02.02.2015 Views

colonies

colonies

colonies

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Multicellular microorganisms


Bacteria<br />

Slime moulds<br />

Yeasts<br />

Dennis Kunkel<br />

Dennis Kunkel<br />

Classical paradigm of microbiology<br />

(cited in Shapiro and Dworkin, 1997)<br />

“bacteria as single cells”<br />

“bacteria as isolated, small,<br />

primitive organisms with a limited<br />

repertoire of automatic responses<br />

to changing conditions”<br />

• Robert Koch


Microorganisms in laboratories<br />

Bacteria<br />

Yeasts<br />

Slime<br />

moulds<br />

Dennis Kunkel<br />

Optimal conditions:<br />

• nutrients (continual feeding)<br />

• temperature<br />

• humidity<br />

• Individual cells<br />

• Exponentially growing pure<br />

cultures<br />

X Microorganisms in nature


Physarum polycephalum D.discoideum<br />

Microorganisms in Nature<br />

• Predominantly exist in multicellular communities<br />

Fruiting bodies of slime moulds<br />

Fruiting bodies of Myxobacteriae<br />

Chondromyces crocatus Stigmatella aurantiaca<br />

National Geographic, 1981<br />

Petr Folk<br />

Dale Kaiser<br />

H.U. Schairer<br />

Colonies<br />

Bacteria<br />

Yeast<br />

Stalks<br />

Biofilms<br />

E. Ben-Jacob, H.Levine, 1998<br />

Engelberg et al.,1998


Physarum polycephalum D.discoideum<br />

Microorganisms in Nature<br />

• Predominantly exist in multicellular communities<br />

Fruiting bodies of slime moulds<br />

Fruiting bodies of Myxobacteriae<br />

Chondromyces crocatus Stigmatella aurantiaca<br />

National Geographic, 1981<br />

Petr Folk<br />

Dale Kaiser<br />

H.U. Schairer<br />

Colonies<br />

Bacteria<br />

Yeast<br />

Stalks<br />

Biofilms<br />

E. Ben-Jacob, H.Levine, 1998<br />

Engelberg et al.,1998


Biofilms<br />

Important – contamination of the surfaces (medical care, industry) etc.<br />

Problem of cultivation under laboratory conditions: laboratory x natural biofilm<br />

Pseudomonas aeruginosa biofilm (Yasuda,Trends Glycosci. Glycotechnol. 8: 409-417, 1996)<br />

Candida albicans biofilm (Andes et al., Infect Immun. 72: 6023-31, 2004)


Understanding of mechanisms of microbial interactions<br />

and relationship within a community.<br />

Short-range and long-range signalling, adaptation<br />

Cell-cell interactions, extracellular molecules (small)<br />

„quorum sensing“ – monitoring of cell density and a response of the<br />

whole population<br />

Extracellular matrix formation<br />

Proteins and sugars<br />

Resistance of the structure against an environmental impact<br />

Differentiation, specialization and cooperation of the cells<br />

Nutrient processing<br />

Dying of the part of the population – altruistic-like behaviour (profitable<br />

for the whole population)<br />

MODEL SYSTEMS<br />

(usually single-species) forming multicellular populations


Physarum polycephalum D.discoideum<br />

Microorganisms in Nature<br />

• Predominantly exist in multicellular communities<br />

Fruiting bodies of slime moulds<br />

Fruiting bodies of Myxobacteriae<br />

Chondromyces crocatus Stigmatella aurantiaca<br />

National Geographic, 1981<br />

Petr Folk<br />

Dale Kaiser<br />

H.U. Schairer<br />

Colonies<br />

Bacteria<br />

Yeast<br />

Stalks<br />

Biofilms<br />

E. Ben-Jacob, H.Levine, 1998<br />

Engelberg et al.,1998


Yeast stalks<br />

Engelberg et al.,<br />

J.Bacteriol. 180:<br />

3992-6 (1998)<br />

Scherz et al.,<br />

J.Bacteriol. 183:<br />

5402-13 (2001)<br />

Anatomical analysis<br />

• CORE<br />

• SHELL<br />

Cell composition analysis - cell differentiation<br />

• Dying and<br />

dead cells<br />

• Cells<br />

with<br />

spores


Differentiated gene expression within <strong>colonies</strong><br />

Saccharomyces cerevisiae promoter library<br />

ATG<br />

LacZ gene<br />

Fragment of yeast<br />

genomic DNA<br />

CCR4p-LacZ<br />

Mináriková et al. (2001)<br />

Exp.Cell Res. 271: 296-304<br />

Parental strain<br />

ccr4 mutant


Cells within various multicellular structures<br />

Fruiting bodies<br />

• Can differentiate into “specialised” cell<br />

variants (e.g. resistant spores).<br />

• Can interact, communicate and synchronise<br />

their development. Can better adapt to<br />

changed environment.<br />

• Exhibit altruistic-like behaviour (programmed<br />

cell-lysis).<br />

• Better protected against environment<br />

Life within a community<br />

Yeast <strong>colonies</strong><br />

• Offers possibilities for development and<br />

survival that are ruled out in individual cells<br />

• Profit of an individual can be subordinated<br />

to that of the community


Cells within multicellular structures<br />

Fruiting bodies<br />

• Can differentiate into “specialised” cell<br />

variants (e.g. resistant spores).<br />

• Can interact, communicate and synchronise<br />

their development. Can better adapt to<br />

changed environment.<br />

• Exhibit altruistic-like behaviour (programmed<br />

cell-lysis).<br />

• Better protected against environment<br />

Populations X Solitary microorganisms<br />

Existence of processes specific for<br />

<br />

multicellular structures<br />

<br />

Yeast <strong>colonies</strong><br />

Important for long-term survival of yeast<br />

<br />

population (in a colony)


Yeast Colony Group<br />

http://www.natur.cuni.cz/~zdenap/<br />

Department of Genetics and Microbiology, Charles<br />

University, Prague<br />

Cell biology and physiology of multicellular yeast<br />

communities (<strong>colonies</strong>)<br />

Institute of Microbiology ASCR<br />

Prague<br />

Libuše Váchová et al.


1<br />

Multicellular populations interact, communicate,<br />

synchronise their development and adapt to changed<br />

environment<br />

Volatile AMMONIA functions as a long-range<br />

signal in yeast <strong>colonies</strong><br />

Nature 390: 532-536, 1997<br />

J. Cell Sci. 113: 1923-1928, 2000<br />

BBRC 294: 962-967, 2002


AMMONIA :<br />

2<br />

Produced in pulses<br />

NH 3<br />

NH 3<br />

NH 3<br />

ACIDIC<br />

ACIDIC<br />

ALKALI<br />

ALKALI<br />

ALKALI<br />

3<br />

Production is amplified between neighbouring <strong>colonies</strong><br />

and it results in their asymmetric growth inhibition.<br />

MM+CA<br />

Candida mogii<br />

MM<br />

Ammonia<br />

production<br />

No ammonia<br />

production<br />

4<br />

Ammonia production is dependent on uptake and metabolism<br />

of amino acids and is not dependent on uptake<br />

and concentration of extracellular ammonium NH 4+ .


Candida mogii<br />

NH 3<br />

NH 3<br />

5 Yeast <strong>colonies</strong> synchronise their ammonia pulses and,<br />

consequently, their development.


Candida mogii<br />

Ammonia


Candida mogii<br />

NH 3<br />

NH 3<br />

6<br />

Active molecule in yeast <strong>colonies</strong> is neither NH 4+ , nor<br />

alkali itself, but unprotonated ammonia.


MODEL<br />

Cytoplasm<br />

Vacuole<br />

NH 3<br />

Diffusion<br />

NH 3 NH<br />

+<br />

4<br />

Nucleus<br />

Dissipation of H + gradient<br />

between vacuole and cytoplasm<br />

Other volatile amines<br />

Signal <br />

Changes of the cell<br />

behaviour


Saccharomyces cerevisiae<br />

ALKALI ALKALI<br />

NH 3 ACIDIC NH 3 ACIDIC<br />

7 day 12 day<br />

Kinetics<br />

1<br />

NH 3<br />

2 3 4 5 6<br />

ACIDIC ALKALI<br />

Transition<br />

COLONIES<br />

• more than one week old<br />

• stationary-like cells<br />

LEU1<br />

AAT1<br />

LYS9<br />

HIS4<br />

GCV1<br />

SHM2<br />

MET10<br />

HIS5<br />

SRY1<br />

HOM2<br />

ARO8<br />

ARG1<br />

ARG5,6<br />

ARG4<br />

STR3<br />

SAM2<br />

UGA1<br />

CHA1<br />

SER3<br />

BIO5<br />

DUR3<br />

HNM1<br />

THI4<br />

ADE5,7<br />

ADE12<br />

ADE13<br />

ADE1<br />

RNR2<br />

RNR4<br />

CDC21<br />

URA1<br />

URA10<br />

YNK1<br />

ZRT1<br />

SUL1<br />

SUL2<br />

PHO89<br />

PHO84<br />

ATO1<br />

ATO2<br />

A TO3<br />

Microarray analyses of<br />

gene expression changes<br />

(C.Jacq laboratory, ECNS,<br />

Paris)<br />

Metabolism Transport Metabolism<br />

Ions<br />

Amino acids Nucleotides Transport of inorg<br />

YJR120w<br />

OM45<br />

COX5A<br />

CYC7<br />

QCR2<br />

CYC1<br />

COX9<br />

ATP2<br />

ATP15<br />

COX13<br />

QCR9<br />

COX4<br />

COR1<br />

QCR7<br />

COX12<br />

NDI1<br />

CCP1<br />

YJL045w<br />

HEM12<br />

POR1<br />

MIR1<br />

YER053c<br />

TIM17<br />

PET9<br />

AAC3<br />

SFC1<br />

ODC1<br />

OAC1<br />

ACO1<br />

SDH1<br />

KGD1<br />

ID H 1<br />

ID H 2<br />

MDH1<br />

FUM1<br />

CIT3<br />

ALD4<br />

ACS1<br />

IC L 2<br />

AAT1<br />

CAT2<br />

ALD5<br />

Oxidative phosphorylation Transport<br />

Citrate cycle<br />

Other<br />

enzymes<br />

Carbon metabolism and mitochondria function<br />

YER067w<br />

FIT2<br />

GPH1<br />

OM45<br />

GLC3<br />

UBC8<br />

HSP30<br />

POR1<br />

CYC7<br />

RPM2<br />

YOL155c<br />

YNL134c<br />

CTT1<br />

ECM4<br />

YGP1<br />

SPI1<br />

YER053c<br />

YRO2<br />

CCP1<br />

CWP2<br />

SED1<br />

SOD1<br />

HSP12<br />

DDR48<br />

YJL144w<br />

UGA1<br />

IC Y 1<br />

NCE103<br />

YOL155c<br />

ECM4<br />

SCW 4<br />

ECM13<br />

DDR48<br />

SSR1<br />

CWP2<br />

SED1<br />

YLR110c<br />

CRS5<br />

SRL1<br />

YHB1<br />

MLF3<br />

Environmental stress response (ESR) Cell wall Resista<br />

YLR004c<br />

YOL119c<br />

YDL218w<br />

YHR095w<br />

YKR040c<br />

YGR069w<br />

YNL179c<br />

YPL025c<br />

YDR504c<br />

YOR385w<br />

YAL018c<br />

YLR194c<br />

YNL143c<br />

ATO1<br />

YIL057c<br />

ATO2<br />

YCLX11w<br />

YDR223w<br />

ATO3<br />

YPL113c<br />

YOR338w<br />

YPR151c<br />

YOR306c<br />

YPL201c<br />

YGR161c<br />

YMR018w<br />

YLR414c<br />

YPL276w<br />

YDL223c<br />

YIL059c<br />

IC Y 1<br />

YGR250c<br />

YJL045w<br />

YOR273c<br />

YLR460c<br />

YPR156c<br />

YNL228w<br />

YJL144w<br />

MRH1<br />

YLR168c<br />

YER001w<br />

Palková et al. (2002) Mol. Biol. Cell. 13: 3901-3914<br />

Palková & Váchová (2003) Int. Rev. Cytol. 225: 229-272<br />

Unknown<br />

5<br />

Transition of <strong>colonies</strong> to the ammonia producing period of<br />

their development is accompanied by reprogramming of<br />

their metabolism.


1. Identification of new putative ammonium exporters<br />

ACID<br />

ALKALI<br />

NH 3<br />

Ycr010c, Ydr384c and Ynr002c PROTEINS:<br />

• HOMOLOGOUS<br />

• LOCALISED ON A MEMBRANE<br />

Plasma membrane<br />

localisation of<br />

Ycr010p-GFP<br />

~ 10<br />

~ 10<br />

~ 5<br />

1<br />

2 3 4 5 6<br />

YCR010c<br />

YDR384c<br />

YNR002c<br />

• FUNCTION UNKNOWN<br />

A. Protein sequence analyses data<br />

B. Experimental data<br />

YDR384c<br />

YCR010c<br />

Ammonium Transport Outwards<br />

ATO1 ATO2 ATO3<br />

• Large group of proteins related to S.cerevisiae Ato’s among bacteria, archae,<br />

yeast and other eukaryotes (Leishmania, Chlamydomonas)


1 Ato-GFP proteins associate with membrane raft microdomains.<br />

Ato1p-GFP and Ato3p-GFP localise to raft patches.<br />

Ato1p-GFP<br />

Ato3p-GFP<br />

Confocal microscopy<br />

1<br />

2<br />

1<br />

1 2<br />

1 2 3 4 5 6<br />

Ato1p-GFP<br />

Extraction, fractionation and PAGE<br />

2 Ato1p-GFP<br />

localisation to raft<br />

patches is<br />

pH-dependent.<br />

TV<br />

TG<br />

H 2<br />

O<br />

pH 5 pH 8<br />

5 30 50 5 35 60 min<br />

3 Production of Ato-GFP proteins is induced by ammonia.<br />

Řičicová et al., BBA-Biomembranes 1768: 1170-1178 (2007)


LEU1<br />

AAT1<br />

LYS9<br />

HIS4<br />

GCV1<br />

SHM2<br />

MET10<br />

HIS5<br />

SRY1<br />

HOM2<br />

ARO8<br />

ARG1<br />

ARG5,6<br />

ARG4<br />

STR3<br />

SAM2<br />

UGA1<br />

CHA1<br />

SER3<br />

BIO5<br />

DUR3<br />

HNM1<br />

THI4<br />

ADE5,7<br />

ADE12<br />

ADE13<br />

ADE1<br />

RNR2<br />

RNR4<br />

CDC21<br />

URA1<br />

URA10<br />

YNK1<br />

ZRT1<br />

SUL1<br />

SUL2<br />

PHO89<br />

PHO84<br />

ATO1<br />

ATO2<br />

ATO3<br />

MEP2<br />

FRE7<br />

CTR1<br />

PMP1<br />

PMA2<br />

PMA1<br />

YLR004c<br />

YOL119c<br />

YOR306c<br />

JEN1<br />

SEO1<br />

YOR273c<br />

TPO1<br />

YIL121w<br />

YGR138c<br />

YPR156c<br />

HXT1<br />

HXT9<br />

HXT3<br />

HXT12<br />

HXT4<br />

HXT8<br />

HXT6<br />

HXT7<br />

STL1<br />

RPL19B<br />

RPL23A<br />

RPL32<br />

ACT1<br />

MODEL<br />

Metabolism Transport Metabolism<br />

Ions Protons<br />

Carboxylic<br />

acids MFS-MDR Hexoses<br />

Controls<br />

Microarray data<br />

Amino acids Nucleotides Transport of inorganic compounds<br />

Transport of organic compounds and drugs<br />

YJR120w<br />

OM45<br />

COX5A<br />

CYC7<br />

QCR2<br />

CYC1<br />

COX9<br />

ATP2<br />

ATP15<br />

COX13<br />

QCR9<br />

COX4<br />

COR1<br />

QCR7<br />

COX12<br />

NDI1<br />

CCP1<br />

YJL045w<br />

HEM12<br />

POR1<br />

MIR1<br />

YER053c<br />

TIM17<br />

PET9<br />

AAC3<br />

SFC1<br />

ODC1<br />

OAC1<br />

ACO1<br />

SDH1<br />

KGD1<br />

IDH1<br />

IDH2<br />

MDH1<br />

FUM1<br />

CIT3<br />

ALD4<br />

ACS1<br />

ICL2<br />

AAT1<br />

CAT2<br />

ALD5<br />

YOL155c<br />

DAL7<br />

PCK1<br />

FBP1<br />

MLS1<br />

ICL1<br />

MDH2<br />

GPM2<br />

GPM1<br />

FDH1<br />

ADH2<br />

PDH1<br />

ADH1<br />

IDP3<br />

CTA1<br />

ACS1<br />

POX1<br />

POT1<br />

FOX2<br />

CAT2<br />

ECI1<br />

FAA2<br />

DCI1<br />

YMR018w<br />

PEX11<br />

PXA1<br />

PXA2<br />

ERG6<br />

ERG25<br />

PDR16<br />

ACH1<br />

HNM1<br />

OPI3<br />

INO1<br />

SCS7<br />

Oxidative phosphorylation Transport<br />

Citrate cycle<br />

Other<br />

enzymes<br />

Glyoxylate /<br />

Gluconeogenesis<br />

Glycolysis /<br />

Others<br />

Fatty acids<br />

Inositol<br />

Carbon metabolism and mitochondria function<br />

Carbon metabolism in cytoplasm<br />

Peroxisome function<br />

Lipids<br />

YER067w<br />

FIT2<br />

GPH1<br />

OM45<br />

GLC3<br />

UBC8<br />

HSP30<br />

POR1<br />

CYC7<br />

RPM2<br />

YOL155c<br />

YNL134c<br />

CTT1<br />

ECM4<br />

YGP1<br />

SPI1<br />

YER053c<br />

YRO2<br />

CCP1<br />

CWP2<br />

SED1<br />

SOD1<br />

HSP12<br />

DDR48<br />

YJL144w<br />

UGA1<br />

ICY1<br />

NCE103<br />

YOL155c<br />

ECM4<br />

SCW4<br />

ECM13<br />

DDR48<br />

SSR1<br />

CWP2<br />

SED1<br />

YLR110c<br />

CRS5<br />

SRL1<br />

YHB1<br />

MLF3<br />

PDR16<br />

ICS2<br />

NCA3<br />

UTH1<br />

IME1<br />

TIS11<br />

DIA1<br />

SPP41<br />

ROX1<br />

MSN4<br />

CAT8<br />

BOP2<br />

CMK2<br />

YPK2<br />

BAG7<br />

GLC7<br />

RCK2<br />

DMC1<br />

UBP13<br />

MNN1<br />

Environmental stress response (ESR) Cell wall Resistance<br />

Aging Transcription Signalling Miscellaneous<br />

Regulation<br />

YLR004c<br />

YOL119c<br />

YDL218w<br />

YHR095w<br />

YKR040c<br />

YGR069w<br />

YNL179c<br />

YPL025c<br />

YDR504c<br />

YOR385w<br />

YAL018c<br />

YLR194c<br />

YNL143c<br />

ATO1<br />

YIL057c<br />

ATO2<br />

YCLX11w<br />

YDR223w<br />

ATO3<br />

YPL113c<br />

YOR338w<br />

YPR151c<br />

YOR306c<br />

YPL201c<br />

YGR161c<br />

YMR018w<br />

YLR414c<br />

YPL276w<br />

YDL223c<br />

YIL059c<br />

ICY1<br />

YGR250c<br />

YJL045w<br />

YOR273c<br />

YLR460c<br />

YPR156c<br />

YNL228w<br />

YJL144w<br />

MRH1<br />

YLR168c<br />

YER001w<br />

YPR127w<br />

YLR110c<br />

PRY2<br />

PRY1<br />

YGR138c<br />

YPR123c<br />

YOR049c<br />

YIL121w<br />

YKL044w<br />

YOR135c<br />

YER053c<br />

YPL095c<br />

YNL134c<br />

YNL190w<br />

YOL155c<br />

YBL048w<br />

YOL101c<br />

YJR120w<br />

FIT2<br />

YER067w<br />

/6 /4 /2 /1.5 1 X 1.5 X 2 X 4 X 6<br />

Possible metabolic changes during<br />

acid-to-alkali colony transition<br />

Unknown<br />

Model supplemented and elaborated<br />

- additional methodical approaches<br />

Catalase activity (U/mg)<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

Cta1p<br />

Ctt1p<br />

Cta1p<br />

Ctt1p<br />

cytosolic catalase Ctt1p<br />

peroxisomal catalase Cta1p<br />

S3 S5 S7 S9 S12 S14 SF6 SF7 S19 S21 S25 S28 S32<br />

Superoxide dismutase activity (U/mg)<br />

2<br />

1<br />

0<br />

Sod1p<br />

Western blots<br />

cytosolic superoxide dismutase Sod1p<br />

S3 S5 S7 S9 S12 S14 SF6 SF7 S19 S21 S25 S28 S32<br />

Measurement of enzymatic activities<br />

Monitoring of intracellular amino acid<br />

concentrations<br />

Cytological analyses<br />

Pma1p<br />

[%]<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

3 6 10 13 17 22 26 31 d<br />

Pma1p<br />

Pma1p ATPase activity<br />

5 12 19 d<br />

BY4742<br />

20<br />

0 5 10 15 [days] 20<br />

nmol/g wet weight<br />

nmol/g wet weight<br />

nmol/g wet weight<br />

1600<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

3500<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

BY4742<br />

sok2<br />

ARGININE<br />

0 5 10 15 20 25 30 [d]<br />

BY4742<br />

sok2<br />

GLUTAMINE<br />

0<br />

0 5 10 15 20 25 30[d]<br />

500<br />

0<br />

BY4742<br />

sok2<br />

ALANINE<br />

0 5 10 15 20 25 30[d]


MODEL<br />

Acidic<br />

pH<br />

Reactive oxygen<br />

species<br />

ROS<br />

ESR<br />

Environmental stress response genes, including<br />

genes encoding stress defence enzymes<br />

(catalase, superoxide dismutase).<br />

TCA<br />

Nutrient limitation<br />

Active<br />

mitochondria<br />

(oxidative<br />

phosphorylation)<br />

ATP ADP<br />

Pma1p<br />

H +<br />

H + ATPase<br />

Stressed cells<br />

(acidic phase)


MODEL<br />

Acidic<br />

pH<br />

pH<br />

Alkali<br />

Production of Ato proteins,<br />

ammonium exporters<br />

TCA<br />

Active<br />

ROS<br />

Stressed cells<br />

(acidic phase)<br />

ESR<br />

H + ATPase function is diminished<br />

Switch to glyoxylate cycle<br />

AcetylCoA from peroxisomes<br />

Oxalacetate from amino acid<br />

metabolism<br />

Gradual<br />

ATP<br />

mitochondria repression of mitochondrial ADP<br />

functions (oxidative (oxidative phosphorylation,<br />

some enzymes of the citrate H + ATPase cycle).<br />

H +<br />

phosphorylation)<br />

Nutrient limitation<br />

GC<br />

TCA<br />

TCA<br />

H<br />

+<br />

ATPase<br />

Ato<br />

NH<br />

+<br />

4<br />

NH + H + 3<br />

pH<br />

ROS<br />

Oxalac<br />

Glyoxalate<br />

cycle<br />

H +<br />

ESR<br />

Acetyl<br />

CoA<br />

AA met<br />

β-ox<br />

fatty acids<br />

PX


MODEL<br />

Acidic<br />

pH<br />

pH<br />

Alkali<br />

Production of Ato proteins,<br />

ammonium exporters<br />

TCA<br />

ROS<br />

Aktivní<br />

mitochondrie<br />

(oxidativní<br />

fosforylace)<br />

Stressed cells<br />

(acidic phase)<br />

ESR<br />

H + ATPase function is diminished<br />

Switch to glyoxylate cycle.<br />

AcetylCoA from peroxisomes<br />

Oxalacetate from amino acid<br />

metabolism<br />

Limitace živin<br />

Gradual repression ATP od mitochondrial<br />

ADP<br />

functions (oxidative phosphorylation,<br />

some enzymes of the citrate<br />

H + ATPase<br />

cycle).<br />

Gradual repression<br />

H + of ESR genes.<br />

GC<br />

TCA<br />

TCA<br />

H<br />

+<br />

ATPase<br />

Ato<br />

NH<br />

+<br />

4<br />

NH + H + 3<br />

Adapted cells<br />

(alkali phase)<br />

Oxalac<br />

Glyoxalate<br />

cycle<br />

H +<br />

ESR<br />

Acetyl<br />

CoA<br />

!!<br />

AA met<br />

β-ox<br />

fatty acids<br />

PX<br />

Growth and<br />

development


Acidic<br />

pH<br />

pH<br />

Alkali<br />

1<br />

2<br />

3<br />

The transition of <strong>colonies</strong> from the “acidic” to the “alkali” phase<br />

means the “escape” of <strong>colonies</strong> from increased oxidative stress to<br />

the “alkali” phase of the adaptation.<br />

Specific changes in metabolism enabling the decrease of oxidative<br />

stress (e.g. decrease in oxidative phosphorylation, switch ON of the<br />

alternative metabolism) are required for the adaptation.<br />

The transition and metabolic changes are necessary for long-term<br />

colony surviving <br />

Behaviour of <strong>colonies</strong> of sok2 mutant,<br />

which do not produce ammonia<br />

Sok2p:<br />

• transcription factor


Váchová et al.,<br />

J. Biol. Chem.: 279<br />

37937-37981, 2004<br />

sok2 <strong>colonies</strong> are not able to switch<br />

on genes of the adaptive metabolism<br />

TCA<br />

Active<br />

mitochondria<br />

(oxidative<br />

phosphorylation)<br />

Stressed cells<br />

(acidic phase)<br />

Colonies of the sok2 mutant<br />

ESR<br />

Some of the stress-defence<br />

mechanisms ROS are induced in sok2<br />

<strong>colonies</strong>.<br />

They are not sufficient to protect aged<br />

sok2 <strong>colonies</strong> from untimely death.<br />

Nutrient limitation<br />

Sok2p: transcription factor<br />

H + ATP ADP<br />

H + ATPase<br />

GC<br />

TCA<br />

TCA<br />

H<br />

+<br />

ATPase<br />

X<br />

Ato<br />

NH<br />

+<br />

4<br />

NH + H + 3<br />

ROS<br />

ESR<br />

Oxalac<br />

X<br />

Glyoxalate<br />

X<br />

cycle<br />

PX<br />

H +<br />

Acetyl<br />

CoA<br />

MSN4<br />

Stressed Adapted cells<br />

(abortive (alkali alkali phase) phase)<br />

X<br />

AA met<br />

β-ox<br />

fatty acids<br />

Untimely<br />

Death<br />

wt<br />

4 7 11 13 21 d<br />

YOR084w<br />

FAA1<br />

POX1<br />

PEX21<br />

ICL1<br />

MLS1<br />

SPS19<br />

ACS1<br />

PEX11<br />

CAT2<br />

IDP3<br />

PXA1<br />

CIT2<br />

MDH3<br />

FOX2<br />

DCII<br />

ECII<br />

CIT3<br />

MLS1<br />

ICL1<br />

THI4<br />

PDH1<br />

ADH1<br />

ACS1<br />

SUC2<br />

sok2<br />

Peroxisomes/fatty acids Carbon m


sok2 <strong>colonies</strong> loose viability at later developmental<br />

phases (2 nd acidic phase)<br />

Colonies of<br />

the parental<br />

strain<br />

sok2<br />

mutant<br />

<strong>colonies</strong>


In <strong>colonies</strong>, metabolic adaptation appears to be more<br />

important for long-term survival than activation of<br />

stress-defence mechanism<br />

Analyses of stress-defence mutants<br />

Ammonia release may function as<br />

an alarm signal produced by a<br />

colony, which first detected the<br />

stress of limited nutrients.<br />

Switch of whole “colony<br />

“population” to alkali<br />

phase of adaptation<br />

Synchronised behaviour of population of <strong>colonies</strong> in<br />

respective territory


“Average” changes in WHOLE <strong>colonies</strong><br />

Differentiated<br />

ENTIRE<br />

structure,<br />

colony<br />

specific subpopulations<br />

X<br />

Observed changes represent<br />

„moderate“ change in<br />

majority of the population<br />

OR<br />

<br />

strong change in part of<br />

the population


What are differences in individual areas of the colony <br />

Differentiation in yeast population of a colony <br />

Differentiated structure,<br />

specific subpopulations


2<br />

Cells within multicellular <strong>colonies</strong> differentiate and<br />

undergo regulated cell death<br />

<br />

What is approximate position of cells within colony during its development <br />

Alexa Fluor® 488 5-TFP<br />

• During their division, cells are not<br />

pushed in horizontal direction but remain<br />

approximately at their original location.<br />

Centre: mostly older, chronologically<br />

ageing cells<br />

Outer colony margin: relatively young,<br />

infant cells.<br />

<br />

What are the changes in cells in the center and in newly grown<br />

margin at different times of colony development.<br />

<br />

Changes connected with yeast cell dying <br />

Váchová & Palkova., J. Cell. Biol. 169, 711–717, 2005


PRO-APOPTOTIC MARKERS<br />

ROS<br />

(DHE)<br />

ASPase<br />

(D 2<br />

R)<br />

DNA breaks<br />

(TUNEL)<br />

Phosphatidyl<br />

serine<br />

relocalisation<br />

(Annexin)<br />

Chromatine<br />

fragmentation<br />

(DAPI)<br />

Cell<br />

morphology<br />

(Nomarski)<br />

All the markers are detectable in <strong>colonies</strong><br />

Their appearance differs in time and in particular position within<br />

a colony<br />

Distribution of cells with pro-apoptotic markers is different in <strong>colonies</strong><br />

formed by strains defective in ammonia signalling (e.g. sok2 mutant) .


PRO-APOPTOTIC MARKERS<br />

ROS<br />

(DHE)<br />

ASPase<br />

(D 2<br />

R)<br />

DNA breaks<br />

(TUNEL)<br />

Phosphatidyl<br />

serine<br />

relocalisation<br />

(Annexin)<br />

Chromatine<br />

fragmentation<br />

(DAPI)<br />

Cell<br />

morphology<br />

(Nomarski)<br />

ROS<br />

Early proapoptotic<br />

markers<br />

Parental<br />

strain<br />

<strong>colonies</strong><br />

Healthy cells<br />

Late proapoptotic<br />

markers<br />

Parental<br />

strain<br />

<strong>colonies</strong><br />

Colonies of<br />

sok2 mutant<br />

ROS<br />

Early proapoptotic<br />

markers<br />

Colonies of<br />

sok2 mutant<br />

Late proapoptotic<br />

markers<br />

Late acidic phase<br />

Alkali<br />

/ weak alkali phase


X<br />

AMMONIA<br />

Ammonia triggers metabolic<br />

changes enabling part of the<br />

population to escape from<br />

oxidative stress.<br />

Some cells (e.g. newly born<br />

cells at the periphery)<br />

escape dying and form new<br />

healthy generations.<br />

1 st acidic phase<br />

<strong>colonies</strong><br />

ROS<br />

Cell death<br />

Increasing level of ROS causes<br />

an induction of cell death<br />

throughout the whole colony.<br />

sok2 colony does not produce<br />

ammonia and it is unable to<br />

switch on metabolic changes.<br />

No proper differentiation<br />

occurs and dying spreads also<br />

to young cells at periphery and<br />

to their progeny<br />

Wild<br />

type<br />

Healthy cells<br />

Dying cells<br />

Dying cells<br />

Dying cells<br />

sok2


Is dying of central cells advantageous for the population <br />

Do central dying cells in wt <strong>colonies</strong> help younger cells at the<br />

<br />

perifery to survive and grow <br />

20 days old <strong>colonies</strong> (after the induction<br />

of metabolic changes)<br />

Dying cells<br />

Dying cells<br />

Central part of one colony was removed<br />

100 %<br />

Dying cells<br />

75 %<br />

Dying cells<br />

Accrual of the outer margin was<br />

compared with that of the control<br />

colony<br />

• Removal of central cells reduces the<br />

accrual of the outer margin to 75 %,<br />

approximately.<br />

Central apoptotic-like cells probably provide essential<br />

components and nutrients to younger cells at perifery.


„Horizontal“ differentiation<br />

X<br />

YEAST COLONY IS A THREE<br />

DIMENSIONAL STRUCTURE !<br />

„Vertical“ differentiation <br />

<br />

ANALYSIS OF CELLS OCCURRING IN DIFFERENT LAYERS<br />

IN COLONY AT DIFFERENT DEVELOPMENTAL PERIODS <br />

A) Fluorescence mikroscopy<br />

microscopy Development of new techniques<br />

that allow us to monitor the cells<br />

B) Elektron microscopy<br />

in situ within a colony<br />

(immunoelectron microscopy)


LEU 1<br />

AAT1<br />

LYS9<br />

HIS4<br />

G C V 1<br />

SHM2<br />

M E T 1 0<br />

HIS5<br />

SRY1<br />

HOM2<br />

ARO8<br />

ARG1<br />

ARG5,6<br />

ARG4<br />

STR3<br />

SAM2<br />

UGA1<br />

CHA1<br />

SER3<br />

BIO5<br />

DUR3<br />

HNM1<br />

THI4<br />

ADE5,7<br />

ADE12<br />

ADE13<br />

ADE1<br />

RNR2<br />

RNR4<br />

CDC21<br />

U R A 1<br />

U R A 1 0<br />

YNK1<br />

ZRT1<br />

SUL1<br />

SUL2<br />

PHO89<br />

PHO84<br />

ATO1<br />

ATO2<br />

A TO3<br />

YJR120w<br />

OM45<br />

COX5A<br />

CYC7<br />

QCR2<br />

CYC1<br />

COX9<br />

ATP2<br />

ATP15<br />

COX13<br />

QCR9<br />

COX4<br />

COR1<br />

QCR7<br />

COX12<br />

NDI1<br />

CCP1<br />

YJL045w<br />

HEM12<br />

POR1<br />

MIR1<br />

YER 053c<br />

TIM17<br />

PET9<br />

AAC3<br />

SFC1<br />

ODC1<br />

OAC1<br />

ACO1<br />

SDH1<br />

KGD1<br />

IDH1<br />

IDH2<br />

MDH1<br />

FUM 1<br />

CIT3<br />

ALD4<br />

ACS1<br />

IC L 2<br />

AAT1<br />

CAT2<br />

ALD5<br />

YER 067w<br />

FIT2<br />

GPH1<br />

OM45<br />

GLC3<br />

UBC8<br />

HSP30<br />

POR1<br />

CYC7<br />

RPM2<br />

YO L155c<br />

YNL134c<br />

CTT1<br />

ECM 4<br />

YGP1<br />

SPI1<br />

YER 053c<br />

YRO2<br />

CCP1<br />

CW P2<br />

SED1<br />

SOD1<br />

HSP12<br />

DDR48<br />

YJL144w<br />

UGA1<br />

IC Y 1<br />

NCE103<br />

YOL155c<br />

ECM4<br />

SCW4<br />

ECM13<br />

D D R 4 8<br />

SSR1<br />

C W P 2<br />

SED1<br />

YLR110c<br />

C R S 5<br />

SRL1<br />

YHB1<br />

M L F 3<br />

YLR004c<br />

YO L119c<br />

YDL218w<br />

YHR 095w<br />

YKR040c<br />

YG R069w<br />

YNL179c<br />

YPL025c<br />

YDR 504c<br />

YO R385w<br />

YAL018c<br />

YLR194c<br />

YNL143c<br />

ATO1<br />

YIL057c<br />

ATO2<br />

YCLX11w<br />

YDR 223w<br />

ATO3<br />

YPL113c<br />

YO R338w<br />

YPR151c<br />

YO R306c<br />

YPL201c<br />

YG R161c<br />

YM R018w<br />

YLR414c<br />

YPL276w<br />

YDL223c<br />

YIL059c<br />

IC Y 1<br />

YG R250c<br />

YJL045w<br />

YO R273c<br />

YLR460c<br />

YPR156c<br />

YNL228w<br />

YJL144w<br />

MRH1<br />

YLR168c<br />

YER001w<br />

Fluorescence microscopy<br />

Strains containing GFP fused directly in the genome with:<br />

• Gene-markers for different organelles (mitochondria, peroxisomes..)<br />

• Specific genes<br />

(amino acid metabolic genes, transporters …)<br />

* Stability and natural regulation of the fusions !!<br />

*<br />

Metabolism Transport Metabolism<br />

Ions<br />

Amino acids Nucleotides Transport of inorg<br />

Oxidative phosphorylation Transport<br />

Citrate cycle<br />

Other<br />

enzymes<br />

Carbon metabolism and mitochondria function<br />

Environmental stress response (ESR) Cell wall Resista<br />

Unknown<br />

Pex11p Gcv1p Pma1p Arg1p Ato1p-GFP …a další<br />

Colonies of „GFP-strains“ at different phases of their development


3<br />

Cells within multicellular structures are better protected<br />

against environmental conditions<br />

Saccharomyces cerevisiae<br />

<strong>colonies</strong><br />

Laboratory strain:<br />

“smooth” <strong>colonies</strong><br />

Natural (wild) strains:<br />

“fluffy” <strong>colonies</strong><br />

Kuthan et al. (2003) Mol.Microbiol. 47: 745-754


Fluffy <strong>colonies</strong> formed by<br />

natural S.cerevisiae strains<br />

Colony morphology is characteristic for<br />

particular strain and growth conditions.<br />

Developmental program<br />

Can be influenced by external conditions<br />

(nutrient sources, humidity etc.)<br />

MECHANISMS


Natural S.cerevisiae strains domesticate under laboratory<br />

conditions<br />

Growth of natural BR-strain on rich agar<br />

plates<br />

Smooth<br />

colony<br />

Fluffy<br />

<strong>colonies</strong><br />

BR - fluffy<br />

BR - smooth<br />

• Isogenic


• In space occupancy<br />

• In cell-cell attachment<br />

F<br />

S<br />

FLUFFY<br />

WILD<br />

AND<br />

SMOOTH<br />

DOMESTICATED<br />

DIFFER:<br />

• Presence of<br />

extracellular matrix<br />

F<br />

• Flocculation and<br />

adhesion properties<br />

Fluffy Smooth<br />

• Gene expression<br />

Kuthan et al. (2003) Mol.Microbiol. 47: 745-754


IN NATURE<br />

IN LABORATORY<br />

Extracellular<br />

matrix<br />

raining<br />

drying<br />

Relatively stable humidity<br />

Limited concentration of nutrients<br />

Temperature fluctuations<br />

Small “channels“ enable better flow<br />

of water, nutrients, waste products<br />

Initial high concentration of nutrients<br />

Standard temperature<br />

DOMESTICATION<br />

Stop of the production of extracellular matrix material and extensive changes in<br />

gene expression<br />

A complex change of the yeast life-style during the<br />

nature ⇒ laboratory transfer


Bacillus subtilis: Laboratory strains versus natural strains<br />

Branda et al., (2001) PNAS 98:11621–6<br />

Colonies<br />

LAB<br />

WT<br />

Scanning electron micrographs of<br />

the WT colony<br />

Pellicles<br />

LAB<br />

WT<br />

FRUITING<br />

BODIES<br />

Sporulation<br />

sites on the<br />

surfaces of<br />

WT <strong>colonies</strong>


B. subtilis<br />

B. subtilis<br />

P. aeruginosa<br />

E.coli<br />

<br />

Aguilar et al., Curr Opin Microbiol. 10: 638–643, 2007<br />

Veening et. al, .J Bacteriol. 188, 3099–3109, 2006<br />

DOMESTICATION = General property of microorganisms


• In the wild, yeast create <strong>colonies</strong> better<br />

protected against drying and other<br />

environmental attack. They are able to<br />

occupy a territory more efficiently.<br />

NH 3<br />

NH 3<br />

Yeast<br />

population<br />

• Under starvation produces<br />

ammonia inducing adaptive<br />

metabolic changes important<br />

for colony long-term survival.<br />

• The metabolic changes<br />

enable part of the population<br />

to escape from stress and<br />

apoptotic-like dying.<br />

• For future growth, these<br />

healthy cells can exploit<br />

nutrients released from rest of<br />

the population.<br />

Healthy cells<br />

Dying<br />

cells


New paradigm:<br />

A picture of bacteria (unicellular organisms) as<br />

sensitive, communicative, decisive organisms<br />

integrating information from their environment<br />

and from their neighbours in order to carry out<br />

the complex tasks of reproduction and survival in<br />

organised multicellular populations.<br />

James A. Shapiro, “Bacteria as Multicellular Organisms”,<br />

Oxford University Press, 1997


Cell biology and physiology of multicellular yeast communities<br />

Department of Genetics and<br />

Microbiology, Charles University<br />

Zdena Palková<br />

Blanka Janderová<br />

Martin Kuthan<br />

Michaela Schierová<br />

Blanka Zikánová<br />

PhD students:<br />

Irena Vopálenská<br />

Michal Čáp<br />

Vratislav Šťovíček<br />

Luděk Štěpánek<br />

Iva Ferčíková<br />

Institute of Microbiology ASCR<br />

Libuše Váchová<br />

Ota Hlaváček<br />

Helena Kučerová<br />

Markéta Begany<br />

Jitka Plesnivá<br />

PhD students:<br />

Dita Strachotová<br />

Karel Harant<br />

Technicians:<br />

Vladimíra Haislová<br />

Hana Žďárská<br />

Students:<br />

FUNDING<br />

Centre on molecular biology and physiology<br />

of yeast communities<br />

Grant Agency of the Czech Republic<br />

Grant Agency of the Academy of Sciences<br />

Víťa Plocek<br />

Adam Weiss<br />

Markéta Hilská<br />

Jaroslav Icha<br />

Technician:<br />

Saša Pokorná<br />

Howard Hughes Medical Institute, USA


INTERNATIONAL COLLABORATIONS<br />

Laboratoire de Génétique<br />

Moléculaire, ENS, Paris, France<br />

Frederic Devaux<br />

Claude Jacq<br />

UMR de Génétique végétale,<br />

INRA/CNRS/INAPG/UPS, France<br />

Delphine Sicard<br />

Christine Dillmann<br />

Departamento de Biologia, Universidade<br />

do Minho, Braga, Portugal<br />

Margarida Casal<br />

Dorit Schuller<br />

Tulane University Health Sciences Center<br />

New Orleans USA<br />

Michal Jazwinski


Thank you !

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!