itial ), respectively, where: FBW = f<str<strong>on</strong>g>in</str<strong>on</strong>g>al bodyweight (g fish -1 ); IBW = <str<strong>on</strong>g>in</str<strong>on</strong>g>itial body weight (g fish -1 ); N c<strong>on</strong>tent f<str<strong>on</strong>g>in</str<strong>on</strong>g>al = nitrogen c<strong>on</strong>tent (%) of thef<str<strong>on</strong>g>in</str<strong>on</strong>g>al carcass sample; N c<strong>on</strong>tent <str<strong>on</strong>g>in</str<strong>on</strong>g>itial = nitrogen c<strong>on</strong>tent (%) of the <str<strong>on</strong>g>in</str<strong>on</strong>g>itial carcass sample; GE f<str<strong>on</strong>g>in</str<strong>on</strong>g>al =gross energy (kJ g -1 ) c<strong>on</strong>tent of the f<str<strong>on</strong>g>in</str<strong>on</strong>g>al carcass sample; GE <str<strong>on</strong>g>in</str<strong>on</strong>g>itial = gross energy (kJ g -1 ) c<strong>on</strong>tentof the <str<strong>on</strong>g>in</str<strong>on</strong>g>itial carcass sample.Nitrogen retenti<strong>on</strong> efficiency (NRE) <str<strong>on</strong>g>and</str<strong>on</strong>g> energy retenti<strong>on</strong> efficiency(ERE) for each tank were calculated as a ratio of <str<strong>on</strong>g>in</str<strong>on</strong>g>gested nitrogen (IN): (5) NRE (% IN) =[[(FBW×N c<strong>on</strong>tent f<str<strong>on</strong>g>in</str<strong>on</strong>g>al )−(IBW×N c<strong>on</strong>tent <str<strong>on</strong>g>in</str<strong>on</strong>g>itial )]/IN]×100; <str<strong>on</strong>g>and</str<strong>on</strong>g> as ratio of <str<strong>on</strong>g>in</str<strong>on</strong>g>gested energy (IE): (6)ERE (% IE) = [[(FBW×GE c<strong>on</strong>tent f<str<strong>on</strong>g>in</str<strong>on</strong>g>al )−(IBW×GE c<strong>on</strong>tent <str<strong>on</strong>g>in</str<strong>on</strong>g>itial )]/IE]×100, where: FBW = f<str<strong>on</strong>g>in</str<strong>on</strong>g>albody weight (g fish -1 ); IBW=<str<strong>on</strong>g>in</str<strong>on</strong>g>itial body weight (g fish -1 ); N c<strong>on</strong>tent f<str<strong>on</strong>g>in</str<strong>on</strong>g>al = nitrogen c<strong>on</strong>tent (%)of the f<str<strong>on</strong>g>in</str<strong>on</strong>g>al carcass sample; N c<strong>on</strong>tent <str<strong>on</strong>g>in</str<strong>on</strong>g>itial = nitrogen c<strong>on</strong>tent (%) of the <str<strong>on</strong>g>in</str<strong>on</strong>g>itial carcass sample;GE f<str<strong>on</strong>g>in</str<strong>on</strong>g>al = gross energy (kJ g -1 ) c<strong>on</strong>tent of the f<str<strong>on</strong>g>in</str<strong>on</strong>g>al carcass sample; GE <str<strong>on</strong>g>in</str<strong>on</strong>g>itial = gross energy (kJ g -1 )c<strong>on</strong>tent of the <str<strong>on</strong>g>in</str<strong>on</strong>g>itial carcass sample; IN = <str<strong>on</strong>g>in</str<strong>on</strong>g>gested nitrogen (g fish -1 ); IE = <str<strong>on</strong>g>in</str<strong>on</strong>g>gested energy (kJfish -1 ).39


3.2.3 Analytical methodsDry matter <str<strong>on</strong>g>and</str<strong>on</strong>g> ash c<strong>on</strong>tent of regular <str<strong>on</strong>g>and</str<strong>on</strong>g> bleached CGM, experimental diets,<str<strong>on</strong>g>in</str<strong>on</strong>g>gredients <str<strong>on</strong>g>and</str<strong>on</strong>g> carcass samples were determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed accord<str<strong>on</strong>g>in</str<strong>on</strong>g>g to AOAC (1995) crude prote<str<strong>on</strong>g>in</str<strong>on</strong>g> (%Nx 6.25) was assessed <str<strong>on</strong>g>in</str<strong>on</strong>g> a LECO analyzer (LECO Corp., St. Joseph, MI, USA), <str<strong>on</strong>g>and</str<strong>on</strong>g> total lipiddeterm<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> was c<strong>on</strong>ducted with <str<strong>on</strong>g>in</str<strong>on</strong>g> a high pressure extractor (Ankom XT-20 Lipid extractor –ANKOM Technology, Maced<strong>on</strong>, NY, USA). Gross energy (GE) c<strong>on</strong>tent was assessed us<str<strong>on</strong>g>in</str<strong>on</strong>g>g a abomb calorimeter (Parr 1271, Parr <str<strong>on</strong>g>in</str<strong>on</strong>g>struments, Mol<str<strong>on</strong>g>in</str<strong>on</strong>g>e, IL, USA). 2-Thiobarbituric acid assay(TBA) number <str<strong>on</strong>g>in</str<strong>on</strong>g> experimental diets was determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed spectrophometrically accord<str<strong>on</strong>g>in</str<strong>on</strong>g>g to Tir<strong>on</strong>i etal. (2007).Total yellow pigment c<strong>on</strong>tent of CGM samples was determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed accord<str<strong>on</strong>g>in</str<strong>on</strong>g>g to Santra et al.(2003) with some modificati<strong>on</strong>s. Water-saturated butanol (1.25 mL) was added to 0.25 g ofsample <str<strong>on</strong>g>in</str<strong>on</strong>g>to 1.5 mL micro centrifuge tube. Samples were mixed by vortex<str<strong>on</strong>g>in</str<strong>on</strong>g>g for 30 s <str<strong>on</strong>g>and</str<strong>on</strong>g> thenkept <str<strong>on</strong>g>in</str<strong>on</strong>g> the dark for 16 – 18 h for pigments extracti<strong>on</strong>. Then tubes were centrifuged at 10,000 x gfor 10 m<str<strong>on</strong>g>in</str<strong>on</strong>g> to recover the supernatant. The absorbance of the supernatant was determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed with aspectrophotometer (Novaspec II, LKB Biochrom) at 450 nm wavelength.<strong>Muscle</strong> colour determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>. Instrumental colour determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> was assessed us<str<strong>on</strong>g>in</str<strong>on</strong>g>g aCHROMA METER tristimulus colorimeter (CR-400, KONICA MINOLTA SENSING, Inc,Japan). Colour sampl<str<strong>on</strong>g>in</str<strong>on</strong>g>g was determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed: close to the head; below the dorsal f<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> close to thetail; <str<strong>on</strong>g>and</str<strong>on</strong>g> close to the tail, each measurement was performed over <str<strong>on</strong>g>and</str<strong>on</strong>g> under the lateral l<str<strong>on</strong>g>in</str<strong>on</strong>g>e.Colour values are expressed as mean of six read<str<strong>on</strong>g>in</str<strong>on</strong>g>g per sample. Measurements are expressed <str<strong>on</strong>g>in</str<strong>on</strong>g>the colorimetric space were L*, represents lightness (L*=0 for black, L*=100 for white); a*,represents the <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity of the red colour, <str<strong>on</strong>g>and</str<strong>on</strong>g> b* scale, represent<str<strong>on</strong>g>in</str<strong>on</strong>g>g the <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity <str<strong>on</strong>g>in</str<strong>on</strong>g> the yellowcolour. The quantitative hue (H° ab ) <str<strong>on</strong>g>and</str<strong>on</strong>g> chroma (C*) colour attributes were determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed accord<str<strong>on</strong>g>in</str<strong>on</strong>g>g40


to Christiansen et al. (1995). H° ab is (as the relati<strong>on</strong>ship between the yellowness <str<strong>on</strong>g>and</str<strong>on</strong>g> redness) as:(7) H° ab =tan -1 b*/a*. Where 0° (H° ab = 0) represents a red hue <str<strong>on</strong>g>and</str<strong>on</strong>g> 90° (H° ab = 90) represents ayellow hue. The C* expresses saturati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> clarity of a colour. A high C* value represents ahigh saturati<strong>on</strong> of colour. It was calculated as: (8) C* = (a* 2 + b* 2 ) 1/2 .Lipoxygenase activity determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>. Lipoxygenase activity <str<strong>on</strong>g>in</str<strong>on</strong>g> WSFF, heat treated WSFF<str<strong>on</strong>g>and</str<strong>on</strong>g> CGM, was determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed accord<str<strong>on</strong>g>in</str<strong>on</strong>g>g to Gӧkmen et al. (2007) with some modificati<strong>on</strong>s. Enzymeextracti<strong>on</strong> was carried out by homogeniz<str<strong>on</strong>g>in</str<strong>on</strong>g>g 5 g of sample with sodium phosphate (25 mL)buffer (pH 6.5) at 4°C us<str<strong>on</strong>g>in</str<strong>on</strong>g>g a magnetic stirrer for 30 m<str<strong>on</strong>g>in</str<strong>on</strong>g>. The homogenate was centrifuged at15,000 x g for 15 m<str<strong>on</strong>g>in</str<strong>on</strong>g> at 4°C. The supernatant c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g lipoxygenase was kept as a crudeenzyme extract. The total prote<str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>tent of the enzyme extract was determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed us<str<strong>on</strong>g>in</str<strong>on</strong>g>g the Sigmadiagnostics kit for micro prote<str<strong>on</strong>g>in</str<strong>on</strong>g> determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> (Sigma Oakville, ON, Canada).The substrate soluti<strong>on</strong> was obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by comb<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g pure l<str<strong>on</strong>g>in</str<strong>on</strong>g>oleic acid (157.2 µL), Tween20 (157.2 µL) <str<strong>on</strong>g>and</str<strong>on</strong>g> nano-pure water (10 mL). 1 N NaOH (1mL) was added <str<strong>on</strong>g>and</str<strong>on</strong>g> the mixture wasdiluted to 200 mL with M/15 sodium phosphate buffer (pH 6.0).Spectrophotometric lipoxygenase activity determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> was c<strong>on</strong>ducted by add<str<strong>on</strong>g>in</str<strong>on</strong>g>g 29.9mL of substrate soluti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> a flask placed <str<strong>on</strong>g>in</str<strong>on</strong>g> a water bath set up at 30 °C. Gently aerati<strong>on</strong> waspassed through the soluti<strong>on</strong> for 2 m<str<strong>on</strong>g>in</str<strong>on</strong>g>. The reacti<strong>on</strong> was <str<strong>on</strong>g>in</str<strong>on</strong>g>itiated by mix<str<strong>on</strong>g>in</str<strong>on</strong>g>g the crude enzymeextract (0.1 mL) <str<strong>on</strong>g>and</str<strong>on</strong>g> the substrate soluti<strong>on</strong>. Aliquots (1 mL) were transferred <str<strong>on</strong>g>in</str<strong>on</strong>g>to labeled testtubes c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g 4 mL of 0.1 Normal NaOH soluti<strong>on</strong> at 0.5, 1.0, 1.5, 2.0, 2.5 <str<strong>on</strong>g>and</str<strong>on</strong>g> 3.0 m<str<strong>on</strong>g>in</str<strong>on</strong>g> ofreacti<strong>on</strong> time. NaOH soluti<strong>on</strong> stops the enzymatic reacti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>trol optical <str<strong>on</strong>g>in</str<strong>on</strong>g>terference <str<strong>on</strong>g>in</str<strong>on</strong>g> thesoluti<strong>on</strong> before absorbance measur<str<strong>on</strong>g>in</str<strong>on</strong>g>g. Hydroperoxide formati<strong>on</strong> was followed us<str<strong>on</strong>g>in</str<strong>on</strong>g>g a VarianInc., spectrophotometer (Palo Alto, CA, USA) as <str<strong>on</strong>g>in</str<strong>on</strong>g>crease <str<strong>on</strong>g>in</str<strong>on</strong>g> absorbance at 234 nm. A blank41


soluti<strong>on</strong> was generated by mix<str<strong>on</strong>g>in</str<strong>on</strong>g>g the substrate soluti<strong>on</strong> (1 mL) with the 0.1 Normal NaOHsoluti<strong>on</strong> (4 mL). One lipoxygenase unit was def<str<strong>on</strong>g>in</str<strong>on</strong>g>ed as the quantity of enzyme that generates 1µmol of hydroperoxide per m<str<strong>on</strong>g>in</str<strong>on</strong>g> per mg of prote<str<strong>on</strong>g>in</str<strong>on</strong>g> under the st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard assay c<strong>on</strong>diti<strong>on</strong>s.HPLC analysis. Carotenoids from CGM samples were extracted accord<str<strong>on</strong>g>in</str<strong>on</strong>g>g to Abdel-Aalet al. (2007). An approximately 0.15 g of sample was homogenized <str<strong>on</strong>g>in</str<strong>on</strong>g> 10 mL of water saturatedbutanol for 30 s <str<strong>on</strong>g>in</str<strong>on</strong>g> a PT 18/105 Ultra-turrax homogenizer, kept for 30 m<str<strong>on</strong>g>in</str<strong>on</strong>g> at room temperature,<str<strong>on</strong>g>and</str<strong>on</strong>g> homogenized aga<str<strong>on</strong>g>in</str<strong>on</strong>g> for 30 s. The mixture was centrifuged at 10,000 x g for 5 m<str<strong>on</strong>g>in</str<strong>on</strong>g>, <str<strong>on</strong>g>and</str<strong>on</strong>g> analiquot of the supernatant (0.5 mL) was filtered through a 0.45 µm Nyl<strong>on</strong> Acrodisc syr<str<strong>on</strong>g>in</str<strong>on</strong>g>ge filter.The first two drops of the filtrate were discarded, <str<strong>on</strong>g>and</str<strong>on</strong>g> the rem<str<strong>on</strong>g>in</str<strong>on</strong>g>der was collected for HPLCanalyses.Carotenoids from the diets <str<strong>on</strong>g>and</str<strong>on</strong>g> fish muscle samples were extracted accord<str<strong>on</strong>g>in</str<strong>on</strong>g>g to Bjerkenget al. (1997) with some variati<strong>on</strong>s. Feed samples were weight (5.0 g) <str<strong>on</strong>g>and</str<strong>on</strong>g> mixed with 10 mL ofmethanol (c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g 500 mg L -1 of 2,6-di-t-butyl-p-cresol) <str<strong>on</strong>g>and</str<strong>on</strong>g> distilled water (5 mL). Sampleswere extracted us<str<strong>on</strong>g>in</str<strong>on</strong>g>g a PT 18/105 Ultra-turrax homogenizer for 30 s. The samples were mixedaga<str<strong>on</strong>g>in</str<strong>on</strong>g> for 30 s with chloroform (15 mL) <str<strong>on</strong>g>and</str<strong>on</strong>g> kept <str<strong>on</strong>g>in</str<strong>on</strong>g> the dark for 10 m<str<strong>on</strong>g>in</str<strong>on</strong>g>, remixed for extra 30 s<str<strong>on</strong>g>and</str<strong>on</strong>g> centrifuged (10 m<str<strong>on</strong>g>in</str<strong>on</strong>g>, 3000 x g, 18°C).<strong>Muscle</strong> samples (sk<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> b<strong>on</strong>e free) of each fish were chopped <str<strong>on</strong>g>and</str<strong>on</strong>g> ground twice whilefrozen. Samples (7.5 g) were then mixed with 7.5 mL of distilled water <str<strong>on</strong>g>and</str<strong>on</strong>g> 7.5 ml methanol(c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g 500 mg L -1 of BHT). The mixture was homogenized us<str<strong>on</strong>g>in</str<strong>on</strong>g>g a PT 18/105 Ultra-turraxhomogenizer for 30 s. Chloroform (21 mL) was then added <str<strong>on</strong>g>and</str<strong>on</strong>g> an additi<strong>on</strong>al mixture of 30 s wasapplied. <strong>Muscle</strong> samples were then centrifuged (15 m<str<strong>on</strong>g>in</str<strong>on</strong>g>, 2500 x g) at 18°C.42


An aliquot (1 mL) of the chloroform phase was transferred <str<strong>on</strong>g>in</str<strong>on</strong>g>to a test tube thenevaporated to dryness <strong>on</strong> a water bath (ca. 40°C) us<str<strong>on</strong>g>in</str<strong>on</strong>g>g nitrogen gas. Samples were dissolved <str<strong>on</strong>g>in</str<strong>on</strong>g>to4 or 1 mL of water-saturated butanol (feeds <str<strong>on</strong>g>and</str<strong>on</strong>g> muscles, respectively). The soluti<strong>on</strong> was filtered(0.45 µm; M<str<strong>on</strong>g>in</str<strong>on</strong>g>isart SRP15, Sartorius), <str<strong>on</strong>g>in</str<strong>on</strong>g>to the sample vials, sealed <str<strong>on</strong>g>and</str<strong>on</strong>g> storage at-80 °C untilanalysis. All carotenoid extracti<strong>on</strong>s were c<strong>on</strong>ducted under dim light to avoid sample degradati<strong>on</strong>by photo-oxidati<strong>on</strong>.Carotenoids extracts were analysed accord<str<strong>on</strong>g>in</str<strong>on</strong>g>g to Abdel-Aal et al. (2007) by liquidchromatography (1100 series liquid chromatographer, Aligent, Mississauga, ON). <str<strong>on</strong>g>Pigment</str<strong>on</strong>g>s wereseparated us<str<strong>on</strong>g>in</str<strong>on</strong>g>g a short C30 column (YMC Carotenoid, Waters, Mississauga, ON, Canada), setup at 35°C. Compositi<strong>on</strong> of the eluted mobile phase was (A) methanol/methyl tert-butilether/nanopure water soluti<strong>on</strong> (81:15:4, v/v/v) <str<strong>on</strong>g>and</str<strong>on</strong>g> (B) methyl tert-butyl ether/methanol (90:10,v/v) soluti<strong>on</strong>, programed to run as: 0-9 m<str<strong>on</strong>g>in</str<strong>on</strong>g>, 100 - 75% A; 9 - 14 m<str<strong>on</strong>g>in</str<strong>on</strong>g>, 75 - 20% A; 14 - 15 m<str<strong>on</strong>g>in</str<strong>on</strong>g>,25 - 0% A; 15 - 18 m<str<strong>on</strong>g>in</str<strong>on</strong>g>, hold at 0% A; 18 -20 m<str<strong>on</strong>g>in</str<strong>on</strong>g> hold at 100% A. Detecti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> measurementof different pigments were c<strong>on</strong>ducted at 450 nm ( for all-trans-lute<str<strong>on</strong>g>in</str<strong>on</strong>g>, all-trans zeaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g>, alltrans-β-cryptoxanth<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>and</str<strong>on</strong>g> all-trans-β-carotene) <str<strong>on</strong>g>and</str<strong>on</strong>g> 478 nm (for all-trans-astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g>),respectively.Identificati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> quantificati<strong>on</strong> of carotenoids was accomplished us<str<strong>on</strong>g>in</str<strong>on</strong>g>g pure authenticcarotenoids st<str<strong>on</strong>g>and</str<strong>on</strong>g>ards (all-trans-astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g>, all-trans-lute<str<strong>on</strong>g>in</str<strong>on</strong>g>, all-trans-β-carotene, all-transzeaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g>, all-trans-β-cryptoxanth<str<strong>on</strong>g>in</str<strong>on</strong>g>) (Sigma-Aldrich Canada Ltd., Oakville, ON, Canada). Thel<str<strong>on</strong>g>in</str<strong>on</strong>g>earity of the resp<strong>on</strong>se for each pigment (resp<strong>on</strong>se area v/s <str<strong>on</strong>g>in</str<strong>on</strong>g>jected amount) was evaluated <str<strong>on</strong>g>and</str<strong>on</strong>g>the coefficient of determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> (R 2 ) for all-trans-astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g>, all-trans-lute<str<strong>on</strong>g>in</str<strong>on</strong>g>, all-transzeaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g>, all-trans-β-cryptoxanth<str<strong>on</strong>g>in</str<strong>on</strong>g>, <str<strong>on</strong>g>and</str<strong>on</strong>g> all-trans-β-carotene were 0.9997, 0.9996, 0.9996,0.9994 <str<strong>on</strong>g>and</str<strong>on</strong>g> 0.9999, respectively.43


3.2.4 Statistical analysisData from the Plackett-Burman design were analyzed us<str<strong>on</strong>g>in</str<strong>on</strong>g>g a multiple regressi<strong>on</strong> analysisperformed by the Analyst applicati<strong>on</strong> of the SAS/STAT software (SAS <str<strong>on</strong>g>in</str<strong>on</strong>g>stitute, Cary, NC,USA). The design for the Box-Behnken design was generated <str<strong>on</strong>g>and</str<strong>on</strong>g> analyzed us<str<strong>on</strong>g>in</str<strong>on</strong>g>g the ADXapplicati<strong>on</strong> of the SAS/STAT software (SAS <str<strong>on</strong>g>in</str<strong>on</strong>g>stitute, Cary, NC, USA).Data from the fish muscle pigmentati<strong>on</strong> trial were analysed as a complete r<str<strong>on</strong>g>and</str<strong>on</strong>g>om designus<str<strong>on</strong>g>in</str<strong>on</strong>g>g the general l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear model of the SAS/STAT software (SAS <str<strong>on</strong>g>in</str<strong>on</strong>g>stitute, Cary, NC, USA). Themeans of dependent variables were compared us<str<strong>on</strong>g>in</str<strong>on</strong>g>g Tukey’s h<strong>on</strong>estly significant difference(HSD) test; significance was c<strong>on</strong>sidered when p0.05) effects under theexperimental c<strong>on</strong>diti<strong>on</strong>s (Table 3.6).44


The antioxidant effects of ascorbic acid <strong>on</strong> lute<str<strong>on</strong>g>in</str<strong>on</strong>g> degradati<strong>on</strong> have been reported <strong>on</strong>lyunder alkal<str<strong>on</strong>g>in</str<strong>on</strong>g>e c<strong>on</strong>diti<strong>on</strong>s (Shi <str<strong>on</strong>g>and</str<strong>on</strong>g> Chen, 1997). The neutral c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g>duced for LOX to reachmaximum activity <str<strong>on</strong>g>in</str<strong>on</strong>g> this study most likely promoted a protective effect <str<strong>on</strong>g>in</str<strong>on</strong>g>stead of bleach<str<strong>on</strong>g>in</str<strong>on</strong>g>gacti<strong>on</strong> of ascorbic acid <strong>on</strong> carotenoids <str<strong>on</strong>g>in</str<strong>on</strong>g> CGM.Lipoxygenase activity from WSFF used <str<strong>on</strong>g>in</str<strong>on</strong>g> this study was 124.5 units m<str<strong>on</strong>g>in</str<strong>on</strong>g> -1 mg prote<str<strong>on</strong>g>in</str<strong>on</strong>g> -1(Table 3.7) <str<strong>on</strong>g>and</str<strong>on</strong>g> showed the characteristic spectrophotometric resp<strong>on</strong>se of LOX (Figure 3.1)previously reported <str<strong>on</strong>g>in</str<strong>on</strong>g> the literature (Gӧkmen et al., 2007). The many different purificati<strong>on</strong>methodologies described for LOX activity determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> represent a drawback for proper <str<strong>on</strong>g>in</str<strong>on</strong>g>terstudycomparative purposes; however LOX activity, as l<strong>on</strong>g as it reaches certa<str<strong>on</strong>g>in</str<strong>on</strong>g> level, is not adeterm<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g factor for bleach<str<strong>on</strong>g>in</str<strong>on</strong>g>g carotenoids <str<strong>on</strong>g>in</str<strong>on</strong>g> CGM (Park et al., 1997). LOX activity reachedby a 5% WSFF <str<strong>on</strong>g>in</str<strong>on</strong>g>clusi<strong>on</strong> was probably large enough to maximize carotenoids oxidati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g>c<strong>on</strong>sequently <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g WSFF <str<strong>on</strong>g>in</str<strong>on</strong>g>corporati<strong>on</strong> level showed no significant effects. Heat-treatedWSFF <str<strong>on</strong>g>and</str<strong>on</strong>g> CGM showed no LOX activity.The LOX-catalyzed polyunsaturated fatty acid oxidati<strong>on</strong> promot<str<strong>on</strong>g>in</str<strong>on</strong>g>g the appearance ofhydroperoxydiene molecules (bleach<str<strong>on</strong>g>in</str<strong>on</strong>g>g agent) is oxygen dependent (Cohen et al., 1985). In thisstudy aerati<strong>on</strong> (3.25 L m<str<strong>on</strong>g>in</str<strong>on</strong>g> -1 ) had no significant (p> 0.05) effects <strong>on</strong> carotenoids reducti<strong>on</strong>. Themechanical energy (generated by shak<str<strong>on</strong>g>in</str<strong>on</strong>g>g at 110 r m<str<strong>on</strong>g>in</str<strong>on</strong>g> -1 ) applied to samples most likelygenerated a suitable oxygen level as well as proper oxygen distributi<strong>on</strong> with<str<strong>on</strong>g>in</str<strong>on</strong>g> the slurry <str<strong>on</strong>g>and</str<strong>on</strong>g>might expla<str<strong>on</strong>g>in</str<strong>on</strong>g> this result.A 4-factor, 27-run Box-Behnken experimental design was run <str<strong>on</strong>g>in</str<strong>on</strong>g> order to determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e thequadratic <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>teractive effect of active factors <strong>on</strong> the LOX-catalyzed pigment bleach<str<strong>on</strong>g>in</str<strong>on</strong>g>g.45


Factors def<str<strong>on</strong>g>in</str<strong>on</strong>g>ed as no active by the Plackett-Burman analysis were not c<strong>on</strong>sidered <str<strong>on</strong>g>in</str<strong>on</strong>g> the resp<strong>on</strong>sesurface design.Results from the BBD analysis have shown that pigments bleach<str<strong>on</strong>g>in</str<strong>on</strong>g>g ranged from 22% to62% (Table 3.8). L<str<strong>on</strong>g>in</str<strong>on</strong>g>ear term for WSFF pre-soak<str<strong>on</strong>g>in</str<strong>on</strong>g>g, as well as l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear <str<strong>on</strong>g>and</str<strong>on</strong>g> quadratic terms forBP <str<strong>on</strong>g>and</str<strong>on</strong>g> SO were highly significant (p


y lipoxygenase, compared to destructi<strong>on</strong> rates obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed when pigments were exposed to LOX orl<str<strong>on</strong>g>in</str<strong>on</strong>g>oleic acid separately.Benzoyl peroxide is widely utilized as a free radical <str<strong>on</strong>g>in</str<strong>on</strong>g>itiator <str<strong>on</strong>g>and</str<strong>on</strong>g> bleach<str<strong>on</strong>g>in</str<strong>on</strong>g>g agent <str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>dustrial food process<str<strong>on</strong>g>in</str<strong>on</strong>g>g (Gel<str<strong>on</strong>g>in</str<strong>on</strong>g>as et al., 1998). Additi<strong>on</strong> of this compound <str<strong>on</strong>g>in</str<strong>on</strong>g>to the reacti<strong>on</strong>media most likely <str<strong>on</strong>g>in</str<strong>on</strong>g>creased pigment bleach<str<strong>on</strong>g>in</str<strong>on</strong>g>g by a typical free radical mechanism act<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> asynergistic fashi<strong>on</strong> with lipoxygenase <str<strong>on</strong>g>in</str<strong>on</strong>g> this study.The effect of different reacti<strong>on</strong> temperatures (when presoak<str<strong>on</strong>g>in</str<strong>on</strong>g>g time is kept c<strong>on</strong>stant at 90m<str<strong>on</strong>g>in</str<strong>on</strong>g>) <strong>on</strong> pigment bleach<str<strong>on</strong>g>in</str<strong>on</strong>g>g is depicted <str<strong>on</strong>g>in</str<strong>on</strong>g> Figures 3.3 A (20°C), B (15°C) <str<strong>on</strong>g>and</str<strong>on</strong>g> C (10°C).Temperature can modify activity of antioxidants such as ascorbyl palmitate, BHA <str<strong>on</strong>g>and</str<strong>on</strong>g> BHT(Frankel, 2005). LOX catalyzed carotenoid co-oxidati<strong>on</strong> is related to the stability of the radical<str<strong>on</strong>g>in</str<strong>on</strong>g>termediates produced. Less stable <str<strong>on</strong>g>in</str<strong>on</strong>g>termediate species promote higher carotenoid bleach<str<strong>on</strong>g>in</str<strong>on</strong>g>gPerez-Galvez <str<strong>on</strong>g>and</str<strong>on</strong>g> M<str<strong>on</strong>g>in</str<strong>on</strong>g>guez-Mosquera, 2002). Whether or not temperature <str<strong>on</strong>g>in</str<strong>on</strong>g>fluences<str<strong>on</strong>g>in</str<strong>on</strong>g>termediate bleach<str<strong>on</strong>g>in</str<strong>on</strong>g>g species stability is yet to be determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed, <str<strong>on</strong>g>and</str<strong>on</strong>g> may expla<str<strong>on</strong>g>in</str<strong>on</strong>g> the effect of RT<strong>on</strong> pigment reducti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> this study.Carotenoids from CGM (expressed as total yellow pigments, assessed byspectrophotometric method) were reduced by 62% when the optimum factor comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> wasapplied. Additi<strong>on</strong>ally, carotenoid profile (i.e. all-trans lute<str<strong>on</strong>g>in</str<strong>on</strong>g>, all-trans zeaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g>, all-trans β-cryptoxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> all-trans β-carotene) obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed for CGM (determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by liquidchromatography) <str<strong>on</strong>g>in</str<strong>on</strong>g> this study (Table 3.10) is <str<strong>on</strong>g>in</str<strong>on</strong>g> the same range of that reported by Moros et al.2002. All-trans lute<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> all-trans zeaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> were bleached by about 86% <str<strong>on</strong>g>and</str<strong>on</strong>g> 97%respectively whereas β-cryptoxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> β-carotene were 100% reduced <str<strong>on</strong>g>in</str<strong>on</strong>g> bleached CGM,represent<str<strong>on</strong>g>in</str<strong>on</strong>g>g an overall 91% reducti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> yellow pigments (as assessed by liquid47


chromatography). Relative amounts of pigments such as flav<strong>on</strong>oids <str<strong>on</strong>g>and</str<strong>on</strong>g> chlorophyll-likecompounds are determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed at the same wavelength as xanthophylls <str<strong>on</strong>g>and</str<strong>on</strong>g> carotenes <str<strong>on</strong>g>in</str<strong>on</strong>g> cornsamples (Bless<str<strong>on</strong>g>in</str<strong>on</strong>g>, 1962), the presence of these types of compounds may expla<str<strong>on</strong>g>in</str<strong>on</strong>g> the differencesbetween results expressed as total yellow pigment (determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed us<str<strong>on</strong>g>in</str<strong>on</strong>g>g spectrophotometry) <str<strong>on</strong>g>and</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>dividual carotenoid (obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by liquid chromatography) for regular <str<strong>on</strong>g>and</str<strong>on</strong>g> bleached CGMsamples <str<strong>on</strong>g>in</str<strong>on</strong>g> this study.3.3.2 Fish muscle pigmentati<strong>on</strong> trialGrowth <str<strong>on</strong>g>and</str<strong>on</strong>g> feed utilizati<strong>on</strong> parameters obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> this trial (Table 3.11) are comparableto those comm<strong>on</strong>ly observed <str<strong>on</strong>g>in</str<strong>on</strong>g> our laboratory for ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow trout same stra<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> similar size fedhigh nutriti<strong>on</strong>al quality formulated diets (Bureau et al., 2006). No significant (p>0.05)differences were obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed for ga<str<strong>on</strong>g>in</str<strong>on</strong>g> (g fish -1 ), TGC or feed efficiency which is <str<strong>on</strong>g>in</str<strong>on</strong>g> agreement toprevious reports <strong>on</strong> CGM <str<strong>on</strong>g>in</str<strong>on</strong>g>clusi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> salm<strong>on</strong>ids formulated diets (Mundheim et al., 2004;Sk<strong>on</strong>berg et al., 1998)Figure 3.4 depicts growth trajectories over time obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> this study, even though nostatistically significant, all growth parameters for fish fed Diet 3 showed a reducti<strong>on</strong> tendencydur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the last 50 days of the trial. Additi<strong>on</strong>ally, a significant (p


Lipid c<strong>on</strong>tent <str<strong>on</strong>g>and</str<strong>on</strong>g> gross energy levels were slightly, although significantly (p


After carotenoids are absorbed through the <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al epithelial cells they are metabolizedaccord<str<strong>on</strong>g>in</str<strong>on</strong>g>g to their molecular structure i.e. cyclizati<strong>on</strong> at <strong>on</strong>e or both ends of the molecule,hydrogenati<strong>on</strong> level, presence of oxygen-c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g functi<strong>on</strong>al groups (Furr <str<strong>on</strong>g>and</str<strong>on</strong>g> Clark, 1997).The major molecular structure similarities shared by astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> yellow xanthophylls fromCGM suggest a potential metabolic competiti<strong>on</strong> am<strong>on</strong>g these pigments before <str<strong>on</strong>g>in</str<strong>on</strong>g>corporati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>tolymphatic lipoprote<str<strong>on</strong>g>in</str<strong>on</strong>g>s <str<strong>on</strong>g>and</str<strong>on</strong>g> might account for the difference <str<strong>on</strong>g>in</str<strong>on</strong>g> all-trans astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> muscledepositi<strong>on</strong> observed <str<strong>on</strong>g>in</str<strong>on</strong>g> this trial.Carotenoids are delivered from the enterocytes <str<strong>on</strong>g>in</str<strong>on</strong>g>to the blood stream where they areexclusively transported by lipoprote<str<strong>on</strong>g>in</str<strong>on</strong>g>s (Salvador et al., 2007). It is hypothesized that polarxanthophylls exist near these structure’s surface (Furr <str<strong>on</strong>g>and</str<strong>on</strong>g> Clark, 1997). Aggregati<strong>on</strong> of differentxanthophyll types with<str<strong>on</strong>g>in</str<strong>on</strong>g> chylomicr<strong>on</strong>s surface might <str<strong>on</strong>g>in</str<strong>on</strong>g>crease astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> competiti<strong>on</strong> forb<str<strong>on</strong>g>in</str<strong>on</strong>g>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g sites with<str<strong>on</strong>g>in</str<strong>on</strong>g> lipoprote<str<strong>on</strong>g>in</str<strong>on</strong>g> dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g pigment transfer <str<strong>on</strong>g>and</str<strong>on</strong>g> might expla<str<strong>on</strong>g>in</str<strong>on</strong>g> reducti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> muscleall-trans astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> this trial <str<strong>on</strong>g>in</str<strong>on</strong>g> fish fed Diet 2.The f<str<strong>on</strong>g>in</str<strong>on</strong>g>d<str<strong>on</strong>g>in</str<strong>on</strong>g>gs from this trial are <str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>tradicti<strong>on</strong> to those reported by Olsen <str<strong>on</strong>g>and</str<strong>on</strong>g> Baker(2006), who reported no differences (p>0.05) <str<strong>on</strong>g>in</str<strong>on</strong>g> muscle astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> of Atlanticsalm<strong>on</strong> (S. salar) fed diets supplemented with 55 <str<strong>on</strong>g>and</str<strong>on</strong>g> 23 mg kg -1 synthetic astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> lute<str<strong>on</strong>g>in</str<strong>on</strong>g>respectively, compared to those from fish fed a diet c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> (55 mg kg -1 ) as as<str<strong>on</strong>g>in</str<strong>on</strong>g>gle pigment source. The negative effect of dietary CGM <strong>on</strong> muscle all-trans astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g>depositi<strong>on</strong> obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> this trial, as opposed to those observed when us<str<strong>on</strong>g>in</str<strong>on</strong>g>g a synthetic source oflute<str<strong>on</strong>g>in</str<strong>on</strong>g>, suggest a potential <str<strong>on</strong>g>in</str<strong>on</strong>g>teracti<strong>on</strong> of different comp<strong>on</strong>ents from CGM <str<strong>on</strong>g>in</str<strong>on</strong>g>duc<str<strong>on</strong>g>in</str<strong>on</strong>g>g a reducti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>muscle astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> depositi<strong>on</strong>.50


No pigments other than all-trans astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> were determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> muscles from ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bowtrout fed Diet 2 (Table 3.14). Lute<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> zeaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> have been previously determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> musclefrom salm<strong>on</strong>id fish (Kitahara, 1983). Thus results from this trial suggest that depositi<strong>on</strong> ofyellow xanthophylls from CGM <str<strong>on</strong>g>in</str<strong>on</strong>g> fish muscle might be dietary level dependent. Xanthophyllc<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> commercial CGM varies from 224 to 550 mg kg -1 <strong>on</strong> a dry matter basis (Park etal., 1997). The relative low pigment c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> CGM used <str<strong>on</strong>g>in</str<strong>on</strong>g> this study (142 mg kg -1 )might expla<str<strong>on</strong>g>in</str<strong>on</strong>g> the lack of yellow carotenoids deposited with<str<strong>on</strong>g>in</str<strong>on</strong>g> muscles from fish feed Diet 2.No significant (p>0.05) differences were determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed for any colour attribute am<strong>on</strong>gmuscles from fish fed Diet 1<str<strong>on</strong>g>and</str<strong>on</strong>g> 2 <str<strong>on</strong>g>in</str<strong>on</strong>g> spite of the significant (p


<str<strong>on</strong>g>and</str<strong>on</strong>g> ended up <str<strong>on</strong>g>in</str<strong>on</strong>g>duc<str<strong>on</strong>g>in</str<strong>on</strong>g>g lipid rancidity <str<strong>on</strong>g>and</str<strong>on</strong>g> eventually the oxidative destructi<strong>on</strong> of dietaryastaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g>.F<str<strong>on</strong>g>in</str<strong>on</strong>g>d<str<strong>on</strong>g>in</str<strong>on</strong>g>gs from this study suggest that <str<strong>on</strong>g>in</str<strong>on</strong>g>clusi<strong>on</strong> of CGM negatively affect all-transastaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> depositi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> muscle from ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow trout when this commodity is <str<strong>on</strong>g>in</str<strong>on</strong>g>cluded <str<strong>on</strong>g>in</str<strong>on</strong>g> aformulated diet at a level of 19%. More systematic research <strong>on</strong> this topic is highly necessary <str<strong>on</strong>g>in</str<strong>on</strong>g>order to underst<str<strong>on</strong>g>and</str<strong>on</strong>g> the mechanism(s) <str<strong>on</strong>g>in</str<strong>on</strong>g>volved <str<strong>on</strong>g>in</str<strong>on</strong>g> this phenomen<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> clarify the exact roleplayed by yellow xanthophylls <strong>on</strong> astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> metabolism <str<strong>on</strong>g>and</str<strong>on</strong>g> depositi<strong>on</strong>. <str<strong>on</strong>g>Corn</str<strong>on</strong>g> gluten meal iswidely utilized <str<strong>on</strong>g>in</str<strong>on</strong>g> diets for many different fish species; accord<str<strong>on</strong>g>in</str<strong>on</strong>g>gly a comprehensiveunderst<str<strong>on</strong>g>and</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g of the effects of this commodity <strong>on</strong> important f<str<strong>on</strong>g>in</str<strong>on</strong>g>al product quality parameterssuch as muscle pigmentati<strong>on</strong> is crucial. Additi<strong>on</strong>ally, the low capital technology <str<strong>on</strong>g>and</str<strong>on</strong>g>straightforward operati<strong>on</strong>al process<str<strong>on</strong>g>in</str<strong>on</strong>g>g methodology developed <str<strong>on</strong>g>in</str<strong>on</strong>g> this study represent anattractive tool for the reducti<strong>on</strong> of natural occurr<str<strong>on</strong>g>in</str<strong>on</strong>g>g yellow carotenoid pigments from CGM.However, potential shortcom<str<strong>on</strong>g>in</str<strong>on</strong>g>g that might negatively affect fish growth performance <str<strong>on</strong>g>and</str<strong>on</strong>g>important flesh quality parameters must be avoid dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g formulati<strong>on</strong> (i.e. proper antioxidantsupplementati<strong>on</strong>).52


TablesTable 3. 1 - Factors <str<strong>on</strong>g>and</str<strong>on</strong>g> levels for screen<str<strong>on</strong>g>in</str<strong>on</strong>g>g us<str<strong>on</strong>g>in</str<strong>on</strong>g>g Plackett-Burman designFactorsLevelsLowHighPS: WSFF pre-soak<str<strong>on</strong>g>in</str<strong>on</strong>g>g (m<str<strong>on</strong>g>in</str<strong>on</strong>g>) 0 30LV: WSFF level (%) 5 15RT: Reacti<strong>on</strong> temperature (°C) 20 30AA: Ascorbic acid (ppm) 0 500BP: Benzoyl peroxide (ppm) 0 300SO: Soy oil (%) 0 5AE: Aerati<strong>on</strong> though the reacti<strong>on</strong> medium (L m<str<strong>on</strong>g>in</str<strong>on</strong>g> -1 ) 0 3.2553


Table 3. 2 - Experimental design us<str<strong>on</strong>g>in</str<strong>on</strong>g>g Plackett-Burman design for screen<str<strong>on</strong>g>in</str<strong>on</strong>g>g of factorsRun # Factors/Levels a Bleach<str<strong>on</strong>g>in</str<strong>on</strong>g>g ofPS LV RT AA BP SO AEcarotenoids (%) b1 + + + - + - - 342 - + + + - + - 373 - - + + + - + 224 + - - + + + - 675 - + - - + + + 496 + - + - - + + 427 + + - + - - + 308 - - - - - - - 19a Low (-) <str<strong>on</strong>g>and</str<strong>on</strong>g> high (+) levels of <str<strong>on</strong>g>in</str<strong>on</strong>g>dependent variables used <str<strong>on</strong>g>in</str<strong>on</strong>g> the trial. b Data are mean (n=3) <str<strong>on</strong>g>and</str<strong>on</strong>g>expressed as total yellow pigments.54


Table 3. 3 - Summary of variables for the Box-Behnken experimental designFactorsLevelsLow Medium HighPS: WSFF pre-soak<str<strong>on</strong>g>in</str<strong>on</strong>g>g (m<str<strong>on</strong>g>in</str<strong>on</strong>g>) 60 90 120RT: Reacti<strong>on</strong> temperature (°C) 10 15 20BP: Benzoyl peroxide (ppm) 0 300 600SO: Soy oil (%) 5 10 1555


Table 3. 4 - Analysed proximate compositi<strong>on</strong> of regular <str<strong>on</strong>g>and</str<strong>on</strong>g> bio-bleached CGMNutrients aIngredients bCGMBleached CGMDry matter 91.9 ± 0.0 a 44.7 ±0.3 bCrude prote<str<strong>on</strong>g>in</str<strong>on</strong>g> 72.2 ± 0.1 b 74.8 ± 0.1 aLipids 0.9 ± 0.1 b 5.9 ± 0.0 aNFE 24.7 ± 0.3 a 18.6 ± 0.1 bAsh 2.2 ± 0.1 a 0.8 ± 0.0 bGross energy (MJ kg -1 ) 23.6 ± 0.0 b 28.3 ± 0.7 aa Data are mean (n=2) ± St<str<strong>on</strong>g>and</str<strong>on</strong>g>ard deviati<strong>on</strong>. b As a percentage of dry matter basis, otherwise<str<strong>on</strong>g>in</str<strong>on</strong>g>dicated.56


Table 3. 5 - Formulati<strong>on</strong>, analyzed proximate compositi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> pigment c<strong>on</strong>tent of experimentaldietsDietIngredients (%) 1 2 3Fish meal 28 16 16<str<strong>on</strong>g>Corn</str<strong>on</strong>g> gluten meal 0 19 0Bleached corn gluten meal 0 0 19Soy flake flour 0 0.5 0.5Soybean oil 0 0.5 0.5Poultry by-product meal (regular) 15 11.5 11.5Feather meal 6 4 4Blood meal, whole, spray-dry 2 2 2Brewer's dried yeast 6 6 6Soybean meal 10 10 10Wheat middl<str<strong>on</strong>g>in</str<strong>on</strong>g>gs 12.4 8.9 8.9Fish oil 12 12 12Vegetable oil 4 4.5 4.5Vitam<str<strong>on</strong>g>in</str<strong>on</strong>g> premix a 1 1 1Lys<str<strong>on</strong>g>in</str<strong>on</strong>g>e (BioLys) 1 1.5 1.5DL-Methi<strong>on</strong><str<strong>on</strong>g>in</str<strong>on</strong>g>e 0.5 0.5 0.5M<str<strong>on</strong>g>in</str<strong>on</strong>g>eral premix b 0.5 0.5 0.5Ca(H 2 PO 4 ) 2 1.5 1.5 1.5Carophyll®p<str<strong>on</strong>g>in</str<strong>on</strong>g>k (8% Astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g>) 0.0625 0.0625 0.062557


Proximate compositi<strong>on</strong> (Analysed; dry matter basis)Dry matter 94.0 94.0 92.0Crude prote<str<strong>on</strong>g>in</str<strong>on</strong>g> 50.9 50.6 51.3Lipids 23.8 23.1 23.6Ash 9.9 7.5 7.3Energy (MJ kg -1 ) 24.1 24.7 24.7<str<strong>on</strong>g>Pigment</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> (mg kg -1 , dry matter basis) (Analysed)All-trans astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> 48 57 4All-trans lute<str<strong>on</strong>g>in</str<strong>on</strong>g> nd d 28 ndAll-trans zeaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> nd 15 ndAll-trans β-cryptoxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> nd nd ndAll-trans β-carotene nd nd ndTBA value (mg MDA kg -1 ) c 3.6 b 4.0 b 14.6 aa Vitam<str<strong>on</strong>g>in</str<strong>on</strong>g> premix. Provided per kg of diet = ret<str<strong>on</strong>g>in</str<strong>on</strong>g>yl acetate (vitam<str<strong>on</strong>g>in</str<strong>on</strong>g> A), 75 mg; cholecalciferol(vitam<str<strong>on</strong>g>in</str<strong>on</strong>g> D3), 60 mg; dl-a-tocopherol-acetate (vitam<str<strong>on</strong>g>in</str<strong>on</strong>g> E), 300 mg; menadi<strong>on</strong>e Na-bisulfate(vitam<str<strong>on</strong>g>in</str<strong>on</strong>g> K), 1.5 mg; cyanocobalam<str<strong>on</strong>g>in</str<strong>on</strong>g>e (vitam<str<strong>on</strong>g>in</str<strong>on</strong>g> B12), 30 mg; ascorbic acid m<strong>on</strong>ophos. (vitam<str<strong>on</strong>g>in</str<strong>on</strong>g>C), 300 mg; D-biot<str<strong>on</strong>g>in</str<strong>on</strong>g>, 210 mg; chol<str<strong>on</strong>g>in</str<strong>on</strong>g>e chloride, 3448 mg; folic acid, 1.5 mg; niac<str<strong>on</strong>g>in</str<strong>on</strong>g>, 15 mg;calcium-d-pantothenate, 33 mg; pyridox<str<strong>on</strong>g>in</str<strong>on</strong>g>e –HCl, 7.5 mg; riboflav<str<strong>on</strong>g>in</str<strong>on</strong>g>, 9 mg; thiam<str<strong>on</strong>g>in</str<strong>on</strong>g>-HCl, 1.5mg. b M<str<strong>on</strong>g>in</str<strong>on</strong>g>eral premix. Provided per kg of diet = sodium chloride (NaCl, 39% Na, 61% Cl), 3077mg; potassium iod<str<strong>on</strong>g>in</str<strong>on</strong>g>e (KI, 24%K, 76%I), 10.5 mg; ferrous sulphate (FeSO 4 , 7H 2 O, 20%Fe), 65mg; manganese sulphate (MnSO 4 , 36%Mn) 88.9 mg; z<str<strong>on</strong>g>in</str<strong>on</strong>g>c sulphate (ZnSO 4 .7H 2 O, 40%Zn), 150mg; copper sulphate (CuSO 4 .5H 2 O, 25%Cu), 28 mg; sodium Selenite (Na 2 SeO 3 , 45.66% Se), 0.7mg. c 2-Thiobarbituric acid assay (TBA). d Not detected.58


Table 3. 6 - Plackett-Burman design resultsEstimate T Value Pr > |t|Intercept 33.96 5.88


Table 3. 7 - Lipoxygenase activity <str<strong>on</strong>g>in</str<strong>on</strong>g> different <str<strong>on</strong>g>in</str<strong>on</strong>g>gredientsIngredient aLipoxygenase activity bWhite soy flake flour 124.5 ± 0.4Heat treated white soy flake flour<str<strong>on</strong>g>Corn</str<strong>on</strong>g> gluten mealnd cnda Data are mean (n=2) ± St<str<strong>on</strong>g>and</str<strong>on</strong>g>ard deviati<strong>on</strong>. b Units m<str<strong>on</strong>g>in</str<strong>on</strong>g> -1 mg prote<str<strong>on</strong>g>in</str<strong>on</strong>g> -1 . c Not detected.60


Table 3. 8 - Box-Behnken experimental designRun #FactorsBleach<str<strong>on</strong>g>in</str<strong>on</strong>g>g ofcarotenoids(%) aCoded valuesActual valuesPS RT BP SO PS RT BP SO1 -1 -1 0 0 60 10 300 10 312 1 -1 0 0 120 10 300 10 223 -1 1 0 0 60 20 300 10 274 1 1 0 0 120 20 300 10 315 0 0 -1 -1 90 15 0 5 326 0 0 1 -1 90 15 600 5 627 0 0 -1 1 90 15 0 15 448 0 0 1 1 90 15 600 15 579 -1 0 0 -1 60 15 300 5 3310 1 0 0 -1 120 15 300 5 2211 -1 0 0 1 60 15 300 15 3512 1 0 0 1 120 15 300 15 3713 0 -1 -1 0 90 10 0 10 2414 0 1 -1 0 90 20 0 10 3415 0 -1 1 0 90 10 600 10 5416 0 1 1 0 90 20 600 10 4717 -1 0 -1 0 60 15 0 10 3861


18 1 0 -1 0 120 15 0 10 2519 -1 0 1 0 60 15 600 10 5720 1 0 1 0 120 15 600 10 3921 0 -1 0 -1 90 10 300 5 3222 0 1 0 -1 90 20 300 5 3423 0 -1 0 1 90 10 300 15 3624 0 1 0 1 90 20 300 15 3825 0 0 0 0 90 15 300 10 2726 0 0 0 0 90 15 300 10 3027 0 0 0 0 90 15 300 10 32a Data are mean (n=3) <str<strong>on</strong>g>and</str<strong>on</strong>g> expressed as total yellow pigments.62


Table 3. 9 - Box-Behnken design l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear, quadratic <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>teracti<strong>on</strong> effectsVariables Estimate t Value Pr > |t|L<str<strong>on</strong>g>in</str<strong>on</strong>g>earPS -3.79 -3.75 0.0004RT 1.06 1.05 0.2972BP 5.68 5.62


Table 3. 10 - HPLC carotenoid profile of regular <str<strong>on</strong>g>and</str<strong>on</strong>g> bleached CGMCarotenoid a Ingredients b Bleach<str<strong>on</strong>g>in</str<strong>on</strong>g>g (%)CGMBleached CGMAll-trans lute<str<strong>on</strong>g>in</str<strong>on</strong>g> 91 ± 0.1 13 ± 0.2 86All-trans zeaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> 49 ± 0.9 2 ± 1.5 97All-trans β-Cryptoxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> 3 ± 0.2 nd c 100All-trans β -Carotene 15 ± 0.3 nd 100Total 158 14 91a Data are mean (n=2) ± St<str<strong>on</strong>g>and</str<strong>on</strong>g>ard deviati<strong>on</strong>. b On a dry matter basis. c Not detected.64


Table 3. 11 - Growth performance <str<strong>on</strong>g>and</str<strong>on</strong>g> fed efficiency of ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow trout (IBW=132 g fish -1 ) fedexperimental diets for 12 weeksDietParameter a 1 2 3F<str<strong>on</strong>g>in</str<strong>on</strong>g>al body weight 540 ± 30 531 ± 5 473 ± 21Thermal-unit growthcoefficient0.239 ± 0.01 0.243 ± 0.01 0.220 ± 0.01Feed efficiency (ga<str<strong>on</strong>g>in</str<strong>on</strong>g>:feed) b 0.91 ± 0.05 0.88 ± 0.05 0.89 ± 0.02a Data are mean ± St<str<strong>on</strong>g>and</str<strong>on</strong>g>ard deviati<strong>on</strong>, n=2 tanks. b Feed efficiency (live weight ga<str<strong>on</strong>g>in</str<strong>on</strong>g>:feed DM).65


Table 3. 12 - Reta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed levels <str<strong>on</strong>g>and</str<strong>on</strong>g> retenti<strong>on</strong> efficiencies of nitrogen <str<strong>on</strong>g>and</str<strong>on</strong>g> energy by ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow trout(IBW=132 g fish -1 ) fed experimental diets for 12 weeksDiet1 2 3RN a (g fish -1 ) 11.1 ± 0.6 a 11.2 ± 0.1 a 8.9 ± 0.3 bRE b (kJ fish -1 ) 4815 ± 315 4449 ± 64 4131 ± 162NRE c (% IN e ) 33 ± 2 32 ± 2 31 ± 1ERE f (% IE g ) 48 ± 3 42 ± 2 47 ± 1a RN=reta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed nitrogen (g fish -1 ). b RE=recovered energy (kJ fish -1 ). c NRE=nitrogen retenti<strong>on</strong>efficiency. e IN=<str<strong>on</strong>g>in</str<strong>on</strong>g>gested nitrogen. f ERE=energy retenti<strong>on</strong> efficiency. g IE=<str<strong>on</strong>g>in</str<strong>on</strong>g>gested energy.66


Table 3. 13 - Proximate compositi<strong>on</strong> of the carcass of ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow trout a (IBW=132 g fish -1 ) fedexperimental diets for 12 weeksDietNutrient b 1 2 3Moisture 62.7 ± 0.1 c 64.0 ± 0.2 a 63.2 ± 0.0 bCrude prote<str<strong>on</strong>g>in</str<strong>on</strong>g> 16.9 ± 0.2 a 17.0 ± 0.0 a 16.1 ± 0.2 bLipid 18.4 ± 0.2 a 16.7 ± 0.0 b 18.7 ± 0.2 aAsh 2.3 ± 0.1 2.4 ± 0.3 1.9 ± 0.0Gross energy (kJ kg -1 ) 11.2 ± 0.0 a 10.6 ± 0.1 b 11.2 ± 0.1 aa Initial carcass compositi<strong>on</strong>: 68% moisture, 15.7% crude prote<str<strong>on</strong>g>in</str<strong>on</strong>g>, 13.7% lipid, 2.3% ash, 9.0kJ·kg -1 gross energy. b As a percentage of dry matter, otherwise <str<strong>on</strong>g>in</str<strong>on</strong>g>dicated.67


Table 3. 14 - Fillet carotenoid c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> colour attributes from ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow trout a (IBW=132g fish -1 ) fed experimental diets for 12 weeksDiet1 2 3Carotenoid c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> fillets (mg kg -1 , dry matter basis) bAll-trans astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> 6 ± 0.5 a 3 ± 0.5 b 0.4 ± 0.4 cAll-trans lute<str<strong>on</strong>g>in</str<strong>on</strong>g> nd c nd ndAll-trans zeaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> nd nd ndAll-trans β-cryptoxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> nd nd ndAll-trans β-carotene nd nd ndFillet colour attributes dL* 41 ± 1 b 40 ± 1 b 45 ± 2 aa* 9.9 ± 1.3 a 9.6 ± 0.7 a 2.0 ± 0.6 bb* 13.4 ± 0.5 a 12.8 ± 1.0 a 7.8 ± 1.2 bH° ab 54 ± 3 b 53 ± 0 b 76 ± 4 aC* 16.6 ± 1.2 a 16.0 ± 1.2 a 8.1 ± 1.3 ba Initial fillet carotenoid c<strong>on</strong>centrati<strong>on</strong>: Astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> = nd; Lute<str<strong>on</strong>g>in</str<strong>on</strong>g> = nd; Zeaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> = nd; β-cryptoxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> = nd; β-carotene = nd. Initial fillet colour attributes: L* = 46; a* = 1.3; b* = 4.8;H° ab = 76; C* = 5.0. b Data are mean ± st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard deviati<strong>on</strong> (n=2 tanks, means of 5 <str<strong>on</strong>g>in</str<strong>on</strong>g>dividuals pertank). c Not detected. d Data are mean ± st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard deviati<strong>on</strong> (n=2 tanks, 5 <str<strong>on</strong>g>in</str<strong>on</strong>g>dividuals per tank,means of six read<str<strong>on</strong>g>in</str<strong>on</strong>g>gs <strong>on</strong> each fillet). nd = not detected.68


Mol of hydroperoxideFigures14001200100080060040020000 1 2 3 4Time (m<str<strong>on</strong>g>in</str<strong>on</strong>g>)Mol of hydroperoxideFigure 3. 1 - Typical trend for spectrophotometric measurement of lipoxygenase activityobta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed for WSFF <str<strong>on</strong>g>in</str<strong>on</strong>g> the present study.69


Total yellow pigment(mg•kg -1 )2502001501005000 25 50 75 100 125 150Time (m<str<strong>on</strong>g>in</str<strong>on</strong>g>)Heat treated WSFFEnzyme active WSFFFigure 3. 2 - Bleach<str<strong>on</strong>g>in</str<strong>on</strong>g>g pattern of carotenoids observed over time (120 m<str<strong>on</strong>g>in</str<strong>on</strong>g>) for the optimumfactor comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>, PS = 90 m<str<strong>on</strong>g>in</str<strong>on</strong>g>, RT = 15°C, BP = 600 ppm <str<strong>on</strong>g>and</str<strong>on</strong>g> SO = 5% <str<strong>on</strong>g>in</str<strong>on</strong>g>clusi<strong>on</strong>.70


SO (%)BP (ppm)Figure 3. 3 - Resp<strong>on</strong>se surface plot show<str<strong>on</strong>g>in</str<strong>on</strong>g>g the effect of SO <str<strong>on</strong>g>and</str<strong>on</strong>g> BP <strong>on</strong> CGM carotenoidsbleach<str<strong>on</strong>g>in</str<strong>on</strong>g>g, keep<str<strong>on</strong>g>in</str<strong>on</strong>g>g PS fixed at 90 m<str<strong>on</strong>g>in</str<strong>on</strong>g> at three different RT: 20, 15 <str<strong>on</strong>g>and</str<strong>on</strong>g> 10°C for A, B <str<strong>on</strong>g>and</str<strong>on</strong>g> C,respectively.71


Figure 3. 4 - Growth curve of ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow trout fed the experimental diets for 12 weeks. D1 (Diet 1,C<strong>on</strong>trol), D2 (Diet 2, regular CGM), D3 (Diet 3, Bleached CGM.72


CHAPTER - 4 EFFECTS OF FEEDING INCREASING LEVELS OF CORN GLUTENMEAL ON GROWTH AND MUSCLE PIGMENTATION OF RAINBOW TROUT(Oncorhynchus mykiss)Abstract<str<strong>on</strong>g>Corn</str<strong>on</strong>g> gluten meal (CGM) is a highly digestible, cost-effective <str<strong>on</strong>g>in</str<strong>on</strong>g>gredient widely <str<strong>on</strong>g>in</str<strong>on</strong>g>cluded<str<strong>on</strong>g>in</str<strong>on</strong>g> aquaculture feeds. A 24-week growth trial was carried out <str<strong>on</strong>g>in</str<strong>on</strong>g> order to assess the effects of<str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g levels of CGM <strong>on</strong> growth <str<strong>on</strong>g>and</str<strong>on</strong>g> muscle pigment depositi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow trout(Oncorhynchus mykiss). Six is<strong>on</strong>itrogenous <str<strong>on</strong>g>and</str<strong>on</strong>g> isoenergetic (<strong>on</strong> a digestible energy basis)experimental diets were formulated, us<str<strong>on</strong>g>in</str<strong>on</strong>g>g different <str<strong>on</strong>g>in</str<strong>on</strong>g>gredient comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>s, to c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g levels of CGM (0 - 18). A commercial feed c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g 10% CGM was <str<strong>on</strong>g>in</str<strong>on</strong>g>cluded <str<strong>on</strong>g>in</str<strong>on</strong>g>this trial. All seven diets were supplemented with 50 mg kg -1 astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g>. Each experimental dietwas fed to apparent satiety to triplicate groups of seventy five fish (<str<strong>on</strong>g>in</str<strong>on</strong>g>itial body weight = 549 gfish -1 ) reared at 8.5 °C. Dietary treatments did not significantly affect f<str<strong>on</strong>g>in</str<strong>on</strong>g>al body weight, thermalgrowth efficiency (TGC) or feed efficiency. Carotenoids determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> by liquidchromatography showed a significant l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear reducti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> isomer, all-trans astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>and</str<strong>on</strong>g> all-trans lute<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> muscle from fish <str<strong>on</strong>g>in</str<strong>on</strong>g> resp<strong>on</strong>se to <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g levels of CGM. Tristimuluscolour analysis of muscle revealed a significant l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear reducti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> a* (redness) <str<strong>on</strong>g>and</str<strong>on</strong>g> C*ab(chroma). Additi<strong>on</strong>ally, Salmofan TM score showed a significant l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear <str<strong>on</strong>g>and</str<strong>on</strong>g> quadratic reducti<strong>on</strong> to<str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g levels of CGM. In c<strong>on</strong>clusi<strong>on</strong>, CGM <str<strong>on</strong>g>in</str<strong>on</strong>g>clusi<strong>on</strong> up to 18% does not significantlyimpact growth parameters. However, all-trans astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> muscle c<strong>on</strong>centrati<strong>on</strong> as well asimportant colour attributes can be negatively affected at levels exceed<str<strong>on</strong>g>in</str<strong>on</strong>g>g 12% CGM <str<strong>on</strong>g>in</str<strong>on</strong>g> the diet.More systematic research <strong>on</strong> this topic is needed to discern the mechanism(s) beh<str<strong>on</strong>g>in</str<strong>on</strong>g>d the negative73


effects of dietary CGM <str<strong>on</strong>g>and</str<strong>on</strong>g>/or its <str<strong>on</strong>g>in</str<strong>on</strong>g>tr<str<strong>on</strong>g>in</str<strong>on</strong>g>sic yellow pigment <strong>on</strong> ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow trout musclepigmentati<strong>on</strong>.74


4.1 Introducti<strong>on</strong>Colour of muscle from salm<strong>on</strong>id fish is associated to f<str<strong>on</strong>g>in</str<strong>on</strong>g>al product quality <str<strong>on</strong>g>and</str<strong>on</strong>g> significantly<str<strong>on</strong>g>in</str<strong>on</strong>g>fluences c<strong>on</strong>sumers’ percepti<strong>on</strong> (Alfnes et al., 2006; Anders<strong>on</strong>, 2000). This dist<str<strong>on</strong>g>in</str<strong>on</strong>g>ctive fleshquality parameter is achieved by the depositi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> accumulati<strong>on</strong> of carotenoid pigments, ma<str<strong>on</strong>g>in</str<strong>on</strong>g>lyastaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g>, with<str<strong>on</strong>g>in</str<strong>on</strong>g> muscle fibers. Salm<strong>on</strong>id fish are unable to synthetize carotenoids de novo(Choubert et al., 2006), therefore formulated diets are supplemented with synthetic or naturallyoccurr<str<strong>on</strong>g>in</str<strong>on</strong>g>g pigments <str<strong>on</strong>g>in</str<strong>on</strong>g> order to satisfy market preferences. Dietary <str<strong>on</strong>g>in</str<strong>on</strong>g>clusi<strong>on</strong> of expensivecarotenoids premixes accounts for up to 10 -20% of feed price (Bjerkeng, 2000; Choubert et al.,2009).Formulati<strong>on</strong> of aquaculture feeds has progressively reduced its dependence up<strong>on</strong> fish mealas a major prote<str<strong>on</strong>g>in</str<strong>on</strong>g> source. <str<strong>on</strong>g>Corn</str<strong>on</strong>g> gluten meal (CGM), is a highly digestible, prote<str<strong>on</strong>g>in</str<strong>on</strong>g>-rich (60%crude prote<str<strong>on</strong>g>in</str<strong>on</strong>g>) sec<strong>on</strong>dary product of the corn wet mill<str<strong>on</strong>g>in</str<strong>on</strong>g>g process that is widely utilized <str<strong>on</strong>g>in</str<strong>on</strong>g> theformulati<strong>on</strong> of diets for a number of fish species. The ma<str<strong>on</strong>g>in</str<strong>on</strong>g> goal of c<strong>on</strong>venti<strong>on</strong>al corn wet mill<str<strong>on</strong>g>in</str<strong>on</strong>g>gis to isolate <str<strong>on</strong>g>and</str<strong>on</strong>g> ref<str<strong>on</strong>g>in</str<strong>on</strong>g>e starch, however different structural c<strong>on</strong>stituent of the corn kernels (i.e.prote<str<strong>on</strong>g>in</str<strong>on</strong>g>, germ <str<strong>on</strong>g>and</str<strong>on</strong>g> hull) are separated <str<strong>on</strong>g>in</str<strong>on</strong>g>to different fracti<strong>on</strong>s al<strong>on</strong>g the process. Dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g mill<str<strong>on</strong>g>in</str<strong>on</strong>g>g,naturally occurr<str<strong>on</strong>g>in</str<strong>on</strong>g>g carotenoids from corn kernels, ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ly lute<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> zeaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g>, rema<str<strong>on</strong>g>in</str<strong>on</strong>g>embedded with<str<strong>on</strong>g>in</str<strong>on</strong>g> the prote<str<strong>on</strong>g>in</str<strong>on</strong>g> fracti<strong>on</strong>, hence elevated levels (200-500 mg kg -1 ) of yellowxanthophylls are recovered <str<strong>on</strong>g>in</str<strong>on</strong>g> CGM (Park et al., 1997; Sk<strong>on</strong>berg et al., 1998).Results from few scientific studies al<strong>on</strong>g with field evidence from fish farmers <str<strong>on</strong>g>in</str<strong>on</strong>g>dicate asignificant impact of dietary CGM <strong>on</strong> astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> depositi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> colour attributes <str<strong>on</strong>g>in</str<strong>on</strong>g> musclesfrom salm<strong>on</strong>id fish. Fillets from Atlantic salm<strong>on</strong> (Salmo salar) (f<str<strong>on</strong>g>in</str<strong>on</strong>g>al body weight=450 g fish -1 )fed diets formulated to c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g levels of a plant prote<str<strong>on</strong>g>in</str<strong>on</strong>g> blend (CGM <str<strong>on</strong>g>and</str<strong>on</strong>g> full fat75


soybean meal <str<strong>on</strong>g>in</str<strong>on</strong>g> a 2:1 ratio) <str<strong>on</strong>g>and</str<strong>on</strong>g> 64 mg kg -1 of astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g>, showed a negative resp<strong>on</strong>se <str<strong>on</strong>g>in</str<strong>on</strong>g> colourattributes (measured as SalmoFan® scores) after a 11-week feed<str<strong>on</strong>g>in</str<strong>on</strong>g>g trial (Mundheim et al.,2004). A yellowish appearance (based <strong>on</strong> tristimulus colour analysis) was assessed <str<strong>on</strong>g>in</str<strong>on</strong>g> fillet fromra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow trout (320 g fish -1 of f<str<strong>on</strong>g>in</str<strong>on</strong>g>al body weight) fed a high CGM diet (22.5%) compared to thosefrom fish fed a high CGM diet (22.5%) supplemented with 100 mg kg -1 canthaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> for 12weeks (Sk<strong>on</strong>berg et al., 1998). More recently, Saez et al. (unpublished results), observed asignificant (p


this trial was to evaluate the effect of <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g levels of CGM (up to 18%) <strong>on</strong> growth <str<strong>on</strong>g>and</str<strong>on</strong>g>pigment depositi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> fillets from ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow trout.4.2 Materials <str<strong>on</strong>g>and</str<strong>on</strong>g> methods4.2.1 Fish husb<str<strong>on</strong>g>and</str<strong>on</strong>g>ry <str<strong>on</strong>g>and</str<strong>on</strong>g> experimental c<strong>on</strong>diti<strong>on</strong>sThis study was c<strong>on</strong>ducted at the Alma Aquaculture Research Stati<strong>on</strong> (AARS, Alma, ON,Canada). Domestic stra<str<strong>on</strong>g>in</str<strong>on</strong>g> of ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow trout, (O. mykiss) from the AARS’s stock populati<strong>on</strong> wereadapted to experimental c<strong>on</strong>diti<strong>on</strong>s for two weeks prior to start the experiment. Dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g thatperiod, fish were fed a commercial (with no pigment supplementati<strong>on</strong>) trout diet (Mart<str<strong>on</strong>g>in</str<strong>on</strong>g> MillsInc, Elora, ON, Canada) <strong>on</strong>ce a day.The 7 experimental diets were r<str<strong>on</strong>g>and</str<strong>on</strong>g>omly assigned to each of 21 (1,500 L) fibreglass tanks(n=3). Seventy five fish (549 g fish -1 , <str<strong>on</strong>g>in</str<strong>on</strong>g>itial body weight) were r<str<strong>on</strong>g>and</str<strong>on</strong>g>omly allocated <str<strong>on</strong>g>in</str<strong>on</strong>g>to eachtank <str<strong>on</strong>g>and</str<strong>on</strong>g> kept under a 12 h light: 12 h dark photoperiod regime. Filtered well water was suppliedapproximately at a 30.5 L m<str<strong>on</strong>g>in</str<strong>on</strong>g> -1 rate. Water temperature was kept at 8.5 °C. This experiment wasc<strong>on</strong>ducted accord<str<strong>on</strong>g>in</str<strong>on</strong>g>g with the guidel<str<strong>on</strong>g>in</str<strong>on</strong>g>es stated by the Canadian Council <strong>on</strong> Animal Care(CCAC, 1984) <str<strong>on</strong>g>and</str<strong>on</strong>g> the University of Guelph Animal Care Committee.Fish were h<str<strong>on</strong>g>and</str<strong>on</strong>g>-fed twice a week to near satiati<strong>on</strong> dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g 24 weeks. Dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the rema<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>gfive days, fish were fed us<str<strong>on</strong>g>in</str<strong>on</strong>g>g belt feeders. Daily rati<strong>on</strong> to be dispensed by belt feeders wasdeterm<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by averag<str<strong>on</strong>g>in</str<strong>on</strong>g>g the amount of feed given to that tank dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the previous two dailyh<str<strong>on</strong>g>and</str<strong>on</strong>g> feed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs.Five fish were sampled at the beg<str<strong>on</strong>g>in</str<strong>on</strong>g>n<str<strong>on</strong>g>in</str<strong>on</strong>g>g of the experiment for the determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> of <str<strong>on</strong>g>in</str<strong>on</strong>g>itialcarcass compositi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> another sample of five fish was used for <str<strong>on</strong>g>in</str<strong>on</strong>g>itial muscle pigment c<strong>on</strong>tent<str<strong>on</strong>g>and</str<strong>on</strong>g> colour determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>. At the end of the experimental period, four <str<strong>on</strong>g>and</str<strong>on</strong>g> ten fish from each tank77


were r<str<strong>on</strong>g>and</str<strong>on</strong>g>omly sampled for f<str<strong>on</strong>g>in</str<strong>on</strong>g>al carcass compositi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> f<str<strong>on</strong>g>in</str<strong>on</strong>g>al muscle pigment c<strong>on</strong>tent <str<strong>on</strong>g>and</str<strong>on</strong>g>colour determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>, respectively. Fish were sacrificed by an overdose of MS-222 (300 ppm L -1 ). Fish for carcass compositi<strong>on</strong> determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> were autoclaved, thoroughly ground <str<strong>on</strong>g>in</str<strong>on</strong>g>to a slurry,freeze-dried, ground <str<strong>on</strong>g>in</str<strong>on</strong>g>to a f<str<strong>on</strong>g>in</str<strong>on</strong>g>e powder <str<strong>on</strong>g>and</str<strong>on</strong>g> kept at -20 °C until analysis. Fish to be analysed formuscle pigment c<strong>on</strong>tent <str<strong>on</strong>g>and</str<strong>on</strong>g> colour determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> were manually sk<str<strong>on</strong>g>in</str<strong>on</strong>g>ned <str<strong>on</strong>g>and</str<strong>on</strong>g> right h<str<strong>on</strong>g>and</str<strong>on</strong>g> sidefilleted right after slaughter; after muscle colour determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> muscle samples were stored at -20 °C until pigments determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> analysis.4.2.2 Experimental dietsSix (6) extruded experimental diets were formulated to be is<strong>on</strong>itrogenous (48 % crudeprote<str<strong>on</strong>g>in</str<strong>on</strong>g>) <str<strong>on</strong>g>and</str<strong>on</strong>g> isoenergetic (20 MJ DE/kg) <str<strong>on</strong>g>and</str<strong>on</strong>g> to c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g> different <str<strong>on</strong>g>in</str<strong>on</strong>g>gredient comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>s (i.e.fish meal, soy prote<str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>centrate, feather meal, blood meal, wheat meal, soybean meal <str<strong>on</strong>g>and</str<strong>on</strong>g> fishoil) <str<strong>on</strong>g>and</str<strong>on</strong>g> either no CGM (Diet 1), 4% CGM (Diet 2), 9% CGM (Diet 3), 12% CGM (Diet 4), 14%CGM (Diet 5) <str<strong>on</strong>g>and</str<strong>on</strong>g> 18% CGM (Diet 6), <str<strong>on</strong>g>and</str<strong>on</strong>g> meet all the nutriti<strong>on</strong>al requirements for ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bowtrout based <strong>on</strong> NRC (2011) (Table 4.1). A commercial feed c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g 10% CGM (Diet 7) wasused. All diets were supplemented with 50 mg kg -1 astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> (Carophyll® p<str<strong>on</strong>g>in</str<strong>on</strong>g>k, 8%astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g>, DSM Nutriti<strong>on</strong>al Products, ON, Canada).Noteworthy is that <str<strong>on</strong>g>in</str<strong>on</strong>g>clusi<strong>on</strong> of graded levels of CGM <str<strong>on</strong>g>in</str<strong>on</strong>g> Diet 1, 3 <str<strong>on</strong>g>and</str<strong>on</strong>g> 6 (0, 9 <str<strong>on</strong>g>and</str<strong>on</strong>g> 18%CGM, respectively) was achieved at expense of soy prote<str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>centrate <strong>on</strong>ly (Table 4.1).C<strong>on</strong>versely, <str<strong>on</strong>g>in</str<strong>on</strong>g> the formulati<strong>on</strong> for Diets 2, 4 <str<strong>on</strong>g>and</str<strong>on</strong>g> 5 (4, 12 <str<strong>on</strong>g>and</str<strong>on</strong>g> 14% CGM, respectively), <str<strong>on</strong>g>in</str<strong>on</strong>g>clusi<strong>on</strong>of several <str<strong>on</strong>g>in</str<strong>on</strong>g>gredients (i.e. fish meal, feather meal, blood meal, wheat meal <str<strong>on</strong>g>and</str<strong>on</strong>g> fish oil) wasmodified <str<strong>on</strong>g>in</str<strong>on</strong>g> order to accomplish desired CGM <str<strong>on</strong>g>in</str<strong>on</strong>g>clusi<strong>on</strong> levels.78


4.2.3 Chemical analysisDry matter <str<strong>on</strong>g>and</str<strong>on</strong>g> ash <str<strong>on</strong>g>in</str<strong>on</strong>g> diets <str<strong>on</strong>g>and</str<strong>on</strong>g> carcass samples were determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed accord<str<strong>on</strong>g>in</str<strong>on</strong>g>g to AOAC(1995), crude prote<str<strong>on</strong>g>in</str<strong>on</strong>g> (%N x 6.25) determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> was run us<str<strong>on</strong>g>in</str<strong>on</strong>g>g a LECO analyzer (LECO Corp.,St. Joseph, MI, USA), <str<strong>on</strong>g>and</str<strong>on</strong>g> total lipid analysis was performed us<str<strong>on</strong>g>in</str<strong>on</strong>g>g a petroleum ether extractor(Ankom XT-20 Lipid extractor – ANKOM Technology, Maced<strong>on</strong>, NY, USA). Gross energy(GE) c<strong>on</strong>tent of carcass <str<strong>on</strong>g>and</str<strong>on</strong>g> diet samples was assessed us<str<strong>on</strong>g>in</str<strong>on</strong>g>g an automated bomb calorimeter(Parr 1271, Parr <str<strong>on</strong>g>in</str<strong>on</strong>g>struments, Mol<str<strong>on</strong>g>in</str<strong>on</strong>g>e, IL, USA).Carotenoid extracti<strong>on</strong> from feed <str<strong>on</strong>g>and</str<strong>on</strong>g> muscle. Carotenoids c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> the experimentaldiets <str<strong>on</strong>g>and</str<strong>on</strong>g> fish muscle samples were extracted accord<str<strong>on</strong>g>in</str<strong>on</strong>g>g to Bjerkeng et al. (1997), with somemodificati<strong>on</strong>.Diets (10 g) were mixed with methanol (10 mL), c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g 2,6-di-t-butyl-p-cresol at 500mg L -1 of (BHT) as antioxidant agent, <str<strong>on</strong>g>and</str<strong>on</strong>g> distilled water (5 ml). Samples mixed us<str<strong>on</strong>g>in</str<strong>on</strong>g>g ah<str<strong>on</strong>g>and</str<strong>on</strong>g>held mixer for 30 s before additi<strong>on</strong> of chloroform (15 ml). Samples were then mixed aga<str<strong>on</strong>g>in</str<strong>on</strong>g>for 30 s <str<strong>on</strong>g>and</str<strong>on</strong>g> kept <str<strong>on</strong>g>in</str<strong>on</strong>g> the dark for 10 m<str<strong>on</strong>g>in</str<strong>on</strong>g>, mixed for 30 s <str<strong>on</strong>g>and</str<strong>on</strong>g> centrifuged (10 m<str<strong>on</strong>g>in</str<strong>on</strong>g>, 3000 x g,18°C). Further mix<str<strong>on</strong>g>in</str<strong>on</strong>g>g with chloroform was performed until no colour was observed.Sk<str<strong>on</strong>g>in</str<strong>on</strong>g>ned muscle samples (deb<strong>on</strong>ed) of each fish were ground while frozen, freeze-dried,ground <str<strong>on</strong>g>in</str<strong>on</strong>g>to a f<str<strong>on</strong>g>in</str<strong>on</strong>g>e powder <str<strong>on</strong>g>and</str<strong>on</strong>g> stored at -20 °C until pigment determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>. Samples (2 g) werethen mixed with distilled water (7.5 ml) <str<strong>on</strong>g>and</str<strong>on</strong>g> methanol (7.5 ml) c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g 500 mg L -1 of BHT.The mixture was homogenized with a h<str<strong>on</strong>g>and</str<strong>on</strong>g>held mixer (Ultra-turrax T25, Janke <str<strong>on</strong>g>and</str<strong>on</strong>g> Kunkel, IKALaborteknik, Staufen, Germany) for 30 s. Chloroform (30 ml) was added <str<strong>on</strong>g>and</str<strong>on</strong>g> the samples werehomogenized for an additi<strong>on</strong>al 30 s. The muscle samples were centrifuged (15 m<str<strong>on</strong>g>in</str<strong>on</strong>g>, 2500 x g) at18°C.79


An aliquot (1 ml) of chloroform lower phase was pipetted <str<strong>on</strong>g>in</str<strong>on</strong>g>to a test tube <str<strong>on</strong>g>and</str<strong>on</strong>g> evaporatedus<str<strong>on</strong>g>in</str<strong>on</strong>g>g water bath (ca. 40°C) <str<strong>on</strong>g>and</str<strong>on</strong>g> a flow of nitrogen gas. Once dried, samples were dissolved <str<strong>on</strong>g>in</str<strong>on</strong>g>to4 or 1 mL (for feed <str<strong>on</strong>g>and</str<strong>on</strong>g> muscle, respectively) of water-saturated butanol. Carotenoids extractswere filtered (0.45 µm; M<str<strong>on</strong>g>in</str<strong>on</strong>g>isart SRP15, Sartorius), <str<strong>on</strong>g>in</str<strong>on</strong>g>to amber sample vials, air was removedus<str<strong>on</strong>g>in</str<strong>on</strong>g>g a flow of nitrogen gas <str<strong>on</strong>g>and</str<strong>on</strong>g> sealed. Samples were kept frozen (-80 °C) until analysis. Allpigment extracti<strong>on</strong>s were performed under dim light <str<strong>on</strong>g>in</str<strong>on</strong>g> order to m<str<strong>on</strong>g>in</str<strong>on</strong>g>imize destructive effect oflight <strong>on</strong> carotenoids.Carotenoid determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>. Carotenoids from diets <str<strong>on</strong>g>and</str<strong>on</strong>g> muscle samples were separated<str<strong>on</strong>g>and</str<strong>on</strong>g> quantified accord<str<strong>on</strong>g>in</str<strong>on</strong>g>g to Abdel-Aal et al. (2007) us<str<strong>on</strong>g>in</str<strong>on</strong>g>g a 1100 series liquid chromatographer(Aligent, Mississauga, ON). <str<strong>on</strong>g>Pigment</str<strong>on</strong>g>s separati<strong>on</strong> was performed <strong>on</strong> a short (10 cm x 4.6 mm,pack<str<strong>on</strong>g>in</str<strong>on</strong>g>g 3 µm) C30 column, YMC Carotenoid (Waters, Mississauga, ON, Canada), operated at35°C. The mobile system gradient used for eluti<strong>on</strong> was c<strong>on</strong>ducted us<str<strong>on</strong>g>in</str<strong>on</strong>g>g soluti<strong>on</strong>s of (A)methanol/methyl tert-butyl ether/nanopure water (81:15:4, v/v/v) <str<strong>on</strong>g>and</str<strong>on</strong>g> (B) methyl tert-butylether/methanol (90:10, v/v), <str<strong>on</strong>g>and</str<strong>on</strong>g> programed as follows: 0-9 m<str<strong>on</strong>g>in</str<strong>on</strong>g>, 100 - 75% A; 9 - 14 m<str<strong>on</strong>g>in</str<strong>on</strong>g>, 75 -20% A; 14 - 15 m<str<strong>on</strong>g>in</str<strong>on</strong>g>, 25 - 0% A; 17 - 18 m<str<strong>on</strong>g>in</str<strong>on</strong>g>, hold at 0% A; 17 - 18 m<str<strong>on</strong>g>in</str<strong>on</strong>g> 0 - 100% A; 18 -20 m<str<strong>on</strong>g>in</str<strong>on</strong>g>hold at 100% A. After separati<strong>on</strong>, detecti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> measurement of carotenoids was c<strong>on</strong>ducted at450 nm (all-trans-lute<str<strong>on</strong>g>in</str<strong>on</strong>g>, all-trans zeaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g>, all-trans-β-cryptoxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> all-trans-β-carotene,)<str<strong>on</strong>g>and</str<strong>on</strong>g> 478 nm (all-trans-astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g>), respectively. The corresp<strong>on</strong>dence of the retenti<strong>on</strong> times <str<strong>on</strong>g>and</str<strong>on</strong>g>UV/Vis spectra of analysed samples <str<strong>on</strong>g>and</str<strong>on</strong>g> those showed by pure authentic st<str<strong>on</strong>g>and</str<strong>on</strong>g>ards was utilizedfor identificati<strong>on</strong> carotenoids.For identificati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> quantificati<strong>on</strong> purposes pure authentic st<str<strong>on</strong>g>and</str<strong>on</strong>g>ards of all-transastaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g>,all-trans-lute<str<strong>on</strong>g>in</str<strong>on</strong>g>, all-trans-β-carotene (Sigma-Aldrich Canada Ltda., Oakville, ON),<str<strong>on</strong>g>and</str<strong>on</strong>g> all-trans zeaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g>, all-trans-β-cryptoxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> (ChromaDex Inc., Santa Ana, CA) were80


utilized. Five c<strong>on</strong>centrati<strong>on</strong>s for each carotenoid were prepared <str<strong>on</strong>g>in</str<strong>on</strong>g> butanol <str<strong>on</strong>g>in</str<strong>on</strong>g> order to assessl<str<strong>on</strong>g>in</str<strong>on</strong>g>earity of the resp<strong>on</strong>se. The regressi<strong>on</strong> analysis (resp<strong>on</strong>se area versus <str<strong>on</strong>g>in</str<strong>on</strong>g>jected amount) showeda l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear relati<strong>on</strong>ship for all-trans-astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g>, all-trans-lute<str<strong>on</strong>g>in</str<strong>on</strong>g>, all-trans zeaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g>, all-trans-βcryptoxanth<str<strong>on</strong>g>in</str<strong>on</strong>g>,<str<strong>on</strong>g>and</str<strong>on</strong>g> all-trans-β-carotene with the coefficient of determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> (R 2 ) of 0.9997,0.9996, 0.9996, 0.9994 <str<strong>on</strong>g>and</str<strong>on</strong>g> 0.9999, respectively. Purity of each compound <str<strong>on</strong>g>in</str<strong>on</strong>g> the diets <str<strong>on</strong>g>and</str<strong>on</strong>g>muscle extracts was verified us<str<strong>on</strong>g>in</str<strong>on</strong>g>g isoabsorbance plot or 3D graphic <str<strong>on</strong>g>and</str<strong>on</strong>g> peak purity analyses(ChemStati<strong>on</strong> software).4.2.4 <strong>Muscle</strong> colour determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong><strong>Muscle</strong> colour determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> was assessed at three po<str<strong>on</strong>g>in</str<strong>on</strong>g>ts over <str<strong>on</strong>g>and</str<strong>on</strong>g> three po<str<strong>on</strong>g>in</str<strong>on</strong>g>t below thelateral l<str<strong>on</strong>g>in</str<strong>on</strong>g>e: close to the head; midway between the head <str<strong>on</strong>g>and</str<strong>on</strong>g> the tail; <str<strong>on</strong>g>and</str<strong>on</strong>g> close to the tail us<str<strong>on</strong>g>in</str<strong>on</strong>g>g aCHROMA METER tristimulus colorimeter (CR-400, KONICA MINOLTA SENSING, Inc,Japan). <strong>Muscle</strong> colour was expressed as mean of the six read<str<strong>on</strong>g>in</str<strong>on</strong>g>g per fish. All measurementswere performed <str<strong>on</strong>g>in</str<strong>on</strong>g> the colorimetric space L* (lightness, L*=0 for black, L*=100 for white); a*scale represents the <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity <str<strong>on</strong>g>in</str<strong>on</strong>g> red, <str<strong>on</strong>g>and</str<strong>on</strong>g> b* scale represents the <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity <str<strong>on</strong>g>in</str<strong>on</strong>g> yellow.4.2.5 Calculati<strong>on</strong>sThermal unit growth coefficient (TGC), for each tank was calculated as: TGC=100×[(FBW 1/3 −IBW 1/3 )×(sum T×D) -1 ], where: FBW= f<str<strong>on</strong>g>in</str<strong>on</strong>g>al body weight (g fish -1 ); IBW= <str<strong>on</strong>g>in</str<strong>on</strong>g>itialbody weight (g fish -1 ); sum T×D= sum degrees Celsius×days.Feed efficiency (FE, ga<str<strong>on</strong>g>in</str<strong>on</strong>g>:feed) for each tank was assessed as: FE= live body weightga<str<strong>on</strong>g>in</str<strong>on</strong>g>/dry feed <str<strong>on</strong>g>in</str<strong>on</strong>g>take, where: feed <str<strong>on</strong>g>in</str<strong>on</strong>g>take= total dry feed/number of fish; live body weight ga<str<strong>on</strong>g>in</str<strong>on</strong>g>=(FBW f<str<strong>on</strong>g>in</str<strong>on</strong>g>al number of fish -1 )−(IBW <str<strong>on</strong>g>in</str<strong>on</strong>g>itial number of fish -1 ); FBW= f<str<strong>on</strong>g>in</str<strong>on</strong>g>al body weight (g);IBW= <str<strong>on</strong>g>in</str<strong>on</strong>g>itial body weight (g).81


Reta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed nitrogen (RN, g fish -1 ) <str<strong>on</strong>g>and</str<strong>on</strong>g> recovered energy (RE, kJ fish -1 ) for each tank weredeterm<str<strong>on</strong>g>in</str<strong>on</strong>g>ed us<str<strong>on</strong>g>in</str<strong>on</strong>g>g the follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g formulas as: RN= (FBW×N c<strong>on</strong>tent f<str<strong>on</strong>g>in</str<strong>on</strong>g>al )−(IBW×N c<strong>on</strong>tent <str<strong>on</strong>g>in</str<strong>on</strong>g>itial )<str<strong>on</strong>g>and</str<strong>on</strong>g> RE= (FBW×GE c<strong>on</strong>tent f<str<strong>on</strong>g>in</str<strong>on</strong>g>al )−(IBW×GE c<strong>on</strong>tent <str<strong>on</strong>g>in</str<strong>on</strong>g>itial ), respectively, where: FBW= f<str<strong>on</strong>g>in</str<strong>on</strong>g>al bodyweight (g fish -1 ); IBW= <str<strong>on</strong>g>in</str<strong>on</strong>g>itial body weight (g fish -1 ); N c<strong>on</strong>tent f<str<strong>on</strong>g>in</str<strong>on</strong>g>al = nitrogen c<strong>on</strong>tent (%) of thef<str<strong>on</strong>g>in</str<strong>on</strong>g>al carcass sample; N c<strong>on</strong>tent <str<strong>on</strong>g>in</str<strong>on</strong>g>itial = nitrogen c<strong>on</strong>tent (%) of the <str<strong>on</strong>g>in</str<strong>on</strong>g>itial carcass sample; GE f<str<strong>on</strong>g>in</str<strong>on</strong>g>al =gross energy (kJ g -1 ) c<strong>on</strong>tent of the f<str<strong>on</strong>g>in</str<strong>on</strong>g>al carcass sample; GE <str<strong>on</strong>g>in</str<strong>on</strong>g>itial = gross energy (kJ g -1 ) c<strong>on</strong>tent ofthe <str<strong>on</strong>g>in</str<strong>on</strong>g>itial carcass sample.Nitrogen retenti<strong>on</strong> efficiency (NRE) <str<strong>on</strong>g>and</str<strong>on</strong>g> energy retenti<strong>on</strong> efficiency (ERE) for each tankdeterm<str<strong>on</strong>g>in</str<strong>on</strong>g>ed based <strong>on</strong> the rate of <str<strong>on</strong>g>in</str<strong>on</strong>g>gested nitrogen (IN): NRE (% IN)= [[(FBW×Nc<strong>on</strong>tent f<str<strong>on</strong>g>in</str<strong>on</strong>g>al )−(IBW×N c<strong>on</strong>tent <str<strong>on</strong>g>in</str<strong>on</strong>g>itial )]/IN]×100; <str<strong>on</strong>g>and</str<strong>on</strong>g> based <strong>on</strong> the rate of <str<strong>on</strong>g>in</str<strong>on</strong>g>gested energy (IE): ERE(% IE)= [[(FBW×GE c<strong>on</strong>tent f<str<strong>on</strong>g>in</str<strong>on</strong>g>al )−(IBW×GE c<strong>on</strong>tent <str<strong>on</strong>g>in</str<strong>on</strong>g>itial )]/IE]×100, where: FBW= f<str<strong>on</strong>g>in</str<strong>on</strong>g>al bodyweight (g fish -1 ); IBW= <str<strong>on</strong>g>in</str<strong>on</strong>g>itial body weight (g fish -1 ); N c<strong>on</strong>tent f<str<strong>on</strong>g>in</str<strong>on</strong>g>al = nitrogen c<strong>on</strong>tent (%) of thef<str<strong>on</strong>g>in</str<strong>on</strong>g>al carcass sample; N c<strong>on</strong>tent <str<strong>on</strong>g>in</str<strong>on</strong>g>itial = nitrogen c<strong>on</strong>tent (%) of the <str<strong>on</strong>g>in</str<strong>on</strong>g>itial carcass sample; GE f<str<strong>on</strong>g>in</str<strong>on</strong>g>al =gross energy (kJ g -1 ) c<strong>on</strong>tent of the f<str<strong>on</strong>g>in</str<strong>on</strong>g>al carcass sample; GE <str<strong>on</strong>g>in</str<strong>on</strong>g>itial = gross energy (kJ g -1 ) c<strong>on</strong>tent ofthe <str<strong>on</strong>g>in</str<strong>on</strong>g>itial carcass sample; IN=<str<strong>on</strong>g>in</str<strong>on</strong>g>gested nitrogen (g fish -1 ); IE= <str<strong>on</strong>g>in</str<strong>on</strong>g>gested energy (kJ fish -1 ).The quantitative hue (H°ab) <str<strong>on</strong>g>and</str<strong>on</strong>g> chroma (C*) were assessed accord<str<strong>on</strong>g>in</str<strong>on</strong>g>g to Christiansen etal. (1995). H°ab (yellowness <str<strong>on</strong>g>and</str<strong>on</strong>g> redness relati<strong>on</strong> of the fillet) as: H°ab= tan-1 b*/a*. The hue isan angular dimensi<strong>on</strong> where 0° (H°ab= 0) represents the red hue <str<strong>on</strong>g>and</str<strong>on</strong>g> 90° (H°ab= 90) representsthe yellow hue.C* was assessed as: C*= (a* 2 + b* 2 ) 1/2 . C* represents the <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity <str<strong>on</strong>g>and</str<strong>on</strong>g> clarity of thecolour <str<strong>on</strong>g>and</str<strong>on</strong>g> is expressed as the relati<strong>on</strong>ship between a* <str<strong>on</strong>g>and</str<strong>on</strong>g> b* values. A more <str<strong>on</strong>g>in</str<strong>on</strong>g>tense the colour,represents a higher the C* values.82


4.2.6 Statistical analysisData were analysed as a complete r<str<strong>on</strong>g>and</str<strong>on</strong>g>om design us<str<strong>on</strong>g>in</str<strong>on</strong>g>g the general l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear model of theSAS/STAT software (SAS versi<strong>on</strong> 9.1.3, SAS <str<strong>on</strong>g>in</str<strong>on</strong>g>stitute, Cary, NC, USA). Orthog<strong>on</strong>al polynomialc<strong>on</strong>trast analyses were utilized <str<strong>on</strong>g>in</str<strong>on</strong>g> order to determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e the significance of l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear <str<strong>on</strong>g>and</str<strong>on</strong>g> quadraticresp<strong>on</strong>ses of growth parameters, HPLC-determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed carotenoid muscle c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> musclecolor attributes to <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g levels of CGM.In order to address the c<strong>on</strong>found<str<strong>on</strong>g>in</str<strong>on</strong>g>g effects of us<str<strong>on</strong>g>in</str<strong>on</strong>g>g different <str<strong>on</strong>g>in</str<strong>on</strong>g>gredient comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g>to highlight the effects of CGM <str<strong>on</strong>g>in</str<strong>on</strong>g>clusi<strong>on</strong> <strong>on</strong>ly, the significance of l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear <str<strong>on</strong>g>and</str<strong>on</strong>g> quadratic resp<strong>on</strong>sesare presented separately for Diets 1, 3 <str<strong>on</strong>g>and</str<strong>on</strong>g> 6 (<str<strong>on</strong>g>in</str<strong>on</strong>g>clusi<strong>on</strong> of CGM at expense of soy prote<str<strong>on</strong>g>in</str<strong>on</strong>g>c<strong>on</strong>centrate <strong>on</strong>ly) <str<strong>on</strong>g>and</str<strong>on</strong>g> for all dietary treatments.4.3 ResultsTable 4.2 shows the results for growth performance obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> this trial. F<str<strong>on</strong>g>in</str<strong>on</strong>g>al bodyweight, TGC (thermal growth coefficient) <str<strong>on</strong>g>and</str<strong>on</strong>g> feed efficiency were not significantly (p>0.05)affected by dietary treatments. On average fish grew from 549 to 1275 g fish -1 giv<str<strong>on</strong>g>in</str<strong>on</strong>g>g averageTGC <str<strong>on</strong>g>and</str<strong>on</strong>g> feed efficiency of 0.76 <str<strong>on</strong>g>and</str<strong>on</strong>g> 0.186, respectively.Results for carcass chemical proximate compositi<strong>on</strong> are depicted <str<strong>on</strong>g>in</str<strong>on</strong>g> Table 4.3. Nosignificant effects of dietary CGM <strong>on</strong> carcass compositi<strong>on</strong> were determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed for moisture, crudeprote<str<strong>on</strong>g>in</str<strong>on</strong>g>, lipids, ash or gross energy. When significance for all dietary treatment was taken <str<strong>on</strong>g>in</str<strong>on</strong>g>toaccount, a significant (p


significant (p


address the c<strong>on</strong>found<str<strong>on</strong>g>in</str<strong>on</strong>g>g effect of the <str<strong>on</strong>g>in</str<strong>on</strong>g>clusi<strong>on</strong> of different <str<strong>on</strong>g>in</str<strong>on</strong>g>gredient comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> highlightthe effects of CGM <str<strong>on</strong>g>in</str<strong>on</strong>g>clusi<strong>on</strong> <strong>on</strong>ly, the significance of the l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear <str<strong>on</strong>g>and</str<strong>on</strong>g> quadratic resp<strong>on</strong>ses wasevaluated separately.Growth performance <str<strong>on</strong>g>and</str<strong>on</strong>g> feed efficiency values achieved <str<strong>on</strong>g>in</str<strong>on</strong>g> this trial were with<str<strong>on</strong>g>in</str<strong>on</strong>g> the rangeof those typically obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed at Alma Research Stati<strong>on</strong> for fish same size <str<strong>on</strong>g>and</str<strong>on</strong>g> stra<str<strong>on</strong>g>in</str<strong>on</strong>g> fed to nearsatiati<strong>on</strong> with nutriti<strong>on</strong>ally complete commercial or experimental diets (Dumas et al., 2007).Figure 4.1 depicts growth trajectory performed by ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow trout fed the experimental diets for24 weeks. CGM <str<strong>on</strong>g>in</str<strong>on</strong>g>clusi<strong>on</strong> level did not have a significant effect <strong>on</strong> f<str<strong>on</strong>g>in</str<strong>on</strong>g>al body weight, TGC orfeed efficiency which is <str<strong>on</strong>g>in</str<strong>on</strong>g> agreement with previous studies <strong>on</strong> CGM <str<strong>on</strong>g>in</str<strong>on</strong>g>clusi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> formulateddiets for fish (Mundheim et al., 2004; Sk<strong>on</strong>berg et al., 1998).The significant reducti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> carcass crude prote<str<strong>on</strong>g>in</str<strong>on</strong>g> (Table 4.3) <str<strong>on</strong>g>and</str<strong>on</strong>g> energy retenti<strong>on</strong>efficiency (ERE) (Table 4.4), obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> this study when all dietary treatments were taken <str<strong>on</strong>g>in</str<strong>on</strong>g>toaccount can be attributed to the c<strong>on</strong>found<str<strong>on</strong>g>in</str<strong>on</strong>g>g effect of <str<strong>on</strong>g>in</str<strong>on</strong>g>clusi<strong>on</strong> of different comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>s.<str<strong>on</strong>g>Reducti<strong>on</strong></str<strong>on</strong>g> of the nutritive value <str<strong>on</strong>g>in</str<strong>on</strong>g> Diets 2, 4 <str<strong>on</strong>g>and</str<strong>on</strong>g> 5 (4, 12 <str<strong>on</strong>g>and</str<strong>on</strong>g> 14% CGM, respectively) due tohigher fish meal substituti<strong>on</strong> might expla<str<strong>on</strong>g>in</str<strong>on</strong>g> these results (Table 4.1).Noteworthy is the occurrence of all-trans lute<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> all-trans zeaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> (2 <str<strong>on</strong>g>and</str<strong>on</strong>g> 9 mg kg -1 ,respectively) <str<strong>on</strong>g>in</str<strong>on</strong>g> the n<strong>on</strong>-CGM supplemented diet (Diet 1, Table 4.1). The presence of yellowxanthophylls <str<strong>on</strong>g>in</str<strong>on</strong>g> this diet is most probably due to the <str<strong>on</strong>g>in</str<strong>on</strong>g>clusi<strong>on</strong> of soy prote<str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>centrate <str<strong>on</strong>g>and</str<strong>on</strong>g>soybean meal <str<strong>on</strong>g>and</str<strong>on</strong>g> wheat (18%, 10% <str<strong>on</strong>g>and</str<strong>on</strong>g> 10.7%, respectively). Substantial amounts of thesecarotenoids have been previously reported for soybean seeds <str<strong>on</strong>g>and</str<strong>on</strong>g> oil as well as for wheat (Abdel-Aal et al., 2007; Kanamaru et al., 2006; Lee et al., 2009; Slav<str<strong>on</strong>g>in</str<strong>on</strong>g> et al., 2009).85


Values for all-trans astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> muscle depositi<strong>on</strong> (16 - 24 mg kg -1 ) obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> this trial(Table 4.5) are <str<strong>on</strong>g>in</str<strong>on</strong>g> the same range of those previously reported for ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow trout fed dietssupplemented with 71 to 200 mg kg -1 astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong>s (Choubert et al., 2006; 2009).Differences <str<strong>on</strong>g>in</str<strong>on</strong>g> fish size <str<strong>on</strong>g>and</str<strong>on</strong>g> trial durati<strong>on</strong> might expla<str<strong>on</strong>g>in</str<strong>on</strong>g> similar outputs achieved with differentastaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> dietary c<strong>on</strong>centrati<strong>on</strong>.One astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> isomer was detected <str<strong>on</strong>g>in</str<strong>on</strong>g> samples of diets <str<strong>on</strong>g>and</str<strong>on</strong>g> muscles <str<strong>on</strong>g>in</str<strong>on</strong>g> this trial.Occurrence of cis-astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> isomers have been previously reported for both dietssupplemented with all-trans astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g>, <str<strong>on</strong>g>and</str<strong>on</strong>g> muscle from ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow trout, respectively (Bjerkenget al. 1997; Bowen et al. 2002). Occurrence of all-trans lute<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> all-trans zeaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> musclefrom ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow trout fed all diets used <str<strong>on</strong>g>in</str<strong>on</strong>g> this trial is <str<strong>on</strong>g>in</str<strong>on</strong>g> accordance with previous studies report<str<strong>on</strong>g>in</str<strong>on</strong>g>gdepositi<strong>on</strong> of yellow xanthophylls <str<strong>on</strong>g>in</str<strong>on</strong>g> muscle from salm<strong>on</strong>id fish (Bowen et al. 2002; Kitahara,1983; Welker et al. 2001).The significant l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear reducti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> isomer <str<strong>on</strong>g>and</str<strong>on</strong>g> all-trans astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g>c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> muscle from ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow trout obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> this trial <str<strong>on</strong>g>in</str<strong>on</strong>g> resp<strong>on</strong>se to <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g levelsof CGM c<strong>on</strong>firms the hypothesized negative effects of this commodity <strong>on</strong> ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow trout musclepigmentati<strong>on</strong>. The c<strong>on</strong>comitant reducti<strong>on</strong> of all-trans lute<str<strong>on</strong>g>in</str<strong>on</strong>g> suggests an overall decrease ofpigment depositi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> muscle from ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow trout to <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g levels of dietary CGM (Figure4.2).Astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> b<str<strong>on</strong>g>in</str<strong>on</strong>g>ds to an actomyos<str<strong>on</strong>g>in</str<strong>on</strong>g> prote<str<strong>on</strong>g>in</str<strong>on</strong>g> complex (specifically to an α-act<str<strong>on</strong>g>in</str<strong>on</strong>g> prote<str<strong>on</strong>g>in</str<strong>on</strong>g>)with<str<strong>on</strong>g>in</str<strong>on</strong>g> muscle fibers from salm<strong>on</strong>id fish (Henmi et al., 1987; Matthews et al., 2006). However,before depositi<strong>on</strong> with<str<strong>on</strong>g>in</str<strong>on</strong>g> the muscle, astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> undergoes a series of complex metabolicprocesses (Aas et al., 1999; Furr <str<strong>on</strong>g>and</str<strong>on</strong>g> Clark, 1997; Hemni et al., 1987; Matthews et al., 2006;86


Salvador et al., 2007). With<str<strong>on</strong>g>in</str<strong>on</strong>g> the digestive tract, astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> is solubilized <str<strong>on</strong>g>in</str<strong>on</strong>g>to lipid emulsi<strong>on</strong>s,further transferred <str<strong>on</strong>g>in</str<strong>on</strong>g>to bile salt micelles <str<strong>on</strong>g>and</str<strong>on</strong>g> f<str<strong>on</strong>g>in</str<strong>on</strong>g>ally absorbed through the <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al epithelialcells (Borel et al., 1996, Ishida <str<strong>on</strong>g>and</str<strong>on</strong>g> Bartley, 2005). With<str<strong>on</strong>g>in</str<strong>on</strong>g> the <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al lumen, astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> isassembled <str<strong>on</strong>g>in</str<strong>on</strong>g>to nascent chylomicr<strong>on</strong>s, released <str<strong>on</strong>g>in</str<strong>on</strong>g>to the bloodstream <str<strong>on</strong>g>and</str<strong>on</strong>g> carried by lipoprote<str<strong>on</strong>g>in</str<strong>on</strong>g>stoward peripheral tissue <str<strong>on</strong>g>and</str<strong>on</strong>g> the liver (Salvador et al., 2007).Similar metabolic pathways have been proposed for different types of carotenoidsmolecules. Additi<strong>on</strong>ally, <str<strong>on</strong>g>in</str<strong>on</strong>g>teracti<strong>on</strong>s for uptake <str<strong>on</strong>g>and</str<strong>on</strong>g>/or blood-carry<str<strong>on</strong>g>in</str<strong>on</strong>g>g capacity betweencanthaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> Atlantic salm<strong>on</strong> have been reported (Kiessl<str<strong>on</strong>g>in</str<strong>on</strong>g>g et al., 2003).Whether the occurrence of substantial amounts of yellow xanthophylls from CGM <str<strong>on</strong>g>in</str<strong>on</strong>g> the dietresults <str<strong>on</strong>g>in</str<strong>on</strong>g> an <str<strong>on</strong>g>in</str<strong>on</strong>g>teracti<strong>on</strong>/competiti<strong>on</strong> with astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> molecules dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g solubilisati<strong>on</strong>,absorpti<strong>on</strong>, transport <str<strong>on</strong>g>and</str<strong>on</strong>g>/or depositi<strong>on</strong> rema<str<strong>on</strong>g>in</str<strong>on</strong>g>s unclear <str<strong>on</strong>g>and</str<strong>on</strong>g> might expla<str<strong>on</strong>g>in</str<strong>on</strong>g> results from this study.Results from this trial differ from those reported by Olsen <str<strong>on</strong>g>and</str<strong>on</strong>g> Baker (2006) who assessedsimilar astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> levels <str<strong>on</strong>g>in</str<strong>on</strong>g> muscle am<strong>on</strong>g fillets form Atlantic salm<strong>on</strong> fed a diet supplementedwith synthetic astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> lute<str<strong>on</strong>g>in</str<strong>on</strong>g> at levels of 55 <str<strong>on</strong>g>and</str<strong>on</strong>g> 23 mg kg -1 , respectively, compared tothose obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed from fish fed a c<strong>on</strong>trol diet supplemented with astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> (55 mg kg -1 ) as s<str<strong>on</strong>g>in</str<strong>on</strong>g>glesource of pigment). <str<strong>on</strong>g>Reducti<strong>on</strong></str<strong>on</strong>g> of astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> muscle depositi<strong>on</strong> to dietary CGM obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> thisstudy, as opposed to that obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> resp<strong>on</strong>se to <str<strong>on</strong>g>in</str<strong>on</strong>g>clusi<strong>on</strong> of a synthetic purified source oflute<str<strong>on</strong>g>in</str<strong>on</strong>g>, suggests the possible <str<strong>on</strong>g>in</str<strong>on</strong>g>teracti<strong>on</strong> effect of other comp<strong>on</strong>ents with<str<strong>on</strong>g>in</str<strong>on</strong>g> CGM c<strong>on</strong>tribut<str<strong>on</strong>g>in</str<strong>on</strong>g>g tothe reducti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> muscle depositi<strong>on</strong>.<strong>Muscle</strong> a* (redness), b* (Yellowness), Cab (Chroma) <str<strong>on</strong>g>and</str<strong>on</strong>g> Salmofan TM colour attributeswere significantly affected by <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g levels of CGM <str<strong>on</strong>g>in</str<strong>on</strong>g> the diet (Figure 4.3) <str<strong>on</strong>g>and</str<strong>on</strong>g> by thec<strong>on</strong>comitant reducti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> all-trans astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> muscle c<strong>on</strong>centrati<strong>on</strong>. This is <str<strong>on</strong>g>in</str<strong>on</strong>g> agreement with87


previous reports where colour attributes <str<strong>on</strong>g>in</str<strong>on</strong>g> muscle from ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow trout were dependent up<strong>on</strong>astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> muscle (Choubert et al., 2006; Christiansen et al., 1995).Significance of the l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear or/<str<strong>on</strong>g>and</str<strong>on</strong>g> quadratic resp<strong>on</strong>ses for muscle all-trans astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g>, alltranslute<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> all-trans zeaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> (Table 4.5) as well as for muscle redness (a*), chroma(C*ab) <str<strong>on</strong>g>and</str<strong>on</strong>g> salmoFan TM score, (Table 4.6) was affected by the <str<strong>on</strong>g>in</str<strong>on</strong>g>clusi<strong>on</strong> of different <str<strong>on</strong>g>in</str<strong>on</strong>g>gredientcomb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>s used <str<strong>on</strong>g>in</str<strong>on</strong>g> this trial, highlight<str<strong>on</strong>g>in</str<strong>on</strong>g>g the artifact effect of diets formulati<strong>on</strong>. Interest<str<strong>on</strong>g>in</str<strong>on</strong>g>gly,results obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by Diets 2, 4 <str<strong>on</strong>g>and</str<strong>on</strong>g> 5 (4, 12 <str<strong>on</strong>g>and</str<strong>on</strong>g> 14% CGM, respectively) were with<str<strong>on</strong>g>in</str<strong>on</strong>g> the sametrend (or slightly off) of those obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed with Diets 1, 3 <str<strong>on</strong>g>and</str<strong>on</strong>g> 9 (0, 9 <str<strong>on</strong>g>and</str<strong>on</strong>g> 18% CGM, respectively)(Figures 4.2 <str<strong>on</strong>g>and</str<strong>on</strong>g> 4.3), where <str<strong>on</strong>g>in</str<strong>on</strong>g>clusi<strong>on</strong> of CGM was d<strong>on</strong>e at expense of soy prote<str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>centrate<strong>on</strong>ly, imply<str<strong>on</strong>g>in</str<strong>on</strong>g>g a c<strong>on</strong>sistent adverse effect of dietary CGM <strong>on</strong> pigment depositi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> colourattributes <str<strong>on</strong>g>in</str<strong>on</strong>g> muscle from ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow trout.Results from this study <str<strong>on</strong>g>in</str<strong>on</strong>g>dicate that growth performance of ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow trout was notsignificantly affected by CGM dietary <str<strong>on</strong>g>in</str<strong>on</strong>g>clusi<strong>on</strong> up to 18%. However astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> muscledepositi<strong>on</strong> as well as muscle colour attributes can be reduced by CGM <str<strong>on</strong>g>in</str<strong>on</strong>g>clusi<strong>on</strong> levels over12%. The mechanism(s) c<strong>on</strong>troll<str<strong>on</strong>g>in</str<strong>on</strong>g>g this phenomen<strong>on</strong> as well as the specific role played by<str<strong>on</strong>g>in</str<strong>on</strong>g>tr<str<strong>on</strong>g>in</str<strong>on</strong>g>sic yellow xanthophylls of this commodity <strong>on</strong> astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> utilizati<strong>on</strong> by ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow troutrema<str<strong>on</strong>g>in</str<strong>on</strong>g> to be clarified. F<str<strong>on</strong>g>in</str<strong>on</strong>g>ally, CGM is widely utilized <str<strong>on</strong>g>in</str<strong>on</strong>g> formulati<strong>on</strong> for salm<strong>on</strong>id fish, hencemore studies <strong>on</strong> the effect of this commodity <strong>on</strong> astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> depositi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> key muscle qualityparameters are necessary.88


TablesTable 4. 1 - Formulati<strong>on</strong>, analyzed proximate compositi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> pigment c<strong>on</strong>tent of experimentaldietsIngredients Diet 10%CGMDiet 24%CGMDiet 39%CGMDiet 412%CGMDiet 514%CGMDiet 618%CGMDiet 7 aCommercial10% CGMFish meal, herr<str<strong>on</strong>g>in</str<strong>on</strong>g>g 16.0 12.0 16.0 12.0 8.0 16.0 -<str<strong>on</strong>g>Corn</str<strong>on</strong>g> gluten meal 0.0 4.0 9.0 11.5 13.7 18.0 -Soy prote<str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>centrate 18.0 0.0 9.0 11.5 13.8 0.0 -Poultry by-product meal 18.0 18.0 18.0 18.0 18.0 18.0 -Feather meal 6.0 15.0 6.0 6.0 6.0 6.0 -Blood meal, spray-dried 0.0 4.0 0.0 0.0 0.0 0.0 -Wheat, gra<str<strong>on</strong>g>in</str<strong>on</strong>g> 10.7 15.7 10.7 9.3 8.4 10.7 -Soybean meal, 52%CP 10.0 10.0 10.0 10.0 10.0 10.0 -Fish oil 11.0 11.0 11.0 11.4 11.8 11.0 -Canola oil 7.0 7.0 7.0 7.0 7.0 7.0 -Vitam<str<strong>on</strong>g>in</str<strong>on</strong>g> premix b 1.1 1.1 1.1 1.1 1.1 1.1 -Bio-Lys® (52% lys<str<strong>on</strong>g>in</str<strong>on</strong>g>e) 1.0 1.0 1.0 1.0 1.0 1.0 -DL-Methi<strong>on</strong><str<strong>on</strong>g>in</str<strong>on</strong>g>e 0.2 0.2 0.2 0.2 0.2 0.2 -Chol<str<strong>on</strong>g>in</str<strong>on</strong>g>e chloride 0.3 0.3 0.3 0.3 0.3 0.3 -M<str<strong>on</strong>g>in</str<strong>on</strong>g>eral premix c 0.2 0.2 0.2 0.2 0.2 0.2 -NaCl 0.3 0.3 0.3 0.3 0.3 0.3 -Rovimix stay-C (25%) 0.09 0.09 0.09 0.09 0.09 0.09 -Carophyll® p<str<strong>on</strong>g>in</str<strong>on</strong>g>k0.063 0.063 0.063 0.063 0.063 0.063 -(8% astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g>)89


Proximate compositi<strong>on</strong> (analysed), dry matter basisDry matter 89.9 90.6 90.7 90.7 90.2 90.4 90.4Crude prote<str<strong>on</strong>g>in</str<strong>on</strong>g> 52.2 51.3 51.6 51.4 51.7 50.7 51.5Lipids 18.0 18.9 17.5 18.4 18.2 18.2 18.8Ash 8.3 7.2 7.5 7.2 6.8 7.3 8.5Energy (MJ kg -1 ) 19.0 19.3 19.0 19.2 19.3 19.2 19.1<str<strong>on</strong>g>Pigment</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> (mg kg -1 ) (analysed), dry matter basisAll-E-astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> 49 43 41 53 54 46 43Astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> isomers d 4 6 4 6 6 5 6All-E-lute<str<strong>on</strong>g>in</str<strong>on</strong>g> 2 3 7 9 11 15 9Lute<str<strong>on</strong>g>in</str<strong>on</strong>g> isomers e ND h N 3 3 4 6 3All-E-zeaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> 9 10 11 13 16 17 13Zeaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> isomers f ND 11 1 13 15 3 14All-E-β-cryptoxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> ND ND 1 1 1 2 NDAll-E- β-carotene ND ND 1 1 1 2 1β-Carotene isomers g ND ND 2 2 3 3 2aCommercial feed c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g 10% CGM.bVitam<str<strong>on</strong>g>in</str<strong>on</strong>g> premix. Provided per kg of diet = ret<str<strong>on</strong>g>in</str<strong>on</strong>g>yl acetate (vitam<str<strong>on</strong>g>in</str<strong>on</strong>g> A), 75 mg; cholecalciferol(vitam<str<strong>on</strong>g>in</str<strong>on</strong>g> D3), 60 mg; dl-a-tocopherol-acetate (vitam<str<strong>on</strong>g>in</str<strong>on</strong>g> E), 300 mg; menadi<strong>on</strong>e Na-bisulfate(vitam<str<strong>on</strong>g>in</str<strong>on</strong>g> K), 1.5 mg; cyanocobalam<str<strong>on</strong>g>in</str<strong>on</strong>g>e (vitam<str<strong>on</strong>g>in</str<strong>on</strong>g> B12), 30 mg; ascorbic acid m<strong>on</strong>ophos. (vitam<str<strong>on</strong>g>in</str<strong>on</strong>g>C), 300 mg; D-biot<str<strong>on</strong>g>in</str<strong>on</strong>g>, 210 mg; chol<str<strong>on</strong>g>in</str<strong>on</strong>g>e chloride, 3448 mg; folic acid, 1.5 mg; niac<str<strong>on</strong>g>in</str<strong>on</strong>g>, 15 mg;calcium-d-pantothenate, 33 mg; pyridox<str<strong>on</strong>g>in</str<strong>on</strong>g>e –HCl, 7.5 mg; riboflav<str<strong>on</strong>g>in</str<strong>on</strong>g>, 9 mg; thiam<str<strong>on</strong>g>in</str<strong>on</strong>g>-HCl, 1.5mg.90


cM<str<strong>on</strong>g>in</str<strong>on</strong>g>eral premix. Provided per kg of diet = sodium chloride (NaCl, 39% Na, 61% Cl), 3077 mg;potassium iod<str<strong>on</strong>g>in</str<strong>on</strong>g>e (KI, 24%K, 76%I), 10.5 mg; ferrous sulphate (FeSO 4 , 7H 2 O, 20%Fe), 65 mg;manganese sulphate (MnSO 4 , 36%Mn) 88.9 mg; z<str<strong>on</strong>g>in</str<strong>on</strong>g>c sulphate (ZnSO 4 .7H 2 O, 40%Zn), 150 mg;copper sulphate (CuSO 4 .5H 2 O, 25%Cu), 28 mg; sodium Selenite (Na 2 SeO 3 , 45.66% Se), 0.7 mg.dAstaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> isomers = 1 Astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> isomer; e Lute<str<strong>on</strong>g>in</str<strong>on</strong>g> isomers = Summati<strong>on</strong> of 3 lute<str<strong>on</strong>g>in</str<strong>on</strong>g> isomers;fZeaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> isomers = 1 Zeaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> isomer; g β-Carotene isomers = Summati<strong>on</strong> of 3 β-Caroteneisomers.hND = Not detected.91


Table 4. 2 - Growth performance of ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow trout (IBW= 549 g fish -1 ) fed experimental diets for24 weeksCGMFBW a TGC b FE c Ga<str<strong>on</strong>g>in</str<strong>on</strong>g>:feedlevel (%)Diet 1 0 1302 0.190 0.77Diet 2 4 1241 0.180 0.75Diet 3 9 1297 0.189 0.77Diet 7 (Commercial) 10 1300 0.192 0.75Diet 4 12 1286 0.188 0.79Diet 5 14 1252 0.182 0.75Diet 6 18 1245 0.180 0.75Significance * for Diets 1, 3 <str<strong>on</strong>g>and</str<strong>on</strong>g> 6 dL<str<strong>on</strong>g>in</str<strong>on</strong>g>ear NS f NS NSQuadratic NS NS NSSignificance * for all dietary treatments eL<str<strong>on</strong>g>in</str<strong>on</strong>g>ear NS f NS NS92


Quadratic NS NS NSData are mean, n=3 tanks.aFBW= f<str<strong>on</strong>g>in</str<strong>on</strong>g>al body weight.bTGC = Thermal growth coefficient.c FE = Feed efficiency (live weight ga<str<strong>on</strong>g>in</str<strong>on</strong>g>:feed DM).* Significance= significance of the l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear <str<strong>on</strong>g>and</str<strong>on</strong>g> quadratic c<strong>on</strong>trasts of dependent variables for d dietswhere CGM <str<strong>on</strong>g>in</str<strong>on</strong>g>clusi<strong>on</strong> was d<strong>on</strong>e at expense of soy prote<str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>centrate <strong>on</strong>ly, <str<strong>on</strong>g>and</str<strong>on</strong>g> for e all dietarytreatments used <str<strong>on</strong>g>in</str<strong>on</strong>g> this trial (as described <str<strong>on</strong>g>in</str<strong>on</strong>g> the material <str<strong>on</strong>g>and</str<strong>on</strong>g> methods secti<strong>on</strong>); f NS = nostatistically significant (p>0.05).93


Table 4. 3 - Carcass chemical proximate compositi<strong>on</strong> a of ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow trout b (IBW= 549 g fish -1 ) fedexperimental diets for 24 weeksCGMMoistureCrudeLipidsAshGross Energylevel(%)Prote<str<strong>on</strong>g>in</str<strong>on</strong>g>(%)(%)(kJ/kg)(%)(%)Diet 1 0 64.5 17.7 16.0 2.5 8.9Diet 2 4 64.5 17.5 16.9 2.5 9.2Diet 3 9 63.0 17.5 17.7 2.5 9.5Diet 7 (Commercial) 10 64.4 16.4 17.5 2.4 9.3Diet 4 12 65.2 17.5 15.2 2.6 8.6Diet 5 14 64.1 17.9 16.2 2.6 9.0Diet 6 18 64.4 16.9 16.4 2.5 8.6Significance * for Diets 1, 3 <str<strong>on</strong>g>and</str<strong>on</strong>g> 6 cL<str<strong>on</strong>g>in</str<strong>on</strong>g>ear NS e NS NS NS NSQuadratic NS NS NS NS NSSignificance * for all dietary treatments d94


L<str<strong>on</strong>g>in</str<strong>on</strong>g>ear NS e p0.05).95


Table 4. 4 - Reta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed levels <str<strong>on</strong>g>and</str<strong>on</strong>g> retenti<strong>on</strong> efficiencies of nitrogen <str<strong>on</strong>g>and</str<strong>on</strong>g> energy by ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow trout(IBW= 549 g fish -1 ) fed experimental diets for 24 weeksCGMRN a (g/fish) RE b (kJ/fish) NRE c (% IN d ) ERE e (% IE f )level(%)Diet 1 0 21 7259 26 48Diet 2 4 19 7113 25 49Diet 3 9 20 7969 25 54Diet 7 (Commercial) 10 21 8610 25 55Diet 4 12 20 6713 26 46Diet 5 14 20 6975 26 48Diet 6 18 20 6412 27 45Significance * for Diets 1, 3 <str<strong>on</strong>g>and</str<strong>on</strong>g> 6 gL<str<strong>on</strong>g>in</str<strong>on</strong>g>ear NS i NS NS NSQuadratic NS NS NS NS96


Significance * for all dietary treatments hL<str<strong>on</strong>g>in</str<strong>on</strong>g>ear NS i NS NS NSQuadratic NS NS NS p0.05).97


Table 4. 5 - <str<strong>on</strong>g>Pigment</str<strong>on</strong>g> c<strong>on</strong>tent <str<strong>on</strong>g>in</str<strong>on</strong>g> muscle of ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow trout a (IBW= 549 g fish -1 ) fed experimentaldiets for 24 weeksCGM levelAstaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g>All-transAll-transAll-trans(%)isomers (mgastaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g>lute<str<strong>on</strong>g>in</str<strong>on</strong>g>zeaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g>kg -1 )(mg kg -1 )(mg kg -1 )(mg kg -1 )Diet 1 0 2 24 3 4Diet 2 4 2 18 3 3Diet 3 9 2 19 2 3Diet 7 (Commercial) 10 2 15 3 4Diet 4 12 2 19 3 4Diet 5 14 2 19 3 4Diet 6 18 2 16 2 3Significance * for Diets 1, 3 <str<strong>on</strong>g>and</str<strong>on</strong>g> 6 bL<str<strong>on</strong>g>in</str<strong>on</strong>g>ear p


L<str<strong>on</strong>g>in</str<strong>on</strong>g>ear NS d NS p


Table 4. 6 - Colour attributes <str<strong>on</strong>g>in</str<strong>on</strong>g> muscle from ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow trout a (IBW= 549 g fish -1 ) fedexperimental diets for 24 weeksCGML b a* c b* d H°ab e C*ab f SF glevel(%)Diet 1 0 40.9 15.5 14.4 42.6 21.1 26Diet 2 4 41.6 14.6 14.0 43.4 20.4 26Diet 3 9 41.9 14.7 14.5 44.2 20.7 26Diet 7 (Commercial) 10 42.9 12.6 12.2 43.3 18.0 25Diet 4 12 41.5 14.1 14.2 44.8 20.1 26Diet 5 14 42.7 14.9 15.6 46.0 21.7 25Diet 6 18 41.8 11.7 11.2 43.1 16.3 24Significance * for Diets 1, 3 <str<strong>on</strong>g>and</str<strong>on</strong>g> 6 hL<str<strong>on</strong>g>in</str<strong>on</strong>g>ear NS j p


L<str<strong>on</strong>g>in</str<strong>on</strong>g>ear NS j NS NS NS NS NSQuadratic NS p


FiguresFigure 4. 1 - Growth curves of ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow trout fed the experimental diets for 24 weeks.102


Figure 4. 2 - <strong>Muscle</strong> pigment c<strong>on</strong>centrati<strong>on</strong> to graded levels of corn gluten meal <str<strong>on</strong>g>in</str<strong>on</strong>g> ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow troutfed the experimental diets for 24 weeks. Larger markers <strong>on</strong> each trend l<str<strong>on</strong>g>in</str<strong>on</strong>g>e represent resultsobta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by diets where <str<strong>on</strong>g>in</str<strong>on</strong>g>clusi<strong>on</strong> of corn gluten meal was at expense of soy prote<str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>centrate<strong>on</strong>ly (0, 9 <str<strong>on</strong>g>and</str<strong>on</strong>g> 18% CGM <str<strong>on</strong>g>in</str<strong>on</strong>g>clusi<strong>on</strong>).103


Figure 4. 3 - <strong>Muscle</strong> colour attributes to graded levels of corn gluten meal <str<strong>on</strong>g>in</str<strong>on</strong>g> ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow trout fedthe experimental diets for 24 weeks. Larger markers <strong>on</strong> each trend l<str<strong>on</strong>g>in</str<strong>on</strong>g>e represent results obta<str<strong>on</strong>g>in</str<strong>on</strong>g>edby diets where <str<strong>on</strong>g>in</str<strong>on</strong>g>clusi<strong>on</strong> of corn gluten meal was at expense of soy prote<str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>centrate <strong>on</strong>ly (0, 9<str<strong>on</strong>g>and</str<strong>on</strong>g> 18% CGM <str<strong>on</strong>g>in</str<strong>on</strong>g>clusi<strong>on</strong>).104


CHAPTER - 5 BLEACHING OF CAROTENOIDS FROM CORN GLUTEN MEALTHROUGH A MODIFIED STEEPING PROCESS TO IMPROVE ITS VALUE AS ASALMONID FISH INGREDIENT: EFFECTS OF KERNEL VARIETY, HYDROGENPEROXIDE AND STEEPWATER PHAbstract<str<strong>on</strong>g>Corn</str<strong>on</strong>g> gluten meal (CGM) is a highly digestible <str<strong>on</strong>g>in</str<strong>on</strong>g>gredient comm<strong>on</strong>ly used <str<strong>on</strong>g>in</str<strong>on</strong>g> diets forsalm<strong>on</strong>ids. However the use of significant (>12%) levels of this <str<strong>on</strong>g>in</str<strong>on</strong>g>gredient has been related toreducti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> pigment depositi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> muscle of ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow trout (Oncorhynchus mykiss), possibly dueto negative effects of yellow xanthophylls <strong>on</strong> astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> depositi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the muscle. Cost effectivemethods for decreas<str<strong>on</strong>g>in</str<strong>on</strong>g>g the level of yellow xanthophylls <str<strong>on</strong>g>in</str<strong>on</strong>g> corn products may improve theirvalue as a fish feed <str<strong>on</strong>g>in</str<strong>on</strong>g>gredient. A laboratory-scale (10 g) corn wet mill<str<strong>on</strong>g>in</str<strong>on</strong>g>g procedure was used toassess the bleach<str<strong>on</strong>g>in</str<strong>on</strong>g>g of carotenoids from CGM dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g steep<str<strong>on</strong>g>in</str<strong>on</strong>g>g. Kernels from two maize (Zeamays L) varieties (HiC7 <str<strong>on</strong>g>and</str<strong>on</strong>g> HiC23 rich <str<strong>on</strong>g>in</str<strong>on</strong>g> lute<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> zeaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g>, respectively) were used <str<strong>on</strong>g>in</str<strong>on</strong>g> thistrial. Hydrogen peroxide was added <str<strong>on</strong>g>in</str<strong>on</strong>g>to steepwater at 0, 0.15 or 0.30 M under either acidic (pH~2) or alkal<str<strong>on</strong>g>in</str<strong>on</strong>g>e (pH ~8) c<strong>on</strong>diti<strong>on</strong>s. <str<strong>on</strong>g>Corn</str<strong>on</strong>g> kernels were steeped for 48 h at 52 °C. About 50% oftotal determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed carotenoids were bleached dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g steep<str<strong>on</strong>g>in</str<strong>on</strong>g>g for the two kernel varieties at 0.30 Mof hydrogen peroxide c<strong>on</strong>centrati<strong>on</strong> under acidic c<strong>on</strong>diti<strong>on</strong>s (pH~2). <str<strong>on</strong>g>Corn</str<strong>on</strong>g> variety significantlyaffected bleach<str<strong>on</strong>g>in</str<strong>on</strong>g>g of all pigments determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed except for all-trans β-carotene. Steepwater pH hada significant effect <strong>on</strong> all-trans zeaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> all-trans β-cryptoxanth<str<strong>on</strong>g>in</str<strong>on</strong>g>. Hydrogen peroxideadditi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>to steepwater significantly affected all yellow carotenoids m<strong>on</strong>itored. Mass balancefor total carotenoid determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> corn gluten meal showed no significant effect of corn variety,suggest<str<strong>on</strong>g>in</str<strong>on</strong>g>g that bleach<str<strong>on</strong>g>in</str<strong>on</strong>g>g rates were proporti<strong>on</strong>al to the <str<strong>on</strong>g>in</str<strong>on</strong>g>itial pigment c<strong>on</strong>tent <str<strong>on</strong>g>in</str<strong>on</strong>g> the kernels.Scal<str<strong>on</strong>g>in</str<strong>on</strong>g>g-up of this procedure (us<str<strong>on</strong>g>in</str<strong>on</strong>g>g commercial-scale equipment) is necessary <str<strong>on</strong>g>in</str<strong>on</strong>g> order to assess105


the effects of dietary reduced-carotenoid CGM <strong>on</strong> astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> depositi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> muscle of salm<strong>on</strong>idfish.106


5.1 Introducti<strong>on</strong>Depositi<strong>on</strong> of carotenoids pigments, ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ly astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g>, with<str<strong>on</strong>g>in</str<strong>on</strong>g> muscle fibers results <str<strong>on</strong>g>in</str<strong>on</strong>g> thedist<str<strong>on</strong>g>in</str<strong>on</strong>g>ctive red/p<str<strong>on</strong>g>in</str<strong>on</strong>g>k colour of fillet from salm<strong>on</strong>id fish. This important flesh quality attributeplays a crucial role <strong>on</strong> f<str<strong>on</strong>g>in</str<strong>on</strong>g>al product quality <str<strong>on</strong>g>and</str<strong>on</strong>g> significantly affects c<strong>on</strong>sumers’ percepti<strong>on</strong>(Alfnes et al., 2006; Anders<strong>on</strong>, 2000). Salm<strong>on</strong>id fish are not able to synthesize astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> denovo,therefore synthetic or natural pigments are regularly <str<strong>on</strong>g>in</str<strong>on</strong>g>cluded <str<strong>on</strong>g>in</str<strong>on</strong>g> formulated diets. Thesefeed additives represent up to 10 - 20% of total feed costs (Bjerkeng, 2000; Choubert et al.,2009).Increas<str<strong>on</strong>g>in</str<strong>on</strong>g>g levels of plant-prote<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>gredients have been progressively <str<strong>on</strong>g>in</str<strong>on</strong>g>cluded <str<strong>on</strong>g>in</str<strong>on</strong>g>aquaculture feed formulati<strong>on</strong>s. <str<strong>on</strong>g>Corn</str<strong>on</strong>g> gluten meal (CGM), is a low phosphorus, prote<str<strong>on</strong>g>in</str<strong>on</strong>g>-rich(~60% crude prote<str<strong>on</strong>g>in</str<strong>on</strong>g>) by-product of the corn wet mill<str<strong>on</strong>g>in</str<strong>on</strong>g>g, which has found wide use <str<strong>on</strong>g>in</str<strong>on</strong>g> feeds formany fish species. <str<strong>on</strong>g>Corn</str<strong>on</strong>g> wet mill<str<strong>on</strong>g>in</str<strong>on</strong>g>g is an <str<strong>on</strong>g>in</str<strong>on</strong>g>dustrial process aim<str<strong>on</strong>g>in</str<strong>on</strong>g>g to separate <str<strong>on</strong>g>and</str<strong>on</strong>g> ref<str<strong>on</strong>g>in</str<strong>on</strong>g>e themajor structural comp<strong>on</strong>ents <str<strong>on</strong>g>in</str<strong>on</strong>g> corn gra<str<strong>on</strong>g>in</str<strong>on</strong>g>s (i.e. starch, gluten, germ <str<strong>on</strong>g>and</str<strong>on</strong>g> fiber) <str<strong>on</strong>g>in</str<strong>on</strong>g> order toproduce valuable products for <str<strong>on</strong>g>in</str<strong>on</strong>g>dustrial, food <str<strong>on</strong>g>and</str<strong>on</strong>g> feed applicati<strong>on</strong>s. Dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g mill<str<strong>on</strong>g>in</str<strong>on</strong>g>g, carotenoidsfrom corn gra<str<strong>on</strong>g>in</str<strong>on</strong>g>s, ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ly lute<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> zeaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g>, rema<str<strong>on</strong>g>in</str<strong>on</strong>g> embedded with<str<strong>on</strong>g>in</str<strong>on</strong>g> the gluten fracti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g>are recovered <str<strong>on</strong>g>in</str<strong>on</strong>g> CGM, accord<str<strong>on</strong>g>in</str<strong>on</strong>g>gly high levels (200 - 550 mg kg -1 ) of carotenoids are c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed<str<strong>on</strong>g>in</str<strong>on</strong>g> this commodity (Park et al., 1997; Sk<strong>on</strong>berg et al., 1998).Significant reducti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> colour attributes of muscle from salm<strong>on</strong>id fish fed dietssupplemented with CGM has been reported. Low (p


astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> depositi<strong>on</strong>, redness <str<strong>on</strong>g>and</str<strong>on</strong>g> choma (a* <str<strong>on</strong>g>and</str<strong>on</strong>g> C*ab values, tristimulus color analysis), <str<strong>on</strong>g>and</str<strong>on</strong>g>fillet colour (assessed by SalmoFan TMcolorimetric analysis) was assessed <str<strong>on</strong>g>in</str<strong>on</strong>g> muscle fromra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow trout fed diets formulated us<str<strong>on</strong>g>in</str<strong>on</strong>g>g different <str<strong>on</strong>g>in</str<strong>on</strong>g>gredient comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>s, <str<strong>on</strong>g>and</str<strong>on</strong>g> to c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g levels of CGM (up to 18% <str<strong>on</strong>g>in</str<strong>on</strong>g>clusi<strong>on</strong> level) <str<strong>on</strong>g>and</str<strong>on</strong>g> 50 mg kg -1of astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g>(unpublished data).The reducti<strong>on</strong> of fish muscle pigmentati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> resp<strong>on</strong>se to dietary CGM is possibly relatedto a negative effect of yellow carotenoids <strong>on</strong> astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> depositi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the muscle. Accord<str<strong>on</strong>g>in</str<strong>on</strong>g>gly,reduc<str<strong>on</strong>g>in</str<strong>on</strong>g>g the c<strong>on</strong>centrati<strong>on</strong> of xanthophyll pigments <str<strong>on</strong>g>in</str<strong>on</strong>g> CGM might improve its value as a fishfeed <str<strong>on</strong>g>in</str<strong>on</strong>g>gredient.Bleach<str<strong>on</strong>g>in</str<strong>on</strong>g>g of yellow pigments from CGM us<str<strong>on</strong>g>in</str<strong>on</strong>g>g different process<str<strong>on</strong>g>in</str<strong>on</strong>g>g techniques (i.e.natural maturati<strong>on</strong>, enzymatic oxidati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> solvent extracti<strong>on</strong>) has been attempted withpromis<str<strong>on</strong>g>in</str<strong>on</strong>g>g results (Cha et al., 2000; Gél<str<strong>on</strong>g>in</str<strong>on</strong>g>as et al., 1998; Park et al., 1997; Saez et al.,unpublished results). However, reducti<strong>on</strong> of pigment c<strong>on</strong>tent from corn kernels dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the courseof wet mill<str<strong>on</strong>g>in</str<strong>on</strong>g>g might represent a more practical approach from a commercial po<str<strong>on</strong>g>in</str<strong>on</strong>g>t of view.C<strong>on</strong>venti<strong>on</strong>al wet mill<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>volves the <str<strong>on</strong>g>in</str<strong>on</strong>g>cubati<strong>on</strong> of corn kernels <str<strong>on</strong>g>in</str<strong>on</strong>g> steepwater (soluti<strong>on</strong>c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g 1- 2% lactic acid <str<strong>on</strong>g>and</str<strong>on</strong>g> 0.1 - 0.2 % sulfur dioxide) for 30 - 48 h under acidic c<strong>on</strong>diti<strong>on</strong>s(pH ~ 2). Dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g steep<str<strong>on</strong>g>in</str<strong>on</strong>g>g, kernels absorb steepwater (promot<str<strong>on</strong>g>in</str<strong>on</strong>g>g soften<str<strong>on</strong>g>in</str<strong>on</strong>g>g of kernels for furthergr<str<strong>on</strong>g>in</str<strong>on</strong>g>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g) <str<strong>on</strong>g>and</str<strong>on</strong>g> sulfur dioxide breakes down prote<str<strong>on</strong>g>in</str<strong>on</strong>g> disulfide b<strong>on</strong>ds <str<strong>on</strong>g>in</str<strong>on</strong>g>duc<str<strong>on</strong>g>in</str<strong>on</strong>g>g the release of<str<strong>on</strong>g>in</str<strong>on</strong>g>soluble starch (Dailey, 2002). Additi<strong>on</strong> of a bleach<str<strong>on</strong>g>in</str<strong>on</strong>g>g agent <str<strong>on</strong>g>in</str<strong>on</strong>g>to steepwater would <str<strong>on</strong>g>in</str<strong>on</strong>g>duce theabsorpti<strong>on</strong> of oxidative species <str<strong>on</strong>g>in</str<strong>on</strong>g>side the kernel, allow<str<strong>on</strong>g>in</str<strong>on</strong>g>g the bleach<str<strong>on</strong>g>in</str<strong>on</strong>g>g of carotenoids beforecorn is separated <str<strong>on</strong>g>in</str<strong>on</strong>g>to it comp<strong>on</strong>ent parts <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>sequently reduc<str<strong>on</strong>g>in</str<strong>on</strong>g>g the recovery of yellowpigments <str<strong>on</strong>g>in</str<strong>on</strong>g> the gluten fracti<strong>on</strong>.108


The aim of this study was to assess the bleach<str<strong>on</strong>g>in</str<strong>on</strong>g>g of carotenoid pigments from CGMdur<str<strong>on</strong>g>in</str<strong>on</strong>g>g steep<str<strong>on</strong>g>in</str<strong>on</strong>g>g us<str<strong>on</strong>g>in</str<strong>on</strong>g>g a laboratory bench-scale (10 g) corn wet mill<str<strong>on</strong>g>in</str<strong>on</strong>g>g process us<str<strong>on</strong>g>in</str<strong>on</strong>g>g twodifferent high-carotenoid varieties of corn gra<str<strong>on</strong>g>in</str<strong>on</strong>g>s. Steepwater compositi<strong>on</strong> was modified by theadditi<strong>on</strong> of hydrogen peroxide (0.15 <str<strong>on</strong>g>and</str<strong>on</strong>g> 0.3 M under either acid or alkal<str<strong>on</strong>g>in</str<strong>on</strong>g>e c<strong>on</strong>diti<strong>on</strong>s).Additi<strong>on</strong>ally, yields of different fracti<strong>on</strong>s, mass balance of total starch <str<strong>on</strong>g>and</str<strong>on</strong>g> crude prote<str<strong>on</strong>g>in</str<strong>on</strong>g> as wellas the mass balance for carotenoids with<str<strong>on</strong>g>in</str<strong>on</strong>g> the gluten meal fracti<strong>on</strong> were assessed.5.2 Materials <str<strong>on</strong>g>and</str<strong>on</strong>g> methods<str<strong>on</strong>g>Corn</str<strong>on</strong>g> gra<str<strong>on</strong>g>in</str<strong>on</strong>g>s from two maize (Zea mays L.) l<str<strong>on</strong>g>in</str<strong>on</strong>g>es were produced <str<strong>on</strong>g>and</str<strong>on</strong>g> k<str<strong>on</strong>g>in</str<strong>on</strong>g>dly d<strong>on</strong>ated byProfessor Elizabeth A. Lee of the Maize Breed<str<strong>on</strong>g>in</str<strong>on</strong>g>g & Genetics Laboratory, University of Guelph.(Guelph, ON, Canada). Variety HiC-7 (Pedigree notati<strong>on</strong> URO01089 x CG102-2(G)-1-2-1) <str<strong>on</strong>g>and</str<strong>on</strong>g>variety HiC-23 (Pedigree notati<strong>on</strong> AR13026 x CG60/CG62-5(R)-1-11-1) were selected for thistrial based <strong>on</strong> their high c<strong>on</strong>tent of lute<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> zeaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g>, respectively (Burt et al., 2011). Table5.1 depicts proximate compositi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> carotenoid profile from the two different corn kernelvarieties used <str<strong>on</strong>g>in</str<strong>on</strong>g> this study.5.2.1 Bench-scale maize wet mill<str<strong>on</strong>g>in</str<strong>on</strong>g>g<str<strong>on</strong>g>Corn</str<strong>on</strong>g> gra<str<strong>on</strong>g>in</str<strong>on</strong>g>s were processed us<str<strong>on</strong>g>in</str<strong>on</strong>g>g a bench-scale mill<str<strong>on</strong>g>in</str<strong>on</strong>g>g process as proposed by Perez etal., (2001) with some modificati<strong>on</strong>s. Before steep<str<strong>on</strong>g>in</str<strong>on</strong>g>g, gra<str<strong>on</strong>g>in</str<strong>on</strong>g>s were manually cleaned <str<strong>on</strong>g>in</str<strong>on</strong>g> order toremove any foreign material or broken kernels. Seventy (70) mL of steepwater were mixed withdry corn kernels (~10 g) <str<strong>on</strong>g>in</str<strong>on</strong>g> a 250 mL beaker <str<strong>on</strong>g>and</str<strong>on</strong>g> steeped for 48 h <str<strong>on</strong>g>in</str<strong>on</strong>g> a shak<str<strong>on</strong>g>in</str<strong>on</strong>g>g water bath at 52°C <str<strong>on</strong>g>and</str<strong>on</strong>g> 100 r m<str<strong>on</strong>g>in</str<strong>on</strong>g> -1 .Hydrogen peroxide (H 2 O 2 ) was added <str<strong>on</strong>g>in</str<strong>on</strong>g>to steepwater at 0, 0.15 or 0.30 ppm under eitheracidic (pH ~2) or alkal<str<strong>on</strong>g>in</str<strong>on</strong>g>e (pH ~8) c<strong>on</strong>diti<strong>on</strong>s (additi<strong>on</strong> of 4M NaOH soluti<strong>on</strong>).109


After steep<str<strong>on</strong>g>in</str<strong>on</strong>g>g, kernels <str<strong>on</strong>g>and</str<strong>on</strong>g> steepwater were separated <str<strong>on</strong>g>and</str<strong>on</strong>g> gra<str<strong>on</strong>g>in</str<strong>on</strong>g> outer layers (hull) <str<strong>on</strong>g>and</str<strong>on</strong>g>germ fracti<strong>on</strong>s were h<str<strong>on</strong>g>and</str<strong>on</strong>g> dissected from the gra<str<strong>on</strong>g>in</str<strong>on</strong>g>s. Hull-free degermed endosperms were thenmixed with 100 ml of distilled water <str<strong>on</strong>g>and</str<strong>on</strong>g> further ground for 3 m<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> a Dup<strong>on</strong>t gr<str<strong>on</strong>g>in</str<strong>on</strong>g>der (Omnimixer 17105, Kennesaw, GA, USA) at approximately 10,000 r m<str<strong>on</strong>g>in</str<strong>on</strong>g> -1 . The resultant slurry wasmanually sieved us<str<strong>on</strong>g>in</str<strong>on</strong>g>g sta<str<strong>on</strong>g>in</str<strong>on</strong>g>less steel sieves (0.131 <str<strong>on</strong>g>and</str<strong>on</strong>g> 0.074 mm open<str<strong>on</strong>g>in</str<strong>on</strong>g>g size). <str<strong>on</strong>g>Gluten</str<strong>on</strong>g> fracti<strong>on</strong>was recovered from the sieves <str<strong>on</strong>g>and</str<strong>on</strong>g> the slurry pass<str<strong>on</strong>g>in</str<strong>on</strong>g>g through was further centrifuged at 1200 gfor 10 m<str<strong>on</strong>g>in</str<strong>on</strong>g> so higher density starch fracti<strong>on</strong> can be isolated.Different corn wet mill<str<strong>on</strong>g>in</str<strong>on</strong>g>g fracti<strong>on</strong>s (i.e. fiber, germ, gluten <str<strong>on</strong>g>and</str<strong>on</strong>g> starch) were dried <str<strong>on</strong>g>in</str<strong>on</strong>g> anoven at 35 °C until dried (overnight), ground <str<strong>on</strong>g>and</str<strong>on</strong>g> stored at -20°C until analysis. Steepwater wasdried at 105 °C <str<strong>on</strong>g>and</str<strong>on</strong>g> solids <str<strong>on</strong>g>in</str<strong>on</strong>g> steepwater were determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by mass difference. Each corn wetmill<str<strong>on</strong>g>in</str<strong>on</strong>g>g fracti<strong>on</strong> yield was determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed as the ratio of the totally dried isolated fracti<strong>on</strong> to the<str<strong>on</strong>g>in</str<strong>on</strong>g>itial amount of dried corn kernels.5.2.2 General analysis methodsSamples were analysed for dry matter <str<strong>on</strong>g>and</str<strong>on</strong>g> ash accord<str<strong>on</strong>g>in</str<strong>on</strong>g>g to AOAC (1995), crude prote<str<strong>on</strong>g>in</str<strong>on</strong>g>(%N x 6.25) us<str<strong>on</strong>g>in</str<strong>on</strong>g>g a LECO analyzer (LECO Corp., St. Joseph, MI, USA), <str<strong>on</strong>g>and</str<strong>on</strong>g> total lipid us<str<strong>on</strong>g>in</str<strong>on</strong>g>gpetroleum ether <str<strong>on</strong>g>in</str<strong>on</strong>g> a high pressure extractor (Ankom XT-20 Lipid extractor – ANKOMTechnology, Maced<strong>on</strong>, NY, USA). Total starch was determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed us<str<strong>on</strong>g>in</str<strong>on</strong>g>g a Megazyme® total starchdeterm<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> Kit (Megazyme Internati<strong>on</strong>al Irel<str<strong>on</strong>g>and</str<strong>on</strong>g>, Bray, Co. Wicklow, Irel<str<strong>on</strong>g>and</str<strong>on</strong>g>).Carotenoids extracti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>. Carotenoids from CGM samples wereextracted accord<str<strong>on</strong>g>in</str<strong>on</strong>g>g to Abdel-Aal et al. (2007). Samples (0.15 g) were mixed with 10 mL ofwater saturated butanol for 30 s <str<strong>on</strong>g>in</str<strong>on</strong>g> a PT 18/105 Ultra-turrax homogenizer (Stratford, CT, USA),110


kept for 30 m<str<strong>on</strong>g>in</str<strong>on</strong>g> at room temperature, <str<strong>on</strong>g>and</str<strong>on</strong>g> homogenized aga<str<strong>on</strong>g>in</str<strong>on</strong>g> for 30 s. The mixture wascentrifuged at 10,000 x g for 5 m<str<strong>on</strong>g>in</str<strong>on</strong>g>, <str<strong>on</strong>g>and</str<strong>on</strong>g> an aliquot of the supernatant (0.5 mL) was filteredthrough a 0.45 µm Nyl<strong>on</strong> Acrodisc syr<str<strong>on</strong>g>in</str<strong>on</strong>g>ge filter (Cole-Parmer Canada Inc., M<strong>on</strong>treal, QC). Thefirst two drops of the filtrate were discarded, <str<strong>on</strong>g>and</str<strong>on</strong>g> the rem<str<strong>on</strong>g>in</str<strong>on</strong>g>der was collected for HPLC analyses.Carotenoids from corn gluten meal samples were separated <str<strong>on</strong>g>and</str<strong>on</strong>g> quantified accord<str<strong>on</strong>g>in</str<strong>on</strong>g>g toAbdel-Aal et al. (2007) us<str<strong>on</strong>g>in</str<strong>on</strong>g>g a 1100 series liquid chromatographer (Aligent, Mississauga, ON).<str<strong>on</strong>g>Pigment</str<strong>on</strong>g>s separati<strong>on</strong> was performed <strong>on</strong> a short (10 cm x 4.6 mm, pack<str<strong>on</strong>g>in</str<strong>on</strong>g>g 3 µm) C30 column,YMC Carotenoid (Waters, Mississauga, ON, Canada), operated at 35°C. The mobile systemgradient used for eluti<strong>on</strong> was c<strong>on</strong>ducted us<str<strong>on</strong>g>in</str<strong>on</strong>g>g soluti<strong>on</strong>s of (A) methanol/methyl tert-butilether/nanopure water (81:15:4, v/v/v) <str<strong>on</strong>g>and</str<strong>on</strong>g> (B) methyl tert-butyl ether/methanol (90:10, v/v), <str<strong>on</strong>g>and</str<strong>on</strong>g>programed as follows: 0-9 m<str<strong>on</strong>g>in</str<strong>on</strong>g>, 100 - 75% A; 9 - 14 m<str<strong>on</strong>g>in</str<strong>on</strong>g>, 75 - 20% A; 14 - 15 m<str<strong>on</strong>g>in</str<strong>on</strong>g>, 25 - 0% A;17 - 18 m<str<strong>on</strong>g>in</str<strong>on</strong>g>, hold at 0% A; 17 - 18 m<str<strong>on</strong>g>in</str<strong>on</strong>g> 0 - 100% A; 18 -20 m<str<strong>on</strong>g>in</str<strong>on</strong>g> hold at 100% A. Afterseparati<strong>on</strong>, detecti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> measurement of carotenoids was c<strong>on</strong>ducted at 450 nm (all-trans-lute<str<strong>on</strong>g>in</str<strong>on</strong>g>,all-trans zeaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g>, all-trans-β-cryptoxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> all-trans-β-carotene,) <str<strong>on</strong>g>and</str<strong>on</strong>g> 478 nm (all-transastaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g>),respectively. The corresp<strong>on</strong>dence of the retenti<strong>on</strong> times <str<strong>on</strong>g>and</str<strong>on</strong>g> UV/vis spectra ofanalysed samples <str<strong>on</strong>g>and</str<strong>on</strong>g> those showed by pure authentic st<str<strong>on</strong>g>and</str<strong>on</strong>g>ards was utilized for identificati<strong>on</strong> ofcarotenoids.For identificati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> quantificati<strong>on</strong> purposes five pure authentic st<str<strong>on</strong>g>and</str<strong>on</strong>g>ards carotenoids(all-trans-astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g>, all-trans-lute<str<strong>on</strong>g>in</str<strong>on</strong>g>, all-trans-β-carotene, all-trans zeaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g>, all-trans-βcryptoxanth<str<strong>on</strong>g>in</str<strong>on</strong>g>)were utilized. Five c<strong>on</strong>centrati<strong>on</strong>s for each carotenoid were prepared <str<strong>on</strong>g>in</str<strong>on</strong>g> butanol <str<strong>on</strong>g>in</str<strong>on</strong>g>order to assess l<str<strong>on</strong>g>in</str<strong>on</strong>g>earity of the resp<strong>on</strong>se. The regressi<strong>on</strong> analysis (resp<strong>on</strong>se area v/s <str<strong>on</strong>g>in</str<strong>on</strong>g>jectedamount) showed a l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear relati<strong>on</strong>ship for all-trans-lute<str<strong>on</strong>g>in</str<strong>on</strong>g>, all-trans zeaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g>, all-trans-βcryptoxanth<str<strong>on</strong>g>in</str<strong>on</strong>g>,<str<strong>on</strong>g>and</str<strong>on</strong>g> all-trans-β-carotene with the coefficient of determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> (R 2 ) 0.9996, 0.9996,111


0.9994 <str<strong>on</strong>g>and</str<strong>on</strong>g> 0.9999, respectively. Purity of each compound <str<strong>on</strong>g>in</str<strong>on</strong>g> the diets <str<strong>on</strong>g>and</str<strong>on</strong>g> muscle extracts wasverified us<str<strong>on</strong>g>in</str<strong>on</strong>g>g isoabsorbance plot or 3D graphic <str<strong>on</strong>g>and</str<strong>on</strong>g> peak purity analyses (ChemStati<strong>on</strong>software).Nutrient mass balance. Mass balance of dry matter, total starch <str<strong>on</strong>g>in</str<strong>on</strong>g> the starch fracti<strong>on</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g>mass balance of crude prote<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> yellow xanthophylls <str<strong>on</strong>g>in</str<strong>on</strong>g> the corn gluten meal fracti<strong>on</strong> weredeterm<str<strong>on</strong>g>in</str<strong>on</strong>g>ed based <strong>on</strong> the nutrient c<strong>on</strong>tent <str<strong>on</strong>g>in</str<strong>on</strong>g> the <str<strong>on</strong>g>in</str<strong>on</strong>g>itial kernel samples <str<strong>on</strong>g>and</str<strong>on</strong>g> the percentage ofnutrient recovered <strong>on</strong> each fracti<strong>on</strong>.5.2.3 Statistical analysisFactorial ANOVA analysis was carried out <str<strong>on</strong>g>in</str<strong>on</strong>g> order to determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e the significance of eachs<str<strong>on</strong>g>in</str<strong>on</strong>g>gle factor as well as factors <str<strong>on</strong>g>in</str<strong>on</strong>g>teracti<strong>on</strong> <strong>on</strong> the yield from the different fracti<strong>on</strong>s, HPLCanalysed yellow carotenoids <str<strong>on</strong>g>in</str<strong>on</strong>g> corn gluten meal <str<strong>on</strong>g>and</str<strong>on</strong>g> nutrient mass balance <str<strong>on</strong>g>in</str<strong>on</strong>g> starch <str<strong>on</strong>g>and</str<strong>on</strong>g> corngluten meal fracti<strong>on</strong>s. All data were analysed us<str<strong>on</strong>g>in</str<strong>on</strong>g>g the SAS/STAT software (SAS versi<strong>on</strong> 9.1.3,SAS <str<strong>on</strong>g>in</str<strong>on</strong>g>stitute, Cary, NC, USA).5.3 ResultsTable 5.2 shows the results for the mass balance of dry matter <str<strong>on</strong>g>and</str<strong>on</strong>g> yields of the differentcorn fracti<strong>on</strong>s obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> this trial. Yield of gluten fracti<strong>on</strong> decreased for the two kernel varieties<str<strong>on</strong>g>and</str<strong>on</strong>g> steepwater pH <str<strong>on</strong>g>in</str<strong>on</strong>g> resp<strong>on</strong>se to <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g c<strong>on</strong>centrati<strong>on</strong>s of hydrogen peroxide. Yield of starch<str<strong>on</strong>g>in</str<strong>on</strong>g>creased for HiC7 variety under acidic steep<str<strong>on</strong>g>in</str<strong>on</strong>g>g c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> for HiC23 under both acid <str<strong>on</strong>g>and</str<strong>on</strong>g>alkal<str<strong>on</strong>g>in</str<strong>on</strong>g>e c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> resp<strong>on</strong>se to hydrogen peroxide <str<strong>on</strong>g>in</str<strong>on</strong>g>clusi<strong>on</strong>. On the other h<str<strong>on</strong>g>and</str<strong>on</strong>g>, no clear trendwas observed for HiC7 <str<strong>on</strong>g>in</str<strong>on</strong>g> alkal<str<strong>on</strong>g>in</str<strong>on</strong>g>e c<strong>on</strong>diti<strong>on</strong>s. The yield of germ fracti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>creased for both typesof corn kernel <str<strong>on</strong>g>and</str<strong>on</strong>g> steepwater pH when hydrogen peroxide c<strong>on</strong>centrati<strong>on</strong> was <str<strong>on</strong>g>in</str<strong>on</strong>g>creased. The112


yield of fiber fracti<strong>on</strong> did not show a clear trend, however higher values were obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed with theHiC7 kernel variety. F<str<strong>on</strong>g>in</str<strong>on</strong>g>ally, the yield of solids <str<strong>on</strong>g>in</str<strong>on</strong>g> steepwater showed no clear trend.Total starch <str<strong>on</strong>g>and</str<strong>on</strong>g> crude prote<str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>tent <str<strong>on</strong>g>in</str<strong>on</strong>g> starch <str<strong>on</strong>g>and</str<strong>on</strong>g> gluten fracti<strong>on</strong> are presented <str<strong>on</strong>g>in</str<strong>on</strong>g> Table5.3. Total starch c<strong>on</strong>tent <str<strong>on</strong>g>in</str<strong>on</strong>g> starch fracti<strong>on</strong> ranged from 81% to 93% <str<strong>on</strong>g>and</str<strong>on</strong>g> did not show any cleartrend. Crude prote<str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>tent <str<strong>on</strong>g>in</str<strong>on</strong>g> starch fracti<strong>on</strong> was m<str<strong>on</strong>g>in</str<strong>on</strong>g>imal (ranged from 0.16% to 0.29%). Totalstarch c<strong>on</strong>tent <str<strong>on</strong>g>in</str<strong>on</strong>g> the gluten fracti<strong>on</strong> showed no clear trend <str<strong>on</strong>g>and</str<strong>on</strong>g> varied from 24% to 26%. Crudeprote<str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>tent <str<strong>on</strong>g>in</str<strong>on</strong>g> gluten fracti<strong>on</strong> did not show a clear trend <str<strong>on</strong>g>in</str<strong>on</strong>g> this study <str<strong>on</strong>g>and</str<strong>on</strong>g> varied from 29% to43%.The carotenoid profile of corn gluten fracti<strong>on</strong>s produced <str<strong>on</strong>g>in</str<strong>on</strong>g> this trial is presented <str<strong>on</strong>g>in</str<strong>on</strong>g> Table5.4. C<strong>on</strong>centrati<strong>on</strong>s of all-trans lute<str<strong>on</strong>g>in</str<strong>on</strong>g>, all-trans zeaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g>, all-trans β-cryptoxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> all-transβ-carotene <str<strong>on</strong>g>in</str<strong>on</strong>g> gluten fracti<strong>on</strong>s obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed from variety HiC7 were reduced to <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g levels ofhydrogen peroxide under either acidic <str<strong>on</strong>g>and</str<strong>on</strong>g> alkal<str<strong>on</strong>g>in</str<strong>on</strong>g>e c<strong>on</strong>diti<strong>on</strong>s. All carotenoids from the glutenfracti<strong>on</strong>s produced from variety HiC23 were reduced under acidic c<strong>on</strong>diti<strong>on</strong> as hydrogenperoxide c<strong>on</strong>centrati<strong>on</strong> was <str<strong>on</strong>g>in</str<strong>on</strong>g>creased. On the other h<str<strong>on</strong>g>and</str<strong>on</strong>g>, under alkal<str<strong>on</strong>g>in</str<strong>on</strong>g>e c<strong>on</strong>diti<strong>on</strong>s, pigmentreducti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> gluten fracti<strong>on</strong> obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed from variety HiC23 was m<str<strong>on</strong>g>in</str<strong>on</strong>g>imal.A reducti<strong>on</strong> was observed <str<strong>on</strong>g>in</str<strong>on</strong>g> the c<strong>on</strong>centrati<strong>on</strong> of all different type of pigments fromvariety HiC7 under both acidic <str<strong>on</strong>g>and</str<strong>on</strong>g> alkal<str<strong>on</strong>g>in</str<strong>on</strong>g>e c<strong>on</strong>diti<strong>on</strong>s as well as from variety HiC23 underacidic c<strong>on</strong>diti<strong>on</strong>s to <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g levels of hydrogen peroxide. C<strong>on</strong>versely, carotenoid level <str<strong>on</strong>g>in</str<strong>on</strong>g> corngluten meal obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed from kernel variety HiC23 under alkal<str<strong>on</strong>g>in</str<strong>on</strong>g>e tended to be at a relativelyc<strong>on</strong>stant level.Results for mass balance of total starch <str<strong>on</strong>g>and</str<strong>on</strong>g> crude prote<str<strong>on</strong>g>in</str<strong>on</strong>g> are shown <str<strong>on</strong>g>in</str<strong>on</strong>g> Table 5.5. Massbalance of total starch <str<strong>on</strong>g>in</str<strong>on</strong>g>creased with hydrogen peroxide <str<strong>on</strong>g>in</str<strong>on</strong>g>clusi<strong>on</strong> for the two corn varieties113


under acidic <str<strong>on</strong>g>and</str<strong>on</strong>g> alkal<str<strong>on</strong>g>in</str<strong>on</strong>g>e c<strong>on</strong>diti<strong>on</strong>s. C<strong>on</strong>versely, mass balance of crude prote<str<strong>on</strong>g>in</str<strong>on</strong>g> was reduced <str<strong>on</strong>g>in</str<strong>on</strong>g>variety HiC7 <str<strong>on</strong>g>and</str<strong>on</strong>g> HiC23 under acidic <str<strong>on</strong>g>and</str<strong>on</strong>g> alkal<str<strong>on</strong>g>in</str<strong>on</strong>g>e c<strong>on</strong>diti<strong>on</strong>s, respectively.Tables 5.6 <str<strong>on</strong>g>and</str<strong>on</strong>g> 5.7 present mass balance of carotenoid pigments <str<strong>on</strong>g>and</str<strong>on</strong>g> the significance offactors applied, respectively. Mass balance of pigments <str<strong>on</strong>g>in</str<strong>on</strong>g> corn gluten meal produced from bothkernel varieties showed a general reducti<strong>on</strong> trend to hydrogen peroxide level under both acidic<str<strong>on</strong>g>and</str<strong>on</strong>g> alkal<str<strong>on</strong>g>in</str<strong>on</strong>g>e c<strong>on</strong>diti<strong>on</strong>s.5.4 Discussi<strong>on</strong>Bleach<str<strong>on</strong>g>in</str<strong>on</strong>g>g of yellow carotenoids from corn gluten meal was assessed us<str<strong>on</strong>g>in</str<strong>on</strong>g>g a laboratoryscalewet mill<str<strong>on</strong>g>in</str<strong>on</strong>g>g process. Hydrogen peroxide, a bleach<str<strong>on</strong>g>in</str<strong>on</strong>g>g agent widely utilized for colourreducti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> cellulosic <str<strong>on</strong>g>and</str<strong>on</strong>g> dairy products (Zer<strong>on</strong>ian <str<strong>on</strong>g>and</str<strong>on</strong>g> Inglesby, 1995; Abdel-Aal et al., 1996;Kang et al., 2010) was <str<strong>on</strong>g>in</str<strong>on</strong>g>cluded <str<strong>on</strong>g>in</str<strong>on</strong>g> steepwater <str<strong>on</strong>g>and</str<strong>on</strong>g> applied under either acidic (pH~2) or alkal<str<strong>on</strong>g>in</str<strong>on</strong>g>e(pH~11) c<strong>on</strong>diti<strong>on</strong>s. Two different corn kernel varieties were chosen based <strong>on</strong> their highcarotenoid c<strong>on</strong>tent <str<strong>on</strong>g>and</str<strong>on</strong>g> compositi<strong>on</strong> (Table 5.1).The wet mill<str<strong>on</strong>g>in</str<strong>on</strong>g>g process used <str<strong>on</strong>g>in</str<strong>on</strong>g> this trial allowed the separati<strong>on</strong> of corn kernels <str<strong>on</strong>g>in</str<strong>on</strong>g>to fivedifferent fracti<strong>on</strong>s (i.e. starch, gluten, germ, fiber <str<strong>on</strong>g>and</str<strong>on</strong>g> solids <str<strong>on</strong>g>in</str<strong>on</strong>g> steepwater). Yield of solids <str<strong>on</strong>g>in</str<strong>on</strong>g>steepwater obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> this trial did not show a clear trend <str<strong>on</strong>g>and</str<strong>on</strong>g> values were high (rang<str<strong>on</strong>g>in</str<strong>on</strong>g>g from6% to 17%) compared to those previously reported for this fracti<strong>on</strong> (Zehr et al., 1995). Thisresult suggests that large amounts of soluble compounds from corn kernels were leached <str<strong>on</strong>g>in</str<strong>on</strong>g>tosteep water dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the course of steep<str<strong>on</strong>g>in</str<strong>on</strong>g>g.Yields of germ <str<strong>on</strong>g>and</str<strong>on</strong>g> fiber fracti<strong>on</strong>s obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> this trial (Table 5.2) were similar to thoseregularly achieved dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>dustrial operati<strong>on</strong>s. H<str<strong>on</strong>g>and</str<strong>on</strong>g>-dissecti<strong>on</strong> for hull <str<strong>on</strong>g>and</str<strong>on</strong>g> germ removalapplied <str<strong>on</strong>g>in</str<strong>on</strong>g> this study most probably led to an efficient isolati<strong>on</strong> of these fracti<strong>on</strong>s. Yields of114


gluten meal fracti<strong>on</strong> achieved <str<strong>on</strong>g>in</str<strong>on</strong>g> this study (Table 5.2) were about 1.6 to 4.1 folds higher (<str<strong>on</strong>g>and</str<strong>on</strong>g>yields of starch were 0.8 to 2.0 folds lower) than those previously reported for experimental cornwet mill<str<strong>on</strong>g>in</str<strong>on</strong>g>g procedures (Zehr et al., 1995; Eckhoff et al., 1996; S<str<strong>on</strong>g>in</str<strong>on</strong>g>gh et al., 1997; Dowd, 2003).These results suggest an <str<strong>on</strong>g>in</str<strong>on</strong>g>complete separati<strong>on</strong> of the starch <str<strong>on</strong>g>and</str<strong>on</strong>g> prote<str<strong>on</strong>g>in</str<strong>on</strong>g> fracti<strong>on</strong>s.With<str<strong>on</strong>g>in</str<strong>on</strong>g> kernel endosperm, starch particles are embedded <str<strong>on</strong>g>in</str<strong>on</strong>g> prote<str<strong>on</strong>g>in</str<strong>on</strong>g> matrixes; sulfur dioxide<str<strong>on</strong>g>and</str<strong>on</strong>g> lactic acid dissolved <str<strong>on</strong>g>in</str<strong>on</strong>g> steepwater promotes the breakdown of disulfide b<strong>on</strong>ds <str<strong>on</strong>g>in</str<strong>on</strong>g> prote<str<strong>on</strong>g>in</str<strong>on</strong>g>s,thus promot<str<strong>on</strong>g>in</str<strong>on</strong>g>g the release of starch (Krochta et al., 1981; Eckhoff et al., 1999). Low starchyields obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> a laboratory-scale (10 g) wet mill<str<strong>on</strong>g>in</str<strong>on</strong>g>g process were related to n<strong>on</strong>-uniformgr<str<strong>on</strong>g>in</str<strong>on</strong>g>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g (Vignaux et al., 2006).Yields of starch <str<strong>on</strong>g>and</str<strong>on</strong>g> gluten fracti<strong>on</strong>s typically obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed under<str<strong>on</strong>g>in</str<strong>on</strong>g>dustrial c<strong>on</strong>diti<strong>on</strong>s are difficult to replicate under bench-scale laboratory c<strong>on</strong>diti<strong>on</strong>s ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ly dueto equipment limitati<strong>on</strong>s. Moreover, high-prote<str<strong>on</strong>g>in</str<strong>on</strong>g> corn kernels have been correlated with highernumbers of prote<str<strong>on</strong>g>in</str<strong>on</strong>g> matrixes embedd<str<strong>on</strong>g>in</str<strong>on</strong>g>g starch (Vignaux et al., 2006), thus limit<str<strong>on</strong>g>in</str<strong>on</strong>g>g the release ofstarch granules. The high crude prote<str<strong>on</strong>g>in</str<strong>on</strong>g> level c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> kernel varieties utilized <str<strong>on</strong>g>in</str<strong>on</strong>g> this trial(Table 5.1) might partially expla<str<strong>on</strong>g>in</str<strong>on</strong>g> the results from this trial.Incomplete separati<strong>on</strong> of starch <str<strong>on</strong>g>and</str<strong>on</strong>g> prote<str<strong>on</strong>g>in</str<strong>on</strong>g> fracti<strong>on</strong>s obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> this study can beattributed to mill<str<strong>on</strong>g>in</str<strong>on</strong>g>g shortcom<str<strong>on</strong>g>in</str<strong>on</strong>g>gs associated with equipment limitati<strong>on</strong>s. These shortcom<str<strong>on</strong>g>in</str<strong>on</strong>g>gsprobably did not have an effect <strong>on</strong> pigment reducti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the gluten fracti<strong>on</strong> which is the ma<str<strong>on</strong>g>in</str<strong>on</strong>g>objective of this study.Increase of hydrogen peroxide c<strong>on</strong>centrati<strong>on</strong> under acidic c<strong>on</strong>diti<strong>on</strong>s led to lower gluten,<str<strong>on</strong>g>and</str<strong>on</strong>g> higher starch yields (Table 5.2). The effect of hydrogen peroxide <strong>on</strong> prote<str<strong>on</strong>g>in</str<strong>on</strong>g> oxidati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>biological systems is very well documented (Stadtman <str<strong>on</strong>g>and</str<strong>on</strong>g> Lev<str<strong>on</strong>g>in</str<strong>on</strong>g>e, 2000). The highc<strong>on</strong>centrati<strong>on</strong> of hydrogen peroxide (0.03 M) used <str<strong>on</strong>g>in</str<strong>on</strong>g> this trial might have <str<strong>on</strong>g>in</str<strong>on</strong>g>duced prote<str<strong>on</strong>g>in</str<strong>on</strong>g>115


oxidati<strong>on</strong> with<str<strong>on</strong>g>in</str<strong>on</strong>g> the endosperm of kernels <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>sequently improved millability of the prote<str<strong>on</strong>g>in</str<strong>on</strong>g>matrix.Total starch <str<strong>on</strong>g>and</str<strong>on</strong>g> crude prote<str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>tent <str<strong>on</strong>g>in</str<strong>on</strong>g> the starch fracti<strong>on</strong> ranged from 81% to 93% <str<strong>on</strong>g>and</str<strong>on</strong>g>from 0.2% <str<strong>on</strong>g>and</str<strong>on</strong>g> 0.3%, respectively. On the other h<str<strong>on</strong>g>and</str<strong>on</strong>g>, total starch <str<strong>on</strong>g>and</str<strong>on</strong>g> crude prote<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> the glutenfracti<strong>on</strong> varied from 24% to 26% for all the treatments <str<strong>on</strong>g>in</str<strong>on</strong>g> this trial (Table 5.3). Substantialamounts of starch <str<strong>on</strong>g>and</str<strong>on</strong>g> low crude prote<str<strong>on</strong>g>in</str<strong>on</strong>g> level <str<strong>on</strong>g>in</str<strong>on</strong>g> the gluten fracti<strong>on</strong> are c<strong>on</strong>sistent with the<str<strong>on</strong>g>in</str<strong>on</strong>g>complete separati<strong>on</strong> of this fracti<strong>on</strong> obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> this trial. However, commercial corn glutenmeals with higher total starch c<strong>on</strong>tent have been previously reported <str<strong>on</strong>g>in</str<strong>on</strong>g> the literature (Ji et al.,2012).Carotenoid profiles determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed for the high carotenoid corn varieties utilized <str<strong>on</strong>g>in</str<strong>on</strong>g> this studywere <str<strong>on</strong>g>in</str<strong>on</strong>g> the same range of those previously reported for these types of kernels (Burt et al., 2011)<str<strong>on</strong>g>and</str<strong>on</strong>g> higher than those reported for regular corn gra<str<strong>on</strong>g>in</str<strong>on</strong>g>s (Moros et al., 2002). HiC7 varietyc<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed high levels of all-trans lute<str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>tent (58 mg kg -1 ) <str<strong>on</strong>g>and</str<strong>on</strong>g> a total pigment c<strong>on</strong>centrati<strong>on</strong> of102 mg kg -1 , whereas HiC7 variety c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed high levels of all-trans zeaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> (56 mg kg -1 ) <str<strong>on</strong>g>and</str<strong>on</strong>g>a total carotenoid c<strong>on</strong>tent of 84 mg kg -1 (Table 5.1).Carotenoid profiles of the corn gluten meal fracti<strong>on</strong> produced us<str<strong>on</strong>g>in</str<strong>on</strong>g>g steepwater with nohydrogen peroxide <str<strong>on</strong>g>in</str<strong>on</strong>g>clusi<strong>on</strong> under acidic c<strong>on</strong>diti<strong>on</strong>s (Table 5.4) were <str<strong>on</strong>g>in</str<strong>on</strong>g> the range of thosereported for commercial corn gluten meal (Moros et al., 2002). Differences <str<strong>on</strong>g>in</str<strong>on</strong>g> carotenoidcompositi<strong>on</strong> am<strong>on</strong>g corn gluten meals obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed from different corn kernel varieties reflectedpigment compositi<strong>on</strong> of corn gra<str<strong>on</strong>g>in</str<strong>on</strong>g>s utilized <str<strong>on</strong>g>in</str<strong>on</strong>g> this study (Table 5.1).C<strong>on</strong>centrati<strong>on</strong> of hydrogen peroxide <str<strong>on</strong>g>in</str<strong>on</strong>g> steepwater significantly affected carotenoidpigment reducti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> corn gluten meal (Table 5.4). The effectiveness of hydrogen peroxide <strong>on</strong>116


pigment bleach<str<strong>on</strong>g>in</str<strong>on</strong>g>g has been previously reported. Hydrogen peroxide (used as part of oxidati<strong>on</strong>system based <strong>on</strong> the Fent<strong>on</strong>’s system at a c<strong>on</strong>centrati<strong>on</strong> of 0.03%) reduced more than 30% <str<strong>on</strong>g>and</str<strong>on</strong>g>60% (measured as loss of absorbance) of total lute<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> zeaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g>, respectively <str<strong>on</strong>g>in</str<strong>on</strong>g> a fivem<str<strong>on</strong>g>in</str<strong>on</strong>g>utereacti<strong>on</strong> at 25°C (Woodall et al., 1997). Through the course of corn steep<str<strong>on</strong>g>in</str<strong>on</strong>g>g progressi<strong>on</strong>,steepwater penetrates (through the tip cap) <str<strong>on</strong>g>and</str<strong>on</strong>g> disperses with<str<strong>on</strong>g>in</str<strong>on</strong>g> different structural compartmentof the gra<str<strong>on</strong>g>in</str<strong>on</strong>g> (i.e. germ <str<strong>on</strong>g>and</str<strong>on</strong>g> endosperm) by the acti<strong>on</strong> of capillary forces (Krochta et al., 1981).Hydrogen peroxide <str<strong>on</strong>g>in</str<strong>on</strong>g>cluded <str<strong>on</strong>g>in</str<strong>on</strong>g> steepwater <str<strong>on</strong>g>in</str<strong>on</strong>g> this trial, probably <str<strong>on</strong>g>in</str<strong>on</strong>g>duced an oxidati<strong>on</strong> processwith<str<strong>on</strong>g>in</str<strong>on</strong>g> corn endosperm, thus bleach<str<strong>on</strong>g>in</str<strong>on</strong>g>g yellow carotenoids from the gluten fracti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g>c<strong>on</strong>sequently reduc<str<strong>on</strong>g>in</str<strong>on</strong>g>g the carotenoid recovery <str<strong>on</strong>g>in</str<strong>on</strong>g> corn gluten meal.<str<strong>on</strong>g>Corn</str<strong>on</strong>g> variety significantly affected the bleach<str<strong>on</strong>g>in</str<strong>on</strong>g>g of all-trans lute<str<strong>on</strong>g>in</str<strong>on</strong>g>, all-trans zeaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g>all-trans β-cryptoxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> (Table 5.4). Dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g steep<str<strong>on</strong>g>in</str<strong>on</strong>g>g, the rate of steepwater uptake is dependent<strong>on</strong> the permeability of the tip cap <str<strong>on</strong>g>and</str<strong>on</strong>g> aleur<strong>on</strong>e layer (prote<str<strong>on</strong>g>in</str<strong>on</strong>g> layer cover<str<strong>on</strong>g>in</str<strong>on</strong>g>g endosperm <str<strong>on</strong>g>in</str<strong>on</strong>g> corngra<str<strong>on</strong>g>in</str<strong>on</strong>g>s) (Krochta et al., 1981). Structural differences attributed to lower hydrogen c<strong>on</strong>centrati<strong>on</strong>s<str<strong>on</strong>g>in</str<strong>on</strong>g> resp<strong>on</strong>se to fungal degradati<strong>on</strong> have been determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed for different varieties of dried corn gra<str<strong>on</strong>g>in</str<strong>on</strong>g>(assessed us<str<strong>on</strong>g>in</str<strong>on</strong>g>g neutr<strong>on</strong> tomography analysis) (Clevel<str<strong>on</strong>g>and</str<strong>on</strong>g> et al., 2008). Differences <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>ternalstructure might change the degree of permeability <str<strong>on</strong>g>in</str<strong>on</strong>g> different varieties of corn kernels thusreduc<str<strong>on</strong>g>in</str<strong>on</strong>g>g c<strong>on</strong>tact between hydrogen peroxide <str<strong>on</strong>g>and</str<strong>on</strong>g> carotenoid molecules. Whether the two kernelsvarieties used <str<strong>on</strong>g>in</str<strong>on</strong>g> this trial presented different <str<strong>on</strong>g>in</str<strong>on</strong>g>ternal structure rema<str<strong>on</strong>g>in</str<strong>on</strong>g>s unknown <str<strong>on</strong>g>and</str<strong>on</strong>g> mightexpla<str<strong>on</strong>g>in</str<strong>on</strong>g> this result.Steepwater pH showed a significant effect <strong>on</strong> the bleach<str<strong>on</strong>g>in</str<strong>on</strong>g>g of all-trans zeaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> alltransβ-cryptoxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> (Table 5.4). Lower bleach<str<strong>on</strong>g>in</str<strong>on</strong>g>g rati<strong>on</strong>s of yellow carotenoids were observedunder alkal<str<strong>on</strong>g>in</str<strong>on</strong>g>e c<strong>on</strong>diti<strong>on</strong>s for both types of kernels. Alkal<str<strong>on</strong>g>in</str<strong>on</strong>g>e hydrogen peroxide has beenreported as an effective bleach<str<strong>on</strong>g>in</str<strong>on</strong>g>g agent for the reducti<strong>on</strong> of dark colour (expressed as total117


colour difference us<str<strong>on</strong>g>in</str<strong>on</strong>g>g a colorimeter) <str<strong>on</strong>g>in</str<strong>on</strong>g> wheat stillage (Abdel-Aal et al., 1996). However,sodium hydroxide utilized to modify steepwater alkal<str<strong>on</strong>g>in</str<strong>on</strong>g>ity <str<strong>on</strong>g>in</str<strong>on</strong>g> this trial most probably <str<strong>on</strong>g>in</str<strong>on</strong>g>creasedthe density of steep<str<strong>on</strong>g>in</str<strong>on</strong>g>g soluti<strong>on</strong> (Perry <str<strong>on</strong>g>and</str<strong>on</strong>g> Green, 1984) thus limit<str<strong>on</strong>g>in</str<strong>on</strong>g>g absorpti<strong>on</strong> of steepwaterby the kernel.Mass balance of starch obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> this trial <str<strong>on</strong>g>in</str<strong>on</strong>g>dicated that 35% to 48% of the starchc<strong>on</strong>tent <str<strong>on</strong>g>in</str<strong>on</strong>g> the <str<strong>on</strong>g>in</str<strong>on</strong>g>itial corn sample was not recovered (Table 5.5). These values are high comparedto those previously reported (6% to17% of starch loss) (Zehr et al., 1995; S<str<strong>on</strong>g>in</str<strong>on</strong>g>gh et al., 1997;Dowd, 2003). The occurrence of fermentati<strong>on</strong> dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g steep<str<strong>on</strong>g>in</str<strong>on</strong>g>g has been reported (Gawienowskiet al., 1999). Whether fermentati<strong>on</strong> of starch occurred dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g steep<str<strong>on</strong>g>in</str<strong>on</strong>g>g rema<str<strong>on</strong>g>in</str<strong>on</strong>g>s unknown <str<strong>on</strong>g>and</str<strong>on</strong>g>might expla<str<strong>on</strong>g>in</str<strong>on</strong>g> the high levels of unrecovered starch obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> this study.On the other h<str<strong>on</strong>g>and</str<strong>on</strong>g>, values for prote<str<strong>on</strong>g>in</str<strong>on</strong>g> recovery were <str<strong>on</strong>g>in</str<strong>on</strong>g> general high, from 74% to 112%.This type of results has been previously associated to a low millability of corn kernels <str<strong>on</strong>g>and</str<strong>on</strong>g> tohigh recovery of starch <str<strong>on</strong>g>in</str<strong>on</strong>g> the gluten fracti<strong>on</strong> (S<str<strong>on</strong>g>in</str<strong>on</strong>g>gh et al., 1997). Additi<strong>on</strong>ally, overestimati<strong>on</strong>of prote<str<strong>on</strong>g>in</str<strong>on</strong>g> mass balance observed <str<strong>on</strong>g>in</str<strong>on</strong>g> this trial (e.i. values exceed<str<strong>on</strong>g>in</str<strong>on</strong>g>g 100%) can be attributed tosampl<str<strong>on</strong>g>in</str<strong>on</strong>g>g errors associated to the small quantity of sample used for the quantitative determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>of nitrogen (LECO, Dumas method).Mass balance for carotenoids obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> this trial <str<strong>on</strong>g>in</str<strong>on</strong>g>dicated that a maximum of 65% <str<strong>on</strong>g>and</str<strong>on</strong>g>63% of total determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed yellow pigments c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> the <str<strong>on</strong>g>in</str<strong>on</strong>g>itial sample were recovered <str<strong>on</strong>g>in</str<strong>on</strong>g> corngluten meals produced from varieties HiC7 <str<strong>on</strong>g>and</str<strong>on</strong>g> HiC23, respectively. This result <str<strong>on</strong>g>in</str<strong>on</strong>g>dicates thatabout 25% of yellow carotenoids are lost dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the wet mill<str<strong>on</strong>g>in</str<strong>on</strong>g>g process used <str<strong>on</strong>g>in</str<strong>on</strong>g> this trial evenunder acidic c<strong>on</strong>diti<strong>on</strong>s (pH~2) <str<strong>on</strong>g>and</str<strong>on</strong>g> no hydrogen peroxide <str<strong>on</strong>g>in</str<strong>on</strong>g>clusi<strong>on</strong>. No significant effect wasdeterm<str<strong>on</strong>g>in</str<strong>on</strong>g>ed for corn variety <strong>on</strong> mass balance of carotenoids <str<strong>on</strong>g>in</str<strong>on</strong>g> this study, suggest<str<strong>on</strong>g>in</str<strong>on</strong>g>g that118


leach<str<strong>on</strong>g>in</str<strong>on</strong>g>g rates obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> this study were proporti<strong>on</strong>al to the <str<strong>on</strong>g>in</str<strong>on</strong>g>itial pigment c<strong>on</strong>tent <strong>on</strong> eachcorn variety.The laboratory-scale wet mill<str<strong>on</strong>g>in</str<strong>on</strong>g>g used <str<strong>on</strong>g>in</str<strong>on</strong>g> this trial (steep<str<strong>on</strong>g>in</str<strong>on</strong>g>g corn kernels <str<strong>on</strong>g>in</str<strong>on</strong>g> a hydrogenperoxide c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g soluti<strong>on</strong> at either acid or alkal<str<strong>on</strong>g>in</str<strong>on</strong>g>e c<strong>on</strong>diti<strong>on</strong>s) produced high yields of corngluten meal (with high total starch c<strong>on</strong>tent) <str<strong>on</strong>g>and</str<strong>on</strong>g> low yields of starch, which were attributed to an<str<strong>on</strong>g>in</str<strong>on</strong>g>complete separati<strong>on</strong> of the gluten <str<strong>on</strong>g>and</str<strong>on</strong>g> starch fracti<strong>on</strong>s.High yield of gluten fracti<strong>on</strong> but low yields of starch fracti<strong>on</strong> obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> this study wereattributed to gr<str<strong>on</strong>g>in</str<strong>on</strong>g>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g equipment limitati<strong>on</strong>. <str<strong>on</strong>g>Reducti<strong>on</strong></str<strong>on</strong>g> of yellow carotenoids c<strong>on</strong>tent <str<strong>on</strong>g>in</str<strong>on</strong>g> corngluten meal was proporti<strong>on</strong>al to the pigment c<strong>on</strong>tent <str<strong>on</strong>g>in</str<strong>on</strong>g> corn gra<str<strong>on</strong>g>in</str<strong>on</strong>g>s. Recovery of crude prote<str<strong>on</strong>g>in</str<strong>on</strong>g>did not show a clear trend, however up to 40% reducti<strong>on</strong> was assessed as hydrogen peroxidelevel was <str<strong>on</strong>g>in</str<strong>on</strong>g>creased for the HiC7 variety under acidic c<strong>on</strong>diti<strong>on</strong>s.Scale-up <str<strong>on</strong>g>and</str<strong>on</strong>g> use of commercial scale mill<str<strong>on</strong>g>in</str<strong>on</strong>g>g equipment as well as <str<strong>on</strong>g>in</str<strong>on</strong>g>-vivo pigmentati<strong>on</strong>trial are highly necessary <str<strong>on</strong>g>in</str<strong>on</strong>g> order to assess the effects of low-pigment corn gluten meal <str<strong>on</strong>g>in</str<strong>on</strong>g>clusi<strong>on</strong><str<strong>on</strong>g>in</str<strong>on</strong>g> formulated diets <strong>on</strong> muscle pigment depositi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> muscle from salm<strong>on</strong>id fish.119


TablesTable 5. 1 - Analyzed proximate compositi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> pigment c<strong>on</strong>tent of the two corn kernelvarieties used <str<strong>on</strong>g>in</str<strong>on</strong>g> the study<str<strong>on</strong>g>Corn</str<strong>on</strong>g> kernel varietyHiC7HiC23Analysed proximate compositi<strong>on</strong> (%), dry matter basisMoisture 10.5 ± 0.01 9.6 ± 0.03Crude prote<str<strong>on</strong>g>in</str<strong>on</strong>g> 11.7 ± 0.07 12.1 ± 0.05Total starch 69.3 ± 2.0 67.3 ± 0.3Lipids 4.5 ± 0.2 4.2 ± 0.3Ash 1.3 ± 0.02 1.5 ± 0.01Analysed pigment c<strong>on</strong>centrati<strong>on</strong> (mg kg -1 ), dry matter basisAll-trans lute<str<strong>on</strong>g>in</str<strong>on</strong>g> 58 ± 4.3 14 ± 0.9All-trans zeaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> 34 ± 2.5 56 ± 6.1All-trans β-cryptoxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> 7 ± 1.9 10 ± 0.8All-trans-β-carotene 4 ± 1.5 4 ± 0.9Total carotenoids 102 ± 10.2 84 ± 8.6Data are mean (n=2) ± st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard deviati<strong>on</strong>.120


Table 5. 2 - Yields of different fracti<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> mass balance of dry matter obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed us<str<strong>on</strong>g>in</str<strong>on</strong>g>g the laboratory scale corn wet mill<str<strong>on</strong>g>in</str<strong>on</strong>g>g underdifferent steep<str<strong>on</strong>g>in</str<strong>on</strong>g>g c<strong>on</strong>diti<strong>on</strong>s<str<strong>on</strong>g>Corn</str<strong>on</strong>g>SteepwaterH 2 O 2Dry matter c<strong>on</strong>tentDry matter c<strong>on</strong>tent <str<strong>on</strong>g>in</str<strong>on</strong>g> different fracti<strong>on</strong>s (%)varietypH(Mol L -1 )<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>itial kernelStarch <str<strong>on</strong>g>Gluten</str<strong>on</strong>g> Germ Fiber Solids <str<strong>on</strong>g>in</str<strong>on</strong>g>Unaccountedsample (g)steepwaterfracti<strong>on</strong>HiC7 2.0 0.00 8.9 44 (3.9) 32 (2.8) 8 (0.7) 9 (0.8) 7 (0.6) 0 (0.0)0.15 9.0 42 (3.8) 29 (2.6) 8 (0.7) 9 (0.8) 9 (0.8) 3 (0.2)0.30 9.1 50 (4.5) 19 (1.8) 8 (0.8) 9 (0.8) 10 (0.9) 4 (0.3)8.0 0.00 9.1 40 (3.6) 33 (3.0) 8 (0.8) 9 (0.8) 9 (0.8) 1 (0.1)0.15 9.1 40 (3.6) 32 (2.9) 11 (1.0) 9 (0.8) 6 (0.5) 3 (0.2)0.30 9.0 39 (3.5) 31 (2.8) 9 (0.8) 10 (0.9) 8 (0.7) 4 (0.3)HiC23 2.0 0.00 9.1 40 (3.6) 31 (2.8) 6 (0.5) 7 (0.7) 12 (1.1) 5 (0.4)0.15 9.1 44 (2.5) 28 (2.5) 7 (0.6) 7 (0.6) 10 (0.9) 5 (0.5)0.30 9.1 43 (4.0) 22 (2.0) 7 (0.6) 8 (0.7) 8 (0.8) 11 (1.0)8.0 0.00 9.2 28 (2.5) 48 (4.4) 8 (0.7) 7 (0.7) 9 (0.8) 1 (0.1)0.15 9.3 39 (3.6) 31 (2.9) 11 (1.0) 9 (0.8) 8 (0.7) 3 (0.3)0.30 9.1 31(2.8) 31 (2.8) 8 (0.7) 8 (0.7) 17 (1.5) 5 (0.5)121


<str<strong>on</strong>g>Effects</str<strong>on</strong>g> of<str<strong>on</strong>g>Corn</str<strong>on</strong>g> variety *** ** * **** NS ****Steepwater pH **** **** ** NS **** ****H 2 0 2 * **** * NS **** ****<str<strong>on</strong>g>Corn</str<strong>on</strong>g> variety * Steepwater pH NS ** NS NS **** ****<str<strong>on</strong>g>Corn</str<strong>on</strong>g> variety * H 2 0 2 * ** NS NS **** ****Steepwater pH * H 2 0 2 * ** * NS **** ****<str<strong>on</strong>g>Corn</str<strong>on</strong>g> variety * Steepwater pH * H 2 0 2 NS *** NS NS **** ****Data are mean (n=2). Values <str<strong>on</strong>g>in</str<strong>on</strong>g> brackets are expressed <str<strong>on</strong>g>in</str<strong>on</strong>g> g.; NS= Not significant; *=p


Table 5. 3 - Total starch <str<strong>on</strong>g>and</str<strong>on</strong>g> crude prote<str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>tent <str<strong>on</strong>g>in</str<strong>on</strong>g> starch <str<strong>on</strong>g>and</str<strong>on</strong>g> gluten fracti<strong>on</strong>s<str<strong>on</strong>g>Corn</str<strong>on</strong>g> variety Steepwater pH H 2 O 2 (Mol L -1 ) Starch fracti<strong>on</strong> <str<strong>on</strong>g>Gluten</str<strong>on</strong>g> fracti<strong>on</strong>TotalCrudeTotalCrudestarch (%)prote<str<strong>on</strong>g>in</str<strong>on</strong>g> (%)starch (%)Prote<str<strong>on</strong>g>in</str<strong>on</strong>g> (%)HiC7 2.0 0.00 84.9 0.26 24.8 41.10.15 83.1 0.16 24.3 37.10.30 82.6 0.27 24.9 41.08.0 0.00 84.5 0.20 25.1 29.20.15 81.0 0.27 24.2 43.70.30 82.7 0.23 23.2 41.9HiC23 2.0 0.00 87.0 0.29 25.1 37.60.15 92.7 0.25 24.5 39.90.30 90.3 0.25 24.7 41.98.0 0.00 85.8 0.25 26.1 27.60.15 89.8 0.23 23.9 39.10.30 88.9 0.25 25.1 30.5123


<str<strong>on</strong>g>Effects</str<strong>on</strong>g> of<str<strong>on</strong>g>Corn</str<strong>on</strong>g> variety NS NS NS ****Steepwater pH **** NS NS ****H 2 0 2 NS NS * NS<str<strong>on</strong>g>Corn</str<strong>on</strong>g> variety * Steepwater pH NS NS NS ****<str<strong>on</strong>g>Corn</str<strong>on</strong>g> variety * H 2 0 2 NS NS NS *Steepwater pH * H 2 0 2 * NS NS *<str<strong>on</strong>g>Corn</str<strong>on</strong>g> variety * Steepwater pH * H 2 0 2 NS NS NS NSData are mean (n=2); NS= Not significant; *=p


Table 5. 4 - Carotenoids profile <str<strong>on</strong>g>in</str<strong>on</strong>g> corn gluten meal fracti<strong>on</strong> produced under experimental c<strong>on</strong>diti<strong>on</strong>s<str<strong>on</strong>g>Corn</str<strong>on</strong>g> variety Steepwater pH H 2 O 2All-transAll-transAll-transAll-transTotal carotenoids(Mol L -1 )Lute<str<strong>on</strong>g>in</str<strong>on</strong>g>Zeaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g>β-Cryptoxanth<str<strong>on</strong>g>in</str<strong>on</strong>g>β-CaroteneHiC7 2.0 0.00 121 75 9 6 2110.15 65 40 8 3 1160.30 61 14 7 1 1078.0 0.00 92 55 8 4 1600.15 86 55 8 3 1530.30 67 40 8 2 118HiC23 2.0 0.00 18 84 11 5 1160.15 17 55 9 6 870.30 14 37 6 0 588.0 0.00 18 78 12 5 1130.15 18 69 12 6 1040.30 18 84 11 5 116125


<str<strong>on</strong>g>Effects</str<strong>on</strong>g> of<str<strong>on</strong>g>Corn</str<strong>on</strong>g> variety **** *** **** NS ****Steepwater pH NS * * NS NSH 2 0 2 **** **** *** * ****<str<strong>on</strong>g>Corn</str<strong>on</strong>g> variety * Steepwater pH NS * ** NS NS<str<strong>on</strong>g>Corn</str<strong>on</strong>g> variety * H 2 0 2 **** NS NS NS NSSteepwater pH * H 2 0 2 * ** NS NS ***<str<strong>on</strong>g>Corn</str<strong>on</strong>g> variety * Steepwater pH * H 2 0 2 * NS NS NS NSData are mean (n=2); NS= Not significant; *=p


Table 5. 5 - Mass balance of total starch <str<strong>on</strong>g>and</str<strong>on</strong>g> crude prote<str<strong>on</strong>g>in</str<strong>on</strong>g> obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed us<str<strong>on</strong>g>in</str<strong>on</strong>g>g the laboratory-scale corn wet mill<str<strong>on</strong>g>in</str<strong>on</strong>g>g<str<strong>on</strong>g>Corn</str<strong>on</strong>g>SteepwaterH 2 O 2Total starchCrude prote<str<strong>on</strong>g>in</str<strong>on</strong>g>varietypH(Mol L -1 )Initial aStarch bCGM cUnaccountedInitial aStarch bCGM cUnaccounted(g)(%)(%)fracti<strong>on</strong> (%)(g)(%)(%)fracti<strong>on</strong> (%)HiC7 2.0 0.00 6.2 54 (3.3) 11 (0.7) 35 (2.2) 1.0 1 (0.01) 112 (1.2) -13 (-0.1)0.15 6.2 50 (3.1) 10 (0.6) 40 (2.5) 1.1 1 (0.01) 93 (1.0) 7 (0.1)0.30 6.3 59 (3.7) 7 (0.4) 34 (2.1) 1.1 1 (0.01) 68 (0.7) 31 (0.3)8.0 0.00 6.3 50 (3.1) 12 (0.8) 38 (2.4) 1.1 1 (0.01) 106 (1.1) -7 (-0.1)0.15 6.3 53 (3.3) 11 (0.7) 35 (2.2) 1.1 1 (0.01) 109 (1.2) -10 (-0.1)0.30 6.2 51 (3.1) 11 (0.7) 38 (2.4) 1.0 1 (0.01) 108 (1.1) -8 (-0.1)HiC23 2.0 0.00 6.1 50 (3.0) 11 (0.7) 39 (2.4) 1.1 1 (0.01) 74 (0.8) 25 (0.3)0.15 6.1 53 (3.2) 10 (0.6) 38 (2.3) 1.1 1 (0.01) 100 (1.1) 0 (0.0)0.30 6.1 53 (3.3) 8 (0.5) 39 (2.4) 1.1 1 (0.01) 77 (0.8) 23(-0.2)8.0 0.00 6.2 35 (2.2) 19 (1.1) 46 (2.9) 1.1 1 (0.01) 109 (1.2) -10 (-0.1)0.15 6.3 52 (3.2) 11 (0.7) 37 (2.3) 1.1 1 (0.01) 101 (1.1) -1 (0.0)0.30 6.1 41 (2.5) 12 (0.7) 48 (2.9) 1.1 1 (0.01) 78 (0.9) 21 (0.2)127


<str<strong>on</strong>g>Effects</str<strong>on</strong>g> of<str<strong>on</strong>g>Corn</str<strong>on</strong>g> variety **** **** **** * **** ****Steepwater pH **** **** **** NS **** ****H 2 0 2 **** **** * NS **** ****<str<strong>on</strong>g>Corn</str<strong>on</strong>g> variety * Steepwater pH **** **** ** NS NS ND<str<strong>on</strong>g>Corn</str<strong>on</strong>g> variety * H 2 0 2 **** **** **** * *** ***Steepwater pH * H 2 0 2 **** **** **** NS * *<str<strong>on</strong>g>Corn</str<strong>on</strong>g> variety * Steepwater pH * H 2 0 2 NS **** NS NS **** ****Data are mean (n=2); Values <str<strong>on</strong>g>in</str<strong>on</strong>g> brackets are expressed <str<strong>on</strong>g>in</str<strong>on</strong>g> g.; NS= Not significant; *=p


Table 5. 6 - Mass balance of carotenoids obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> the laboratory-scale corn wet mill<str<strong>on</strong>g>in</str<strong>on</strong>g>gAll-transAll-transAll-transAll-transTotal carotenoidslute<str<strong>on</strong>g>in</str<strong>on</strong>g>zeaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g>β-cryptoxanth<str<strong>on</strong>g>in</str<strong>on</strong>g>β-carotene<str<strong>on</strong>g>Corn</str<strong>on</strong>g>pHH 2 O 2bIn cGF dUn eInGFUnInGFUnInGFUnInGFUnvarietya(μg)(%)(%)(μg)(%)(%)(μg)(%)(%)(μg)(%)(%)(μg)(%)(%)HiC7 2.0 0.00 515 66 34 303 70 30 64 41 59 32 49 51 914 65 350.15 518 33 67 305 34 66 64 34 66 32 22 78 919 33 670.30 524 21 79 309 22 78 65 20 80 33 6 94 931 20 808.0 0.00 523 53 47 308 54 46 65 38 62 33 40 60 929 52 480.15 522 48 52 308 52 48 65 38 62 33 31 69 927 48 520.30 516 37 63 304 37 63 64 35 65 32 21 79 916 36 64HiC23 2.0 0.00 130 37 63 505 46 54 86 35 65 36 35 65 757 43 570.15 131 32 68 508 27 73 87 27 73 36 44 56 762 29 710.30 131 22 78 507 15 85 86 15 85 36 0 100 760 15 858.0 0.00 132 60 40 511 67 33 87 63 37 36 54 46 766 64 360.15 134 39 61 519 38 62 88 39 61 37 46 54 779 39 61129


Data are mean (n=2).a Steepwater pH.0.30 131 38 62 506 47 53 86 35 65 36 36 64 759 43 57b H 2 O 2 (Mol L -1 ).c Carotenoid c<strong>on</strong>tent <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>itial kernel sample (dry matter basis).d Carotenoid c<strong>on</strong>tent <str<strong>on</strong>g>in</str<strong>on</strong>g> gluten fracti<strong>on</strong> (dry matter basis).130


Table 5. 7 - Significance of s<str<strong>on</strong>g>in</str<strong>on</strong>g>gle effect as well as of two-way <str<strong>on</strong>g>and</str<strong>on</strong>g> three-way <str<strong>on</strong>g>in</str<strong>on</strong>g>teracti<strong>on</strong> of factors <strong>on</strong> carotenoids mass balanceAll-transAll-transAll-transAll-transTotal carotenoidslute<str<strong>on</strong>g>in</str<strong>on</strong>g>Zeaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g>β-Cryptoxanth<str<strong>on</strong>g>in</str<strong>on</strong>g>β-Carotene<str<strong>on</strong>g>Effects</str<strong>on</strong>g> of<str<strong>on</strong>g>Corn</str<strong>on</strong>g> variety NS NS NS NS NSSteepwater pH **** **** **** NS ****H 2 0 2 **** **** **** * ****<str<strong>on</strong>g>Corn</str<strong>on</strong>g> variety * Steepwater pH NS * *** NS *<str<strong>on</strong>g>Corn</str<strong>on</strong>g> variety * H 2 0 2 * NS * NS NSSteepwater pH * H 2 0 2 NS * NS NS *<str<strong>on</strong>g>Corn</str<strong>on</strong>g> variety * Steepwater pH * H 2 0 2 *** * * NS *NS= Not significant; *=p


CHAPTER - 6 GENERAL DISCUSSIONCurrent formulati<strong>on</strong> of aquaculture feeds is based <strong>on</strong> the use of comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> of numerous<str<strong>on</strong>g>in</str<strong>on</strong>g>gredients <str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g fish meal, rendered prote<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>gredient <str<strong>on</strong>g>and</str<strong>on</strong>g> plant-orig<str<strong>on</strong>g>in</str<strong>on</strong>g> meals (Alexis et al.,1985; Cha et al., 2000; de Francesco et al., 2004). The <str<strong>on</strong>g>in</str<strong>on</strong>g>clusi<strong>on</strong> levels of fish meal have beenreduced by <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g the utilizati<strong>on</strong> of cost-effective alternative prote<str<strong>on</strong>g>in</str<strong>on</strong>g>s. A large quantity ofresearch describ<str<strong>on</strong>g>in</str<strong>on</strong>g>g the effect of new <str<strong>on</strong>g>in</str<strong>on</strong>g>gredient <strong>on</strong> growth <str<strong>on</strong>g>and</str<strong>on</strong>g> nutrient digestibility <str<strong>on</strong>g>and</str<strong>on</strong>g>depositi<strong>on</strong> has been c<strong>on</strong>ducted; however m<str<strong>on</strong>g>in</str<strong>on</strong>g>or efforts have been given to assess<str<strong>on</strong>g>in</str<strong>on</strong>g>g the effects<strong>on</strong> these <str<strong>on</strong>g>in</str<strong>on</strong>g>gredients <strong>on</strong> flesh quality such as texture <str<strong>on</strong>g>and</str<strong>on</strong>g> colour. A major goal of fish farm<str<strong>on</strong>g>in</str<strong>on</strong>g>g isthat colour of their products meets the high st<str<strong>on</strong>g>and</str<strong>on</strong>g>ards that c<strong>on</strong>sumers dem<str<strong>on</strong>g>and</str<strong>on</strong>g> (Anders<strong>on</strong>, 2000).Colour is a quality trait that dramatically <str<strong>on</strong>g>in</str<strong>on</strong>g>fluences the ec<strong>on</strong>omic value of f<str<strong>on</strong>g>in</str<strong>on</strong>g>al products,c<strong>on</strong>sequently fillets present<str<strong>on</strong>g>in</str<strong>on</strong>g>g poor muscle pigmentati<strong>on</strong> will be downgraded (i.e. reducti<strong>on</strong> ofthe ec<strong>on</strong>omic value of the product) at process<str<strong>on</strong>g>in</str<strong>on</strong>g>g plants (Anders<strong>on</strong>, 2000; Johnst<strong>on</strong> et al., 2006).Colour is the result of pigment, ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ly astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g>, depositi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> accumulati<strong>on</strong> with<str<strong>on</strong>g>in</str<strong>on</strong>g>muscle fibers. Formulated diets for farmed salm<strong>on</strong>id fish must be supplemented with premixesc<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g synthetic or natural pigments <str<strong>on</strong>g>in</str<strong>on</strong>g> order to reach market expectati<strong>on</strong>s. Dietsupplementati<strong>on</strong> with expensive pigments represents up to 15% of f<str<strong>on</strong>g>in</str<strong>on</strong>g>al cost (Bjerkeng, 2000;Choubert et al., 2009). Given the high price of commercial carotenoid premixes <str<strong>on</strong>g>and</str<strong>on</strong>g> the highec<strong>on</strong>omic impact of colour attributes <strong>on</strong> fillet’s ec<strong>on</strong>omic value, accurate <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> <strong>on</strong> theeffects of feed <str<strong>on</strong>g>in</str<strong>on</strong>g>gredients <strong>on</strong> astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> muscle depositi<strong>on</strong> is important for the properdevelopment of aquaculture feed formulati<strong>on</strong>s.<str<strong>on</strong>g>Corn</str<strong>on</strong>g> gluten meal (CGM) is a by-product of the corn wet mill<str<strong>on</strong>g>in</str<strong>on</strong>g>g process with highdigestibility <str<strong>on</strong>g>and</str<strong>on</strong>g> high prote<str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>tent that has become <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>gly used <str<strong>on</strong>g>in</str<strong>on</strong>g> diets for many fish132


species. However, anecdotal evidence from fish formulators al<strong>on</strong>g with results from fewscientific studies suggest that high <str<strong>on</strong>g>in</str<strong>on</strong>g>clusi<strong>on</strong> levels of this community results <str<strong>on</strong>g>in</str<strong>on</strong>g> the reducti<strong>on</strong> ofcolour attributes <str<strong>on</strong>g>in</str<strong>on</strong>g> muscle from salm<strong>on</strong>id fish (Mundheim et al., 2004; Sk<strong>on</strong>berg et al., 1998).The manufacture of corn gluten meal from white varieties of corn might represent a soluti<strong>on</strong> forthis problem. However the producti<strong>on</strong> levels of white corn are significantly lower compare toproducti<strong>on</strong> levels of yellow corn. Therefore the development of a practical <str<strong>on</strong>g>and</str<strong>on</strong>g> cost-effectiveprocess<str<strong>on</strong>g>in</str<strong>on</strong>g>g method for the reducti<strong>on</strong> of yellow pigments <str<strong>on</strong>g>in</str<strong>on</strong>g> corn gluten meal, us<str<strong>on</strong>g>in</str<strong>on</strong>g>g soybeanlipoxygenase, was assessed <str<strong>on</strong>g>in</str<strong>on</strong>g> Chapter 3.<str<strong>on</strong>g>Reducti<strong>on</strong></str<strong>on</strong>g> of the pigment level <str<strong>on</strong>g>in</str<strong>on</strong>g> corn gluten meal, us<str<strong>on</strong>g>in</str<strong>on</strong>g>g soybean lipoxygenase, has beenattempted by some research groups (Cha et al., 2000; Park et al., 1997) with promis<str<strong>on</strong>g>in</str<strong>on</strong>g>g results.However the experimental designs utilized <str<strong>on</strong>g>in</str<strong>on</strong>g> those studies did not c<strong>on</strong>sider many of the potentialfactors affect<str<strong>on</strong>g>in</str<strong>on</strong>g>g the activity of lipoxygenase <str<strong>on</strong>g>and</str<strong>on</strong>g> thus the degree of pigment bleach<str<strong>on</strong>g>in</str<strong>on</strong>g>g.Moreover, even though these studies explored the scale up of the developed pigment bleach<str<strong>on</strong>g>in</str<strong>on</strong>g>gmethodology, they did not assess the effect of pigment-reduced corn gluten meal <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>-vivomuscle pigmentati<strong>on</strong> trials.Screen<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>and</str<strong>on</strong>g> optimizati<strong>on</strong> of factors affect<str<strong>on</strong>g>in</str<strong>on</strong>g>g the bleach<str<strong>on</strong>g>in</str<strong>on</strong>g>g of corn gluten meal wereassessed us<str<strong>on</strong>g>in</str<strong>on</strong>g>g Plackett-Burman <str<strong>on</strong>g>and</str<strong>on</strong>g> Box-Behnken designs, respectively. Up to 91% of totalpigments were destroyed, from a CGM sample with an <str<strong>on</strong>g>in</str<strong>on</strong>g>itial c<strong>on</strong>tent of 158 mg kg -1 , when anoptimal factor comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> was applied.The pigment bleach<str<strong>on</strong>g>in</str<strong>on</strong>g>g process developed <str<strong>on</strong>g>in</str<strong>on</strong>g> Chapter 3 was successfully scaled up <str<strong>on</strong>g>and</str<strong>on</strong>g> thusthe evaluati<strong>on</strong> of pigment-bleached <str<strong>on</strong>g>and</str<strong>on</strong>g> regular corn gluten meal <strong>on</strong> muscle pigmentati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow trout was evaluated (Chapter 3). Growth parameters were not affected, however a133


significant reducti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the fillets of ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow trout was observed <str<strong>on</strong>g>in</str<strong>on</strong>g>resp<strong>on</strong>se to the <str<strong>on</strong>g>in</str<strong>on</strong>g>clusi<strong>on</strong> of 19% of corn gluten meal <str<strong>on</strong>g>in</str<strong>on</strong>g> the diet. N<strong>on</strong>etheless, the significantreducti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> muscle astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> did not affect any of the colour attributes assessed<str<strong>on</strong>g>in</str<strong>on</strong>g> this study. Similar f<str<strong>on</strong>g>in</str<strong>on</strong>g>d<str<strong>on</strong>g>in</str<strong>on</strong>g>gs have been previously reported <str<strong>on</strong>g>and</str<strong>on</strong>g> it is hypothesized thatvariati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> light scatter<str<strong>on</strong>g>in</str<strong>on</strong>g>g properties <str<strong>on</strong>g>and</str<strong>on</strong>g> lipid c<strong>on</strong>tent <str<strong>on</strong>g>in</str<strong>on</strong>g> the muscle might affect colourexpressi<strong>on</strong> (Johnst<strong>on</strong> et al., 2000).M<str<strong>on</strong>g>in</str<strong>on</strong>g>imal amounts of astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> were determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> muscle from fish fed the dietsupplemented with bleached corn gluten meal. This result suggests that highly reactive freeradicals produced dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g bleach<str<strong>on</strong>g>in</str<strong>on</strong>g>g of pigments from corn gluten meal were not effectivelyscavenged. These reactive oxygen species <str<strong>on</strong>g>in</str<strong>on</strong>g>duced lipid oxidati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> the eventual destructi<strong>on</strong> ofdietary astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g>. Sufficient antioxidant supplementati<strong>on</strong> must be c<strong>on</strong>sidered when <str<strong>on</strong>g>in</str<strong>on</strong>g>gredientprocessed us<str<strong>on</strong>g>in</str<strong>on</strong>g>g oxidative treatment are <str<strong>on</strong>g>in</str<strong>on</strong>g>cluded <str<strong>on</strong>g>in</str<strong>on</strong>g> the formulati<strong>on</strong> of compounds feed <str<strong>on</strong>g>in</str<strong>on</strong>g> orderto avoid reducti<strong>on</strong> of nutriti<strong>on</strong>al quality of f<str<strong>on</strong>g>in</str<strong>on</strong>g>al feed.Based <strong>on</strong> the significant reducti<strong>on</strong> of astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> depositi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> fillets from ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow troutobserved <str<strong>on</strong>g>in</str<strong>on</strong>g> Chapter 3, <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> order to underst<str<strong>on</strong>g>and</str<strong>on</strong>g> at what levels of <str<strong>on</strong>g>in</str<strong>on</strong>g>clusi<strong>on</strong> corn gluten mealcan potentially affect astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> muscle c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g>/or colour attributes, the effects of<str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g levels of dietary corn gluten meal <strong>on</strong> growth <str<strong>on</strong>g>and</str<strong>on</strong>g> muscle pigmentati<strong>on</strong> of ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bowtrout was explored (Chapter 4).Neither growth parameters nor feed efficiency was affected by corn gluten meal <str<strong>on</strong>g>in</str<strong>on</strong>g>clusi<strong>on</strong>.However, c<strong>on</strong>sistently with f<str<strong>on</strong>g>in</str<strong>on</strong>g>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g of Chapter 3, a significant reducti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> muscledepositi<strong>on</strong> was observed <str<strong>on</strong>g>in</str<strong>on</strong>g> resp<strong>on</strong>se to <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g levels of corn gluten meal. Inclusi<strong>on</strong> levels of134


corn gluten meal exceed<str<strong>on</strong>g>in</str<strong>on</strong>g>g 12% reduced astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> muscle c<strong>on</strong>centrati<strong>on</strong> as well as importantcolour attributes <str<strong>on</strong>g>in</str<strong>on</strong>g> the flesh.Low c<strong>on</strong>centrati<strong>on</strong>s of all-trans lute<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> all-trans zeaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> were determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> musclefrom ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow trout fed all diets used <str<strong>on</strong>g>in</str<strong>on</strong>g> this trial. This result is <str<strong>on</strong>g>in</str<strong>on</strong>g> accordance with previousstudies report<str<strong>on</strong>g>in</str<strong>on</strong>g>g depositi<strong>on</strong> of yellow xanthophylls <str<strong>on</strong>g>in</str<strong>on</strong>g> muscle from salm<strong>on</strong>id fish (Bowen et al.2002; Kitahara, 1983; Welker et al. 2001).C<strong>on</strong>sider<str<strong>on</strong>g>in</str<strong>on</strong>g>g the significant reducti<strong>on</strong> of carotenoids from corn gluten meal obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g>Chapter 3, but aim<str<strong>on</strong>g>in</str<strong>on</strong>g>g to develop a more practical process<str<strong>on</strong>g>in</str<strong>on</strong>g>g methodology from a commercialpo<str<strong>on</strong>g>in</str<strong>on</strong>g>t of view, the bleach<str<strong>on</strong>g>in</str<strong>on</strong>g>g of carotenoid pigments from corn gluten meal dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g steep<str<strong>on</strong>g>in</str<strong>on</strong>g>g(dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g c<strong>on</strong>venti<strong>on</strong>al corn wet mill<str<strong>on</strong>g>in</str<strong>on</strong>g>g process) was addressed <str<strong>on</strong>g>in</str<strong>on</strong>g> Chapter 5.Two varieties of corn kernels, with high carotenoid c<strong>on</strong>tent <str<strong>on</strong>g>and</str<strong>on</strong>g> different pigment profile,were utilized <str<strong>on</strong>g>in</str<strong>on</strong>g> order to simulate variati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> pigment c<strong>on</strong>tent of different batches of cornkernels used <str<strong>on</strong>g>in</str<strong>on</strong>g> commercial producti<strong>on</strong>. Hydrogen peroxide, an antioxidant widely utilized forcolour reducti<strong>on</strong> of cellulosic <str<strong>on</strong>g>and</str<strong>on</strong>g> dairy products, was added <str<strong>on</strong>g>in</str<strong>on</strong>g>to steepwater as a bleach<str<strong>on</strong>g>in</str<strong>on</strong>g>gagent. Based <strong>on</strong> the effective reducti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> colour of wheat stillage us<str<strong>on</strong>g>in</str<strong>on</strong>g>g alkal<str<strong>on</strong>g>in</str<strong>on</strong>g>e hydrogenperoxide (Abdel-Aal et al., 1996), pH of steepwater was modified <str<strong>on</strong>g>in</str<strong>on</strong>g> order to assess thebleach<str<strong>on</strong>g>in</str<strong>on</strong>g>g of carotenoids under acidic <str<strong>on</strong>g>and</str<strong>on</strong>g> alkal<str<strong>on</strong>g>in</str<strong>on</strong>g>e c<strong>on</strong>diti<strong>on</strong>s.High gluten yields but low starch yields were obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>and</str<strong>on</strong>g> attributed to the <str<strong>on</strong>g>in</str<strong>on</strong>g>completeseparati<strong>on</strong> of these two fracti<strong>on</strong>s due to limitati<strong>on</strong> related to gr<str<strong>on</strong>g>in</str<strong>on</strong>g>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g equipment utilized <str<strong>on</strong>g>in</str<strong>on</strong>g> thistrial thus not affect<str<strong>on</strong>g>in</str<strong>on</strong>g>g bleach<str<strong>on</strong>g>in</str<strong>on</strong>g>g of pigments. About 50% of the <str<strong>on</strong>g>in</str<strong>on</strong>g>itial carotenoid c<strong>on</strong>tent wasbleached us<str<strong>on</strong>g>in</str<strong>on</strong>g>g this methodology. <str<strong>on</strong>g>Corn</str<strong>on</strong>g> variety, hydrogen peroxide <str<strong>on</strong>g>and</str<strong>on</strong>g> steepwater pH had asignificant effect <strong>on</strong> carotenoid bleach<str<strong>on</strong>g>in</str<strong>on</strong>g>g.135


<str<strong>on</strong>g>Reducti<strong>on</strong></str<strong>on</strong>g> of pigments from corn gluten meal dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g steep<str<strong>on</strong>g>in</str<strong>on</strong>g>g of corn kernels dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g cornwet mill<str<strong>on</strong>g>in</str<strong>on</strong>g>g represent a straight forward, cost-effective approach that might f<str<strong>on</strong>g>in</str<strong>on</strong>g>d a wide use <str<strong>on</strong>g>in</str<strong>on</strong>g>commercial producti<strong>on</strong> of low carotenoid corn gluten meal for specific applicati<strong>on</strong>s such asaquaculture feed manufactur<str<strong>on</strong>g>in</str<strong>on</strong>g>g.6.1 Metabolism of carotenoids <str<strong>on</strong>g>in</str<strong>on</strong>g> fishMetabolism of carotenoid pigments <str<strong>on</strong>g>in</str<strong>on</strong>g> fish is assumed to be similar to that of dietary fat <str<strong>on</strong>g>in</str<strong>on</strong>g>mammals (Olsen <str<strong>on</strong>g>and</str<strong>on</strong>g> Baker, 2006).After <str<strong>on</strong>g>in</str<strong>on</strong>g>gesti<strong>on</strong> carotenoids are emulsified <str<strong>on</strong>g>in</str<strong>on</strong>g>to lipidemulsi<strong>on</strong>s. Polar xanthophylls distribute with<str<strong>on</strong>g>in</str<strong>on</strong>g> the emulsi<strong>on</strong>s’ surface from where they aresp<strong>on</strong>taneously transferred <str<strong>on</strong>g>in</str<strong>on</strong>g>to bile salt micelles before be<str<strong>on</strong>g>in</str<strong>on</strong>g>g absorbed through the <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>alepithelial cells (Borel et al., 1996). Whether occurrence of different types of xanthophylls with<str<strong>on</strong>g>in</str<strong>on</strong>g>lipid emulsi<strong>on</strong>s affects astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> transfer <str<strong>on</strong>g>and</str<strong>on</strong>g>/or allocati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>to mixed micelles rema<str<strong>on</strong>g>in</str<strong>on</strong>g>s to beclarified.Mixed lipid micelles reach the <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al bush border membrane where carotenoids areabsorbed through passive diffusi<strong>on</strong>. <str<strong>on</strong>g>Pigment</str<strong>on</strong>g>s can compete for absorpti<strong>on</strong> or facilitate theabsorpti<strong>on</strong> of another (Ishida <str<strong>on</strong>g>and</str<strong>on</strong>g> Bartley, 2005). Whether the presence of a mixture of polarxanthophyll with<str<strong>on</strong>g>in</str<strong>on</strong>g> the surface of mixed micelles can reduce astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> absorpti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bowtrout needs to be addresses.The mechanisms govern<str<strong>on</strong>g>in</str<strong>on</strong>g>g carotenoids translocati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>corporati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>to lipoprote<str<strong>on</strong>g>in</str<strong>on</strong>g>swith<str<strong>on</strong>g>in</str<strong>on</strong>g> the enterocyte are unknown. As no specific <str<strong>on</strong>g>in</str<strong>on</strong>g>tracellular transport for carotenoids has beendescribed, a n<strong>on</strong>-discrim<str<strong>on</strong>g>in</str<strong>on</strong>g>atory transport has been proposed (Parker, 1996; Dem<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>and</str<strong>on</strong>g> Erdman,1999), this suggests that when mixtures of different xanthophylls are absorbed, comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>s of136


different pigments would be carried <str<strong>on</strong>g>in</str<strong>on</strong>g>to the enterocyte’s Golgi apparatus <str<strong>on</strong>g>and</str<strong>on</strong>g> assembled <str<strong>on</strong>g>in</str<strong>on</strong>g>t<strong>on</strong>ascent chylomicr<strong>on</strong>s, result<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> lower astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong>s be<str<strong>on</strong>g>in</str<strong>on</strong>g>g aggregated <str<strong>on</strong>g>in</str<strong>on</strong>g>tochylomicr<strong>on</strong>s.Carotenoids are transported by lipoprote<str<strong>on</strong>g>in</str<strong>on</strong>g>s with<str<strong>on</strong>g>in</str<strong>on</strong>g> the blood stream from the <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al cells<str<strong>on</strong>g>and</str<strong>on</strong>g> to peripheral tissue. A potential <str<strong>on</strong>g>in</str<strong>on</strong>g>teracti<strong>on</strong> or competiti<strong>on</strong> between canthaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g>astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> for uptake <str<strong>on</strong>g>and</str<strong>on</strong>g>/or blood-carry<str<strong>on</strong>g>in</str<strong>on</strong>g>g capacity <str<strong>on</strong>g>in</str<strong>on</strong>g> Atlantic salm<strong>on</strong> has been reported(Kiessl<str<strong>on</strong>g>in</str<strong>on</strong>g>g et al., 2003). Whether lute<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g>/or zeaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> may <str<strong>on</strong>g>in</str<strong>on</strong>g>teract <str<strong>on</strong>g>in</str<strong>on</strong>g> the same fashi<strong>on</strong> withastaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> for transport with<str<strong>on</strong>g>in</str<strong>on</strong>g> blood stream rema<str<strong>on</strong>g>in</str<strong>on</strong>g>s to be explored.The aff<str<strong>on</strong>g>in</str<strong>on</strong>g>ity of astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> for b<str<strong>on</strong>g>in</str<strong>on</strong>g>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g sites with<str<strong>on</strong>g>in</str<strong>on</strong>g> muscle fibers has been previously studied.Whether lute<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> zeaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> show aff<str<strong>on</strong>g>in</str<strong>on</strong>g>ity similar to astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> for prote<str<strong>on</strong>g>in</str<strong>on</strong>g> complex with<str<strong>on</strong>g>in</str<strong>on</strong>g>muscle or if there are selective accumulati<strong>on</strong> mechanisms for different types pigment <str<strong>on</strong>g>in</str<strong>on</strong>g> muscleof salm<strong>on</strong>id fish rema<str<strong>on</strong>g>in</str<strong>on</strong>g>s to be explored.6.2 Factors other than carotenoids <str<strong>on</strong>g>in</str<strong>on</strong>g> corn gluten meal reduc<str<strong>on</strong>g>in</str<strong>on</strong>g>g astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> muscledepositi<strong>on</strong>A c<strong>on</strong>sistent significant reducti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> muscle astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> depositi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> resp<strong>on</strong>se to dietarycorn gluten meal was obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> Chapters 3 <str<strong>on</strong>g>and</str<strong>on</strong>g> 4. This f<str<strong>on</strong>g>in</str<strong>on</strong>g>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g c<strong>on</strong>tradicts those previouslyreported by Olsen <str<strong>on</strong>g>and</str<strong>on</strong>g> Baker (2006), who observed no reducti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> depositi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>muscle from Atlantic salm<strong>on</strong> (Salmo salar) fed diets c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g a purified synthetic source oflute<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> synthetic astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g>, compared to those fed a diet supplemented astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> as as<str<strong>on</strong>g>in</str<strong>on</strong>g>gle source of carotenoid. Anecdotal evidence from feed producers suggests that dietary<str<strong>on</strong>g>in</str<strong>on</strong>g>clusi<strong>on</strong> of wheat gluten meal results <str<strong>on</strong>g>in</str<strong>on</strong>g> the reducti<strong>on</strong> of muscle astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> depositi<strong>on</strong>, even137


though wheat gluten meal c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>s <strong>on</strong>ly about 6% - 35% of the carotenoid c<strong>on</strong>centrati<strong>on</strong> present<str<strong>on</strong>g>in</str<strong>on</strong>g> corn gluten meal.C<strong>on</strong>sider<str<strong>on</strong>g>in</str<strong>on</strong>g>g this evidence, it can be hypothesized that the observed reducti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> muscleastaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> depositi<strong>on</strong> might be attributed to the <str<strong>on</strong>g>in</str<strong>on</strong>g>teracti<strong>on</strong> of comp<strong>on</strong>ent(s), other than yellowpigments, present <str<strong>on</strong>g>in</str<strong>on</strong>g> both corn <str<strong>on</strong>g>and</str<strong>on</strong>g> wheat gluten meal such am<str<strong>on</strong>g>in</str<strong>on</strong>g>o acid compositi<strong>on</strong> for <str<strong>on</strong>g>in</str<strong>on</strong>g>stance6.3 Future researchThe results obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> this thesis suggest that future research <strong>on</strong> the evaluati<strong>on</strong> of plantorig<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>gredients <strong>on</strong> flesh quality is necessary. In-vitro studies focus<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> the behaviour ofdifferent pigments <str<strong>on</strong>g>and</str<strong>on</strong>g> comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>s of pigments dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g emulsificati<strong>on</strong>, transference <str<strong>on</strong>g>and</str<strong>on</strong>g>transport with<str<strong>on</strong>g>in</str<strong>on</strong>g> bile mixed micelles will shed light <strong>on</strong> the potential <str<strong>on</strong>g>in</str<strong>on</strong>g>teracti<strong>on</strong> or competiti<strong>on</strong>am<strong>on</strong>g carotenoids before absorpti<strong>on</strong> with<str<strong>on</strong>g>in</str<strong>on</strong>g> the <str<strong>on</strong>g>in</str<strong>on</strong>g>test<str<strong>on</strong>g>in</str<strong>on</strong>g>al wall.Evaluati<strong>on</strong> of the digestibility <str<strong>on</strong>g>and</str<strong>on</strong>g> blood appearance of pigments <str<strong>on</strong>g>in</str<strong>on</strong>g> fish fed dietssupplemented with plant-prote<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>gredients might be helpful to underst<str<strong>on</strong>g>and</str<strong>on</strong>g> how these nutrientsare absorbed <str<strong>on</strong>g>and</str<strong>on</strong>g> transported with<str<strong>on</strong>g>in</str<strong>on</strong>g> the blood stream. This can be achieved by the developmentof <str<strong>on</strong>g>in</str<strong>on</strong>g>-vitro digestibility trials <str<strong>on</strong>g>and</str<strong>on</strong>g> the determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> of specific apo-lipoprote<str<strong>on</strong>g>in</str<strong>on</strong>g>s <str<strong>on</strong>g>in</str<strong>on</strong>g> the bloodstream for example.Assessment of the aff<str<strong>on</strong>g>in</str<strong>on</strong>g>ity of lute<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> zeaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> for b<str<strong>on</strong>g>in</str<strong>on</strong>g>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g sites with<str<strong>on</strong>g>in</str<strong>on</strong>g> muscle fibermight help underst<str<strong>on</strong>g>and</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g whether reducti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> fillet from salm<strong>on</strong>idfish is due to competiti<strong>on</strong> am<strong>on</strong>g different pigments for depositi<strong>on</strong> with<str<strong>on</strong>g>in</str<strong>on</strong>g> the muscle.138


Whether reducti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> muscle astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> depositi<strong>on</strong> is the result of the <str<strong>on</strong>g>in</str<strong>on</strong>g>teracti<strong>on</strong> offactors different than carotenoid level might be also of <str<strong>on</strong>g>in</str<strong>on</strong>g>terest for future research. The potentialeffects of factors such as the high level of glutamic acid <str<strong>on</strong>g>and</str<strong>on</strong>g>/or the low lys<str<strong>on</strong>g>in</str<strong>on</strong>g>e c<strong>on</strong>tent <str<strong>on</strong>g>in</str<strong>on</strong>g> bothcorn <str<strong>on</strong>g>and</str<strong>on</strong>g> wheat gluten meal rema<str<strong>on</strong>g>in</str<strong>on</strong>g>s to be explored.139


BibliographyAas, G.H., Storebakken, T., Ruyter, B., 1999. Blood appearance, metabolic transformati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g>plasma transport prote<str<strong>on</strong>g>in</str<strong>on</strong>g>s of 14C-astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> Atlantic salm<strong>on</strong> (Salmo salar L.). FishPhysio. Biochem. 21, 325-334.Abdel-Aal, E., Sosulski, F.W., Sokhansanj, S., 1996. Bleach<str<strong>on</strong>g>in</str<strong>on</strong>g>g of wheat distillers' gra<str<strong>on</strong>g>in</str<strong>on</strong>g>s <str<strong>on</strong>g>and</str<strong>on</strong>g> itsfibre <str<strong>on</strong>g>and</str<strong>on</strong>g> prote<str<strong>on</strong>g>in</str<strong>on</strong>g> fracti<strong>on</strong>s with alkal<str<strong>on</strong>g>in</str<strong>on</strong>g>e hydrogen peroxide. Lebensm. Wiss. U, Technol. 29,210-216.Abdel-Aal, E.M., Young, J.C., Rabalski, I., Hucl, P., Fregeau-Reid, J., 2007. Identificati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g>quantificati<strong>on</strong> of seed carotenoids <str<strong>on</strong>g>in</str<strong>on</strong>g> selected wheat species. J. Agric. Food Chem. 55, 787-794.Alexis, M., Papaparaskeva-Papoutsoglou, E., Theochari, V., 1985. Formulati<strong>on</strong> of practical dietsfor ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow trout (Salmo gardneri) made by partial or complete substituti<strong>on</strong> of fish meal bypoultry by-products <str<strong>on</strong>g>and</str<strong>on</strong>g> certa<str<strong>on</strong>g>in</str<strong>on</strong>g> plant by-products. Aquaculture 50, 61-73.Alfnes, F., Guttormsen, A.G., Ste<str<strong>on</strong>g>in</str<strong>on</strong>g>e, G., Kolstad, K., 2006. C<strong>on</strong>sumers' will<str<strong>on</strong>g>in</str<strong>on</strong>g>gness to pay forthe color of salm<strong>on</strong>: A choice experiment with real ec<strong>on</strong>omic <str<strong>on</strong>g>in</str<strong>on</strong>g>centives. Am. J. Agric.Ec<strong>on</strong>. 88, 1050-1061.Anders<strong>on</strong>, S., 2000. Salm<strong>on</strong> color <str<strong>on</strong>g>and</str<strong>on</strong>g> the c<strong>on</strong>sumer. In: Johnst<strong>on</strong>, R.S. <str<strong>on</strong>g>and</str<strong>on</strong>g> Shriver, A.L. (Eds.),Proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs of the Tenth Biennial C<strong>on</strong>ference of the Internati<strong>on</strong>al Institute of FisheriesEc<strong>on</strong>omics <str<strong>on</strong>g>and</str<strong>on</strong>g> Trade Presentati<strong>on</strong>s, 2000, 1-3.140


Ando, S. <str<strong>on</strong>g>and</str<strong>on</strong>g> Hatano, M., 1988. Isolati<strong>on</strong> of apolipoprote<str<strong>on</strong>g>in</str<strong>on</strong>g>s from carotenoid-carry<str<strong>on</strong>g>in</str<strong>on</strong>g>glipoprote<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> the serum of chum salm<strong>on</strong>, Oncorhynchus keta. J. Lipid Res. 29, 1264-1271.AOAC, 1995. Official Methods of Analysis of OAC Internati<strong>on</strong>al, Sixteenth Editi<strong>on</strong>. Nati<strong>on</strong>alAcademy Press, Wash<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong>, DC., 1018 pp.Axelrod, B., Cheesbrough, T.M., Laakso, S., 1981. Lipoxygenase from soybeans: EC 1.13.11.12l<str<strong>on</strong>g>in</str<strong>on</strong>g>oleate:Oxygen oxidoreductase. In: John M. Lowenste<str<strong>on</strong>g>in</str<strong>on</strong>g> (Ed.), Methods <str<strong>on</strong>g>in</str<strong>on</strong>g> Enzymology.Academic Press, pp. 441-451.Baker, R.T.M., Pfeiffer, A.M., Schöner, F.J., Smith-Lemm<strong>on</strong>, L., 2002. <str<strong>on</strong>g>Pigment</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g efficacy ofastaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> canthaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> fresh-water reared Atlantic salm<strong>on</strong>, Salmo salar. Anim.Feed Sci. Technol. 99, 97-106.Bar<strong>on</strong>e, R., Briante, R., D'Auria, S., Febbraio, F., Vaccaro, C., Del Giudice, L., Borrelli, G., DiF<strong>on</strong>zo, N., Nucci, R., 1999. Purificati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> characterizati<strong>on</strong> of a lipoxygenase enzymefrom durum wheat semol<str<strong>on</strong>g>in</str<strong>on</strong>g>a. J. Agric. Food Chem. 47, 1924-1931.Bjerkeng, B., 2000. Carotenoid pigmentati<strong>on</strong> of salm<strong>on</strong>id fishes-recent progress. In: Cruz-Suarez, L.E., Ricque-Marie, D., Tapia-Salazar, M. (Eds.), Avances En Nutrici<strong>on</strong> AcuıcolaV. Memorias Del V Simposium Internaci<strong>on</strong>al De Nutrici<strong>on</strong> Acuıcola. 2000, 19-22.Bjerkeng, B. <str<strong>on</strong>g>and</str<strong>on</strong>g> Berge, G.M., 2000. Apparent digestibility coefficients <str<strong>on</strong>g>and</str<strong>on</strong>g> accumulati<strong>on</strong> ofastaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> E/Z isomers <str<strong>on</strong>g>in</str<strong>on</strong>g> Atlantic salm<strong>on</strong> (Salmo salar L.) <str<strong>on</strong>g>and</str<strong>on</strong>g> Atlantic halibut(Hippoglossus hippoglossus L.). Comp. Biochem. Physiol. Part B: Biochem. Mol. Biol. 127,423-432.141


Bjerkeng, B., Hatlen, B., Wathne, E., 1999. Depositi<strong>on</strong> of astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> fillets of Atlanticsalm<strong>on</strong> (Salmo salar) fed diets with herr<str<strong>on</strong>g>in</str<strong>on</strong>g>g, capel<str<strong>on</strong>g>in</str<strong>on</strong>g>, s<str<strong>on</strong>g>and</str<strong>on</strong>g>eel, or Peruvian high PUFA oils.Aquaculture 180, 307-319.Bjerkeng, B., Storebakken, T., Liaaen-Jensen, S., 1992. <str<strong>on</strong>g>Pigment</str<strong>on</strong>g>ati<strong>on</strong> of ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow trout from startfeed<str<strong>on</strong>g>in</str<strong>on</strong>g>g to sexual maturati<strong>on</strong>. Aquaculture 108, 333-346.Bjerkeng, B., 2008. Carotenoids <str<strong>on</strong>g>in</str<strong>on</strong>g> aquaculture: Fish <str<strong>on</strong>g>and</str<strong>on</strong>g> crustaceans. In: Britt<strong>on</strong>, G., Liaaen-Jensen, h.c.S., Pf<str<strong>on</strong>g>and</str<strong>on</strong>g>er, H. (Eds.), Carotenoids, Natural Functi<strong>on</strong>s. Basel, Switzerlnd.Bjerkeng, B., Føll<str<strong>on</strong>g>in</str<strong>on</strong>g>g, M., Lagocki, S., Storebakken, T., Olli, J.J., Alsted, N., 1997.Bioavailability of all-E-astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Z-isomers of astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow trout(Oncorhynchus mykiss). Aquaculture 157, 63-82.Bless<str<strong>on</strong>g>in</str<strong>on</strong>g>, C.W. 1962. Carotenoids of corn <str<strong>on</strong>g>and</str<strong>on</strong>g> sorghum. I. Analytical procedure. Cereal Chem 39,236-242.Borel, P., Grolier, P., Arm<str<strong>on</strong>g>and</str<strong>on</strong>g>, M., Partier, A., Laf<strong>on</strong>t, H., Lair<strong>on</strong>, D., Azais-Braesco, V., 1996.Carotenoids <str<strong>on</strong>g>in</str<strong>on</strong>g> biological emulsi<strong>on</strong>s: solubility, surface-to-core distributi<strong>on</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g> releasefrom lipid droplets. J. Lipid Res. 37, 250-261.Bowen, J., Soutar, C., Serwata, R.D., Lagocki, S., White, D.A., Davies, S.J., Young, A.J., 2002.Utilizati<strong>on</strong> of (3S,3'S)-astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> acyl esters <str<strong>on</strong>g>in</str<strong>on</strong>g> pigmentati<strong>on</strong> of ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow trout(Oncorhynchus mykiss). Aquacult. Nutr. 8, 59-68.142


Brenna, O.V. <str<strong>on</strong>g>and</str<strong>on</strong>g> Berardo, N., 2004. Applicati<strong>on</strong> of near-<str<strong>on</strong>g>in</str<strong>on</strong>g>frared reflectance spectroscopy(NIRS) to the evaluati<strong>on</strong> of carotenoids c<strong>on</strong>tent <str<strong>on</strong>g>in</str<strong>on</strong>g> maize. J. Agric. Food Chem. 52, 5577-5582.Bureau, D., Hua, K., Cho, C.Y., 2006. Effect of feed<str<strong>on</strong>g>in</str<strong>on</strong>g>g level <strong>on</strong> growth <str<strong>on</strong>g>and</str<strong>on</strong>g> nutrient depositi<strong>on</strong><str<strong>on</strong>g>in</str<strong>on</strong>g> ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow trout (Oncorhynchus mykiss Walbaum) grow<str<strong>on</strong>g>in</str<strong>on</strong>g>g from 150 to 600g. Aquac. Res.37, 1090-1098.Burt, A.J., Gra<str<strong>on</strong>g>in</str<strong>on</strong>g>ger, C.M., Smid, M.P., Shelp, B.J., Lee, E.A., 2011. Allele m<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g of exoticmaize germplasm to enhance macular carotenoids. Crop Sci. 51, 991-1004.Canadian Council <strong>on</strong> Animal Care. 1984. Guide to the Care <str<strong>on</strong>g>and</str<strong>on</strong>g> use of Experimental Animals.Ottawa, Ontario, Canada.Castenmiller, J. <str<strong>on</strong>g>and</str<strong>on</strong>g> West, C.E., 1998. Bioavailability <str<strong>on</strong>g>and</str<strong>on</strong>g> bioc<strong>on</strong>versi<strong>on</strong> of carotenoids. Annu.Rev. Nutr. 18, 19-38.Cha, J.Y., Flores, R.A., Park, H., 2000. <str<strong>on</strong>g>Reducti<strong>on</strong></str<strong>on</strong>g> of carotenoids <str<strong>on</strong>g>in</str<strong>on</strong>g> corn gluten meal with soyflour. Transcripti<strong>on</strong> of the ASAE 43, 1169-1174.Chikere, A.C., Galunsky, B., Overmeyer, A., Brunner, G., Kasche, V., 2000. Activity <str<strong>on</strong>g>and</str<strong>on</strong>g>stability of immobilised soybean lipoxygenase-1 <str<strong>on</strong>g>in</str<strong>on</strong>g> aqueous <str<strong>on</strong>g>and</str<strong>on</strong>g> supercritical carb<strong>on</strong> dioxidemedia. Biotechnol. Lett. 22, 1815-1821.Choubert, G., Milicua, J., Gomez, R., Sancé, S., Petit, H., Nègre-Sadargues, G., Castillo, R.,Trilles, J., 1995. Utilizati<strong>on</strong> of carotenoids from various sources by ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow trout: musclecolour, carotenoid digestibility <str<strong>on</strong>g>and</str<strong>on</strong>g> retenti<strong>on</strong>. Aquacult. Int. 3, 205-216.143


Choubert, G., Cravedi, J., Laurentie, M., 2009. Effect of alternate distributi<strong>on</strong> of astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>on</strong>ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow trout (Oncorhynchus mykiss) muscle pigmentati<strong>on</strong>. Aquaculture 286, 100-104.Choubert, G., Mendes-P<str<strong>on</strong>g>in</str<strong>on</strong>g>to, M., Morais, R., 2006. <str<strong>on</strong>g>Pigment</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g efficacy of astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> fed tora<str<strong>on</strong>g>in</str<strong>on</strong>g>bow trout Oncorhynchus mykiss: Effect of dietary astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> lipid sources.Aquaculture 257, 429-436.Christiansen, R., Struksnaes, G., Estermann, R., Torrissen, O., 1995. Assessment of flesh colour<str<strong>on</strong>g>in</str<strong>on</strong>g> Atlantic salm<strong>on</strong>, Salmo salar L. Aquac. Res. 26, 311-321.Clevel<str<strong>on</strong>g>and</str<strong>on</strong>g> I.V., T.E., Hussey, D.S., Chen, Z.-., Jacobs<strong>on</strong>, D.L., Brown, R.L., Carter-Wientjes, C.,Clevel<str<strong>on</strong>g>and</str<strong>on</strong>g>, T.E., Arif, M., 2008. The use of neutr<strong>on</strong> tomography for the structural analysisof corn kernels. J. Cereal Sci. 48, 517-525.Cohen, B., Grossman, S., Kle<str<strong>on</strong>g>in</str<strong>on</strong>g>, B.P., P<str<strong>on</strong>g>in</str<strong>on</strong>g>sky, A., 1985. <str<strong>on</strong>g>Pigment</str<strong>on</strong>g> bleach<str<strong>on</strong>g>in</str<strong>on</strong>g>g by soybeanlipoxygenase type-2 <str<strong>on</strong>g>and</str<strong>on</strong>g> the effect of specific chemical modificati<strong>on</strong>s. BBA - Lipid Met.837, 279-287.<str<strong>on</strong>g>Corn</str<strong>on</strong>g> Ref<str<strong>on</strong>g>in</str<strong>on</strong>g>ers Associati<strong>on</strong>, 2010. Annual report. Tell<str<strong>on</strong>g>in</str<strong>on</strong>g>g the positive story of corn. Wash<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong>,DC, USA.Dailey, O., 2002. Effect of lactic acid <strong>on</strong> prote<str<strong>on</strong>g>in</str<strong>on</strong>g> solubilizati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> starch yield <str<strong>on</strong>g>in</str<strong>on</strong>g> corn wet-millsteep<str<strong>on</strong>g>in</str<strong>on</strong>g>g: a study of hybrid effects. Cereal Chemistry. 79, 257-260.Davis, K., 2001. <str<strong>on</strong>g>Corn</str<strong>on</strong>g> mill<str<strong>on</strong>g>in</str<strong>on</strong>g>g, process<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>and</str<strong>on</strong>g> generati<strong>on</strong> of co-products. M<str<strong>on</strong>g>in</str<strong>on</strong>g>nesota Nutriti<strong>on</strong>C<strong>on</strong>ference, M<str<strong>on</strong>g>in</str<strong>on</strong>g>nesota <str<strong>on</strong>g>Corn</str<strong>on</strong>g> Growers Associati<strong>on</strong>, Technical Symposium, 2001,M<str<strong>on</strong>g>in</str<strong>on</strong>g>nesota.144


de Francesco, M., Parisi, G., Medale, F., Lupi, P., Kaushik, S.J., Poli, B.M., 2004. Effect of l<strong>on</strong>gtermfeed<str<strong>on</strong>g>in</str<strong>on</strong>g>g with a plant prote<str<strong>on</strong>g>in</str<strong>on</strong>g> mixture based diet <strong>on</strong> growth <str<strong>on</strong>g>and</str<strong>on</strong>g> body/fillet quality traitsof large ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow trout (Oncorhynchus mykiss). Aquaculture 236, 413-429.De Gracia, M., Owen, F., Lowry, S., 1989. <str<strong>on</strong>g>Corn</str<strong>on</strong>g> gluten meal <str<strong>on</strong>g>and</str<strong>on</strong>g> blood meal mixture for dairycows <str<strong>on</strong>g>in</str<strong>on</strong>g> midlactati<strong>on</strong>. J Dairy Sci 72, 3064-3069.Dem<str<strong>on</strong>g>in</str<strong>on</strong>g>g, D.N. <str<strong>on</strong>g>and</str<strong>on</strong>g> Erdman, W., 1999. Mammalian carotenoid absorpti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> metabolism. PureAppl. Chem. 71, 2213-2223.Dowd, M.K., 2003. Improvements to laboratory-scale maize wet-mill<str<strong>on</strong>g>in</str<strong>on</strong>g>g procedures. IndustrialCrops <str<strong>on</strong>g>and</str<strong>on</strong>g> Products 18, 67-76.Dumas, A., France, J., Bureau, D.P., 2007. Evidence of three growth stanzas <str<strong>on</strong>g>in</str<strong>on</strong>g> ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow trout(Oncorhynchus mykiss) across life stages <str<strong>on</strong>g>and</str<strong>on</strong>g> adaptati<strong>on</strong> of the thermal-unit growthcoefficient. Aquaculture 267, 139-146.Eckhoff, S.R., Du, L., Yang, P., Rausch, K.D., Wang, D.L., Li, B.H., Tumbles<strong>on</strong>, M.E., 1999.Comparis<strong>on</strong> between alkali <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>venti<strong>on</strong>al corn wet-mill<str<strong>on</strong>g>in</str<strong>on</strong>g>g: 100-g procedures. CerealChem. 76, 96-99.Eckhoff, S., S<str<strong>on</strong>g>in</str<strong>on</strong>g>gh, S., Zehr, B., Rausch, K., Fox, E., Mistry, A., Haken, A., Niu, Y., Zou, S.,Buriak, P., 1996. A 100-g laboratory corn wet-mill<str<strong>on</strong>g>in</str<strong>on</strong>g>g procedure. Cereal Chem. 73, 54-57.FAO (Food <str<strong>on</strong>g>and</str<strong>on</strong>g> Agriculture Organizati<strong>on</strong> of the United Nati<strong>on</strong>s). 2012. The state of worldfisheries <str<strong>on</strong>g>and</str<strong>on</strong>g> aquaculture. Rome, Italy.145


Fauc<strong>on</strong>neau, B., Andre, S., Chmaitilly, J., Le Bail, P.Y., Krieg, F., Kaushik, S.J., 1997. C<strong>on</strong>trolof skeletal muscle fibres <str<strong>on</strong>g>and</str<strong>on</strong>g> adipose cells size <str<strong>on</strong>g>in</str<strong>on</strong>g> the flesh of ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow trout. Journal of FishBiology 50, 296-314.Frankel, E.N., 2005. Lipid Oxidati<strong>on</strong>. The Oily Press, Bridgwater, Engl<str<strong>on</strong>g>and</str<strong>on</strong>g>. 470 pp.Funaba, M., Matsumoto, C., Matsuki, K., Gotoh, K., Kaneko, M., Iriki, T., Hatano, Y., Abe, M.,2002. Comparis<strong>on</strong> of corn gluten meal <str<strong>on</strong>g>and</str<strong>on</strong>g> meat meal as a prote<str<strong>on</strong>g>in</str<strong>on</strong>g> source <str<strong>on</strong>g>in</str<strong>on</strong>g> dry foodsformulated for cats. Am J Vet Res 69, 1247-1251.Furr, H.C. <str<strong>on</strong>g>and</str<strong>on</strong>g> Clark, R.M., 1997. Intest<str<strong>on</strong>g>in</str<strong>on</strong>g>al absorpti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> tissue distributi<strong>on</strong> of carotenoids. J.Nutr. Biochem. 8, 364-377.Galitsky, C., Worrell, E., Ruth, M., 2003. Energy efficiency improvement <str<strong>on</strong>g>and</str<strong>on</strong>g> cost sav<str<strong>on</strong>g>in</str<strong>on</strong>g>gopportunities for the corn wet mill<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>dustry. An energy star guide for energy <str<strong>on</strong>g>and</str<strong>on</strong>g> plantmanagers. University of California, Berkeley. USA.Gawienowski, M., Eckhoff, S., Yang, P., Rayapati, P., B<str<strong>on</strong>g>in</str<strong>on</strong>g>der, T., Brisk<str<strong>on</strong>g>in</str<strong>on</strong>g>, D., 1999. Fate ofmaize DNA dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g steep<str<strong>on</strong>g>in</str<strong>on</strong>g>g, wet-mill<str<strong>on</strong>g>in</str<strong>on</strong>g>g, <str<strong>on</strong>g>and</str<strong>on</strong>g> process<str<strong>on</strong>g>in</str<strong>on</strong>g>g. Cereal Chem. 76, 371-374.Gél<str<strong>on</strong>g>in</str<strong>on</strong>g>as, P., Poitras, E., McK<str<strong>on</strong>g>in</str<strong>on</strong>g>n<strong>on</strong>, C.M., Mor<str<strong>on</strong>g>in</str<strong>on</strong>g>, A., 1998. Oxido-reductases <str<strong>on</strong>g>and</str<strong>on</strong>g> lipases asdough-bleach<str<strong>on</strong>g>in</str<strong>on</strong>g>g agents. Cereal Chem. 75, 810-814.Gökmen, V., Bahceci, S., Acar, J., 2002. Characterizati<strong>on</strong> of crude lipoxygenase extract fromgreen pea us<str<strong>on</strong>g>in</str<strong>on</strong>g>g a modified spectrophotometric method. Eur. Food Res. Technol. 215, 42-45.146


Gökmen, V., Serpen, A., Atli, A., Köksel, H., 2007. A practical spectrophotometric approach forthe determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> of lipoxygenase activity of durum wheat. Cereal Chem. 84, 290.Hardy, R.W., Torrissen, O.J., Scott, T.M., 1990. Absorpti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> distributi<strong>on</strong> of 14C-labeledcanthaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow trout (Oncorhynchus mykiss). Aquaculture 87, 331-340.Henmi, H., Hata, M., Hata, M., 1989. Astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g>/or canthaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g>-actomyos<str<strong>on</strong>g>in</str<strong>on</strong>g> complex <str<strong>on</strong>g>in</str<strong>on</strong>g>salm<strong>on</strong> muscle. Bull. Chem. Soc. Jpn. 55, 1583-1589.Henmi, H., Iwata, T., Hata, M., Hata, M., 1987. Studies <strong>on</strong> the carotenoids <str<strong>on</strong>g>in</str<strong>on</strong>g> the muscle ofsalm<strong>on</strong>s, I. Intracellular distributi<strong>on</strong> of carotenoids <str<strong>on</strong>g>in</str<strong>on</strong>g> the muscle. Tohoku J. Agr. Res. 37,101-111.Ishida, B.K. <str<strong>on</strong>g>and</str<strong>on</strong>g> Bartley, G.E., 2005. Carotenoids: Chemistry, sources, <str<strong>on</strong>g>and</str<strong>on</strong>g> physiology. In:Caballero, B., Allen, L., Prentice, A. (Eds.), Encyclopedia of Human Nutriti<strong>on</strong>, 2nd Ed.Elsevier, Oxford, U.K., pp. 330-338.Jacks<strong>on</strong>, H., Braun, C., Braun, C., Ernst, H., 2008. The chemistry of novel xanthophyllcarotenoids. Am J Cardiol. 101, 50D-57D.Jaren-Galan, M. <str<strong>on</strong>g>and</str<strong>on</strong>g> M<str<strong>on</strong>g>in</str<strong>on</strong>g>guez-Mosquera, M., 1999. Effect of pepper lipoxygenase activity <str<strong>on</strong>g>and</str<strong>on</strong>g>its l<str<strong>on</strong>g>in</str<strong>on</strong>g>ked reacti<strong>on</strong>s <strong>on</strong> pigments of the pepper fruit. J. Agric. Food Chem. 47, 4532-4536.Ji, Y.F., Zuo, L.F., Wang, F.F., Li, D.F., Lai, C., 2012. Nutriti<strong>on</strong>al value of 15 corn gluten mealsfor grow<str<strong>on</strong>g>in</str<strong>on</strong>g>g pigs: chemical compositi<strong>on</strong>, energy c<strong>on</strong>tent <str<strong>on</strong>g>and</str<strong>on</strong>g> am<str<strong>on</strong>g>in</str<strong>on</strong>g>o acid digestibility. ArchTierernahr 66, 283-312.147


Johnst<strong>on</strong>, I., Li, X., Vieira, V., Nickell, D., D<str<strong>on</strong>g>in</str<strong>on</strong>g>gwall, A., Alders<strong>on</strong>, R., Campbell, P., Bickerdike,R., 2006. <strong>Muscle</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> flesh quality traits <str<strong>on</strong>g>in</str<strong>on</strong>g> wild <str<strong>on</strong>g>and</str<strong>on</strong>g> farmed Atlantic salm<strong>on</strong>. Aquaculture256, 323-336.Johnst<strong>on</strong>, I.A., Alders<strong>on</strong>, R., S<str<strong>on</strong>g>and</str<strong>on</strong>g>ham, C., D<str<strong>on</strong>g>in</str<strong>on</strong>g>gwall, A., Mitchell, D., Selkirk, C., Nickell, D.,Baker, R., Roberts<strong>on</strong>, B., Whyte, D., Spr<str<strong>on</strong>g>in</str<strong>on</strong>g>gate, J., 2000. <strong>Muscle</strong> fibre density <str<strong>on</strong>g>in</str<strong>on</strong>g> relati<strong>on</strong> tothe colour <str<strong>on</strong>g>and</str<strong>on</strong>g> texture of smoked Atlantic salm<strong>on</strong> (Salmo salar L.). Aquaculture 189, 335-349.Junqueira, R., Rocha, F., Moreira, M., Castro, I., 2007. Effect of proof<str<strong>on</strong>g>in</str<strong>on</strong>g>g time <str<strong>on</strong>g>and</str<strong>on</strong>g> wheat flourstrength <strong>on</strong> bleach<str<strong>on</strong>g>in</str<strong>on</strong>g>g, sensory characteristics, <str<strong>on</strong>g>and</str<strong>on</strong>g> volume of French breads with addedsoybean lipoxygenase. Cereal Chem. 84, 443-449.Kang, E., Campbell, R., Bastian, E., Drake, M., 2010. Invited review: Annatto usage <str<strong>on</strong>g>and</str<strong>on</strong>g>bleach<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> dairy foods. J. Dairy Sci. 93, 3891-3901.Kanamaru, K., Wang, S., Abe, J., Yamada, T., Kitamura, K., 2006. Identificati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g>characterizati<strong>on</strong> of wild soybean (Glyc<str<strong>on</strong>g>in</str<strong>on</strong>g>e soja Sieb. et Zecc.) stra<str<strong>on</strong>g>in</str<strong>on</strong>g>s with high lute<str<strong>on</strong>g>in</str<strong>on</strong>g>c<strong>on</strong>tent. Breed. Sci. 56, 231-234.Kaushik, S.J., Cravedi, J.P., Lalles, J.P., Sumpter, J., Fauc<strong>on</strong>neau, B., Laroche, M., 1995. Partialor total replacement of fish meal by soybean prote<str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>on</strong> growth, prote<str<strong>on</strong>g>in</str<strong>on</strong>g> utilizati<strong>on</strong>, potentialestrogenic or antigenic effects, cholesterolemia <str<strong>on</strong>g>and</str<strong>on</strong>g> flesh quality <str<strong>on</strong>g>in</str<strong>on</strong>g> ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow trout,Oncorhynchus mykiss. Aquaculture 133, 257-274.148


Kiessl<str<strong>on</strong>g>in</str<strong>on</strong>g>g, A., Olsen, R., Buttle, L. 2003. Given the same dietary carotenoid <str<strong>on</strong>g>in</str<strong>on</strong>g>clusi<strong>on</strong>, Atlanticsalm<strong>on</strong>, Salmo salar (L.) displays higher blood levels of canthaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> than astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g>.Aquacult. Nutriti<strong>on</strong> 9, 253-261.Kitahara, T. 1983. Behavior of carotenoids <str<strong>on</strong>g>in</str<strong>on</strong>g> the chum salm<strong>on</strong> (Oncorhynchus keta) dur<str<strong>on</strong>g>in</str<strong>on</strong>g>ganadromous migrati<strong>on</strong>. Comp. Biochem. Physiol. B. 76, 97-101.Kitahara, T. 1984. Carotenoids <str<strong>on</strong>g>in</str<strong>on</strong>g> the Pacific salm<strong>on</strong> dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the mar<str<strong>on</strong>g>in</str<strong>on</strong>g>e period. Comp. Biochem.Physiol. B. 78, 859-862.Krochta, J., Look, K., W<strong>on</strong>g, L., 1981. Modificati<strong>on</strong> of corn wet-mill<str<strong>on</strong>g>in</str<strong>on</strong>g>g steep<str<strong>on</strong>g>in</str<strong>on</strong>g>g c<strong>on</strong>diti<strong>on</strong>s toreduce energy c<strong>on</strong>sumpti<strong>on</strong>. J. Food Process Pres. 5, 39-47.Leclercq, E., Dick, J.R., Taylor, J.F., Bell, J.G., Hunter, D., Migaud, H., 2010. Seas<strong>on</strong>alvariati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> sk<str<strong>on</strong>g>in</str<strong>on</strong>g> pigmentati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> flesh quality of Atlantic salm<strong>on</strong> (Salmo salar L.):implicati<strong>on</strong>s for quality management. J. Agric. Food Chem. 58, 7036-7045.Lee, J.D., Shann<strong>on</strong>, J.G., So, Y.S., Sleper, D.A., Nels<strong>on</strong>, R.L., Lee, J.H., Choung, M.G., 2009.Envir<strong>on</strong>mental effects <strong>on</strong> lute<str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>tent <str<strong>on</strong>g>and</str<strong>on</strong>g> relati<strong>on</strong>ship of lute<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> other seedcomp<strong>on</strong>ents <str<strong>on</strong>g>in</str<strong>on</strong>g> soybean. Plant Breed<str<strong>on</strong>g>in</str<strong>on</strong>g>g 128, 97-100.Leenhardt, F., Lyan, B., Rock, E., Boussard, A., Potus, J., Chanliaud, E., Remesy, C., 2006.Wheat lipoxygenase activity <str<strong>on</strong>g>in</str<strong>on</strong>g>duces greater loss of carotenoids than vitam<str<strong>on</strong>g>in</str<strong>on</strong>g> E dur<str<strong>on</strong>g>in</str<strong>on</strong>g>gbreadmak<str<strong>on</strong>g>in</str<strong>on</strong>g>g. J. Agric. Food Chem. 54, 1710-1715.149


Li, M.H., Oberle, D.F., Lucas, P.M., 2011. Evaluati<strong>on</strong> of corn distillers dried gra<str<strong>on</strong>g>in</str<strong>on</strong>g>s withsolubles <str<strong>on</strong>g>and</str<strong>on</strong>g> brewers yeast <str<strong>on</strong>g>in</str<strong>on</strong>g> diets for channel catfish Ictalurus punctatus (Raf<str<strong>on</strong>g>in</str<strong>on</strong>g>esque).Aquacult. Res. 42, 1424-1430.Matthews, S.J., Ross, N.W., Lall, S.P., Gill, T.A., 2006. Astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> b<str<strong>on</strong>g>in</str<strong>on</strong>g>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g prote<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> Atlanticsalm<strong>on</strong>. Comp. Biochem. Phys. B. 144, 206-214.Mente, E., Deguara, S., Santos, M.B., Houlihan, D., 2003. White muscle free am<str<strong>on</strong>g>in</str<strong>on</strong>g>o acidc<strong>on</strong>centrati<strong>on</strong>s follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g feed<str<strong>on</strong>g>in</str<strong>on</strong>g>g a maize gluten dietary prote<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> Atlantic salm<strong>on</strong> (Salmosalar L.). Aquaculture 225, 133-147.Mercier, M., Gel<str<strong>on</strong>g>in</str<strong>on</strong>g>as, P. 2001. Effect of lipid oxidati<strong>on</strong> <strong>on</strong> dough bleach<str<strong>on</strong>g>in</str<strong>on</strong>g>g. Cereal Chem. 78,36-38.Moros, E.E., Darnoko, D., Cheryan, M., Perk<str<strong>on</strong>g>in</str<strong>on</strong>g>s, E.G., Jerrell, J., 2002. Analysis of xanthophylls<str<strong>on</strong>g>in</str<strong>on</strong>g> corn by HPLC. J. Agric. Food Chem. 50, 5787-5790.Moyano, F.J., Cardenete, G., De la Higuera, M., 1991. Nutritive <str<strong>on</strong>g>and</str<strong>on</strong>g> metabolic utilizati<strong>on</strong> ofprote<str<strong>on</strong>g>in</str<strong>on</strong>g>s with high glutamic acid c<strong>on</strong>tent by the ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow trout (Oncorhynchus mykiss).Comp. Biochem. Phys. A 100, 759-762.Mundheim, H., Aksnes, A., Hope, B., 2004. Growth, feed efficiency <str<strong>on</strong>g>and</str<strong>on</strong>g> digestibility <str<strong>on</strong>g>in</str<strong>on</strong>g> salm<strong>on</strong>(Salmo salar L.) fed different dietary proporti<strong>on</strong>s of vegetable prote<str<strong>on</strong>g>in</str<strong>on</strong>g> sources <str<strong>on</strong>g>in</str<strong>on</strong>g>comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> with two fish meal qualities. Aquaculture 237, 315-331.Nati<strong>on</strong>al Research Council (NRC)., 2011. Nutrient Requirements of Fish <str<strong>on</strong>g>and</str<strong>on</strong>g> Shrimp. TheNati<strong>on</strong>al Academies Press, Wash<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong>, DC., 376 pp.150


No, H.K. <str<strong>on</strong>g>and</str<strong>on</strong>g> Storebakken, T., 1991. <str<strong>on</strong>g>Pigment</str<strong>on</strong>g>ati<strong>on</strong> of ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow trout with astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> at differentwater temperatures. Aquaculture 97, 203-216.O’brien, 2009. Recent trends <str<strong>on</strong>g>in</str<strong>on</strong>g> U.S. wet <str<strong>on</strong>g>and</str<strong>on</strong>g> dry corn mill<str<strong>on</strong>g>in</str<strong>on</strong>g>g producti<strong>on</strong>. AgMRC. RenewableEnergy Newsletter. USA.Olsen, R.E. <str<strong>on</strong>g>and</str<strong>on</strong>g> Baker, R.T.M., 2006. Lute<str<strong>on</strong>g>in</str<strong>on</strong>g> does not <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence flesh astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> pigmentati<strong>on</strong><str<strong>on</strong>g>in</str<strong>on</strong>g> the Atlantic salm<strong>on</strong> (Salmo salar L.). Aquaculture 258, 558-564.Park, H., Flores, R.A., Johns<strong>on</strong>, L.A., 1997. Preparati<strong>on</strong> of fish feed <str<strong>on</strong>g>in</str<strong>on</strong>g>gredients: reducti<strong>on</strong> ofcarotenoids <str<strong>on</strong>g>in</str<strong>on</strong>g> corn gluten meal. J. Agric. Food Chem. 45, 2088-2092.Parker, R.S., 1996. Absorpti<strong>on</strong>, metabolism, <str<strong>on</strong>g>and</str<strong>on</strong>g> transport of carotenoids. The FASEB Journal10, 542-551.Pereira, T.; Oliva-Teles, A. Evaluati<strong>on</strong> of corn gluten meal as a prote<str<strong>on</strong>g>in</str<strong>on</strong>g> source <str<strong>on</strong>g>in</str<strong>on</strong>g> diets forgilthead seabream (Sparus aurataL.). Aquac. Res. 2003, 34, 1111-1117.Perez, O.E., Haros, M., Suarez, C., 2001. <str<strong>on</strong>g>Corn</str<strong>on</strong>g> steep<str<strong>on</strong>g>in</str<strong>on</strong>g>g: <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence of time <str<strong>on</strong>g>and</str<strong>on</strong>g> lactic acid <strong>on</strong>isolati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> thermal properties of starch. J. Food Eng. 48, 251-256.Pérez-Gálvez, A. <str<strong>on</strong>g>and</str<strong>on</strong>g> Mínguez-Mosquera, M.I., 2002. Degradati<strong>on</strong> of n<strong>on</strong>-esterified <str<strong>on</strong>g>and</str<strong>on</strong>g>esterified xanthophylls by free radicals. BBA Gen. Subjects 1569, 31-34.Perry, R. <str<strong>on</strong>g>and</str<strong>on</strong>g> Green, D., 1984. Perry's chemical eng<str<strong>on</strong>g>in</str<strong>on</strong>g>eers' h<str<strong>on</strong>g>and</str<strong>on</strong>g>book. McGraw-Hill, New York,NY, USA, 2640 pp.151


Peter, C.M., Han, Y., Bol<str<strong>on</strong>g>in</str<strong>on</strong>g>g-Frankenbach, S.D., Pars<strong>on</strong>s, C.M., Baker, D.H., 2000. Limit<str<strong>on</strong>g>in</str<strong>on</strong>g>gorder of am<str<strong>on</strong>g>in</str<strong>on</strong>g>o acids <str<strong>on</strong>g>and</str<strong>on</strong>g> the effects of phytase <strong>on</strong> prote<str<strong>on</strong>g>in</str<strong>on</strong>g> quality <str<strong>on</strong>g>in</str<strong>on</strong>g> corn gluten meal fed toyoung chicks. J. Anim. Sci. 78, 2150-2156.Rajas<str<strong>on</strong>g>in</str<strong>on</strong>g>gh, H., Øyehaug, L., Våge, D., Omholt, S., 2006. Carotenoid dynamics <str<strong>on</strong>g>in</str<strong>on</strong>g> Atlanticsalm<strong>on</strong>. BMB Biology 4, 1-15.Regost, C., Arzel, J., Kaushik, S., 1999. Partial or total replacement of fish meal by corn glutenmeal <str<strong>on</strong>g>in</str<strong>on</strong>g> diet for turbot (Psetta maxima). Aquaculture 180, 99-117.Roba<str<strong>on</strong>g>in</str<strong>on</strong>g>a, L., Moyano, F., Izquierdo, M., Socorro, J., Vergara, J., M<strong>on</strong>tero, D., 1997. <str<strong>on</strong>g>Corn</str<strong>on</strong>g> gluten<str<strong>on</strong>g>and</str<strong>on</strong>g> meat <str<strong>on</strong>g>and</str<strong>on</strong>g> b<strong>on</strong>e meals as prote<str<strong>on</strong>g>in</str<strong>on</strong>g> sources <str<strong>on</strong>g>in</str<strong>on</strong>g> diets for gilthead sea bream (Sparus aurata):Nutriti<strong>on</strong>al <str<strong>on</strong>g>and</str<strong>on</strong>g> histological implicati<strong>on</strong>s. Aquaculture 157, 347-359.Rock, D.W., Klopfenste<str<strong>on</strong>g>in</str<strong>on</strong>g>, T.J., Ward, J.K., Britt<strong>on</strong>, R.A., McD<strong>on</strong>nell, M.L., 1983. Evaluati<strong>on</strong> ofslowly degraded prote<str<strong>on</strong>g>in</str<strong>on</strong>g>s: dehydrated alfalfa <str<strong>on</strong>g>and</str<strong>on</strong>g> corn gluten meal. J. Anim. Sci. 56, 476-482.Saiz, A.I., Manrique, G.D., Fritz, R., 2001. Determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> of benzoyl peroxide <str<strong>on</strong>g>and</str<strong>on</strong>g> benzoic acidlevels by HPLC dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g wheat Fflour bleach<str<strong>on</strong>g>in</str<strong>on</strong>g>g process. J. Agric. Food Chem. 49, 98-102.Salvador, A.M., Al<strong>on</strong>so-Damian, A., Choubert, G., Milicua, J.C.G., 2007. Effect of soybeanphospholipids <strong>on</strong> canthaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> lipoprote<str<strong>on</strong>g>in</str<strong>on</strong>g>s transport, digestibility, <str<strong>on</strong>g>and</str<strong>on</strong>g> depositi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow trout (Oncorhynchus mykiss) muscle. J. Agric. Food Chem. 55, 9202-9207.152


Salvador, A.M., Al<strong>on</strong>so-DamiaÌ•n, A., Choubert, G., Milicua, J.C.G., 2009. Impact of differentdietary phospholipid levels <strong>on</strong> cholesterol <str<strong>on</strong>g>and</str<strong>on</strong>g> canthaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> lipoprote<str<strong>on</strong>g>in</str<strong>on</strong>g>’s serum transport<str<strong>on</strong>g>and</str<strong>on</strong>g> muscle depositi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow trout. J. Agric. Food Chem. 57, 2016-2021.Santra, M., Rao, V.S., Tamhankar, S.A., 2003. Modificati<strong>on</strong> of AACC procedure for measur<str<strong>on</strong>g>in</str<strong>on</strong>g>g(beta)-carotene <str<strong>on</strong>g>in</str<strong>on</strong>g> early generati<strong>on</strong> durum wheat. Cereal Chem. 80, 130.Sasse, C.E. <str<strong>on</strong>g>and</str<strong>on</strong>g> Baker, D.H., 1973. Availability of sulfur am<str<strong>on</strong>g>in</str<strong>on</strong>g>o acids <str<strong>on</strong>g>in</str<strong>on</strong>g> corn <str<strong>on</strong>g>and</str<strong>on</strong>g> corn glutenmeal for grow<str<strong>on</strong>g>in</str<strong>on</strong>g>g chicks. J. Anim. Sci. 37, 1351-1355.Saunders, J.A., Rosentrater , K.A., Krishnan, P.G., 2008. Potential bleach<str<strong>on</strong>g>in</str<strong>on</strong>g>g techniques for corndistillers gra<str<strong>on</strong>g>in</str<strong>on</strong>g>s. J. Food Technol. 6, 242-252.Schiedt, K., Leuenberger, F., Vecchi, M., Gl<str<strong>on</strong>g>in</str<strong>on</strong>g>z, E., 1985. Absorpti<strong>on</strong>, retenti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> metabolictransformati<strong>on</strong>s of carotenoids <str<strong>on</strong>g>in</str<strong>on</strong>g> ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow trout, salm<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> chicken. Pure Appl. Chem. 57,685-692.Shi, X. <str<strong>on</strong>g>and</str<strong>on</strong>g> Chen, F., 1997. Stability of lute<str<strong>on</strong>g>in</str<strong>on</strong>g> under various storage c<strong>on</strong>diti<strong>on</strong>s. Nahrung 41, 38-41.Shukla, R. <str<strong>on</strong>g>and</str<strong>on</strong>g> Cheryan, M., 2001. Ze<str<strong>on</strong>g>in</str<strong>on</strong>g>: the <str<strong>on</strong>g>in</str<strong>on</strong>g>dustrial prote<str<strong>on</strong>g>in</str<strong>on</strong>g> from corn. Industrial Crops <str<strong>on</strong>g>and</str<strong>on</strong>g>Products 13, 171-192.S<str<strong>on</strong>g>in</str<strong>on</strong>g>gh, S., Johns<strong>on</strong>, L., Pollak, L., Fox, S., Bailey, T., 1997. Comparis<strong>on</strong> of laboratory <str<strong>on</strong>g>and</str<strong>on</strong>g> pilotplantcorn wet-mill<str<strong>on</strong>g>in</str<strong>on</strong>g>g procedures. Cereal Chem. 74, 40-44.153


Sk<strong>on</strong>berg, D.I., Hardy, R.W., Barrows, F.T., D<strong>on</strong>g, F.M., 1998. Color <str<strong>on</strong>g>and</str<strong>on</strong>g> flavor analyses offillets from farm-raised ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow trout (Oncorhynchus mykiss) fed low-phosphorus feedsc<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g corn or wheat gluten. Aquaculture 166, 269-277.Slav<str<strong>on</strong>g>in</str<strong>on</strong>g>, M., Cheng, Z., Luther, M., Kenworthy, W., Yu, L., 2009. Antioxidant properties <str<strong>on</strong>g>and</str<strong>on</strong>g>phenolic, isoflav<strong>on</strong>e, tocopherol <str<strong>on</strong>g>and</str<strong>on</strong>g> carotenoid compositi<strong>on</strong> of Maryl<str<strong>on</strong>g>and</str<strong>on</strong>g>-grown soybeanl<str<strong>on</strong>g>in</str<strong>on</strong>g>es with altered fatty acid profiles. Food Chem. 114, 20-27.Stadtman, E.R. <str<strong>on</strong>g>and</str<strong>on</strong>g> Lev<str<strong>on</strong>g>in</str<strong>on</strong>g>e, R.L., 2000. Prote<str<strong>on</strong>g>in</str<strong>on</strong>g> oxidati<strong>on</strong>. Ann NY Acad. Sci. 899, 191-2008.Storebakken, T. <str<strong>on</strong>g>and</str<strong>on</strong>g> Choubert, G., 1991. Flesh pigmentati<strong>on</strong> of ra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow trout fed astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> orcanthaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> at different feed<str<strong>on</strong>g>in</str<strong>on</strong>g>g rates <str<strong>on</strong>g>in</str<strong>on</strong>g> freshwater <str<strong>on</strong>g>and</str<strong>on</strong>g> saltwater. Aquaculture 95, 289-295.Surai, P.F., Speake, B.K., Sparks, N.H.C., 2001. Carotenoids <str<strong>on</strong>g>in</str<strong>on</strong>g> avian nutriti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> embry<strong>on</strong>icdevelopment. 1. Absorpti<strong>on</strong>, availability <str<strong>on</strong>g>and</str<strong>on</strong>g> levels <str<strong>on</strong>g>in</str<strong>on</strong>g> plasma <str<strong>on</strong>g>and</str<strong>on</strong>g> egg yolk. Poultry Sci. 38,1-27.Sutt<strong>on</strong>, J., Balfry, S., Higgs, D., Huang, C.H., Skura, B., 2006. Impact of ir<strong>on</strong>-catalyzed dietarylipid peroxidati<strong>on</strong> <strong>on</strong> growth performance, general health <str<strong>on</strong>g>and</str<strong>on</strong>g> flesh proximate <str<strong>on</strong>g>and</str<strong>on</strong>g> fatty acidcompositi<strong>on</strong> of Atlantic salm<strong>on</strong> (Salmo salar L.) reared <str<strong>on</strong>g>in</str<strong>on</strong>g> seawater. Aquaculture 257, 534-557.Tac<strong>on</strong>, A. <str<strong>on</strong>g>and</str<strong>on</strong>g> Metian, M., 2009. Fish<str<strong>on</strong>g>in</str<strong>on</strong>g>g for feed or fish<str<strong>on</strong>g>in</str<strong>on</strong>g>g for food: <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g globalcompetiti<strong>on</strong> for small pelagic forage fish. Ambio 38, 294-302.Taylor, G. <str<strong>on</strong>g>and</str<strong>on</strong>g> Morris, H., 1983. Lipoxygenase pathways. Brit. Med. Bull. 39, 219-222.154


Tir<strong>on</strong>i, V.A., Tomas, M.C., Añ<strong>on</strong>, M.C., 2007. Lipid <str<strong>on</strong>g>and</str<strong>on</strong>g> prote<str<strong>on</strong>g>in</str<strong>on</strong>g> deteriorati<strong>on</strong> dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the chilledstorage of m<str<strong>on</strong>g>in</str<strong>on</strong>g>ced sea salm<strong>on</strong> (Pseudopercis semifascista). J Sci Food Agric 87, 2239-2246.Torrissen, O.J. <str<strong>on</strong>g>and</str<strong>on</strong>g> Ingebrigtsen, K., 1992. Tissue distributi<strong>on</strong> of 14C-astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> the Atlanticsalm<strong>on</strong> (Salmo salar). Aquaculture 108, 381-385.Tr<strong>on</strong>o, D., Pastore, D., Di F<strong>on</strong>zo, N., 1999. Carotenoid dependent <str<strong>on</strong>g>in</str<strong>on</strong>g>hibiti<strong>on</strong> of durum wheatlipoxygenase. J. Cereal Sci. 29, 99-102.Tucker, C. <str<strong>on</strong>g>and</str<strong>on</strong>g> Hargreaves, J., 2004. Biology <str<strong>on</strong>g>and</str<strong>on</strong>g> culture of channel catfish. Amsterdam, TheNederl<str<strong>on</strong>g>and</str<strong>on</strong>g>s.United States of Department of Agriculture, 2011. Gra<str<strong>on</strong>g>in</str<strong>on</strong>g>: world markets <str<strong>on</strong>g>and</str<strong>on</strong>g> trade. Office ofGlobal Analysis. USA.Vignaux, N., Fox, S.R., Johns<strong>on</strong>, L.A., 2006. A 10-g laboratory wet-mill<str<strong>on</strong>g>in</str<strong>on</strong>g>g procedure for maize<str<strong>on</strong>g>and</str<strong>on</strong>g> comparis<strong>on</strong> with larger scale laboratory procedures. Cereal Chem. 83, 482-490.Welker, C., De Negro, P., Sarti, M., 2001. Green algal carotenoids <str<strong>on</strong>g>and</str<strong>on</strong>g> yellow pigmentati<strong>on</strong> ofra<str<strong>on</strong>g>in</str<strong>on</strong>g>bow trout fish. Aquacult. Int. 9, 87-93.Woodall, A., Britt<strong>on</strong>, G., Jacks<strong>on</strong>, M., 1997. Carotenoids <str<strong>on</strong>g>and</str<strong>on</strong>g> protecti<strong>on</strong> of phospholipids <str<strong>on</strong>g>in</str<strong>on</strong>g>soluti<strong>on</strong> or <str<strong>on</strong>g>in</str<strong>on</strong>g> liposomes aga<str<strong>on</strong>g>in</str<strong>on</strong>g>st oxidati<strong>on</strong> by peroxyl radicals: relati<strong>on</strong>ship betweencarotenoid structure <str<strong>on</strong>g>and</str<strong>on</strong>g> protective ability. Biochi. Biophys Acta 1336, 575-586.Y<strong>on</strong>ekura, L. <str<strong>on</strong>g>and</str<strong>on</strong>g> Nagao, A., 2007. Intest<str<strong>on</strong>g>in</str<strong>on</strong>g>al absorpti<strong>on</strong> of dietary carotenoids. Mol. Nutr. FoodRes. 51, 107-115.155


Ytrestoyl, T., Struksnæs, G., Koppe, W., Bjerkeng, B., 2005. <str<strong>on</strong>g>Effects</str<strong>on</strong>g> of temperature <str<strong>on</strong>g>and</str<strong>on</strong>g> feed<str<strong>on</strong>g>in</str<strong>on</strong>g>take <strong>on</strong> astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> digestibility <str<strong>on</strong>g>and</str<strong>on</strong>g> metabolism <str<strong>on</strong>g>in</str<strong>on</strong>g> Atlantic salm<strong>on</strong>, Salmo salar. Comp.Biochem. Physiol. Part B: Biochem. Mol. Biol. 142, 445-455.Ytrestoyl, T. <str<strong>on</strong>g>and</str<strong>on</strong>g> Bjerkeng, B., 2007. Dose resp<strong>on</strong>se <str<strong>on</strong>g>in</str<strong>on</strong>g> uptake <str<strong>on</strong>g>and</str<strong>on</strong>g> depositi<strong>on</strong> of <str<strong>on</strong>g>in</str<strong>on</strong>g>traperit<strong>on</strong>eallyadm<str<strong>on</strong>g>in</str<strong>on</strong>g>istered astaxanth<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> Atlantic salm<strong>on</strong> (Salmo salar L.) <str<strong>on</strong>g>and</str<strong>on</strong>g> Atlantic cod (Gadusmorhua L.). Aquaculture 263, 179-191.Zehr, B., Eckhoff, S., S<str<strong>on</strong>g>in</str<strong>on</strong>g>gh, S., Keel<str<strong>on</strong>g>in</str<strong>on</strong>g>g, P., 1995. Comparis<strong>on</strong> of wet-mill<str<strong>on</strong>g>in</str<strong>on</strong>g>g properties am<strong>on</strong>gmaize <str<strong>on</strong>g>in</str<strong>on</strong>g>bred l<str<strong>on</strong>g>in</str<strong>on</strong>g>es <str<strong>on</strong>g>and</str<strong>on</strong>g> their hybrids. Cereal Chem. 72, 491-497.Zer<strong>on</strong>ian, S., <str<strong>on</strong>g>and</str<strong>on</strong>g> Inglesby., M. 1995. Bleach<str<strong>on</strong>g>in</str<strong>on</strong>g>g of cellulose by hydrogen peroxide. Cellulose 2,265-272.156

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!