13.02.2015 Views

Advanced Queueing Theory - Department of Computer Science ...

Advanced Queueing Theory - Department of Computer Science ...

Advanced Queueing Theory - Department of Computer Science ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Advanced</strong> <strong>Queueing</strong> <strong>Theory</strong><br />

1<br />

• Networks <strong>of</strong> queues<br />

(reversibility, output theorem, tandem networks, partial<br />

balance, product-form distribution, blocking, insensitivity,<br />

BCMP networks, mean-value analysis, Norton's theorem,<br />

sojourn times)<br />

• Analytical-numerical techniques<br />

(matrix-analytical methods, compensation method, error<br />

bound method, approximate decomposition method)<br />

• Polling systems<br />

(cycle times, queue lengths, waiting times, conservation<br />

laws, service policies, visit orders)<br />

Richard J. Boucherie<br />

department <strong>of</strong> Applied Mathematics<br />

University <strong>of</strong> Twente<br />

http://wwwhome.math.utwente.nl/~boucherierj/onderwijs/<strong>Advanced</strong> <strong>Queueing</strong> <strong>Theory</strong>/AQT.html


2<br />

• Doe na de m/m/1 eerst even de M/E_r/1 expliciet uit<br />

notes<br />

• Laat dan expliciet zien dat generator een blok structuur<br />

heeft<br />

• Ga dan pas naar QBD


<strong>Advanced</strong> <strong>Queueing</strong> <strong>Theory</strong><br />

Today (lecture 7): Matrix analytical techniques<br />

3<br />

• G. Latouche, V Ramaswami. Introduction to Matrix Analytic<br />

Methods in Stochastic Modeling, SIAM, Philadelphia, 1999<br />

• Tutorial on Matrix analytic methods:<br />

http://www-net.cs.umass.edu/pe2002/papers/nelson.pdf<br />

• M/M/1 queue<br />

• Quasi birth death process<br />

• Generalisations


M/M/1 queue<br />

4<br />

• Poisson arrival process rate ,<br />

single server, exponential service times, mean 1/<br />

• State space S={0,1,2,…}<br />

• transition rates :<br />

• Global balance<br />

• Detailed balance<br />

• Equilibrium distribution


0 =<br />

5


<strong>Advanced</strong> <strong>Queueing</strong> <strong>Theory</strong><br />

Today (lecture 7): Matrix analytical techniques<br />

7<br />

• G. Latouche, V Ramaswami. Introduction to Matrix Analytic<br />

Methods in Stochastic Modeling, SIAM, Philadelphia, 1999<br />

• Tutorial on Matrix analytic methods:<br />

http://www-net.cs.umass.edu/pe2002/papers/nelson.pdf<br />

• M/M/1 queue<br />

• Quasi birth death process<br />

• Generalisations


8<br />

Vector state process: example M/E_k/1<br />

• Let service requirement in single server queue be Erlang (k,apple)<br />

• Augment state description with phase <strong>of</strong> Erlang distribution<br />

• State (n,j): n= # customers, j = #remaining phases<br />

• Transitions<br />

(n,j)(n+1,j) arrival (rate apple)<br />

(n,j)(n,j-1) completion <strong>of</strong> phase (j>1) (rate apple)<br />

(n,j)(n-1,k) completion in last phase, dept (n>1,j=1) (rate apple)<br />

(n,j)(0) completion for n=1, (j=1) (rate apple)<br />

(0)(1,k) arrival to empty system (rate apple)<br />

• Picture<br />

• Generator in block structure<br />

• M/Ph/1


Phase and level<br />

9


10<br />

Quasi-birth-death process (QBD)<br />

Q i blocks <strong>of</strong> size M x M


π i blocks <strong>of</strong> size M<br />

12


Theorem: equilibrium distribution<br />

13


14<br />

Stability<br />

Behaviour in phase direction<br />

x stat distrib<br />

over phases<br />

downward drift


15<br />

QBD: Pro<strong>of</strong> <strong>of</strong> equilibrium distribution<br />

For the discrete time case, R(i,j) is the expected number <strong>of</strong><br />

visits to phase j in level 1 before absorption in level 0<br />

for the process that starts at level 0 in phase i


Pro<strong>of</strong>, ctd<br />

18


19<br />

Computing R<br />

• For computation <strong>of</strong> R, rearrange<br />

• Note that Q 1 is indeed invertible, since it is a<br />

transient generator<br />

• Fixed point equation solved by successive<br />

substitution<br />

• It can be shown that


20<br />

Example: E k /M/1 queue<br />

• Let service requirement in single server queue be Exp(apple)<br />

• Let interarrival time be Erlang (k, apple)<br />

• Augment state description with phase <strong>of</strong> Erlang distribution<br />

• State (n,j): n=# customers, j =#remaining phases<br />

• Transitions<br />

(n,1)(n+1,k) arrival (rate apple)<br />

(n,j)(n,j-1) completion <strong>of</strong> phase (j>1) (rate apple)<br />

(n,j)(n-1,j) service completion (n>1) (rate apple)<br />

• Picture<br />

• Generator in block structure


<strong>Advanced</strong> <strong>Queueing</strong> <strong>Theory</strong><br />

Today (lecture 7): Matrix analytical techniques<br />

21<br />

• G. Latouche, V Ramaswami. Introduction to Matrix Analytic<br />

Methods in Stochastic Modeling, SIAM, Philadelphia, 1999<br />

• Tutorial on Matrix analytic methods:<br />

http://www-net.cs.umass.edu/pe2002/papers/nelson.pdf<br />

• M/M/1 queue<br />

• Quasi birth death process<br />

• Generalisations


Generalisations: different first row<br />

22


24<br />

Generalisations: GI/M/1-type Markov chains<br />

• Consider GI/M/1 at arrival epochs<br />

• Interarrival time has general distribution F A with mean 1/<br />

apple<br />

Service time exponential with rate apple<br />

• Probability exactly n customers served during intarr time<br />

• Probability more than n served during intarr time


Generalisations: GI/M/1-type Markov chains<br />

25<br />

• Prob n cust served during intarr time<br />

• Prob more than n served during intarr time<br />

• Transition probability matrix<br />

• Equilibrium probabilities<br />

• Where is unique root in (0,1) <strong>of</strong><br />

where A has distribution F A


26<br />

Generalisations: GI/M/1-type Markov chains<br />

• Markov chain with transition matrix (suitably ordered<br />

states) <strong>of</strong> the form<br />

is called Markov chain <strong>of</strong> the GI/M/1 type


27<br />

Generalisations: GI/M/1-type Markov chains<br />

• Equilibrium distribution<br />

• Where R is minimal non-negative solution <strong>of</strong><br />

• Computation: truncate<br />

• And use successive approximation


28<br />

Generalisations: M/G/1 type Markov chains<br />

• Embedding <strong>of</strong> M/Q/1 at departure epochs gives upper<br />

triangular structure for transition matrix


29<br />

Generalisations: Level dependent rates<br />

• For Markov chain <strong>of</strong> the GI/M/1 type, we may generalise<br />

to allow for level dependent matrices, i.e.<br />

A i (n) at level n, i=0,1,2,…, n=0,1,2,…


30<br />

References and Exercise<br />

• http://www.ms.unimelb.edu.au/~pgt/Stochworkshop2004.pdf<br />

• http://www.ms.unimelb.edu.au/~pgt/Stochworkshop2004-2.pdf<br />

• Exercise: Consider the Ph/Ph/1 queue. Formulate as<br />

Matrix Analytic queue (i.e. specify the transition matrix, and<br />

the blocks in that matrix). For the E 2 /E 2 /1 queue, obtain<br />

explicit expression for R, and give the equilibrium distribution

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!