13.02.2015 Views

Fluorescence Lifetime Imaging Microscopy ... - Photon Lines

Fluorescence Lifetime Imaging Microscopy ... - Photon Lines

Fluorescence Lifetime Imaging Microscopy ... - Photon Lines

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Fluorescence</strong> <strong>Lifetime</strong> <strong>Imaging</strong> <strong>Microscopy</strong><br />

APPLICATIONS<br />

Ria Oosterveld & Bert van Geest<br />

Lambert Instruments<br />

The Netherlands


<strong>Fluorescence</strong> <strong>Lifetime</strong><br />

<strong>Fluorescence</strong> lifetime =<br />

average time that molecules stay<br />

in their excited state<br />

E 1<br />

Excitation<br />

Emission<br />

some nanoseconds<br />

E 0


<strong>Fluorescence</strong> <strong>Lifetime</strong><br />

Intensity<br />

1/e<br />

I<br />

= I 0 e<br />

−<br />

τ t<br />

τ<br />

Time (ns)<br />

Excitation<br />

Emission<br />

Exponential decay curve<br />

Time constant τ (tau)<br />

“<strong>Fluorescence</strong> <strong>Lifetime</strong>”


FLIM = <strong>Fluorescence</strong> <strong>Lifetime</strong> <strong>Imaging</strong> <strong>Microscopy</strong><br />

28,000 counts<br />

Intensity<br />

<strong>Lifetime</strong><br />

2,6ns<br />

Merge<br />

2,1ns<br />

Cell<br />

transfected<br />

with pCFP<br />

10,000 counts<br />

1,6ns<br />

Images taken with the LIFA system: FLIM at the widefield fluorescence microscope<br />

• Spatial distribution + lifetime in one image<br />

• Independent of intensity variations inside cells<br />

(bleaching / concentration variations)


FLIM = <strong>Fluorescence</strong> <strong>Lifetime</strong> <strong>Imaging</strong> <strong>Microscopy</strong><br />

Intensity <strong>Lifetime</strong> Merge<br />

35,000 counts<br />

1,6ns<br />

5,000 counts<br />

0,4ns<br />

Images taken with the LIFA system: FLIM at the widefield fluorescence microscope<br />

20,000 counts<br />

1,8ns<br />

Skin of<br />

human head<br />

4,000 counts<br />

• Discrimination different dyes<br />

(similar absorption/ emission, different lifetime)<br />

• Living cells and fixed materials<br />

0,2ns<br />

Convolaria


FLIM = <strong>Fluorescence</strong> <strong>Lifetime</strong> <strong>Imaging</strong> <strong>Microscopy</strong><br />

• Applications various:<br />

(Some phenomena do affect fluorescence lifetimes)<br />

ion imaging<br />

oxygen imaging<br />

probing microenvironment<br />

medical diagnosis<br />

FRET<br />

Most used application<br />

nowadays


FRET = Förster Resonance Energy Transfer<br />

Application: detection of interactions like protein-protein,<br />

lipid-protein,<br />

DNA-protein,<br />

as well as conformational changes inside proteins.<br />

D<br />

x<br />

Ay<br />

A<br />

D<br />

x A y<br />

A<br />

E.g. Proteins x and y,<br />

tagged/ labelled with<br />

donor fluorophore D and acceptor fluorophore A


FRET<br />

FRET only occurs if…<br />

• the donor fluorescence emission spectrum overlaps<br />

with the acceptor absorbance<br />

• the donor and acceptor fluorophores are in close<br />

proximity (1 - 9 nm)<br />

• the transition dipole moments of the donor and acceptor<br />

fluorophores are not perpendicular.


donor<br />

FRET detection by FLIM<br />

donor<br />

acceptor<br />

(τ D )<br />

E 1<br />

E 0<br />

donor<br />

lifetime τ D<br />

decrease<br />

upon FRET<br />

(τ FRET )<br />

E 1<br />

E 1<br />

E 0<br />

E 0<br />

D<br />

x<br />

Ay<br />

D<br />

x Ay<br />

A<br />

A


donor<br />

FRET detection by FLIM<br />

donor<br />

acceptor<br />

E 1<br />

(τ D )<br />

E 0<br />

(τ FRET )<br />

E 1<br />

E 1<br />

E 0<br />

E 0<br />

<strong>Lifetime</strong> of donor (τ D ) has to be measured only !!<br />

FRET efficiency =<br />

τ D - τ FRET<br />

τ D


30,000 counts<br />

5,000 counts<br />

Intensity<br />

FRET detection by FLIM<br />

<strong>Lifetime</strong><br />

2,9ns<br />

2,7ns<br />

2,3ns<br />

1,0ns<br />

Merge<br />

FRET at<br />

centrosomes<br />

(2,3ns<br />

versus<br />

2,7ns)<br />

NO FRET at<br />

centrosomes<br />

(all 2,7ns)<br />

Images taken with the LIFA system: FLIM at the widefield fluorescence microscope<br />

FRET efficiency =<br />

τ D - τ FRET<br />

2,7 - 2,3<br />

=<br />

= 14,8%<br />

τ D<br />

2,7<br />

courtesy of Prof. Diaspro (Genua, Italy)


Example: FRET-FLIM (LIFA)<br />

Living cells transiently transfected with pCFP and with pCFP-YFP<br />

2,4ns<br />

1,9ns<br />

Intensity<br />

(YFP band pass cube)<br />

Intensity<br />

(CFP band pass cube)<br />

<strong>Lifetime</strong><br />

(CFP band pass cube)<br />

Images taken with the LIFA system: FLIM at the widefield fluorescence microscope<br />

courtesy of J. Hageman (Groningen, The Netherlands)


Example: FRET-FLIM (LIFA)<br />

Venus-<br />

EGFR +<br />

anti-P-CY3<br />

<strong>Lifetime</strong> 2,1 ns<br />

<strong>Lifetime</strong> 1,7 ns<br />

P of EGF receptor<br />

Images taken with the LIFA system: FLIM at the widefield fluorescence microscope<br />

courtesy of Dr. T. Nagai (Sapporo, Japan)


Analysis: LI FLIM software program<br />

Fit-on-point<br />

• per pixel shown (here: x 322, y 226)<br />

Integrated<br />

Intensity<br />

Detector phase (0 - 360)


Analysis: LI FLIM software program<br />

Histogram<br />

• in one view which lifetimes are present in ROI<br />

# pixels<br />

<strong>Lifetime</strong> (ns)


Analysis: LI FLIM software program<br />

Statistics<br />

• per ROI mean lifetime[phase] + st.dev.<br />

• mean lifetime[mod] + st.dev.<br />

• # pixels<br />

• minimum and maximum lifetime


LI FLIM software program - Time series<br />

Time series<br />

• per ROI dynamics of lifetime in time<br />

• automatic scaling<br />

E.g. FRET<br />

<strong>Lifetime</strong> (ns)<br />

Elapsed time (s)


LI FLIM software program - Time series<br />

2,2<br />

2,2ns<br />

<strong>Lifetime</strong> (ns)<br />

2<br />

1,8<br />

1,6<br />

0 20 40 60 80 100 120 140<br />

scale bar<br />

1,6ns<br />

Intensity (adu)<br />

30000<br />

25000<br />

20000<br />

15000<br />

10000<br />

5000<br />

0<br />

0 20 40 60 80 100 120 140<br />

Forskolin<br />

Elapsed time (min)<br />

<strong>Lifetime</strong> + Intensity<br />

of brain tissue<br />

movie<br />

courtesy of Dr. P. Vincent (Paris, France)


LI FLIM software program - Time series<br />

lifetime (ns)<br />

3,30<br />

3,25<br />

3,20<br />

3,15<br />

3,10<br />

3,05<br />

3,00<br />

EGF<br />

FRET eff. = 6,5%<br />

3,5ns<br />

scale bar<br />

lifetime<br />

2,95<br />

2,90<br />

0<br />

120<br />

<strong>Lifetime</strong> +<br />

Intensity<br />

of living<br />

cells<br />

movies<br />

240<br />

360<br />

480<br />

600<br />

intensity<br />

720<br />

840<br />

960<br />

1080<br />

1200<br />

2,5ns<br />

lifetime + intensity<br />

courtesy of Dr. P. Bastiaens (Argentina 08-2006)


LI FLIM software program - Time series<br />

Real time FLIM<br />

movie<br />

12 lifetime images per second


Intensity<br />

20,000 counts<br />

LI FLIM software program - Time series<br />

2,000 counts<br />

<strong>Lifetime</strong><br />

4,6ns<br />

4,4ns<br />

4,0ns<br />

3,6ns<br />

0’ 4’ 6’ 9’ 11’ 14’<br />

MiCy-DEVD-Ko<br />

apoptosis<br />

MiCy Ko<br />

(loss of) FRET efficiency =<br />

τ D - τ FRET<br />

4,4 - 4,0<br />

=<br />

= 9%<br />

τ D<br />

4,4<br />

courtesy of Dr. A. Miyawaki (Japan 01-2006)


Analysis: LI FLIM software program - polar plot<br />

Graphical representation<br />

Polar Plot<br />

m<br />

∆ϕ


Analysis: LI FLIM software program - polar plot<br />

Phase shift ∆ϕ<br />

τ ϕ<br />

=<br />

1<br />

tan∆ϕ<br />

ω<br />

Decrease in<br />

modulation depth m<br />

τ<br />

m<br />

= 1 1<br />

1<br />

ω m − 2<br />

When τ ϕ = τ m<br />

single exponential<br />

m= cos∆ϕ


Analysis: LI FLIM software program - polar plot<br />

Single exponential lifetime: τ ϕ = τ m<br />

m<br />

m= cos∆ϕ<br />

∆ϕ<br />

0 1


Analysis: LI FLIM software program - polar plot<br />

CFP<br />

and<br />

CFP-YFP<br />

τ ϕ τ m<br />

Intensity


Analysis: LI FLIM software program - polar plot<br />

CFP<br />

and<br />

CFP-YFP<br />

Polar plot<br />

Tp: 2,483 ns ; Tm: 2,844 ns<br />

Polar plot<br />

Tp: 1,906 ns ; Tm: 2,534 ns


Analysis: LI FLIM software program - polar plot<br />

FRET efficiency =<br />

Polar plot<br />

Tp: 2,483 ns ; Tm: 2,844 ns<br />

τ D - τ FRET<br />

2,4 - 1,9<br />

=<br />

= 20%<br />

τ D<br />

CFP<br />

and<br />

CFP-YFP<br />

2,4<br />

Polar plot<br />

Tp: 1,906 ns ; Tm: 2,534 ns


LI FLIM software program - Multi Frequency<br />

Per ROI data:<br />

Region Channel Average Std. Dev.<br />

1 <strong>Lifetime</strong> 0 (ns) 1,93 0,06<br />

Fraction 0 (ns) 1,00 0,00<br />

Chi square (units) 0,01 0,00<br />

DC Intensity (adu) 13651 1350<br />

2 <strong>Lifetime</strong> 0 (ns) 1,90 0,06<br />

Fraction 0 (ns) 1,00 0,00<br />

Chi square (units) 0,01 0,00<br />

DC Intensity (adu) 12631 1451<br />

Cells transfected with GFP only >> fit of 1 component


Per pixel data:<br />

LI FLIM software program - Multi Frequency<br />

Frequency (MHz) Phase (rad) Modulation<br />

10,0 0,16 0,99<br />

12,2 0,16 0,98<br />

14,9 0,18 0,98<br />

18,2 0,23 1,00<br />

22,2 0,26 0,95<br />

27,1 0,34 0,94<br />

33,0 0,38 0,90<br />

40,3 0,50 0,90<br />

49,2 0,50 0,84<br />

60,0 0,59 0,81<br />

Component <strong>Lifetime</strong> (ns) Fraction<br />

1 1,94 1,00<br />

chi-squared 0,00965<br />

Cells transfected with GFP only >> fit of 1 component


Per ROI data:<br />

LI FLIM software program - Multi Frequency<br />

Region Channel Average Std. Dev.<br />

1 <strong>Lifetime</strong> 0 (ns) 1,78 0,05<br />

Fraction 0 (ns) 1,00 0,00<br />

Chi square (units) 0,01 0,00<br />

DC Intensity (adu) 15960 2057<br />

Cells transfected with GFP-mCherry tandem >> fit of 1 component


LI FLIM software program - Multi Frequency<br />

Per pixel data: Frequency (MHz) Phase (rad) Modulation<br />

10,0 0,13 1,01<br />

12,2 0,15 0,99<br />

14,9 0,17 0,98<br />

18,2 0,19 0,99<br />

22,2 0,25 0,97<br />

27,1 0,30 0,94<br />

33,0 0,36 0,92<br />

40,3 0,40 0,90<br />

49,2 0,49 0,88<br />

60,0 0,52 0,80<br />

Component <strong>Lifetime</strong> (ns) Fraction<br />

1 1,73 1<br />

chi-squared 0,00837<br />

Cells transfected with GFP-mCherry tandem >> fit of 1 component


EXAMPLE<br />

Intracellular pH distributions<br />

Follow pH fluctuations inside cells after environmental<br />

perturbations<br />

pH (cytosol) > pH (lysosomes)<br />

Required:<br />

Fluorophores with pH-dependent lifetime sensitivities<br />

Cytometry A. 2003 Apr;52(2):77-89. Lin HJ, Herman P, Lakowicz JR.


EXAMPLE<br />

Intracellular pH distributions<br />

Levels of cytosolic pH:<br />

7.40 for 3T3 cells (a)<br />

7.20 for CHO cells (b)<br />

7.15 for MCF-7 cells (c)<br />

Cytometry A. 2003 Apr;52(2):77-89. Lin HJ, Herman P, Lakowicz JR.


EXAMPLE<br />

Intracellular pH distributions<br />

Lysosomal pH values:<br />

a: resting 3T3 fibroblast > pH 4.9<br />

b: treated with monensin (K + /H + exchange) > pH 5.5<br />

c: treated with bafilomycin A1 (inhib. H + pump) > pH 5.9<br />

Cytometry A. 2003 Apr;52(2):77-89. Lin HJ, Herman P, Lakowicz JR.


EXAMPLE FRET-FLIM Conformational changes<br />

GFP at the N-terminus and YFP at the C-terminus<br />

GFP-Akt<br />

GFP-Akt-YFP<br />

YFP-Akt<br />

GFP-Akt-YFP dark<br />

>> short lifetime<br />

>> lifetime increases because of YFP<br />

>> long lifetime<br />

>> = lifetime of GFP-Akt<br />

YFP emission quenced (Tyr 67 mutated to Leu)<br />

Biochem. J. (2003) 372 (33–40). Véronique CALLEJA, Simon M. AMEER-BEG, Borivoj VOJNOVIC, Rudiger<br />

WOSCHOLSKI, Julian DOWNWARD and Banafshé LARIJANI


EXAMPLE FRET-FLIM Conformational changes<br />

With PDGF > no FRET<br />

visible at<br />

plasmamembrane in<br />

GFP-Akt-YFP ><br />

decrease in lifetime<br />

(note GFP-Akt-YFP dark )<br />

white 1,7-2 ns<br />

blue 2 - 2,5 ns<br />

Biochem. J. (2003) 372 (33–40). Véronique CALLEJA, Simon M. AMEER-BEG, Borivoj VOJNOVIC, Rudiger<br />

WOSCHOLSKI, Julian DOWNWARD and Banafshé LARIJANI


Example FRET-FLIM Colocalisation or Interaction<br />

A<br />

A B<br />

merge<br />

CHO cells<br />

• transfected with A and B<br />

• immunostained for<br />

• A-Cy3<br />

• B-FITC<br />

Conclusion: A and B colocalise<br />

J Biol Chem. 2005 May 25; Lleo A, Waldron E, von Arnim CA, Herl L, Tangredi MM, Peltan ID, Strickland DK,<br />

Koo EH, Hyman BT, Pietrzik CU, Berezovska O.


Example FRET-FLIM Colocalisation or Interaction<br />

B B + A B + C<br />

B = donor (FITC)<br />

A = acceptor (Cy3)<br />

C = acceptor (Cy3)<br />

intensity<br />

lifetime<br />

No FRET FRET C coloc. to B,<br />

but not interact,<br />

Conclusion:<br />

no FRET!<br />

A interacts with B (shift blue to red)<br />

J Biol Chem. 2005 May 25; Lleo A, Waldron E, von Arnim CA, Herl L, Tangredi MM, Peltan ID, Strickland DK,<br />

Koo EH, Hyman BT, Pietrzik CU, Berezovska O.


End Remarks<br />

FLIM lifetime independent of intensity caused by:<br />

• excitation non-uniformity<br />

• concentration variations<br />

• bleaching<br />

Frequency domain FLIM method offers:<br />

- speed up to real time FLIM<br />

- robust modulated LED excitation<br />

- stability<br />

- easy to install and to operate<br />

- life cell analysis<br />

- combinations with spinning disc, TIRF, spectral


www.lambert-instruments.com

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!