11.03.2015 Views

V - PowerWorld

V - PowerWorld

V - PowerWorld

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Exciter AC7B and ESAC7B<br />

Exciter AC7B and ESAC7B<br />

IEEE 421.5 2005 Type AC7B Excitation System Model<br />

E C<br />

1<br />

1+ sT R<br />

V REF<br />

2<br />

V C<br />

V S<br />

+ +<br />

Σ<br />

−<br />

−<br />

+<br />

V UEL V RMAX<br />

V AMAX<br />

K<br />

PR<br />

K<br />

+ +<br />

+<br />

IR DR<br />

Σ<br />

s<br />

+ IA<br />

K<br />

1 + PA<br />

+ π<br />

sTDR<br />

s<br />

−<br />

5<br />

3 4<br />

-K V<br />

L FE<br />

V RMIN<br />

sK<br />

V AMIN<br />

K<br />

V A<br />

Σ K F 2<br />

+<br />

+<br />

KV<br />

P<br />

T<br />

Σ<br />

−<br />

VFEMAX<br />

-K I<br />

K +S (V )<br />

E E E<br />

1<br />

sT E<br />

V EMIN<br />

( )<br />

V = VS V<br />

X E E E<br />

D FD<br />

V E<br />

Speed<br />

1 Spdmlt 0<br />

1<br />

EX<br />

π<br />

F EX<br />

( )<br />

F = f I<br />

N<br />

E FD<br />

6<br />

sK<br />

1+ sT<br />

F 3<br />

F<br />

V FE<br />

Σ<br />

+<br />

+<br />

V X<br />

+<br />

Σ<br />

+<br />

K E<br />

I<br />

N<br />

I N<br />

KCI<br />

=<br />

V<br />

E<br />

FD<br />

States<br />

1 - V<br />

E<br />

2 - Sensed V<br />

3 - K<br />

4 - K<br />

5 - V<br />

IR<br />

DR<br />

A<br />

t<br />

6 - Feedback<br />

AC7B supported by PSSE<br />

ESAC7B supported by PSLF with optional speed multiplier<br />

K F1<br />

K D<br />

I FD


Exciter AC8B<br />

Exciter AC8B<br />

IEEE 421.5 2005 AC8B Excitation System<br />

V COMP<br />

VREF<br />

VS<br />

V PIDMAX<br />

V RMAX<br />

VFEMAX<br />

-K I<br />

K +S (V )<br />

E E E<br />

D FD<br />

1<br />

1+ sT R<br />

2<br />

−<br />

+<br />

+<br />

+<br />

KIR<br />

sKDR<br />

K<br />

A<br />

Σ Σ K + PR<br />

s<br />

+ 1 + sT 1+ sT<br />

VUEL<br />

+<br />

+<br />

VOEL<br />

V PIDMIN<br />

3<br />

DR<br />

4<br />

V RMIN<br />

A<br />

5<br />

+<br />

V R<br />

Σ<br />

−<br />

V FE<br />

1<br />

sT E<br />

V EMIN<br />

1<br />

EX<br />

π<br />

F EX<br />

( )<br />

F = f I<br />

E FD<br />

N<br />

I N<br />

Σ<br />

+<br />

+<br />

( )<br />

K + S V<br />

E E E<br />

I<br />

N<br />

=<br />

KCI<br />

V<br />

E<br />

FD<br />

K D<br />

I FD<br />

States<br />

1 - V<br />

E<br />

2 - Sensed V<br />

3 - PID 1<br />

4 - PID 2<br />

5 - V<br />

R<br />

t<br />

Model supported by PSSE


Exciter BPA_EA<br />

Exciter BPA_EA<br />

Continuously Acting DC Rotating Excitation System Model<br />

Regulator<br />

V T<br />

Filter<br />

1<br />

1+ sT R<br />

2<br />

V STB<br />

+<br />

−<br />

+<br />

Σ<br />

+<br />

Σ<br />

−<br />

K<br />

A<br />

1+ sT<br />

A<br />

1<br />

1+ sTA<br />

1<br />

V RMAX<br />

3 4<br />

+<br />

Σ<br />

−<br />

Exciter<br />

1<br />

sT E<br />

E FD<br />

1<br />

V RMIN<br />

V REF<br />

5<br />

Stabilizer<br />

sKF<br />

1+ sT<br />

F<br />

S<br />

E<br />

+ K<br />

E<br />

States<br />

1 - E<br />

FD<br />

2 - Sensed V<br />

3 - V<br />

4 - V<br />

R<br />

R1<br />

t<br />

5 - VF<br />

Model in the public domain, available from BPA


Exciter BPA EB<br />

Exciter BPA EB<br />

Westinghouse Pre-1967 Brushless Excitation System Model<br />

Regulator<br />

Exciter<br />

V T<br />

Filter<br />

1<br />

1+ sT R<br />

2<br />

V STB<br />

+<br />

−<br />

+<br />

Σ<br />

V REF<br />

+<br />

Σ<br />

−<br />

K<br />

A<br />

1+ sT<br />

A<br />

Stabilizer<br />

1<br />

1+ sTA<br />

1<br />

V RMAX<br />

3 4<br />

V RMIN<br />

+<br />

Σ<br />

−<br />

S<br />

E<br />

1<br />

sT E<br />

+ K<br />

E<br />

1<br />

E FDMAX<br />

EFDMIN<br />

= 0<br />

E FD<br />

5<br />

sKF<br />

1+ sT<br />

F<br />

6<br />

1<br />

1+ sTF<br />

1<br />

States<br />

1 - E before limit<br />

FD<br />

2 - Sensed V<br />

3 - V<br />

4 - V<br />

5 - V<br />

6 - V<br />

R<br />

R1<br />

F<br />

F1<br />

t<br />

Model in the public domain, available from BPA


Exciter BPA EC<br />

Exciter BPA EC<br />

Westinghouse Brushless Since 1966 Excitation System Model<br />

Regulator<br />

Exciter<br />

V STB<br />

V RMAX<br />

E FDMAX<br />

V T<br />

−<br />

V REF<br />

+<br />

+<br />

Σ<br />

+<br />

Σ<br />

−<br />

4<br />

K<br />

A<br />

1+ sT<br />

A<br />

Stabilizer<br />

sKF<br />

1+ sT<br />

F<br />

2<br />

V RMIN<br />

1<br />

1+ sTA<br />

1<br />

S<br />

E<br />

+ K<br />

3<br />

E<br />

+<br />

Σ<br />

−<br />

S<br />

E<br />

1<br />

sT E<br />

+ K<br />

E<br />

1<br />

EFDMIN<br />

= 0<br />

E FD<br />

States<br />

1 - E before limit<br />

2 - V<br />

3 - V<br />

4 - V<br />

FD<br />

R<br />

R1<br />

F<br />

Model in the public domain, available from BPA


Exciter BPA ED<br />

Exciter BPA ED<br />

SCPT Excitation System Model<br />

'<br />

V T<br />

1<br />

1+ sT R<br />

2<br />

V REF<br />

−<br />

+<br />

+<br />

Σ<br />

+<br />

Σ<br />

−<br />

K<br />

A<br />

1+ sT<br />

A<br />

Regulator<br />

1<br />

V RMAX<br />

3 4<br />

1+ sT V<br />

A1<br />

R<br />

V RMIN<br />

+<br />

Σ<br />

+<br />

V BMAX<br />

0<br />

Exciter<br />

V B<br />

+<br />

Σ<br />

−<br />

1<br />

sT E<br />

K E<br />

1<br />

E FD<br />

V S<br />

V T<br />

I T<br />

VTHEV = KPVT + jKI IT<br />

V THEV<br />

π<br />

5<br />

sKF<br />

1+ sT<br />

F<br />

Stabilizer<br />

⎛0.78⋅<br />

I ⎞<br />

FD<br />

A = ⎜ ⎟<br />

⎝ VTHEV<br />

⎠<br />

If A> 1, V = 0<br />

States<br />

1 - EField<br />

B<br />

2 - Sensed V<br />

3 - V<br />

4 - V<br />

A<br />

R<br />

t<br />

2<br />

I FD<br />

5 - Feedback<br />

Model in the public domain, available from BPA<br />

1−<br />

A


Exciter BPA EE<br />

Exciter BPA EE<br />

Non-Continuously Active Rheostatic Excitation System Model<br />

Regulator<br />

Exciter<br />

'<br />

V T<br />

−<br />

V REF<br />

+<br />

Σ<br />

+<br />

'<br />

K<br />

A<br />

1+<br />

sT<br />

V RMIN<br />

V RMAX<br />

RH<br />

∗<br />

V RH<br />

2<br />

If:<br />

∆V ≥ K , V = V<br />

T V R RMAX<br />

∆ V < K , V = V<br />

T V R RH<br />

∆V ≤− K , V = V<br />

T V R RMIN<br />

V R<br />

+<br />

Σ<br />

−<br />

S<br />

E<br />

1<br />

sT E<br />

+ K<br />

E<br />

1<br />

E FDMAX<br />

E FDMIN<br />

E FD<br />

'<br />

V T<br />

−<br />

'<br />

V TO<br />

+<br />

Σ<br />

∆V T<br />

* NOTE:<br />

If the time constant T is equal to<br />

RH<br />

'<br />

zero, this block is represented as K<br />

A<br />

/s<br />

States<br />

1 - EField before limit<br />

2 - V<br />

RH<br />

Model in the public domain, available from BPA


Exciter BPA EF<br />

Exciter BPA EF<br />

Westinghouse Continuous Acting Brushless Rotating Alternator<br />

Excitation System Model<br />

Regulator<br />

Exciter<br />

V SO<br />

V RMAX<br />

E FDMAX<br />

+<br />

V A(1 A)<br />

T − Σ Σ<br />

( T = R<br />

0)<br />

−<br />

s<br />

V REF<br />

+<br />

+<br />

3<br />

Stabilizer<br />

sKF<br />

1+ sT<br />

F<br />

K<br />

V RMIN<br />

+ sT<br />

S<br />

E<br />

+ K<br />

2<br />

E<br />

+<br />

Σ<br />

−<br />

S<br />

E<br />

1<br />

sT E<br />

+ K<br />

E<br />

1<br />

EFDMIN<br />

= 0<br />

E FD<br />

States<br />

1 - EField before limit<br />

2 - V<br />

R<br />

3 - VF<br />

Model in the public domain, available from BPA


Exciter BPA EG<br />

Exciter BPA EG<br />

SCR Equivalent Excitation System Model<br />

Regulator<br />

V REF<br />

V RMAX<br />

V T<br />

−<br />

+<br />

+<br />

Σ<br />

+<br />

Σ<br />

−<br />

K<br />

A<br />

1+ sT<br />

A<br />

2<br />

1<br />

1+ sTA<br />

1<br />

V R<br />

1<br />

E FD<br />

V RMIN<br />

V SO<br />

3<br />

sKF<br />

1+ sT<br />

F<br />

Stabilizer<br />

States<br />

1 - EField<br />

2 - V<br />

A<br />

3 - VF<br />

Model in the public domain, available from BPA


Exciter BPA EJ<br />

Exciter BPA EJ<br />

Westinghouse Static Grand Couple PP#3 Excitation System Model<br />

Regulator<br />

'<br />

V T<br />

V SO<br />

Filter<br />

+<br />

1 2<br />

1+ sT<br />

− Σ<br />

R<br />

+<br />

+<br />

Σ<br />

−<br />

K<br />

A<br />

1+ sT<br />

A<br />

3<br />

1<br />

1+ sTA<br />

1<br />

V RMAX<br />

1<br />

E FDMAX<br />

π<br />

E FD<br />

V REF<br />

V RMIN<br />

E FDMIN<br />

4<br />

Stabilizer<br />

sKF<br />

1+ sT<br />

F<br />

States<br />

1 - EField before limit<br />

2 - Sensed V<br />

3 - V<br />

4 - V<br />

R<br />

F<br />

t<br />

Model in the public domain, available from BPA


Exciter BPA EK<br />

Exciter BPA EK<br />

General Electric Alterrex Excitation System Model<br />

Regulator<br />

Exciter<br />

V SO<br />

V RMAX<br />

E FDMAX<br />

VT<br />

(T =0)<br />

R<br />

−<br />

+<br />

V REF<br />

+<br />

Σ<br />

+<br />

Σ<br />

−<br />

K<br />

A<br />

1+ sT<br />

4<br />

A<br />

2<br />

1<br />

1+ sTA<br />

1<br />

V RMIN<br />

Stabilizer<br />

sKF<br />

1+ sT<br />

F<br />

3<br />

+<br />

Σ<br />

−<br />

S<br />

E<br />

1<br />

sT E<br />

+ K<br />

E<br />

1<br />

EFDMIN<br />

= 0<br />

E FD<br />

States<br />

1 - EField before limit<br />

2 - V<br />

3 - V<br />

4 - V<br />

R<br />

R1<br />

F<br />

Model in the public domain, available from BPA


Exciter BPA FA<br />

Exciter BPA FA<br />

WSCC Type A (DC1) Excitation System Model<br />

V REF<br />

V S<br />

V RMAX<br />

V T<br />

IT<br />

V = V + ( R + jX ) I<br />

C T C C T<br />

V C<br />

1<br />

1+ sT R<br />

2<br />

−<br />

+<br />

Σ<br />

V ERR<br />

+<br />

+<br />

Σ<br />

−<br />

1+<br />

sT<br />

1+<br />

sT<br />

C<br />

B<br />

3<br />

K<br />

A<br />

1+ sT<br />

A<br />

V R<br />

4<br />

+<br />

Σ<br />

−<br />

1<br />

sT E<br />

E FD<br />

1<br />

V F<br />

V RMIN<br />

V FE<br />

S<br />

E<br />

+ K<br />

E<br />

5<br />

sKF<br />

1+ sT<br />

F<br />

States<br />

1 - EField<br />

2 - Sensed V<br />

3 - V<br />

4 - V<br />

5 - V<br />

B<br />

R<br />

F<br />

t<br />

Model in the public domain, available from BPA


Exciter BPA FB<br />

Exciter BPA FB<br />

WSCC Type B (DC2) Excitation System Model<br />

V REF<br />

V S<br />

VV<br />

T<br />

RMAX<br />

V T<br />

IT<br />

V = V + ( R + jX ) I<br />

C T C C T<br />

V C<br />

1<br />

1+ sT R<br />

2<br />

−<br />

+<br />

Σ<br />

V ERR<br />

+<br />

+<br />

Σ<br />

−<br />

1+<br />

sT<br />

1+<br />

sT<br />

C<br />

B<br />

3<br />

K<br />

A<br />

1+ sT<br />

A<br />

V R<br />

4<br />

+<br />

Σ<br />

−<br />

1<br />

sT E<br />

E FD<br />

1<br />

V F<br />

VV<br />

T<br />

RMIN<br />

V FE<br />

S<br />

E<br />

+ K<br />

E<br />

5<br />

sKF<br />

1+ sT<br />

F<br />

States<br />

1 - EField<br />

2 - Sensed V<br />

3 - V<br />

4 - V<br />

B<br />

R<br />

t<br />

5 - VF<br />

Model in the public domain, available from BPA


Exciter BPA FC<br />

Exciter BPA FC<br />

WSCC Type C (AC1) Excitation System Model<br />

V REF<br />

V T<br />

I T<br />

V = V + ( R + jX ) I<br />

C T C C T<br />

V C<br />

1<br />

1+ sT R<br />

2<br />

−<br />

Σ<br />

+<br />

V ERR<br />

V S<br />

V RMAX<br />

+<br />

+<br />

Σ<br />

−<br />

V F<br />

1+<br />

sT<br />

1+<br />

sT<br />

C<br />

B<br />

4<br />

K<br />

A<br />

1+ sT<br />

V RMIN<br />

A<br />

3<br />

V R<br />

+<br />

Σ<br />

−<br />

0<br />

1<br />

sT E<br />

1<br />

V E<br />

EX<br />

π<br />

F EX<br />

( )<br />

F = f I<br />

N<br />

E FD<br />

States<br />

1 - V<br />

E<br />

2 - Sensed V<br />

3 - V<br />

4 - V<br />

R<br />

LL<br />

t<br />

5 - VF<br />

Model in the public domain, available from BPA<br />

5<br />

sKF<br />

1+ sT<br />

F<br />

V FE<br />

Σ<br />

+<br />

+<br />

K E<br />

K D<br />

I<br />

N<br />

I N<br />

KCI<br />

=<br />

V<br />

E<br />

FD<br />

I FD


Exciter BPA FD<br />

Exciter BPA FD<br />

WSCC Type D (ST2) Excitation System Model<br />

V REF<br />

V T<br />

I T<br />

V = V + ( R + jX ) I<br />

C T C C T<br />

V C<br />

1<br />

1+ sT R<br />

2<br />

−<br />

Σ<br />

+<br />

V ERR<br />

V RMAX<br />

EFD MAX<br />

V S<br />

+<br />

+<br />

Σ<br />

−<br />

F<br />

V RMIN<br />

K<br />

A<br />

1+ sT<br />

A<br />

3<br />

+<br />

V 0<br />

V R<br />

V B<br />

Σ<br />

+<br />

+<br />

Σ<br />

−<br />

1<br />

sT E<br />

1<br />

E FD<br />

V T<br />

I T<br />

IFD<br />

VE = KPVT + jKIIT<br />

I<br />

N<br />

KCI<br />

=<br />

V<br />

E<br />

FD<br />

I N<br />

E<br />

EX<br />

π<br />

( )<br />

F = f I<br />

Model in the public domain, available from BPA<br />

N<br />

4<br />

FEX<br />

sKF<br />

1+ sT<br />

F<br />

V If K = 0. and K = 0., V = 1.<br />

K E<br />

P I B<br />

States<br />

1 - EField<br />

2 - Sensed V<br />

3 - V<br />

4 - V<br />

R<br />

F<br />

t


Exciter BPA FE<br />

Exciter BPA FE<br />

WSCC Type E (DC3) Excitation System Model<br />

V REF<br />

V T<br />

IT<br />

V = V + ( R + jX ) I<br />

C T C C T<br />

V C 1<br />

1+ sTR<br />

2<br />

−<br />

+<br />

Σ<br />

V RMAX<br />

K V<br />

VERR<br />

RMAX RMIN<br />

V<br />

−V<br />

sK T<br />

V<br />

RH<br />

V RH<br />

3<br />

−K V<br />

V RMIN<br />

States<br />

1 - EField before limit<br />

2 - Sensed V<br />

3 - V<br />

RH<br />

t<br />

Model in the public domain, available from BPA<br />

If V ≥ K , V = V<br />

ERR V R RMAX<br />

If V < K , V = V<br />

ERR V R RH<br />

If V ≤− K , V = V<br />

ERR V R RMIN<br />

V R<br />

+<br />

V FE<br />

Σ<br />

−<br />

K<br />

E<br />

1<br />

sT E<br />

+ S<br />

E<br />

1<br />

E FD


Exciter BPA FF<br />

Exciter BPA FF<br />

WSCC Type F (AC2) Excitation System Model<br />

V REF<br />

V T<br />

IT<br />

V = V + ( R + jX ) I<br />

C T C C T<br />

V C 1<br />

1+ sTR<br />

2<br />

−<br />

+<br />

Σ<br />

V ERR<br />

V S<br />

V AMAX<br />

+<br />

Σ<br />

+<br />

4<br />

3<br />

+<br />

−<br />

V F<br />

1+<br />

sT<br />

1+<br />

sT<br />

C<br />

B<br />

K<br />

A<br />

1+ sT<br />

V AMIN<br />

A<br />

−<br />

V A<br />

V H<br />

Σ<br />

V L<br />

LV<br />

Gate<br />

K B<br />

K L<br />

V RMIN<br />

V RMAX<br />

V R<br />

+<br />

Σ −<br />

+<br />

V LR<br />

Σ<br />

−<br />

0<br />

1<br />

sT E<br />

1<br />

V E<br />

EX<br />

π<br />

F EX<br />

( )<br />

F = f I<br />

N<br />

E FD<br />

States<br />

1 - V<br />

E<br />

2 - Sensed V<br />

3 - V<br />

4 - V<br />

A<br />

LL<br />

t<br />

sKF<br />

1+ sT<br />

5 - VF<br />

Model in the public domain, available from BPA<br />

5<br />

F<br />

K H<br />

Σ<br />

V FE<br />

+<br />

+<br />

K<br />

E<br />

+ S<br />

E<br />

K D<br />

I<br />

N<br />

I N<br />

KCI<br />

=<br />

V<br />

E<br />

FD<br />

I FD


Exciter BPA FG<br />

Exciter BPA FG<br />

WSCC Type G (AC4) Excitation System Model<br />

V REF<br />

V T<br />

IT<br />

V = V + ( R + jX ) I<br />

C T C C T<br />

V C 1<br />

1+ sTR<br />

2<br />

−<br />

+<br />

Σ<br />

V<br />

Σ<br />

ERR<br />

+<br />

+<br />

V S<br />

V IMIM<br />

V IMAX<br />

1+<br />

sT<br />

1+<br />

sT<br />

C<br />

B<br />

K<br />

A<br />

1+ sT<br />

3 1<br />

A<br />

RMIN<br />

(V − K I )<br />

RMAX<br />

E FD<br />

(V − K I )<br />

C FD<br />

C FD<br />

States<br />

1 - EField before limit<br />

2 - Sensed V<br />

3 - V<br />

LL<br />

t<br />

Model in the public domain, available from BPA


Exciter BPA FH<br />

Exciter BPA FH<br />

WSCC Type H (AC3) Excitation System Model<br />

V REF<br />

V T<br />

IT<br />

V = V + ( R + jX ) I<br />

C T C C T<br />

V C 1<br />

1+ sTR<br />

2<br />

−<br />

+<br />

Σ<br />

V ERR<br />

V AMAX<br />

K LV<br />

Σ<br />

+<br />

−<br />

1+<br />

sT 4<br />

C HV K<br />

A<br />

+<br />

+ Σ<br />

π<br />

1+<br />

sT Gate<br />

Σ<br />

B<br />

1+ sT V<br />

V + A V A R<br />

−<br />

S<br />

V F<br />

V AMIN<br />

3<br />

K R<br />

V LV<br />

−<br />

V FE<br />

0<br />

1<br />

sT E<br />

V E<br />

1<br />

EX<br />

π<br />

F EX<br />

( )<br />

F = f I<br />

N<br />

E FD<br />

States<br />

1 - V<br />

E<br />

2 - Sensed V<br />

3 - V<br />

4 - V<br />

A<br />

LL<br />

t<br />

s<br />

+ sT<br />

1<br />

F<br />

5 - VF<br />

Model in the public domain, available from BPA<br />

5<br />

V N K N<br />

K F<br />

E FDN<br />

EFD<br />

Σ<br />

+<br />

+<br />

K<br />

E<br />

+ S<br />

E<br />

K D<br />

I<br />

N<br />

I N<br />

KCI<br />

=<br />

V<br />

E<br />

FD<br />

I FD


Exciter BPA FH<br />

Exciter BPA FH<br />

WSCC Type H Excitation System Model<br />

V REF<br />

V T<br />

IT<br />

V = V + ( R + jX ) I<br />

C T C C T<br />

V C 1<br />

1+ sTR<br />

2<br />

−<br />

+<br />

Σ<br />

V ERR<br />

V AMAX<br />

1+<br />

sT 4<br />

C<br />

K 3<br />

A<br />

+<br />

+ Σ<br />

π<br />

1+<br />

sT<br />

Σ<br />

B<br />

1+ sT V<br />

V + A V A R<br />

−<br />

S<br />

V F<br />

V AMIN<br />

K R<br />

−<br />

1<br />

sT E<br />

V EMIN<br />

V FE<br />

V E<br />

1<br />

EX<br />

π<br />

F EX<br />

( )<br />

F = f I<br />

N<br />

E FD<br />

States<br />

1 - V<br />

E<br />

2 - Sensed V<br />

3 - V<br />

4 - V<br />

A<br />

LL<br />

t<br />

s<br />

+ sT<br />

1<br />

F<br />

5 - VF<br />

Model in the public domain, available from BPA<br />

5<br />

V N K N<br />

K F<br />

E FDN<br />

EFD<br />

Σ<br />

+<br />

+<br />

K<br />

E<br />

+ S<br />

E<br />

K D<br />

I<br />

N<br />

I N<br />

KCI<br />

=<br />

V<br />

E<br />

FD<br />

I FD


Exciter BPA FJ<br />

Exciter BPA FJ<br />

WSCC Type J Excitation System Model<br />

V REF<br />

V T<br />

IT<br />

V = V + ( R + jX ) I<br />

C T C C T<br />

V C 1<br />

1+ sTR<br />

2<br />

−<br />

+<br />

Σ<br />

V S<br />

V ERR<br />

+<br />

Σ<br />

+ −<br />

1+<br />

sT<br />

1+<br />

sT<br />

C<br />

B<br />

3<br />

K<br />

A<br />

1+ sT<br />

V RMIN<br />

V RMAX<br />

A<br />

1<br />

(VT EFDMAX − KCI FD)<br />

E FD<br />

(VT EFDMIN − KCI FD)<br />

V F<br />

4<br />

sKF<br />

1+ sT<br />

F<br />

States<br />

1 - EField before limit<br />

2 - Sensed V<br />

3 - V<br />

LL<br />

t<br />

4 - VF<br />

Model in the public domain, available from BPA


Exciter BPA FK<br />

Exciter BPA FK<br />

WSCC Type K (ST1) Excitation System Model<br />

V REF<br />

V T<br />

IT<br />

V = V + ( R + jX ) I<br />

C T C C T<br />

V C 1<br />

1+ sTR<br />

2<br />

−<br />

+<br />

Σ<br />

V<br />

ERR<br />

+<br />

Σ<br />

+ −<br />

V S<br />

V IMIM<br />

V IMAX<br />

1+<br />

sT<br />

1+<br />

sT<br />

C<br />

B<br />

3<br />

K<br />

A<br />

1+ sT<br />

A<br />

1<br />

(VT VRMAX − KCI FD<br />

)<br />

E FD<br />

(VT VRMIN − KCI FD<br />

)<br />

V F<br />

4<br />

sKF<br />

1+ sT<br />

F<br />

States<br />

1 - EField before limit<br />

2 - Sensed V<br />

3 - V<br />

LL<br />

t<br />

4 - VF<br />

Model in the public domain, available from BPA


Exciter BPA FL<br />

Exciter BPA FL<br />

WSCC Type L (ST3) Excitation System Model<br />

V REF<br />

V T<br />

IT<br />

V = V + ( R + jX ) I<br />

C T C C T<br />

V C 1<br />

1+ sTR<br />

2<br />

−<br />

+<br />

Σ<br />

V GMAX<br />

V ERR<br />

K G<br />

+<br />

V S<br />

+<br />

Σ<br />

+<br />

V IMAX<br />

KJ<br />

1<br />

1+<br />

sT<br />

+ sT<br />

C<br />

B<br />

V G V RMAX<br />

−<br />

3 +<br />

1<br />

V A<br />

Σ<br />

K<br />

A<br />

1+ sT<br />

A<br />

V R<br />

π<br />

E FDMAX<br />

E FD<br />

V IMIN<br />

V RMIN<br />

V B<br />

V REF<br />

V T<br />

I T<br />

( )<br />

V = KV+ jK+<br />

KX I<br />

E P T I P L T<br />

V E<br />

π<br />

IFD<br />

I<br />

N<br />

KCI<br />

=<br />

V<br />

E<br />

FD<br />

I N<br />

EX<br />

( )<br />

F = f I<br />

N<br />

FEX<br />

=<br />

jθ<br />

K P Ke<br />

P<br />

p<br />

States<br />

1 - V<br />

M<br />

2 - Sensed V<br />

3 - V<br />

LL<br />

t<br />

Model in the public domain, available from BPA


Exciter BPA FM through BPA FV<br />

Exciter BPA FM through BPA FV<br />

No block diagrams have been created


Exciter DC3A<br />

Exciter DC3A<br />

IEEE 421.5 2005 DC3A Excitation System Model<br />

V REF<br />

V RMAX<br />

E C<br />

1<br />

1+ sT R<br />

−<br />

Σ +<br />

K V<br />

VERR<br />

RMAX RMIN<br />

2 V RH 3<br />

V<br />

−V<br />

sK T<br />

V RH<br />

−K V<br />

V RMIN<br />

If V ≥ K , V = V<br />

ERR V R RMAX<br />

If V < K , V = V<br />

ERR V R RH<br />

If V ≤− K , V = V<br />

ERR V R RMIN<br />

V R<br />

+<br />

−<br />

Σ<br />

1<br />

sT E<br />

1<br />

V EMIN<br />

States<br />

1 - E FD<br />

2 – Sensed V t<br />

3 - V RH<br />

+<br />

Σ<br />

+<br />

V X<br />

X<br />

K E<br />

E<br />

( )<br />

V = EFD ⋅ S EFD<br />

Model supported by PSSE


Exciter DC4B<br />

VOEL<br />

(OEL=1)<br />

Exciter DC4B<br />

IEEE 421.5 2005 DC4B Excitation System Model<br />

Alternate OEL Inputs<br />

VOEL<br />

(OEL=2)<br />

E C<br />

1<br />

1+ sT R<br />

V REF<br />

2<br />

+ −<br />

−<br />

+<br />

Σ<br />

−<br />

V<br />

UEL<br />

(UEL=1)<br />

+<br />

V<br />

V F<br />

S<br />

Alternate UEL Inputs<br />

K<br />

V<br />

P<br />

+ KI<br />

sKD<br />

s<br />

+ 1 + sT<br />

RMIN<br />

V<br />

K<br />

RMAX<br />

D<br />

K<br />

3 4<br />

A<br />

V<br />

UEL<br />

(UEL=2)<br />

A<br />

HV<br />

Gate<br />

LV<br />

Gate<br />

V T<br />

VV<br />

T<br />

K<br />

A<br />

1+ sT<br />

VV<br />

T<br />

A<br />

RMIN<br />

RMAX<br />

V R<br />

5<br />

π Σ π<br />

+<br />

−<br />

+<br />

Σ<br />

+<br />

1<br />

sT E<br />

V EMIN<br />

( )<br />

V = VS V<br />

X E E E<br />

1<br />

Speed<br />

1 0 Spdmlt<br />

E FD<br />

States<br />

1 - E<br />

FD<br />

2 - Sensed V<br />

3 - PID1<br />

4 - PID2<br />

5 - V<br />

R<br />

t<br />

6 - Feedback<br />

Model supported by PSSE<br />

Model supported by PSLF with optional speed multiplier<br />

6<br />

sKF<br />

1+ sT<br />

F<br />

K E


Exciter ESAC1A<br />

Exciter ESAC1A<br />

IEEE Type AC1A Excitation System Model<br />

E C<br />

+<br />

1 2 1+<br />

sT<br />

1+ sT − R<br />

Σ<br />

1+<br />

sT<br />

+<br />

V S<br />

−<br />

V<br />

V<br />

F<br />

REF<br />

C<br />

B<br />

4<br />

K<br />

A<br />

1+ sT<br />

V AMIN<br />

V AMAX<br />

A<br />

V UEL<br />

3<br />

HV<br />

Gate<br />

V OEL<br />

LV<br />

Gate<br />

V RMIN<br />

V RMAX<br />

+<br />

V R<br />

Σ<br />

−<br />

1<br />

sT E<br />

0<br />

( )<br />

V = VS V<br />

X E E E<br />

1<br />

V E<br />

Speed<br />

1 Spdmlt 0<br />

EX<br />

π<br />

F EX<br />

( )<br />

F = f I<br />

N<br />

E FD<br />

States<br />

1 - V<br />

E<br />

2 - Sensed V<br />

3 - V<br />

4 - V<br />

A<br />

LL<br />

t<br />

5<br />

sKF<br />

1+ sT<br />

5 - VF<br />

Model supported by PSSE<br />

Model supported by PSLF with optional speed multiplier<br />

F<br />

Σ<br />

V<br />

V<br />

X<br />

FE<br />

+<br />

+<br />

+<br />

Σ<br />

+<br />

K E<br />

K D<br />

I<br />

N<br />

KCI<br />

=<br />

V<br />

E<br />

FD<br />

I FD


Exciter ESAC2A<br />

Exciter ESAC2A<br />

IEEE Type AC2A Excitation System Model<br />

EC<br />

VREF<br />

1<br />

1+sT<br />

R<br />

+<br />

−<br />

V S<br />

+<br />

1+sT<br />

4<br />

V AMAX<br />

3<br />

+<br />

VUEL<br />

K H<br />

sKF<br />

1+sT<br />

VOEL<br />

C<br />

A<br />

B<br />

1+sT<br />

K HV<br />

Σ 1+sT Σ<br />

Gate Gate Σ<br />

2<br />

B<br />

A V<br />

−<br />

A<br />

VR<br />

−<br />

V F<br />

V RMIN<br />

V V<br />

AMIN H<br />

States<br />

1 - VE<br />

2 - Sensed Vt<br />

3 - VA<br />

4 - VLL<br />

5 - VF<br />

Model supported by PSSE<br />

Model supported by PSLF with optional speed multiplier<br />

K<br />

5<br />

F<br />

LV<br />

V RMAX<br />

+<br />

−<br />

VFEMAX<br />

-K I<br />

K +S (V )<br />

+<br />

Σ<br />

Σ<br />

E E E<br />

0<br />

1<br />

sT<br />

E<br />

D FD<br />

V<br />

X=VES E(V E) F<br />

EX<br />

=f(I<br />

N<br />

)<br />

VX<br />

+<br />

+<br />

+<br />

V FE<br />

KE<br />

K D<br />

1<br />

V E<br />

Speed<br />

1 0<br />

Spdmlt<br />

π<br />

F EX<br />

I N<br />

KI<br />

I<br />

N<br />

= V<br />

E FD<br />

C FD<br />

E<br />

I FD


Exciter ESAC3A<br />

Exciter ESAC3A<br />

IEEE Type AC3A Excitation System Model<br />

K R<br />

E C<br />

V UEL<br />

V REF<br />

V AMAX<br />

2<br />

+<br />

1 V C<br />

1+<br />

sT<br />

1+ sT R<br />

− 1+<br />

sT<br />

HV<br />

C<br />

A<br />

Σ Gate Σ<br />

B 4<br />

1 + sTA<br />

+<br />

V AMIN<br />

V S<br />

V<br />

V FE<br />

F<br />

+<br />

−<br />

K<br />

3<br />

V<br />

A<br />

π<br />

+<br />

V<br />

R<br />

Σ<br />

−<br />

V EMIN<br />

VFEMAX<br />

-K I<br />

K +S (V )<br />

1<br />

sT E<br />

E E E<br />

( )<br />

V = VS V<br />

X E E E<br />

D FD<br />

1<br />

V E<br />

Speed<br />

1 Spdmlt 0<br />

EX<br />

π<br />

F EX<br />

( )<br />

F = f I<br />

N<br />

E FD<br />

Σ<br />

+<br />

V X<br />

+<br />

+<br />

Σ<br />

+<br />

K E<br />

I<br />

N<br />

I N<br />

KCI<br />

=<br />

V<br />

E<br />

FD<br />

States<br />

1 - V<br />

E<br />

2 - Sensed V<br />

3 - V<br />

4 - V<br />

A<br />

LL<br />

t<br />

5 - VF<br />

Model supported by PSSE<br />

Model supported by PSLF with optional speed multiplier<br />

5<br />

s<br />

+ sT<br />

1<br />

F<br />

V N<br />

V N<br />

K N<br />

K F<br />

EFD<br />

K D<br />

I FD


Exciter ESAC4A<br />

Exciter ESAC4A<br />

IEEE Type AC4A Excitation System Model<br />

V UEL<br />

E C<br />

V REF<br />

+<br />

1 2<br />

1+<br />

sT 3<br />

C<br />

HV<br />

K 1<br />

A<br />

1+ sT − R<br />

Σ<br />

1+<br />

sT<br />

Gate 1+ sT<br />

+<br />

V IMAX<br />

V<br />

RMAX<br />

V I<br />

B<br />

A<br />

V IMIN<br />

V RMIN<br />

-K I<br />

C IFD<br />

E FD<br />

V S<br />

States<br />

1 - EField before limit<br />

2 - Sensed V<br />

3 - V<br />

LL<br />

t<br />

Model supported by PSLF and PSSE<br />

PSSE uses nonwindup limit on E<br />

FD


Exciter ESAC5A<br />

Exciter ESAC5A<br />

IEEE Type AC5A Excitation System Model<br />

E C<br />

V REF<br />

V RMAX<br />

1<br />

1+ sT R<br />

V S<br />

+<br />

2<br />

−<br />

−<br />

+<br />

K<br />

A<br />

Σ<br />

1+ sT<br />

RMIN<br />

A<br />

3<br />

+<br />

V 0<br />

Σ<br />

−<br />

1<br />

sT E<br />

1<br />

E FD<br />

4 5<br />

sKF<br />

( 1+<br />

sTF3<br />

)<br />

( 1+ sT )( 1+<br />

sT )<br />

F1 F2<br />

V X<br />

+<br />

( )<br />

V = V ⋅ S V<br />

X E E E<br />

If T =0, then sT =0.<br />

F2<br />

F3<br />

Σ<br />

+<br />

K E<br />

States<br />

1 - EField<br />

2 - Sensed V<br />

3 - V<br />

R<br />

t<br />

4 - Feedback 1<br />

5 - Feedback 2<br />

Model supported by PSLF and PSSE


Exciter ESAC6A<br />

Exciter ESAC6A<br />

IEEE Type AC6A Excitation System Model<br />

Speed<br />

E C<br />

V REF<br />

V UEL<br />

V AMAX<br />

1 2 K<br />

A<br />

1+<br />

sT<br />

3<br />

1+<br />

sT 4<br />

K<br />

C<br />

1+ sT −<br />

R<br />

Σ<br />

1+<br />

sT 1+<br />

sT<br />

V C<br />

V S<br />

+<br />

+<br />

+<br />

( )<br />

5<br />

A<br />

1+<br />

sT<br />

1+<br />

sT<br />

B<br />

V A<br />

+<br />

Σ<br />

−<br />

V R<br />

V<br />

T RMIN<br />

AMIN<br />

J<br />

H<br />

VV<br />

VV<br />

+<br />

Σ<br />

V HMAX<br />

V X<br />

K<br />

V H Σ<br />

H<br />

− + V FE<br />

+<br />

0 V FELIM<br />

T<br />

RMAX<br />

−<br />

Σ<br />

+<br />

1<br />

sT E<br />

0<br />

+<br />

Σ<br />

K E<br />

( )<br />

V = VS V<br />

X E E E<br />

+<br />

1<br />

V E<br />

1 0<br />

Spdmlt<br />

EX<br />

π<br />

( )<br />

F = f I<br />

I<br />

N<br />

F EX<br />

N<br />

I N<br />

KCI<br />

=<br />

V<br />

E<br />

FD<br />

E FD<br />

States<br />

1 - V<br />

E<br />

2 - Sensed V<br />

3 - T Block<br />

A<br />

4 - V<br />

5 - V<br />

LL<br />

F<br />

t<br />

Model supported by PSSE<br />

Model supported by PSLF with optional speed multiplier<br />

K D<br />

I FD


Exciter ESAC8B_GE<br />

Exciter ESAC8B_GE<br />

IEEE Type AC8B with Added Speed Multiplier.<br />

V COMP<br />

1<br />

1+ sT R<br />

2<br />

−<br />

K<br />

V<br />

PR<br />

REF<br />

V RMAX<br />

+<br />

3<br />

K<br />

A<br />

Σ<br />

s + Σ<br />

1+ sT<br />

+<br />

K IR<br />

+<br />

+<br />

A<br />

5<br />

+<br />

V R<br />

Σ<br />

−<br />

VFEMAX<br />

-K I<br />

K +S (V )<br />

E E E<br />

1<br />

sT E<br />

D FD<br />

1<br />

Speed<br />

1 Spdmlt 0<br />

π<br />

F EX<br />

E FD<br />

V S<br />

sK<br />

1+ sT<br />

DR<br />

DR<br />

4<br />

V RMIN<br />

V FE<br />

V EMIN<br />

EX<br />

( )<br />

F = f I<br />

N<br />

I N<br />

Σ<br />

+<br />

+<br />

( )<br />

K + S V<br />

E E E<br />

I<br />

N<br />

=<br />

KCI<br />

V<br />

E<br />

FD<br />

K D<br />

I FD<br />

States<br />

1 - V<br />

E<br />

2 - Sensed V<br />

t<br />

3 - PID 1<br />

4 - PID 2<br />

5 - VR<br />

Model supported by PSLF<br />

If V 0, V = V V and V = V V<br />

TMULT RMAX T RMAX RMIN T RMIN


Exciter ESAC8B_PTI<br />

Exciter ESAC8B_PTI<br />

Basler DECS Model<br />

K PR<br />

V REF<br />

V RMAX<br />

V C<br />

1<br />

1+ sT R<br />

V S<br />

2<br />

−<br />

+<br />

+<br />

Σ<br />

K IR<br />

s<br />

sKDR<br />

1+ sT<br />

D<br />

+<br />

4 5 +<br />

1<br />

+<br />

3<br />

Σ<br />

+<br />

K<br />

A<br />

1+ sT<br />

RMIN<br />

A<br />

V R<br />

Σ<br />

V 0<br />

−<br />

X<br />

1<br />

sT E<br />

E<br />

( )<br />

V = EFD ⋅ S EFD<br />

E FD<br />

V X<br />

+<br />

Σ<br />

+<br />

K E<br />

States<br />

1 - E<br />

FD<br />

2 - Sensed V<br />

3 - Derivative Controller<br />

4 - Integral Controller<br />

5 - V<br />

R<br />

t<br />

Model supported by PSSE


Exciter ESDC1A<br />

Exciter ESDC1A<br />

IEEE Type DC1A Excitation System Model<br />

V REF<br />

V UEL<br />

V RMAX<br />

E C<br />

1<br />

1+ sT R<br />

2<br />

V C<br />

V S<br />

−<br />

+<br />

+<br />

1+<br />

sTC<br />

HV<br />

K<br />

A<br />

Σ<br />

1+<br />

sT Gate 1+ sT<br />

−<br />

VF<br />

B<br />

5<br />

V RMIN<br />

A<br />

3<br />

V R<br />

+<br />

VFE<br />

Σ<br />

−<br />

X<br />

1<br />

sT E<br />

0<br />

E<br />

( )<br />

V = EFD ⋅ S EFD<br />

1<br />

E FD<br />

V X<br />

+<br />

4<br />

sKF<br />

1+ sT<br />

F1<br />

Σ<br />

+<br />

K E<br />

States<br />

1 - E<br />

FD<br />

2 - Sensed V<br />

3 - V<br />

4 - V<br />

R<br />

F<br />

t<br />

5 - Lead-Lag<br />

Model supported by PSSE<br />

Model supported by PSLF includes spdmlt, exclim, and UEL inputs that are read but not utilized in the Simulator implementation


Exciter ESDC2A<br />

Exciter ESDC2A<br />

IEEE Type DC2A Excitation System Model<br />

V REF<br />

V UEL<br />

VV<br />

T<br />

RMAX<br />

E C<br />

1<br />

1+ sT R<br />

2<br />

V C<br />

V S<br />

−<br />

+<br />

+<br />

1+<br />

sTC<br />

HV<br />

K<br />

A<br />

Σ<br />

1+<br />

sT Gate 1+ sT<br />

−<br />

B<br />

5<br />

VV<br />

T<br />

RMIN<br />

A<br />

3 +<br />

V R<br />

Σ<br />

−<br />

1<br />

sT E<br />

1<br />

E FD<br />

V F<br />

V FE<br />

X<br />

E<br />

( )<br />

V = EFD ⋅ S EFD<br />

V X<br />

+<br />

Σ<br />

+<br />

K E<br />

States<br />

1 - E<br />

FD<br />

2 - Sensed V<br />

3 - V<br />

4 - V<br />

R<br />

F<br />

t<br />

sKF<br />

1+ sT<br />

5 - Lead-Lag<br />

Model supported by PSSE<br />

Model supported by PSLF includes spdmlt, exclim, and UEL inputs that are read but not utilized in Simulator<br />

4<br />

F1


Exciter ESDC3A<br />

Exciter ESDC3A<br />

IEEE Type DC3A with Added Speed Multiplier<br />

V REF<br />

V RMAX<br />

V C<br />

1<br />

1+ sT R<br />

1<br />

−<br />

+<br />

Σ<br />

V ERR<br />

−K V<br />

K V<br />

V<br />

−V<br />

sK T<br />

RMAX<br />

V<br />

RH<br />

RMIN<br />

V<br />

V RH<br />

RMIN<br />

If V ≥ K , V = V<br />

If V ≤− K , V = V<br />

Else V<br />

ERR V R RMAX<br />

ERR V R RMIN<br />

R<br />

= V<br />

RH<br />

3<br />

V R<br />

+<br />

V X<br />

−<br />

Σ<br />

X<br />

K<br />

E<br />

E<br />

1<br />

+ sT<br />

E<br />

( )<br />

V = EFD ⋅ S EFD<br />

2<br />

Speed<br />

1 Spdmlt 0<br />

π<br />

E FD<br />

If exclim 0 then 0 else unlimited<br />

States<br />

1 - EField<br />

2 - Sensed V<br />

3 - V<br />

RH<br />

t<br />

Model supported by PSLF


Exciter ESST1A<br />

Exciter ESST1A<br />

IEEE Type ST1A Excitation System Model<br />

VUEL<br />

(UEL=1)<br />

Alternate<br />

UEL Inputs<br />

VUEL<br />

(UEL=3)<br />

E C<br />

1<br />

1+ sT R<br />

V REF<br />

VS<br />

(VOS=1)<br />

+<br />

2<br />

−<br />

+<br />

Σ<br />

−<br />

+<br />

V IMIN<br />

V IMAX<br />

VUEL<br />

(UEL=2)<br />

V I<br />

HV<br />

Gate<br />

Alternate<br />

Stabilizer<br />

Inputs<br />

( 1+ sTC)( 1+<br />

sTC1<br />

)<br />

( 1+ sT )( 1+<br />

sT )<br />

B<br />

B1<br />

3 4<br />

K<br />

A<br />

1+ sT<br />

V AMIN<br />

V AMAX<br />

A<br />

VS<br />

(VOS=2)<br />

+<br />

1<br />

+<br />

V<br />

A<br />

Σ<br />

−<br />

HV<br />

Gate<br />

LV<br />

Gate<br />

VT VRMAX -K<br />

CIFD<br />

VV<br />

T<br />

RMIN<br />

EFD<br />

V OEL<br />

V F<br />

States<br />

1 - V<br />

A<br />

2 - Sensed V<br />

t<br />

3 - LL<br />

4 - LL1<br />

5 - Feedback<br />

Model supported by PSLF and PSSE<br />

5<br />

sKF<br />

1+ sT<br />

F<br />

0<br />

KLR<br />

I<br />

Σ FD<br />

+<br />

−<br />

I LR


Exciter ESST2A<br />

Exciter ESST2A<br />

IEEE Type ST2A Excitation System Model<br />

V UEL<br />

V REF<br />

V RMAX<br />

EFD MAX<br />

E C<br />

1<br />

1+ sT R<br />

2<br />

V C<br />

V S<br />

+<br />

−<br />

+<br />

1+<br />

sTC<br />

HV K<br />

A<br />

Σ<br />

1+<br />

sT Gate 1+ sT<br />

−<br />

V 0<br />

F<br />

B<br />

V RMIN<br />

A<br />

3<br />

V R<br />

V B<br />

π<br />

+<br />

Σ<br />

−<br />

1<br />

sT E<br />

1<br />

E FD<br />

V T<br />

I T<br />

VE = KPVT + jKIIT<br />

E<br />

π<br />

4<br />

sKF<br />

1+ sT<br />

F<br />

V If K = 0 and K = 0, V = 1<br />

K E<br />

P I B<br />

IFD<br />

I<br />

N<br />

KCI<br />

=<br />

V<br />

E<br />

FD<br />

I N<br />

EX<br />

( )<br />

F = f I<br />

N<br />

FEX<br />

States<br />

1 - E<br />

FD<br />

2 - Sensed V<br />

3 - V<br />

4 - V<br />

R<br />

F<br />

t<br />

Model supported by PSSE<br />

Model supported by PSLF includes UEL input that is read but not utilized in Simulator


Exciter ESST3A<br />

Exciter ESST3A<br />

IEEE Type ST3A Excitation System Model<br />

V GMAX<br />

K G<br />

E C<br />

1<br />

1+ sT R<br />

2<br />

−<br />

V S<br />

+<br />

Σ<br />

+<br />

V IMAX<br />

V UEL<br />

V I<br />

HV<br />

Gate<br />

1+<br />

sT<br />

1+<br />

sT<br />

C<br />

B<br />

−<br />

4 K 3<br />

+<br />

K 1<br />

VA<br />

A<br />

1+ sT<br />

V RMAX<br />

A<br />

V R<br />

V G<br />

Σ<br />

M<br />

1+ sT<br />

V MMAX<br />

M<br />

VM<br />

π<br />

EFD<br />

V IMIN<br />

V RMIN<br />

V MMIN<br />

V B<br />

V REF<br />

V BMAX<br />

V T<br />

I T<br />

( )<br />

V = KV+ jK+<br />

KX I<br />

E P T I P L T<br />

V E<br />

π<br />

K<br />

P<br />

=<br />

j P<br />

Ke θ<br />

P<br />

IFD<br />

I<br />

N<br />

KCI<br />

=<br />

V<br />

E<br />

FD<br />

I N<br />

EX<br />

( )<br />

F = f I<br />

N<br />

FEX<br />

States<br />

1 - V<br />

M<br />

2 - Sensed V<br />

3 - V<br />

R<br />

t<br />

4 - LL<br />

Model supported by PSLF and PSSE


Exciter ESST4B<br />

Exciter ESST4B<br />

IEEE Type ST4B Potential- or Compound-Source Controlled-Rectifier Exciter Model<br />

V S<br />

K G<br />

V UEL<br />

V COMP<br />

1<br />

1+ sT R<br />

2<br />

+ +<br />

−<br />

+<br />

Σ<br />

K<br />

PR<br />

V RMAX<br />

K<br />

+<br />

s<br />

IR<br />

−<br />

4 1 3<br />

+<br />

K 1<br />

V R<br />

1+ sTA<br />

Σ<br />

K<br />

PM<br />

+<br />

V MMAX<br />

IM<br />

s<br />

LV<br />

Gate<br />

π<br />

E FD<br />

V REF<br />

V RMIN<br />

V T<br />

I T<br />

( )<br />

V = KV + j K + K X I<br />

E P T I P L T<br />

V MMIN<br />

V E<br />

π<br />

V OEL<br />

V BMAX<br />

V B<br />

States<br />

1 - V<br />

M<br />

2 - Sensed V<br />

3 - V<br />

4 - V<br />

A<br />

R<br />

t<br />

K<br />

P<br />

=<br />

GMAX<br />

j P<br />

Ke θ<br />

P<br />

IFD<br />

I<br />

N<br />

KCI<br />

=<br />

V<br />

Model supported by PSSE<br />

Model supported by PSLF includes V input that is read but not utilized in Simulator<br />

E<br />

FD<br />

I N<br />

EX<br />

( )<br />

F = f I<br />

N<br />

FEX


Exciter EWTGFC<br />

Exciter EWTGFC<br />

Excitation Control Model for Full Converter GE Wind-Turbine Generators<br />

Reactive Power Control Model<br />

V C<br />

1<br />

1+ sT R<br />

V RFQ<br />

4 +<br />

+<br />

− 1<br />

1<br />

∑<br />

f N<br />

K IV<br />

s<br />

KPV<br />

1+ sT<br />

V<br />

5<br />

∑<br />

3 +<br />

Q MIN<br />

Q MAX<br />

1+ sTFV<br />

6<br />

P FAREF<br />

P elec<br />

1<br />

1+ sTP<br />

tan<br />

7<br />

π<br />

Q REF<br />

0<br />

1<br />

pfaflg<br />

Q REF<br />

0<br />

−1<br />

1<br />

Q MAX<br />

+<br />

Q gen<br />

−<br />

∑<br />

V MAX<br />

K QI<br />

s<br />

1<br />

V REF<br />

+<br />

−<br />

∑<br />

I QMAX<br />

K VI<br />

s<br />

I QCMD<br />

2<br />

varflg<br />

Q MIN<br />

V MIN<br />

V TERM<br />

I QMIN<br />

States<br />

1 - V<br />

2 - E<br />

3 - K<br />

4 - V<br />

5 - K<br />

6 - Q<br />

7 - P<br />

ref<br />

qppcmd<br />

PV<br />

regMeas<br />

IV<br />

ORD<br />

Meas<br />

Model supported by PSLF<br />

P ORD<br />

P elec<br />

−<br />

+<br />

∑<br />

+<br />

−<br />

pqflag<br />

∑<br />

÷<br />

V TERM<br />

K dbr<br />

I PMAX<br />

−<br />

1<br />

∑<br />

Converter Current Limit<br />

0<br />

+<br />

E<br />

0 BST<br />

1<br />

s<br />

I PCMD<br />

P dbr


Exciter EX2000<br />

Exciter EX2000<br />

IEEE Type AC7B Alternator-Rectifier Excitation System Model<br />

V RMAX<br />

V AMAX<br />

Field Current<br />

Limiter<br />

KP<br />

⋅ETRM<br />

V EMAX<br />

E C<br />

1<br />

1+ sT R<br />

2<br />

Reference<br />

Signal<br />

K<br />

s<br />

+<br />

IR<br />

IA<br />

Σ K Σ KPA<br />

+<br />

− PR<br />

+<br />

π Σ<br />

+<br />

−<br />

4<br />

V F<br />

V AMIN<br />

K<br />

s<br />

REF<br />

3<br />

V RMIN<br />

1st PI Controller<br />

2nd PI Controller<br />

V A<br />

Σ +<br />

+<br />

Minimum<br />

Gate 1<br />

K F 2<br />

−K V<br />

L<br />

+<br />

FE<br />

V FE<br />

−<br />

V X<br />

1<br />

sT E<br />

V EMIN<br />

( )<br />

V = VS V<br />

X E E E<br />

1<br />

V E<br />

EX<br />

π<br />

F EX<br />

( )<br />

F = f I<br />

E<br />

E FD<br />

If field current limiter is included, V<br />

EMAX<br />

is off.<br />

V<br />

FEMAX D FD<br />

If field current limiter is excluded, V<br />

EMAX<br />

= K<br />

E +S<br />

E (V<br />

E )<br />

States<br />

1 - V<br />

E<br />

2 - Sensed V<br />

3 - V<br />

4 - V<br />

API<br />

RPI<br />

5 - LL<br />

t<br />

6 - IFD<br />

PI<br />

Model supported by PSSE<br />

-K I<br />

K F1<br />

Σ<br />

+<br />

+<br />

+<br />

Σ<br />

+<br />

K E<br />

K D<br />

I<br />

N<br />

KCI<br />

=<br />

V<br />

E<br />

FD<br />

I FD


Exciter EX2000 REFERENCE SIGNAL MODEL<br />

Exciter EX2000 Reference Signal Model<br />

Frequency<br />

KVHZ<br />

Q ELEC<br />

SBASE<br />

Machine MVA BASE<br />

1<br />

ETERM<br />

Reactive<br />

Current<br />

KRCC<br />

V REF<br />

V UEL<br />

+<br />

+<br />

+<br />

Σ<br />

−<br />

Minimum<br />

Gate 2<br />

REF LIMP<br />

REF<br />

V STB<br />

Reference Signal Model<br />

Model supported by PSSE


Exciter EX2000 FIELD CURRENT LIMITER MODEL<br />

Exciter EX2000 Field Current Limiter Model<br />

IFD REF1<br />

Level<br />

Detector<br />

Output =1 if level exceeded<br />

Latch<br />

Gate 1<br />

Inverse Timing<br />

OR<br />

IFD REF2<br />

( I1, T1)<br />

( I2, T2)<br />

( I3, T3)<br />

( I4, T4)<br />

Output =1 if<br />

timing expired<br />

Latch<br />

Gate 2<br />

IFD LIMP<br />

I FD<br />

IFD REF3<br />

IFD REF4<br />

A<br />

B<br />

C<br />

D<br />

+<br />

Σ<br />

−<br />

KIIFD<br />

KPIFD +<br />

s<br />

IFD LIMN<br />

3rd PI Controller<br />

6<br />

A<br />

B<br />

C<br />

D<br />

To<br />

Minimum<br />

Gate 1<br />

1+<br />

sT<br />

1+<br />

sT<br />

LEAD<br />

LAG<br />

5<br />

IFD ADVLIM<br />

Advance Limit<br />

Switch Operation<br />

Output D = B if C =0<br />

Output D = A if C=1<br />

Model supported by PSSE<br />

Field Current Limiter Model<br />

(Over Excitation Limiter)


Exciter EXAC1<br />

Exciter EXAC1<br />

IEEE Type AC1 Excitation System Model<br />

V REF<br />

V S<br />

V RMAX<br />

E C<br />

2<br />

1 −<br />

1+<br />

sT<br />

1+ sT R<br />

Σ + Σ<br />

1+<br />

sT<br />

V C<br />

+<br />

+<br />

−<br />

V F<br />

C<br />

B<br />

4<br />

K<br />

A<br />

1+ sT<br />

V RMIN<br />

A<br />

3<br />

+<br />

V R<br />

Σ<br />

−<br />

0<br />

1<br />

sT E<br />

1<br />

V E<br />

EX<br />

π<br />

F EX<br />

( )<br />

F = f I<br />

N<br />

E FD<br />

States<br />

1 - V<br />

E<br />

2 - Sensed V<br />

3 - V<br />

4 - V<br />

5 - V<br />

R<br />

LL<br />

F<br />

t<br />

5<br />

sKF<br />

1+ sT<br />

Model supported by PSSE<br />

Model supported by PSLF also uses V<br />

AMIN<br />

and V<br />

AMAX<br />

Simulator will narrow the limit range as appropriate when loading the DYD file<br />

If VAMIN > V<br />

RMIN<br />

then VRMIN = VAMIN<br />

If VAMAX<br />

< V<br />

RMAX<br />

then VRMAX = VAMAX<br />

Model supported by PSLF includes speed multiplier that is not implemented in Simulator<br />

F<br />

Σ<br />

V FE<br />

+<br />

+<br />

K<br />

E<br />

+ S<br />

E<br />

K D<br />

I<br />

N<br />

KCI<br />

=<br />

V<br />

E<br />

FD<br />

I FD


Exciter EXAC1A<br />

Exciter EXAC1A<br />

Modified Type AC1 Excitation System Model<br />

V REF<br />

V S<br />

V RMAX<br />

E C<br />

2<br />

1 −<br />

1+<br />

sT<br />

1+ sT R<br />

Σ + Σ<br />

1+<br />

sT<br />

V C<br />

+<br />

+<br />

−<br />

V F<br />

C<br />

B<br />

4<br />

V RMIN<br />

K<br />

A<br />

1+ sT<br />

A<br />

3 +<br />

V R<br />

Σ<br />

−<br />

0<br />

1<br />

sT E<br />

1<br />

V E<br />

EX<br />

π<br />

F EX<br />

( )<br />

F = f I<br />

N<br />

E FD<br />

V FE<br />

Σ<br />

+<br />

+<br />

K<br />

E<br />

+ S<br />

E<br />

I<br />

N<br />

KCI<br />

=<br />

V<br />

E<br />

FD<br />

K D<br />

I FD<br />

States<br />

1 - V<br />

E<br />

2 - Sensed V<br />

3 - V<br />

4 - V<br />

5 - V<br />

R<br />

LL<br />

F<br />

t<br />

sKF<br />

1+ sT<br />

Model supported by PSSE<br />

Model supported by PSLF includes speed multiplier that is not implemented in Simulator<br />

5<br />

F


Exciter EXAC2<br />

Exciter EXAC2<br />

IEEE Type AC2 Excitation System Model<br />

V REF<br />

V S<br />

V AMAX<br />

EC<br />

+ +<br />

4<br />

3<br />

2<br />

1 − + 1+<br />

sTC<br />

K<br />

A<br />

1+ sT R<br />

Σ Σ<br />

1+<br />

sT 1+ sT<br />

V C<br />

−<br />

V F<br />

B<br />

V AMIN<br />

A<br />

+<br />

V A<br />

Σ<br />

−<br />

V H<br />

V L<br />

LV<br />

Gate<br />

K B<br />

V RMIN<br />

K L<br />

V RMAX<br />

V R<br />

+<br />

Σ −<br />

+<br />

V LR<br />

Σ<br />

−<br />

0<br />

1<br />

sT E<br />

V E<br />

1<br />

EX<br />

π<br />

F EX<br />

( )<br />

F = f I<br />

N<br />

E FD<br />

5<br />

sKF<br />

1+ sT<br />

F<br />

K H<br />

Σ<br />

V FE<br />

+<br />

+<br />

K<br />

E<br />

+ S<br />

E<br />

I<br />

N<br />

I N<br />

KCI<br />

=<br />

V<br />

E<br />

FD<br />

States<br />

1 - V<br />

E<br />

2 - Sensed V<br />

3 - V<br />

4 - V<br />

5 - V<br />

A<br />

LL<br />

F<br />

t<br />

Model supported by PSSE<br />

Model supported by PSLF includes speed multiplier that is not implemented in Simulator<br />

K D<br />

I FD


Exciter EXAC3<br />

Exciter EXAC3<br />

IEEE Type AC3 Excitation System Model<br />

V REF<br />

V S<br />

V AMAX<br />

K LV<br />

Σ<br />

+<br />

−<br />

V FEMAX<br />

E C<br />

1 2<br />

−<br />

1+<br />

sT<br />

1+ sT R<br />

Σ Σ<br />

1+<br />

sT<br />

VC<br />

+<br />

+<br />

+<br />

−<br />

V F<br />

C<br />

B<br />

4<br />

HV<br />

Gate<br />

V AMIN<br />

K<br />

A<br />

1+ sT<br />

A<br />

3<br />

V<br />

A<br />

π<br />

+<br />

V R<br />

Σ<br />

V LV<br />

−<br />

K R<br />

V FE<br />

0<br />

1<br />

sT E<br />

V E<br />

1<br />

EX<br />

π<br />

F EX<br />

( )<br />

F = f I<br />

N<br />

E FD<br />

5<br />

s<br />

+ sT<br />

1<br />

F<br />

V N K N<br />

K F<br />

EFD N<br />

EFD<br />

Σ<br />

+<br />

+<br />

K<br />

E<br />

+ S<br />

E<br />

I<br />

N<br />

I N<br />

KCI<br />

=<br />

V<br />

E<br />

FD<br />

K D<br />

I FD<br />

States<br />

1 - V<br />

E<br />

2 - Sensed V<br />

3 - V<br />

4 - V<br />

5 - V<br />

A<br />

LL<br />

F<br />

t<br />

Model supported by PSSE<br />

Model supported by PSLF includes speed multiplier that is not implemented in Simulator


Exciter EXAC3A<br />

Exciter EXAC3A<br />

IEEE Type AC3 Excitation System Model<br />

K R<br />

V REF<br />

V AMAX<br />

VEMAX<br />

Speed<br />

E C<br />

+<br />

2<br />

1 1+<br />

sT 4<br />

−<br />

C<br />

1+ sT R 1+ sT + Σ<br />

V C<br />

Σ<br />

+<br />

V S<br />

B<br />

−<br />

K<br />

A<br />

1+ sT<br />

V AMIN<br />

A<br />

3<br />

V A<br />

π<br />

+<br />

V R<br />

V FE<br />

Σ<br />

−<br />

1<br />

sT E<br />

V EMIN<br />

V E<br />

1<br />

EX<br />

π<br />

F EX<br />

( )<br />

F = f I<br />

N<br />

E FD<br />

V F<br />

Σ<br />

+<br />

+<br />

K<br />

E<br />

+ S<br />

E<br />

I<br />

N<br />

I N<br />

KCI<br />

=<br />

V<br />

E<br />

FD<br />

States<br />

1 - V<br />

E<br />

2 - Sensed V<br />

3 - V<br />

4 - V<br />

A<br />

LL<br />

t<br />

5 - VF<br />

Model supported by PSLF<br />

5<br />

s<br />

+ sT<br />

1<br />

F<br />

V N K N<br />

K F<br />

EFD N<br />

EFD<br />

K D<br />

I FD<br />

V =<br />

FEMAX<br />

V =<br />

V<br />

EMAX<br />

EMIN<br />

V<br />

= F<br />

( K V +V +V -V -V )<br />

L1 C S REF C F<br />

FA<br />

( V -K I )<br />

LV<br />

EX<br />

FEMAX<br />

S +K<br />

E<br />

D FD<br />

E<br />

K<br />

K<br />

L1


Exciter EXAC4<br />

Exciter EXAC4<br />

IEEE Type AC4 Excitation System Model<br />

E C<br />

V REF<br />

+<br />

V S<br />

1 2 −<br />

1+<br />

sT<br />

1+ sT R<br />

Σ Σ<br />

1+<br />

sT<br />

+<br />

V ERR<br />

+<br />

V IMIN<br />

V IMAX<br />

C<br />

B<br />

K<br />

A<br />

1+ sT<br />

3 1<br />

A<br />

V<br />

V<br />

RMIN<br />

RMAX<br />

-K I<br />

-K I<br />

C IFD<br />

C IFD<br />

E FD<br />

States<br />

1 - EField before limit<br />

2 - Sensed V<br />

3 - V<br />

LL<br />

t<br />

Model supported by PSLF and PSSE


Exciter EXAC6A<br />

Exciter EXAC6A<br />

IEEE Type AC6A Excitation System Model<br />

E C<br />

VV<br />

T<br />

2<br />

+<br />

1 − K<br />

1+<br />

sT<br />

A(1 + sT ) 3 4<br />

k<br />

C<br />

+<br />

1+ sT R<br />

Σ<br />

1+<br />

sT 1+ sT Σ<br />

A<br />

B<br />

V A V R<br />

+<br />

−<br />

VV<br />

V S<br />

V REF<br />

V AMIN<br />

V AMAX<br />

T<br />

+<br />

RMIN<br />

RMAX<br />

Σ<br />

−<br />

0<br />

1<br />

sT E<br />

V E<br />

1<br />

EX<br />

Speed<br />

π<br />

( )<br />

F = f I<br />

F EX<br />

N<br />

E FD<br />

5<br />

1+<br />

sT<br />

1+<br />

sT<br />

J<br />

H<br />

V HMAX<br />

V H<br />

0<br />

K H<br />

Σ<br />

+<br />

−<br />

V FELIM<br />

Σ<br />

+<br />

+<br />

V FE<br />

K<br />

E<br />

+ S<br />

KD<br />

E<br />

I<br />

N<br />

I N<br />

KCI<br />

=<br />

V<br />

E<br />

FD<br />

IFD<br />

States<br />

1 - V<br />

E<br />

2 - Sensed V<br />

3 - T Block<br />

A<br />

4 - V<br />

LL<br />

t<br />

5 - VF<br />

Model supported by PSLF


Exciter EXAC8B<br />

Exciter EXAC8B<br />

Brushless Exciter with PID Voltage Regulator<br />

K VP<br />

E C<br />

1<br />

1+ sT R<br />

2<br />

−<br />

+<br />

V REF<br />

Σ<br />

+<br />

-V IMAX<br />

V S<br />

V IMAX<br />

K VI<br />

s<br />

sKVD<br />

1+ sT<br />

VD<br />

5<br />

+<br />

4<br />

+<br />

Σ<br />

+<br />

1<br />

1+ sTA<br />

V RMIN<br />

V RMAX<br />

3<br />

+<br />

Σ<br />

Σ<br />

−<br />

+<br />

+<br />

0<br />

K<br />

1<br />

sT E<br />

E<br />

+ S<br />

E<br />

V E<br />

1<br />

EX<br />

π<br />

( )<br />

F = f I<br />

I<br />

N<br />

Speed<br />

F EX<br />

N<br />

I N<br />

KCI<br />

=<br />

V<br />

E<br />

FD<br />

E FD<br />

V FE<br />

KD<br />

IFD<br />

States<br />

1 - V<br />

E<br />

2 - Sensed V<br />

3 - V<br />

R<br />

t<br />

4 - Derivative<br />

5 - Integral<br />

Model supported by PSLF


Exciter EXBAS<br />

Exciter EXBAS<br />

Basler Static Voltage Regulator Feeding DC or AC Rotating Exciter Model<br />

E C<br />

V REF V STB<br />

4 5<br />

+<br />

2 +<br />

1 − +<br />

KI<br />

1+<br />

sTC<br />

1+ sT R<br />

Σ Σ KP<br />

+<br />

s 1+<br />

sT<br />

+ +<br />

−<br />

B<br />

K<br />

A<br />

1+ sT<br />

V RMIN<br />

V UEL V OEL<br />

V RMAX<br />

A<br />

3<br />

+<br />

Σ<br />

−<br />

1<br />

sT E<br />

V E<br />

1<br />

EX<br />

π<br />

F EX<br />

( )<br />

F = f I<br />

N<br />

E FD<br />

7<br />

sKF<br />

1+ sT<br />

F<br />

6<br />

1+<br />

sT<br />

1+<br />

sT<br />

F1<br />

F 2<br />

Σ<br />

+<br />

+<br />

K<br />

E<br />

+ S<br />

E<br />

I<br />

N<br />

I N<br />

KCI<br />

=<br />

V<br />

E<br />

FD<br />

I FD<br />

K D<br />

States<br />

1 - V<br />

E<br />

2 - Sensed V<br />

3 - V<br />

R<br />

t<br />

4 - PI<br />

5 - LL<br />

6 - Feedback LL<br />

7 - Feedback<br />

Model supported by PSSE


Exciter EXBBC<br />

Exciter EXBBC<br />

Transformer-fed Excitation System<br />

V REF<br />

E C<br />

1<br />

1+ sTF<br />

− 1+<br />

sT<br />

Σ +<br />

+<br />

1<br />

+<br />

3<br />

+ sT<br />

Σ<br />

4<br />

+<br />

T2<br />

K T<br />

1<br />

V RMAX<br />

V RMIN<br />

1 ⎛T<br />

⎞<br />

1<br />

1<br />

⎜ −1⎟ K ⎝T ⎠ 1+<br />

sT<br />

2 2<br />

+<br />

Σ<br />

−<br />

1<br />

1+ sTE<br />

EE<br />

T<br />

EE<br />

T<br />

FDMIN<br />

FDMAX<br />

+<br />

Σ<br />

X E<br />

−<br />

I FD<br />

E FD<br />

Switch = 0<br />

Switch = 1<br />

Supplemental<br />

Signal<br />

Model supported by PSLF but not yet implemented in Simulator


Exciter EXDC1<br />

Exciter EXDC1<br />

IEEE DC1 Excitation System Model<br />

E C<br />

1<br />

1+ sT R<br />

2<br />

−<br />

V S<br />

+<br />

Σ<br />

+<br />

−<br />

1+<br />

sT<br />

1+<br />

sT<br />

C<br />

B<br />

K<br />

A<br />

1+ sT<br />

V RMAX<br />

3 4<br />

+<br />

A<br />

V R<br />

Σ<br />

−<br />

1<br />

sT E<br />

Speed<br />

π<br />

E FD<br />

1<br />

V REF<br />

V F<br />

5<br />

sKF<br />

1+ sT<br />

F1<br />

V RMIN<br />

K<br />

E<br />

+ S<br />

E<br />

States<br />

1 - E<br />

FD<br />

2 - Sensed V<br />

3 - V<br />

4 - V<br />

5 - V<br />

B<br />

R<br />

F<br />

t<br />

Model supported by PSLF


Exciter EXDC2_GE<br />

Exciter EXDC2_GE<br />

IEEE Type DC2 Excitation System Model<br />

V comp<br />

V REF<br />

V S<br />

+<br />

+<br />

1 2<br />

−<br />

1+<br />

sT<br />

1+ sT R<br />

Σ<br />

1+<br />

sT<br />

−<br />

C<br />

B<br />

V<br />

K<br />

A<br />

1+ sT<br />

RMAX<br />

3 4<br />

V<br />

sK<br />

RMIN<br />

( 1+ sT )( 1+<br />

sT )<br />

F<br />

V<br />

T<br />

A<br />

F1 F2<br />

V<br />

T<br />

+<br />

Σ<br />

−<br />

K<br />

1<br />

1+ sTE<br />

E<br />

+ S<br />

E<br />

Speed<br />

π<br />

E FD<br />

1<br />

5<br />

6<br />

States<br />

1 - E<br />

FD<br />

2 - Sensed V<br />

3 - V<br />

4 - V<br />

5 - V<br />

6 - V<br />

B<br />

R<br />

F1<br />

F2<br />

t<br />

Model supported by PSLF


Exciter EXDC2_PTI<br />

Exciter EXDC2_PTI<br />

IEEE Type DC2 Excitation System Model<br />

V comp<br />

V REF V S<br />

+<br />

2<br />

1 −<br />

1+<br />

sT<br />

1+ sT R<br />

Σ + Σ<br />

1+<br />

sT<br />

V ERR<br />

+<br />

−<br />

5<br />

C<br />

B<br />

sKF<br />

1+ sT<br />

F1<br />

V<br />

K<br />

A<br />

1+ sT<br />

A<br />

RMAX<br />

3 4<br />

V<br />

RMIN<br />

V<br />

T<br />

V<br />

T<br />

+<br />

Σ<br />

−<br />

K<br />

1<br />

1+ sTE<br />

E<br />

+ S<br />

E<br />

Speed<br />

π<br />

E FD<br />

1<br />

States<br />

1 - E<br />

FD<br />

2 - Sensed V<br />

3 - V<br />

4 - V<br />

5 - V<br />

B<br />

R<br />

F<br />

t<br />

Model supported by PSEE


Exciter EXDC2A<br />

Exciter EXDC2A<br />

IEEE Type DC2 Excitation System Model<br />

E C<br />

1 2 − 1+<br />

sT<br />

1+ sT R<br />

Σ<br />

1+<br />

sT<br />

+<br />

+<br />

V REF<br />

V F<br />

V S<br />

−<br />

5<br />

C<br />

B<br />

sKF<br />

1+ sT<br />

3<br />

F1<br />

V<br />

V<br />

K<br />

A<br />

1+ sT<br />

RMIN<br />

A<br />

V<br />

RMAX<br />

T<br />

V<br />

T<br />

4<br />

+<br />

V R<br />

Σ<br />

−<br />

K<br />

E<br />

1<br />

sT E<br />

+ S<br />

E<br />

Speed<br />

π<br />

E FD<br />

1<br />

States<br />

1 - E<br />

FD<br />

2 - Sensed V<br />

3 - V<br />

4 - V<br />

5 - V<br />

B<br />

R<br />

F<br />

t<br />

Model supported by PSLF


Exciter EXDC4<br />

Exciter EXDC4<br />

IEEE Type 4 Excitation System Model<br />

E C<br />

V S<br />

V RMAX<br />

V REF<br />

1<br />

+<br />

− -K R<br />

1<br />

+<br />

Σ<br />

-1<br />

K R<br />

V RMIN<br />

sT RH<br />

2<br />

V RH<br />

V R<br />

+<br />

Σ<br />

−<br />

K<br />

E<br />

1<br />

+ sT<br />

E<br />

Speed<br />

π<br />

E FD<br />

1<br />

V RMAX<br />

π<br />

-K V<br />

S E<br />

K V<br />

V RMIN<br />

States<br />

1 - E<br />

2 - V<br />

FD<br />

RH<br />

Model supported by PSLF


Exciter EXELI<br />

Exciter EXELI<br />

Static PI Transformer Fed Excitation System Model<br />

K s1<br />

P GEN<br />

⎛ sTW<br />

⎜<br />

⎝1+<br />

sT<br />

4 5<br />

W<br />

3<br />

⎞<br />

⎟<br />

⎠<br />

6 Ks2<br />

7<br />

1+ sT<br />

s1<br />

+<br />

Σ<br />

+<br />

−sT<br />

1+<br />

sT<br />

s2<br />

s2<br />

8<br />

−S MAX<br />

S MAX<br />

E C<br />

2<br />

1<br />

+<br />

−<br />

1+ sT Σ V Σ<br />

FV<br />

PU<br />

States<br />

1 - T<br />

NU<br />

2 - Sensed V<br />

3 - Sensed I<br />

t<br />

FLD<br />

+<br />

4 - P Washout1<br />

GEN<br />

5 - P Washout2<br />

GEN<br />

V REF<br />

6 - P<br />

GEN<br />

Washout3<br />

7 - Lag Stabilizer<br />

8 - Washout Stabilizer<br />

Model supported by PSLF and PSSE<br />

+<br />

V PNF<br />

1<br />

sT NU<br />

D PNF<br />

1<br />

+<br />

+<br />

Σ<br />

−<br />

−<br />

Σ +<br />

3<br />

V PI<br />

1<br />

1+ sTFI<br />

+<br />

Σ<br />

X E<br />

−<br />

E FMIN<br />

I FD<br />

E FMAX<br />

E FD


Exciter EXPIC1<br />

Exciter EXPIC1<br />

Proportional/Integral Excitation System Model<br />

V REF<br />

V R1<br />

E C<br />

1<br />

1+ sT R<br />

2<br />

−<br />

E T<br />

+<br />

Σ<br />

+<br />

Σ<br />

−<br />

K<br />

A<br />

( 1+<br />

sT )<br />

s<br />

A1<br />

3<br />

V A<br />

( 1+<br />

sTA3<br />

)<br />

( 1+ sT )( 1+<br />

sT )<br />

A2 A4<br />

4 5<br />

V R<br />

V RMAX<br />

V RMIN<br />

π<br />

E FDMAX<br />

E FDMIN<br />

+<br />

E 0<br />

Σ<br />

−<br />

1<br />

sT E<br />

E FD<br />

1<br />

V S<br />

V R2<br />

sK<br />

( 1+ sT )( 1+<br />

sT )<br />

F<br />

F1 F2<br />

V B<br />

K<br />

E<br />

+ S<br />

E<br />

6 7<br />

V T<br />

I T<br />

VE = KPVT + jKIIT<br />

π<br />

States<br />

1 - E<br />

If KP = 0 and KI = 0, then VB<br />

= 1<br />

If T = 0, then EFD = E<br />

FD<br />

E<br />

2 - Sensed V<br />

3 - V<br />

4 - V<br />

5 - V<br />

6 - V<br />

7 - V<br />

A<br />

R1<br />

R<br />

F1<br />

F<br />

t<br />

Model supported by PSLF and PSSE<br />

0<br />

I FD<br />

I<br />

N<br />

KCI<br />

=<br />

V<br />

E<br />

FD<br />

I N<br />

EX<br />

( )<br />

F = f I<br />

F EX<br />

N


Exciter EXST1_GE<br />

Exciter EXST1_GE<br />

IEEE Type ST1 Excitation System Model<br />

V comp<br />

VS<br />

+<br />

V<br />

REF<br />

+<br />

1 2<br />

1+<br />

sT<br />

1+ sT R −<br />

Σ<br />

1+<br />

sT<br />

−<br />

V IMIN<br />

V IMAX<br />

C<br />

B<br />

3<br />

1+<br />

sT<br />

1+<br />

sT<br />

C1<br />

B1<br />

K<br />

A<br />

1+ sT<br />

V AMAX<br />

5 1<br />

A<br />

+<br />

−<br />

Σ<br />

VT VRMAX -K<br />

CIIFD<br />

VT VRMIN -K<br />

CIIFD<br />

+<br />

Σ<br />

−<br />

E FD<br />

V AMIN<br />

X E<br />

4<br />

sKF<br />

1+ sT<br />

F<br />

0<br />

K lr<br />

Σ<br />

−<br />

+<br />

I FD<br />

I lr<br />

States<br />

1 - V<br />

A<br />

2 - Sensed V<br />

3 - V<br />

4 - V<br />

5 - V<br />

LL<br />

F<br />

LL1<br />

t<br />

Model supported by PSLF


Exciter EXST1_PTI<br />

Exciter EXST1_PTI<br />

IEEE Type ST1 Excitation System Model<br />

V REF<br />

V S<br />

E c<br />

+<br />

1 2<br />

1+<br />

sT<br />

1+ sT R<br />

Σ<br />

+ Σ<br />

−<br />

1+<br />

sT<br />

V ERR<br />

−<br />

+<br />

V IMIN<br />

V IMAX<br />

C<br />

B<br />

3<br />

K<br />

A<br />

1+ sT<br />

A<br />

1<br />

VT VRMAX -K<br />

CIIFD<br />

VT VRMIN -K<br />

CIIFD<br />

E FD<br />

4<br />

sKF<br />

1+ sT<br />

F<br />

States<br />

1 - E before limit<br />

FD<br />

2 - Sensed V<br />

3 - V<br />

4 - V<br />

LL<br />

F<br />

t<br />

Model supported by PSSE


Exciter EXST2<br />

Exciter EXST2<br />

IEEE Type ST2 Excitation System Model<br />

V REF<br />

V S<br />

V RMAX<br />

E FDMAX<br />

E C<br />

1<br />

1+ sT R<br />

2<br />

−<br />

+<br />

Σ<br />

V ERR<br />

+<br />

Σ<br />

−<br />

+<br />

1+<br />

sT<br />

1+<br />

sT<br />

C<br />

B<br />

5 K<br />

3<br />

A<br />

+ 1 1<br />

1+ sT V + Σ Σ<br />

A R<br />

sT E<br />

+ −<br />

V RMIN<br />

V B<br />

0<br />

E FD<br />

4<br />

sKF<br />

1+ sT<br />

F<br />

K E<br />

V T<br />

I T<br />

VE = KPVT + jKIIT<br />

V E<br />

π<br />

FEX<br />

If K = 0 and K = 0, then V = 1<br />

P I B<br />

States<br />

1 - E<br />

FD<br />

2 - Sensed V<br />

3 - V<br />

4 - V<br />

5 - V<br />

R<br />

F<br />

LL<br />

t<br />

IFD<br />

I<br />

N<br />

KCI<br />

=<br />

V<br />

Model supported by PSLF<br />

Model supported by PSSE does not include T and T inputs<br />

B<br />

E<br />

FD<br />

C<br />

I N<br />

EX<br />

( )<br />

F = f I<br />

N


Exciter EXST2A<br />

Exciter EXST2A<br />

Modified IEEE Type ST2 Excitation System Model<br />

V REF<br />

V S<br />

V RMAX<br />

E FDMAX<br />

V COMP<br />

1<br />

1+ sT R<br />

2<br />

−<br />

Σ<br />

+<br />

V ERR<br />

+<br />

1+<br />

sT 5 3<br />

K<br />

1<br />

A<br />

+<br />

1<br />

C<br />

+ Σ<br />

π Σ<br />

1+<br />

sT 1+ sT V<br />

sT<br />

B<br />

A R<br />

E<br />

−<br />

−<br />

V F<br />

V RMIN<br />

V B<br />

0<br />

E FD<br />

4<br />

sKF<br />

1+ sT<br />

F<br />

K E<br />

V T<br />

I T<br />

VE = KPVT + jKIIT<br />

V E<br />

π<br />

If K = 0 and K = 0, then V = 1<br />

P I B<br />

States<br />

1 - E<br />

FD<br />

2 - Sensed V<br />

3 - V<br />

4 - V<br />

5 - V<br />

R<br />

F<br />

LL<br />

t<br />

IFD<br />

I<br />

N<br />

KCI<br />

=<br />

V<br />

Model supported by PSLF<br />

Model supported by PSSE does not include T and T inputs<br />

E<br />

FD<br />

B<br />

I N<br />

C<br />

EX<br />

( )<br />

F = f I<br />

N<br />

FEX


Exciter EXST3<br />

Exciter EXST3<br />

IEEE Type ST3 Excitation System Model<br />

V GMAX<br />

E C<br />

1<br />

1+ sT R<br />

2<br />

−<br />

V REF<br />

V S<br />

Σ<br />

+<br />

V ERR<br />

+<br />

Σ<br />

+<br />

V IMIN<br />

V IMAX<br />

K<br />

J<br />

1+<br />

sT<br />

1+<br />

sT<br />

C<br />

B<br />

VA<br />

V G<br />

V RMAX<br />

−<br />

3 + K<br />

A<br />

1<br />

∑<br />

1+ sTA<br />

V R<br />

V RMIN<br />

π<br />

K G<br />

V B<br />

E FDMAX<br />

E FD<br />

V T<br />

I T<br />

( )<br />

V = KV + j K + K X I<br />

E P T I P L T<br />

V E<br />

π<br />

K<br />

P<br />

= Ke θ<br />

P<br />

j P<br />

IFD<br />

I<br />

N<br />

KCI<br />

=<br />

V<br />

E<br />

FD<br />

I N<br />

EX<br />

( )<br />

F = f I<br />

N<br />

FEX<br />

States<br />

1 - V<br />

R<br />

2 - Sensed V<br />

t<br />

3 - LL<br />

Model supported by PSSE<br />

Model supported by PSLF includes speed multiplier that is not implemented in Simulator


Exciter EXST3A<br />

Exciter EXST3A<br />

IEEE Type ST3 Excitation System Model<br />

V GMAX<br />

E C<br />

K<br />

P<br />

V T<br />

I T<br />

1<br />

1+ sT R<br />

V REF<br />

= Ke θ<br />

P<br />

j P<br />

2<br />

IFD<br />

V S<br />

−<br />

Σ +<br />

+<br />

V IMIN<br />

K<br />

J<br />

1+<br />

sT<br />

1+<br />

sT<br />

C<br />

B<br />

( )<br />

V = KV + j K + K X I<br />

E P T I P L T<br />

I<br />

N<br />

V IMAX<br />

KCI<br />

=<br />

V<br />

E<br />

FD<br />

I N<br />

VA<br />

EX<br />

V G<br />

∑<br />

V E<br />

( )<br />

F = f I<br />

N<br />

K<br />

A<br />

1+ sT<br />

V RMIN<br />

π<br />

FEX<br />

V RMAX<br />

−<br />

3 +<br />

1<br />

A<br />

V BMAX<br />

π<br />

Speed<br />

K G<br />

V B<br />

E FD<br />

States<br />

1 - V<br />

R<br />

2 - Sensed V<br />

t<br />

3 - LL<br />

Model supported by PSLF


Exciter EXST4B<br />

Exciter EXST4B<br />

IEEE Type ST4B Excitation System Model<br />

K G<br />

V S<br />

V RMAX<br />

V MMAX<br />

E C<br />

1 2<br />

1+ sT R<br />

V REF<br />

−<br />

+<br />

Σ<br />

+<br />

K<br />

PR<br />

V RMIN<br />

K<br />

+<br />

s<br />

IR<br />

−<br />

4 3<br />

1<br />

1 +<br />

1+ sTA<br />

∑<br />

K<br />

PM<br />

V MMIN<br />

K<br />

+<br />

s<br />

IM<br />

V M<br />

V BMAX<br />

π<br />

V B<br />

E FD<br />

V T<br />

I T<br />

( )<br />

V = KV + j K + K X I<br />

E P T I P L T<br />

V E<br />

π<br />

K<br />

P<br />

= Ke θ<br />

P<br />

j P<br />

IFD<br />

I<br />

N<br />

KCI<br />

=<br />

V<br />

E<br />

FD<br />

I N<br />

EX<br />

( )<br />

F = f I<br />

N<br />

FEX<br />

States<br />

1 - V<br />

MInt<br />

2 - Sensed V<br />

3 - V<br />

4 - V<br />

A<br />

R<br />

t<br />

Model supported by PSLF


Exciter EXWTG1<br />

Exciter EXWTG1<br />

Excitation System Model for Wound-Rotor Induction Wind-Turbine Generators<br />

ω REF<br />

R EXT<br />

R MAX<br />

+<br />

ω −<br />

1+<br />

sT 2<br />

R<br />

W1<br />

+<br />

1<br />

∑ K W<br />

∑<br />

1 sT<br />

sT<br />

+<br />

W 2 +<br />

+<br />

1+ A EXT FD<br />

1<br />

R (E )<br />

P E<br />

sK<br />

1+ sT<br />

DP<br />

DP<br />

3<br />

R MIN<br />

States<br />

1 - R external<br />

2 - SpeedReg<br />

3 - Washout<br />

Model supported by PSLF


Exciter EXWTGE<br />

Exciter EXWTGE<br />

Excitation System Model for GE Wind-Turbine Generators<br />

V REG<br />

1<br />

1+ sT R<br />

WindVAR Emulation<br />

V (V )<br />

RFQ<br />

REF<br />

4 +<br />

− 1<br />

+<br />

1<br />

∑<br />

f N<br />

K IV<br />

s<br />

KPV<br />

1+ sT<br />

V<br />

5<br />

∑<br />

3 +<br />

Q MIN<br />

Q MAX<br />

1+ sTC<br />

Q ORD<br />

6<br />

P<br />

FAREF<br />

(V<br />

REF) tan( ⋅)<br />

QREF<br />

(V<br />

REF) Switch = 0<br />

P 1 7<br />

Q<br />

ORD<br />

from separate model<br />

E<br />

π<br />

(V<br />

REF)<br />

1+ sTP<br />

Switch = 1<br />

pfaflg<br />

Switch = 0 Switch = −1<br />

States<br />

1 - V<br />

2 - E<br />

3 - K<br />

4 - V<br />

5 - K<br />

6 - Q<br />

ref<br />

"<br />

QCMD<br />

PV<br />

regMeas<br />

IV<br />

ORD<br />

7 - PMeas<br />

Model supported by PSLF<br />

Q ORD<br />

Switch = 1<br />

varflg<br />

Q CMD<br />

+<br />

Open<br />

Loop<br />

Control<br />

Q GEN<br />

∑<br />

V TERM<br />

−<br />

V MIN<br />

K QI<br />

s<br />

Q MIN<br />

V MAX<br />

VREF<br />

Q MAX<br />

+<br />

÷<br />

∑<br />

Q CMD<br />

P<br />

ORD<br />

(V<br />

S) I<br />

PCMD<br />

(I<br />

FD)<br />

From Wind Turbine Model<br />

1<br />

−<br />

V<br />

I PMAX<br />

TERM<br />

KVI<br />

s<br />

TERM<br />

+ XI<br />

V + XI<br />

QMAX<br />

2<br />

E '' (E )<br />

QMIN<br />

Q CMD<br />

To Generator<br />

Model<br />

FD


Exciter IEEET1<br />

Exciter IEEET1<br />

IEEE Type 1 Excitation System Model<br />

4<br />

sKF<br />

1+ sT<br />

F<br />

V REF<br />

V RMAX<br />

E C<br />

1<br />

1+ sT R<br />

2<br />

−<br />

+<br />

+<br />

−<br />

Σ<br />

K<br />

A<br />

Σ<br />

+ 1+ sT<br />

A<br />

3<br />

V R<br />

+<br />

Σ<br />

−<br />

1<br />

sT E<br />

E FD<br />

1<br />

V RMIN<br />

V S<br />

VE = SE ⋅ EFD<br />

V E<br />

+<br />

Σ<br />

+<br />

K E<br />

States<br />

1 - EField<br />

2 - Sensed V<br />

3 - V<br />

R<br />

t<br />

4 - VF<br />

Model supported by PSSE<br />

Model supported by PSLF includes speed multiplier that is not implemented in Simulator


Exciter IEEET2<br />

Exciter IEEET2<br />

IEEE Type 2 Excitation System Model<br />

V REF<br />

V RMAX<br />

E C<br />

1<br />

1+ sT R<br />

2<br />

−<br />

+<br />

K<br />

A<br />

Σ + Σ<br />

1+ sT<br />

+<br />

−<br />

A<br />

3<br />

+<br />

V R<br />

Σ<br />

−<br />

1<br />

sT E<br />

E FD<br />

1<br />

V RMIN<br />

V S<br />

5<br />

1<br />

1+ sTF<br />

2<br />

4<br />

sKF<br />

1+ sT<br />

F1<br />

V E<br />

+<br />

Σ<br />

+<br />

VE = SE ⋅ EFD<br />

K E<br />

States<br />

1 - EField<br />

2 - Sensed V<br />

3 - V<br />

4 - V<br />

5 - V<br />

R<br />

F1<br />

F2<br />

t<br />

Model supported by PSSE


Exciter IEEET3<br />

Exciter IEEET3<br />

IEEE Type 3 Excitation System Model<br />

E C<br />

1<br />

1+ sT R<br />

2<br />

−<br />

V REF<br />

+<br />

K<br />

A<br />

Σ + Σ<br />

1+ sT<br />

+<br />

−<br />

V RMIN<br />

V RMAX<br />

A<br />

3<br />

V R<br />

+<br />

Σ<br />

+<br />

V B<br />

V BMAX<br />

0<br />

K<br />

E<br />

1<br />

+ sT<br />

E<br />

1<br />

E FD<br />

V S<br />

4<br />

sKF<br />

1+ sT<br />

F<br />

V T<br />

I T<br />

VTHEV = KPVT + jKI IT<br />

π<br />

⎛0.78⋅<br />

I ⎞<br />

FD<br />

A = ⎜ ⎟<br />

⎝ VTHEV<br />

⎠<br />

If A> 1, V = 0<br />

B<br />

2<br />

I FD<br />

1−<br />

A<br />

States<br />

1 - EField<br />

2 - Sensed V<br />

3 - V<br />

4 - V<br />

R<br />

F<br />

t<br />

Model supported by PSSE


Exciter IEEET4<br />

Exciter IEEET4<br />

IEEE Type 4 Excitation System Model<br />

S E<br />

ψ<br />

V REF<br />

V RMAX<br />

π<br />

E C<br />

−<br />

+<br />

Σ<br />

ΔV<br />

-K R<br />

-1<br />

1<br />

K R<br />

1<br />

sT RH<br />

ΔV < K V<br />

V RH<br />

2<br />

+<br />

V R<br />

Σ<br />

−<br />

K<br />

E<br />

1<br />

+ sT<br />

E<br />

E FD<br />

1<br />

V RMIN<br />

ΔV > K V<br />

V RMAX<br />

-K V<br />

K V<br />

V RMIN<br />

States<br />

1 - EField<br />

2 - V<br />

RH<br />

Model supported by PSSE


Exciter IEEET5<br />

Exciter IEEET5<br />

Modified IEEE Type 4 Excitation System Model<br />

S E<br />

ψ<br />

E C<br />

−<br />

V REF<br />

+<br />

Σ<br />

ΔV<br />

V RMIN<br />

1<br />

V<br />

sT RH<br />

-K V<br />

RMAX<br />

2<br />

V RMAX<br />

V RMAX<br />

K V<br />

ΔV < K V<br />

V RH<br />

+<br />

V R<br />

π<br />

ΔV > K V<br />

Σ<br />

−<br />

K<br />

E<br />

1<br />

+ sT<br />

E<br />

E FD<br />

1<br />

V RMIN<br />

States<br />

1 - EField<br />

2 - V<br />

RH<br />

Model supported by PSSE


Exciter IEEEX1<br />

Exciter IEEEX1<br />

IEEE Type 1 Excitation System Model<br />

E C<br />

V REF V S<br />

+ +<br />

Regulator<br />

2<br />

1 +<br />

1+<br />

sT 3<br />

−<br />

C<br />

K 4<br />

A<br />

1+ sT R<br />

Σ Σ<br />

V 1+<br />

sTB<br />

1+ sTA<br />

ERR<br />

−<br />

V F<br />

V RMIN<br />

V RMAX<br />

+<br />

V R<br />

Σ<br />

−<br />

1<br />

sT E<br />

1<br />

E FD<br />

K<br />

E<br />

+ S<br />

E<br />

5<br />

sKF<br />

1+ sT<br />

F1<br />

Damping<br />

States<br />

1 - EField<br />

2 - Sensed V<br />

3 - V<br />

4 - V<br />

5 - V<br />

B<br />

R<br />

F<br />

t<br />

Model supported by PSSE


Exciter IEEEX2<br />

Exciter IEEEX2<br />

IEEE Type 2 Excitation System Model IEEEX2<br />

E C<br />

V REF<br />

V S<br />

+ +<br />

Regulator<br />

1<br />

2<br />

1+<br />

sT 3<br />

−<br />

C<br />

K 4<br />

A<br />

1+ sT R<br />

Σ Σ<br />

V +<br />

1+<br />

sT 1+ sT<br />

ERR<br />

−<br />

V F<br />

B<br />

V RMIN<br />

V RMAX<br />

A<br />

+<br />

V R<br />

Σ<br />

−<br />

1<br />

sT E<br />

1<br />

E FD<br />

K<br />

E<br />

+ S<br />

E<br />

sK<br />

( 1+ sT )( 1+<br />

sT )<br />

F<br />

F1 F2<br />

Damping<br />

5 6<br />

States<br />

1 - EField<br />

2 - Sensed V<br />

3 - LL<br />

4 - V<br />

5 - V<br />

6 - V<br />

R<br />

F1<br />

F2<br />

t<br />

Model supported by PSSE


Exciter IEEEX3<br />

Exciter IEEEX3<br />

IEEE Type 3 Excitation System Model<br />

E C<br />

1<br />

1+ sT R<br />

2<br />

V REF<br />

V S<br />

Regulator<br />

K<br />

A<br />

+ sT<br />

+ +<br />

− +<br />

Σ Σ<br />

V 1<br />

ERR −<br />

V F<br />

V RMIN<br />

V RMAX<br />

A<br />

3<br />

V R<br />

+<br />

Σ<br />

+<br />

0<br />

K<br />

E<br />

1<br />

+ sT<br />

E<br />

1<br />

E FD<br />

4<br />

sKF<br />

1+ sT<br />

F<br />

Damping<br />

V BMAX<br />

V T<br />

I T<br />

VTHEV = KPVT + jKI IT<br />

V TH<br />

I FD<br />

V<br />

2<br />

TH<br />

−<br />

( 0.78I<br />

) 2<br />

FD<br />

0<br />

V B<br />

States<br />

1 - EField<br />

2 - Sensed V<br />

3 - V<br />

4 - V<br />

R<br />

F<br />

t<br />

Model supported by PSSE


Exciter IEEEX4<br />

Exciter IEEEX4<br />

IEEE Type 4 Excitation System Model<br />

V REF<br />

V RMAX<br />

E C<br />

1<br />

1+ sT R<br />

2<br />

+<br />

−<br />

Σ<br />

VERR<br />

RMAX RMIN<br />

−K V<br />

K V<br />

V<br />

−V<br />

sK T<br />

V<br />

RH<br />

3<br />

V RH<br />

V RMIN<br />

If V ≥ K , V = V<br />

ERR V R RMAX<br />

If V < K , V = V<br />

ERR V R RH<br />

If V ≤− K , V = V<br />

ERR V R RMIN<br />

V R<br />

+<br />

Σ<br />

−<br />

1<br />

sT E<br />

1<br />

E FD<br />

K<br />

E<br />

+ S<br />

E<br />

States<br />

1 - EField<br />

2 - Sensed V<br />

3 - V<br />

RH<br />

t<br />

Model supported by PSSE


Exciter IEET1A<br />

Exciter IEET1A<br />

Modified IEEE Type 1 Excitation System Model<br />

V REF<br />

V RMAX<br />

E C<br />

+<br />

Σ<br />

− +<br />

+<br />

Σ<br />

−<br />

K<br />

A<br />

1+ sT<br />

A<br />

2<br />

+<br />

Σ<br />

−<br />

1<br />

sT E<br />

E FDMAX<br />

1<br />

E FD<br />

V RMIN<br />

E FDMIN<br />

V S<br />

3<br />

sKF<br />

1+ sT<br />

F<br />

K<br />

E<br />

+ S<br />

E<br />

States<br />

1 - EField<br />

2 - V<br />

3 - V<br />

R<br />

F<br />

Model supported by PSSE


Exciter IEET1B<br />

Exciter IEET1B<br />

Modified IEEE Type 1 Excitation System Model<br />

sK<br />

1+ sT<br />

F1<br />

F1<br />

Switch=0<br />

Switch=1<br />

S E<br />

I MAG<br />

ψ<br />

E C<br />

X V REF<br />

E<br />

+<br />

1<br />

−<br />

+<br />

A<br />

Σ<br />

Σ<br />

+ 1+ sT R<br />

Σ Σ Σ<br />

V<br />

T<br />

+<br />

V SMAX<br />

+<br />

Bias<br />

+ −<br />

V SMIN<br />

V RMIN<br />

+<br />

K<br />

1+ sT<br />

V RMAX<br />

A1<br />

V R<br />

1<br />

1+ sTA2<br />

VREG<br />

π<br />

−<br />

1<br />

+ FD<br />

+<br />

sT E<br />

E<br />

V S<br />

−K E<br />

Model supported by PSSE but not implemented yet in Simulator


Exciter IEET5A<br />

Exciter IEET5A<br />

Modified IEEE Type 4 Excitation System Model<br />

S E<br />

ψ<br />

V REF<br />

V RMAX<br />

π<br />

E C<br />

−<br />

−<br />

+<br />

K<br />

A<br />

Σ<br />

1+ sT<br />

V TO<br />

+<br />

Σ<br />

ΔVT<br />

*<br />

V<br />

RH<br />

V RMIN<br />

V RMAX<br />

-K V<br />

K V<br />

V RMIN<br />

2<br />

ΔV<br />

< K<br />

+<br />

V R<br />

ΔV > K V<br />

−<br />

Σ<br />

K<br />

E<br />

1<br />

+ sT<br />

E<br />

E FDMAX<br />

E FDMIN<br />

K<br />

A<br />

* If TRH<br />

equals zero, block becomes<br />

s<br />

1<br />

E FD<br />

States<br />

1 - EField<br />

2 - V<br />

RH<br />

Model supported by PSSE


Exciter IEEX2A<br />

Exciter IEEX2A<br />

IEEE Type 2A Excitation System Model<br />

V REF<br />

V S<br />

V RMAX<br />

E C<br />

+<br />

+<br />

1 2<br />

1+<br />

sT 3<br />

−<br />

C<br />

K 4<br />

A<br />

1+ sT R<br />

Σ Σ<br />

V 1+<br />

sTB<br />

1+ sTA<br />

+<br />

ERR<br />

−<br />

V F<br />

V RMIN<br />

V R<br />

+<br />

Σ<br />

−<br />

0<br />

1<br />

sT E<br />

1<br />

E FD<br />

5<br />

sKF<br />

1+ sT<br />

F1<br />

K<br />

E<br />

+ S<br />

E<br />

States<br />

1 - EField<br />

2 - Sensed V<br />

3 - V<br />

4 - V<br />

5 - V<br />

B<br />

R<br />

F<br />

t<br />

Model supported by PSSE


Exciter REXS<br />

Exciter REXS<br />

General Purpose Rotating Excitation System Model<br />

E C<br />

1<br />

1+ sT R<br />

10<br />

9<br />

sKF<br />

1+ sT<br />

1+<br />

sT<br />

1+<br />

sT<br />

F1<br />

F 2<br />

V REF<br />

+<br />

V S<br />

Σ<br />

6 Regulator<br />

K (1 + sT<br />

K<br />

VI<br />

C1)(1 + sTC2)<br />

A<br />

V<br />

Σ KVP<br />

+<br />

s (1 + sT )(1 + sT ) 1+ sT<br />

+<br />

ERR<br />

−<br />

V F<br />

−V IMAX<br />

V RMIN<br />

V RMAX<br />

V<br />

+<br />

IMAX<br />

2<br />

−<br />

V<br />

5<br />

E<br />

R<br />

F<br />

V R<br />

+<br />

Σ<br />

K H<br />

K<br />

IP<br />

K<br />

+<br />

s<br />

II<br />

1<br />

1+ sTP<br />

V FMIN<br />

I TERM<br />

B1 B2<br />

V FMAX<br />

+<br />

X C<br />

+ 4<br />

3 +<br />

−<br />

7<br />

8<br />

Σ<br />

V CMAX<br />

+<br />

Σ<br />

−<br />

0<br />

A<br />

1<br />

sT E<br />

0<br />

1<br />

V E<br />

States<br />

1 - V 6 - Voltage PI<br />

2 - Sensed V 7 - V LL1<br />

EX<br />

K EFD<br />

π<br />

T<br />

3 - V 8 - V LL2<br />

F<br />

4 - Current PI 9 - Feedback<br />

5 - V 10 - Feedback LL<br />

R<br />

Speed<br />

F EX<br />

( )<br />

F = f I<br />

N<br />

I<br />

I<br />

E FD<br />

Fbf<br />

0<br />

2<br />

1<br />

I FE<br />

Σ<br />

+<br />

+<br />

K<br />

E<br />

+ S<br />

E<br />

I<br />

N<br />

I N<br />

KCI<br />

=<br />

V<br />

E<br />

FD<br />

I FD<br />

K D<br />

Model supported by PSLF. If flimf = 1 then multiply V<br />

RMIN<br />

,V<br />

RMAX,V FMIN<br />

, and VFMAX by V<br />

TERM.


Exciter REXSY1<br />

Voltage Regulator<br />

E C<br />

1 2<br />

1+ sT R<br />

−<br />

V REF<br />

+<br />

+<br />

Σ<br />

V S<br />

+<br />

V −<br />

F<br />

Σ<br />

Exciter REXSY1<br />

General Purpose Rotating Excitation System Model<br />

−V<br />

V IMAX<br />

IMAX<br />

10<br />

K<br />

VP<br />

K<br />

+<br />

s<br />

1+<br />

sT<br />

1+<br />

sT<br />

F1<br />

F 2<br />

VI<br />

6<br />

9<br />

(1 + sTC1)(1 + sTC2)<br />

(1 + sT )(1 + sT )<br />

B1 B2<br />

7 8<br />

sKF<br />

1+ sT<br />

F<br />

1<br />

1+ sTA<br />

FV ⋅ RMIN<br />

FV ⋅ RMAX<br />

Fbf<br />

0<br />

1<br />

2<br />

[ ]<br />

F= 1.0 + F (E -1.0) ⋅(K +K +S )<br />

5<br />

I FE<br />

V R<br />

1IMF T E D E<br />

E FD<br />

I TERM<br />

X C<br />

Exciter Field Current Regulator<br />

FV ⋅ FMAX<br />

V CMAX<br />

V R<br />

+<br />

Σ<br />

K H<br />

−<br />

K<br />

IP<br />

K<br />

+<br />

s<br />

II<br />

4<br />

1<br />

1+ sTP<br />

FV ⋅ FMIN<br />

3<br />

+<br />

Σ<br />

+<br />

−<br />

1<br />

sT E<br />

0<br />

1<br />

V E<br />

EX<br />

π<br />

F EX<br />

( )<br />

F = f I<br />

N<br />

E FD<br />

States<br />

1 - V 6 - Voltage PI<br />

E<br />

2 - Sensed V 7 - V LL1<br />

Model supported by PSSE<br />

T<br />

3 - V 8 - V LL2<br />

F<br />

4 - Current PI 9 - Feedback<br />

5 - V 10 - Feedback LL<br />

R<br />

I<br />

I<br />

I FE<br />

Σ<br />

+<br />

+<br />

K<br />

E<br />

+ S<br />

E<br />

K D<br />

I<br />

N<br />

I N<br />

KCI<br />

=<br />

V<br />

E<br />

FD<br />

I FD


Exciter REXSYS<br />

Voltage Regulator<br />

E C<br />

1 2<br />

1+ sT R<br />

−<br />

+<br />

V REF<br />

+<br />

Σ<br />

V S<br />

+<br />

V −<br />

F<br />

Σ<br />

Exciter REXSYS<br />

General Purpose Rotating Excitation System Model<br />

V IMAX<br />

−VIMAX<br />

10<br />

K<br />

VP<br />

K<br />

+<br />

s<br />

1+<br />

sT<br />

1+<br />

sT<br />

F1<br />

F 2<br />

VI<br />

6<br />

9<br />

(1 + sTC1)(1 + sTC2)<br />

(1 + sT )(1 + sT )<br />

B1 B2<br />

sKF<br />

1+ sT<br />

7 8<br />

F<br />

1<br />

1+ sTA<br />

FV ⋅ RMIN<br />

Fbf<br />

FV ⋅ RMAX<br />

0<br />

1<br />

2<br />

[ ]<br />

F= 1.0 + F (E -1.0) ⋅(K +K +S )<br />

5<br />

I FE<br />

V R<br />

1IMP T E D E<br />

E FD<br />

Exciter Field Current Regulator<br />

FV ⋅ FMAX<br />

V R<br />

+<br />

Σ<br />

K H<br />

−<br />

K<br />

IP<br />

K<br />

+<br />

s<br />

II<br />

4<br />

1<br />

1+ sTP<br />

FV ⋅ FMIN<br />

3<br />

+<br />

Σ<br />

+<br />

−<br />

1<br />

sT E<br />

0<br />

1<br />

V E<br />

EX<br />

π<br />

F EX<br />

( )<br />

F = f I<br />

N<br />

E FD<br />

States<br />

1 - V 6 - Voltage PI<br />

E<br />

2 - Sensed V 7 - V LL1<br />

Model supported by PSSE<br />

T<br />

3 - V 8 - V LL2<br />

F<br />

4 - Current PI 9 - Feedback<br />

5 - V 10 - Feedback LL<br />

R<br />

I<br />

I<br />

I FE<br />

Σ<br />

+<br />

+<br />

K<br />

E<br />

+ S<br />

E<br />

K D<br />

I<br />

N<br />

I N<br />

KCI<br />

=<br />

V<br />

E<br />

FD<br />

I FD


Exciter SCRX<br />

Exciter SCRX<br />

Bus Fed or Solid Fed Static Excitation System Model<br />

C<br />

SWITCH<br />

=0 C<br />

SWITCH<br />

=1<br />

E 1<br />

T<br />

E C<br />

V REF<br />

E FDMAX<br />

−<br />

+<br />

+<br />

Σ<br />

1+<br />

sT<br />

1+<br />

sT<br />

A<br />

B<br />

1 2<br />

K<br />

+ sT<br />

1<br />

E<br />

π<br />

E FD<br />

E FDMIN<br />

V S<br />

States<br />

1 - Lead-Lag<br />

2 - V<br />

E<br />

Model supported by PSLF<br />

Model supported by PSSE has C = 1<br />

SWITCH


Exciter SEXS_GE<br />

Exciter SEXS_GE<br />

Simplified Excitation System Model<br />

V REF<br />

V comp<br />

E MAX<br />

+<br />

3<br />

E FDMAX<br />

1 2<br />

−<br />

1+<br />

sTA<br />

K<br />

K<br />

C( 1+<br />

sT<br />

4<br />

C)<br />

1 EFD<br />

Σ<br />

1+<br />

sTB<br />

sT<br />

1+ sT<br />

C<br />

E<br />

1+ sT R<br />

+<br />

Stabilizer<br />

Output<br />

E MIN<br />

E FDMIN<br />

States<br />

1 - EField<br />

2 - Sensed V<br />

t<br />

3 - LL<br />

4 - PI<br />

Model supported by PSLF


Exciter SEXS_PTI<br />

Exciter SEXS_PTI<br />

Simplified Excitation System Model<br />

V REF<br />

E FDMAX<br />

E C<br />

−<br />

+<br />

+<br />

Σ<br />

1+<br />

sT<br />

1+<br />

sT<br />

A<br />

B<br />

2<br />

K<br />

+ sT<br />

1<br />

E<br />

1<br />

E FD<br />

E FDMIN<br />

V S<br />

States<br />

1 - EField<br />

2 - LL<br />

Model supported by PSSE


Exciter ST6B<br />

Exciter ST6B<br />

IEEE 421.5 2005 ST6B Excitation System Model<br />

I FD<br />

V C<br />

1<br />

1+ sT R<br />

2<br />

I LR<br />

K CL<br />

+<br />

−<br />

Σ<br />

K LR<br />

VOEL<br />

(OEL=1)<br />

Alternate OEL Inputs<br />

VOEL<br />

(OEL=2)<br />

V AMAX<br />

K FF<br />

V RMIN<br />

1<br />

0<br />

V T<br />

V RMULT<br />

−<br />

−<br />

+<br />

Σ<br />

V UEL<br />

HV<br />

Gate<br />

+<br />

−<br />

+<br />

Σ<br />

K<br />

PA<br />

V AMIN<br />

+ KIA<br />

sK<br />

s<br />

+ 1 + sT<br />

DA<br />

DA<br />

3 4<br />

V A<br />

+<br />

−<br />

Σ<br />

KM<br />

+<br />

+<br />

Σ<br />

V RMAX<br />

V RMIN<br />

LV<br />

Gate<br />

V R<br />

V B<br />

π<br />

1<br />

1+ sTS<br />

E FD<br />

1<br />

V REF<br />

V S<br />

States<br />

1 - E<br />

FD<br />

2 - Sensed V<br />

3 - PID1<br />

4 - PID2<br />

5 - V<br />

G<br />

t<br />

ST6B supported by PSSE<br />

ESST6B supported by PSLF with optional V<br />

RMULT<br />

V G<br />

5<br />

sKG<br />

1+ sT<br />

G


Exciter ST7B<br />

Exciter ST7B<br />

IEEE 421.5 2005 ST7B Excitation System Model<br />

V DROOP<br />

V<br />

OEL<br />

(OEL=1)<br />

Alternate<br />

OEL Inputs<br />

VOEL<br />

(OEL=2)<br />

V C<br />

1<br />

1+ sT R<br />

1+<br />

sT<br />

1+<br />

sT<br />

G<br />

F<br />

V S<br />

V SCL<br />

+<br />

+<br />

+<br />

Σ<br />

+<br />

+<br />

+<br />

Σ<br />

LV<br />

Gate<br />

HV<br />

Gate<br />

V MIN<br />

V MAX<br />

V REF_FB<br />

Σ<br />

Σ<br />

K PA<br />

Alternate UEL Inputs<br />

V REF<br />

VUEL<br />

(UEL=1)<br />

VUEL<br />

(UEL=2)<br />

VOEL<br />

(OEL=3)<br />

VUEL<br />

(UEL=3)<br />

VV<br />

T<br />

RMAX<br />

VV<br />

ST7B supported by PSSE<br />

ESST7B supported by PSLF<br />

Not implemented yet in Simulator<br />

T<br />

RMIN<br />

+<br />

Σ<br />

−<br />

HV<br />

Gate<br />

Σ<br />

K H<br />

−<br />

+<br />

LV<br />

Gate<br />

VV<br />

T<br />

RMAX<br />

K L<br />

1+<br />

sT<br />

1+<br />

sT<br />

C<br />

B<br />

+<br />

+<br />

Σ<br />

LV<br />

Gate<br />

sKIA<br />

1+ sT<br />

IA<br />

HV<br />

Gate<br />

VV<br />

T<br />

RMIN<br />

1<br />

1+ sTS<br />

E FD


Exciter TEXS<br />

Exciter TEXS<br />

General Purpose Transformer-Fed Excitation System Model<br />

Constant<br />

Source Voltage<br />

Generator<br />

Terminal Voltage<br />

V REF<br />

ILR<br />

V RMAX<br />

K CL<br />

Σ<br />

−<br />

+<br />

K FF<br />

KLR<br />

0<br />

1 0<br />

E C<br />

1<br />

1+ sTR<br />

2<br />

−<br />

+<br />

Σ<br />

+<br />

V IMAX<br />

K<br />

VP<br />

K<br />

+<br />

s<br />

VI<br />

4<br />

+<br />

Σ<br />

+<br />

+<br />

Σ<br />

−<br />

K M<br />

+<br />

V RMAX<br />

+ −<br />

LV<br />

+<br />

Σ<br />

π<br />

Gate Σ<br />

V<br />

R<br />

V<br />

E<br />

E FD<br />

V S<br />

−V IMAX<br />

V RMIN<br />

sKVD<br />

1+ sT<br />

VD<br />

3<br />

1<br />

KG<br />

1+ sT<br />

G<br />

V RMIN<br />

I FD<br />

X C<br />

States<br />

1 - Feedback<br />

2 - Sensed V<br />

t<br />

3 - Derivative Controller<br />

4 - Integral Controller<br />

Model supported by PSLF


Exciter URST5T<br />

Exciter URST5T<br />

IEEE Proposed Type ST5B Excitation System Model<br />

E C<br />

V UEL<br />

V /K<br />

RMAX<br />

R<br />

V /K<br />

RMAX<br />

R<br />

V RMAX<br />

V<br />

RMAX<br />

V<br />

T<br />

1<br />

1+ sT R<br />

2<br />

−<br />

+<br />

Σ<br />

HV<br />

Gate<br />

LV<br />

Gate<br />

+<br />

Σ<br />

+<br />

1+<br />

sT<br />

1+<br />

sT<br />

RMIN<br />

C1<br />

B1<br />

V /K<br />

R<br />

1+<br />

sT<br />

1+<br />

sT<br />

3 4<br />

RMIN<br />

C 2<br />

B2<br />

V /K<br />

R<br />

V RMIN<br />

1<br />

K<br />

+<br />

R<br />

V<br />

RMIN<br />

1<br />

1+<br />

sT<br />

V<br />

T<br />

1<br />

Σ<br />

−<br />

E FD<br />

V REF<br />

V OEL<br />

V STB<br />

K C<br />

I FD<br />

States<br />

1 - V<br />

R<br />

2 - Sensed V<br />

t<br />

3 - LL1<br />

4 - LL2<br />

Model supported by PSSE


Exciter WT2E<br />

Exciter Model WT2E<br />

Tw<br />

Time constant<br />

Kw<br />

Speed regulator gain<br />

Tp<br />

Field current bridge time constant in sec.<br />

Kp<br />

Potential source gain in p.u.<br />

Kpp<br />

Potential source gain in p.u.<br />

Kip<br />

Field current regulator proportional gain<br />

Rmax<br />

Maximum external rotor resistance in p.u.<br />

Rmin<br />

Minimum external rotor resistance in p.u.<br />

Slip_1 to Slip_5 Slip 1 to Slip 5<br />

Power_Ref_1 to Power_Ref_5 Power factor regulator 1 to power factor regulator 5<br />

States:<br />

1 – Rexternal<br />

2 – Speed<br />

3 – Pelec<br />

Model supported by PSLF


Exciter WT2E1<br />

Exciter WT2E1<br />

Rotor Resistance Control Model for Type 2 Wind Generator<br />

Power-Slip Curve<br />

Speed<br />

1<br />

1+ sTSP<br />

2<br />

−<br />

+<br />

Σ<br />

K<br />

P<br />

R MAX<br />

1<br />

+<br />

sT<br />

I<br />

1<br />

R MIN<br />

P elec<br />

1<br />

1+ sTPC<br />

3<br />

States<br />

1 - R<br />

external<br />

2 - Speed<br />

3 - Pelec<br />

Model supported by PSSE


Exciter WT3E and WT3E1<br />

Exciter WT3E and WT3E1<br />

Electrical Control for Type 3 Wind Generator<br />

Reactive Power Control Model<br />

V V RFQ<br />

C<br />

1<br />

1+ sT R<br />

P FAREF<br />

4 +<br />

+<br />

− 1<br />

1<br />

∑<br />

tan<br />

f N<br />

K IV<br />

s<br />

KPV<br />

1+ sT<br />

V<br />

5<br />

∑<br />

3 +<br />

Q MIN<br />

Q MAX<br />

1+ sTFV<br />

6<br />

States<br />

1 - V 6 - Q<br />

ref<br />

2 - E 7 - P<br />

qppcmd<br />

PV<br />

regMeas<br />

IV<br />

ORD<br />

Meas<br />

3 - K 8 - PowerFilter<br />

4 - V 9 - SpeedPI<br />

5 - K 10 - P<br />

ORD<br />

P elec<br />

1<br />

1+ sTP<br />

7<br />

π<br />

Q REF<br />

−1<br />

Active Power (Torque) Control Model<br />

P elec<br />

Speed<br />

( P = 20%, ω P 20<br />

)<br />

0<br />

varflg<br />

( P = 100%, ω P 100<br />

)<br />

( P = 60%, ω P 60<br />

)<br />

( P = 40%, ω P 40<br />

)<br />

( P , ω )<br />

MIN<br />

PMIN<br />

P<br />

1<br />

Q MIN<br />

Q MAX<br />

+<br />

1<br />

1+ sTPWR<br />

Q elec<br />

−<br />

∑<br />

Speed<br />

8<br />

−<br />

∑<br />

V MIN<br />

+<br />

VMAX<br />

K QI<br />

s<br />

K<br />

K<br />

s<br />

V REF<br />

VTERM<br />

−<br />

1 2<br />

+<br />

> 0<br />

∑<br />

Speed<br />

9<br />

+<br />

IP<br />

PP<br />

+ π ∑<br />

−<br />

XI QMAX<br />

K QV<br />

s<br />

XI QMIN<br />

RPMAX<br />

RP MIN<br />

P MAX<br />

vltflg<br />

0<br />

1 10<br />

sT ÷<br />

FP<br />

P MIN<br />

E QCMD<br />

V TERM<br />

IPMAX<br />

I PCMD<br />

WT3E supported by PSLF with RP = P and RP = -P , T = T<br />

MAX wrat MIN wrat FV C<br />

WT3E1 supported by PSSE uses vltflg to determine the limits on E . When vltflg > 0 Simulator always uses XI and XI .<br />

QCMD QMAX QMIN


Exciter WT4E1<br />

Exciter WT4E1<br />

Electrical Control for Type 4 Wind Generator<br />

V C<br />

1<br />

1+ sTRV<br />

V RFQ<br />

K IV<br />

s<br />

+<br />

5 +<br />

− 1<br />

4 ∑<br />

∑<br />

+<br />

KPV<br />

1+ sT<br />

V<br />

3<br />

Q MIN<br />

Q MAX<br />

1+ sTFV<br />

6<br />

States:<br />

1 – Vref 6 - Qord<br />

2 - E qppcmd 7 - Pmeas<br />

3 – Kpv 8 - TPower<br />

4 – VregMeas 9 - Kip<br />

5 – Kiv 10 - Feedback<br />

P FAREF<br />

P elec<br />

1<br />

1+ sTP<br />

tan<br />

7<br />

π<br />

Q REF<br />

0<br />

1<br />

pfaflg<br />

0<br />

1<br />

Q MAX<br />

+<br />

Q elec<br />

−<br />

∑<br />

V MAXCL<br />

K QI<br />

s<br />

1<br />

+<br />

−<br />

∑<br />

I QMAX<br />

K VI<br />

s<br />

2<br />

I QCMD<br />

varflg<br />

Q MIN<br />

V MINCL<br />

V TERM<br />

I QMIN<br />

P REF<br />

dP MAX<br />

pqflag<br />

Converter Current Limit<br />

−<br />

1 +<br />

K − P ORD<br />

IP<br />

Pelec<br />

∑ KPP<br />

+ ∑ ÷<br />

1+ sT 8<br />

PWR<br />

s<br />

−<br />

dP MIN<br />

9<br />

+<br />

I PMAX<br />

I PCMD<br />

10<br />

sKF<br />

1+ sT<br />

F<br />

0.01<br />

V TERM<br />

Model supported by PSSE but not yet implemented in Simulator


Machine Model CSVGN1<br />

Machine Model CSVGN1<br />

Static Shunt Compensator CSVGN1<br />

Other Signals<br />

VOTHSG<br />

V MAX<br />

1.<br />

CBASE<br />

/ SBASE<br />

V<br />

V REF<br />

+<br />

−<br />

Σ<br />

−<br />

( 1+ 1)( 1+<br />

2)<br />

( 1+ sT )( 1+<br />

sT )<br />

K sT sT<br />

V MIN<br />

3 4<br />

1 2<br />

RMIN<br />

1<br />

1+<br />

sT<br />

5<br />

3<br />

/ RBASE<br />

π<br />

−<br />

Σ<br />

MBASE / SBASE<br />

+<br />

Y<br />

States:<br />

1 – Regulator1<br />

2 – Regulator2<br />

3 – Thyristor<br />

RBASE = MBASE<br />

Note : V is the voltage magnitude on the high side of generator step-up transformer if present.<br />

Model supported by PSSE


Machine Model CSVGN3<br />

Machine Model CSVGN3<br />

Static Shunt Compensator CSVGN3<br />

Other Signals<br />

VOTHSG<br />

V MAX<br />

1.<br />

CBASE<br />

/ SBASE<br />

V<br />

V REF<br />

+<br />

−<br />

Σ<br />

−<br />

V ERR<br />

( 1+ 1)( 1+<br />

2)<br />

( 1+ sT )( 1+<br />

sT )<br />

K sT sT<br />

V MIN<br />

3 4<br />

1 2<br />

RMIN<br />

1<br />

1+<br />

sT<br />

5<br />

3<br />

/ RBASE<br />

π<br />

−<br />

Σ<br />

MBASE / SBASE<br />

+<br />

Y<br />

1, if V<br />

ERR<br />

> V<br />

OV<br />

RMIN / RBASE if V


Machine Model CSVGN4<br />

Machine Model CSVGN4<br />

Static Shunt Compensator CSVGN4<br />

Other Signals<br />

VOTHSG<br />

V MAX<br />

1.<br />

CBASE<br />

/ SBASE<br />

V IB<br />

V REF<br />

+<br />

−<br />

Σ<br />

−<br />

V ERR<br />

( 1+ 1)( 1+<br />

2)<br />

( 1+ sT )( 1+<br />

sT )<br />

K sT sT<br />

V MIN<br />

3 4<br />

1 2<br />

RMIN<br />

1<br />

1+<br />

sT<br />

5<br />

3<br />

/ RBASE<br />

π<br />

−<br />

Σ<br />

MBASE / SBASE<br />

+<br />

Y<br />

1, if V<br />

ERR<br />

> V<br />

OV<br />

RMIN / RBASE if V


Machine Model CSVGN5<br />

Machine Model CSVGN5<br />

Static Var Compensator CSVGN5<br />

VOLT(IBUS)<br />

or<br />

VOLT(ICON(M))<br />

Filter<br />

1 −<br />

+ Σ<br />

1 sTs<br />

1<br />

VREF( I)<br />

VOTHSG( I)<br />

+<br />

+<br />

Σ<br />

V EMAX<br />

1 +<br />

2<br />

−V EMAX<br />

Regulator<br />

<br />

1st Stage 2nd Stage<br />

1+<br />

sTS<br />

2<br />

1+<br />

sTS<br />

4<br />

1+<br />

sT<br />

1 sT<br />

S 3<br />

K<br />

SVS<br />

+<br />

S 5<br />

3<br />

VERR<br />

BR<br />

B MAX<br />

' '<br />

ERR LO R MAX SD ERR<br />

'<br />

If DVHI < VERR < DVLO : BR = BR<br />

' '<br />

If VERR < DVHI : BR = BMIN<br />

( )<br />

If V > DV : B = B + K V −DV<br />

B<br />

'<br />

R<br />

1<br />

1+<br />

sT<br />

6<br />

4<br />

BSVS<br />

MBASE( I)<br />

SBASE VAR( L)<br />

States:<br />

1 – Filter<br />

2 – Regulator1<br />

3 – Regulator2<br />

4 – Thyristor<br />

If DV = 0,<br />

DV<br />

DV<br />

= B<br />

= B<br />

/ K<br />

/ K<br />

Fast Override<br />

'<br />

LO MAX SVS<br />

'<br />

HI MIN SVS<br />

B MIN<br />

If DV > 0,<br />

DVLO<br />

= DV<br />

DV = −DV<br />

HI<br />

Thyristor Delay<br />

Model supported by PSSE


Machine Model CSVGN6<br />

Machine Model CSVGN6<br />

Static Var Compensator CSVGN6<br />

VOLT(IBUS)<br />

or<br />

VOLT(ICON(M))<br />

Filter<br />

1 −<br />

+ Σ<br />

1 sTs<br />

1<br />

1<br />

VREF<br />

+<br />

Other<br />

Signals<br />

( )<br />

VOTHSG I<br />

+<br />

+<br />

Σ<br />

1+<br />

sT<br />

1+<br />

sT<br />

V MIN<br />

V MAX<br />

S 2<br />

S 3<br />

2<br />

1+<br />

sT<br />

1<br />

S 4<br />

KSVS<br />

+ sTS<br />

5<br />

V EMIN<br />

V EMAX<br />

3<br />

B R<br />

States:<br />

1 – Filter<br />

2 – Regulator1<br />

3 – Regulator2<br />

4 – Thyristor<br />

VERR<br />

BR<br />

' '<br />

ERR LO R MAX SD ERR<br />

'<br />

If DVHI < VERR < DVLO : BR = BR<br />

' '<br />

If VERR < DVHI : BR = BMIN<br />

( )<br />

If V > DV : B = B + K V −DV<br />

If DV = 0,<br />

DV<br />

DV<br />

= B<br />

= B<br />

/ K<br />

/ K<br />

Fast Override<br />

'<br />

LO MAX SVS<br />

'<br />

HI MIN SVS<br />

B MAX<br />

1<br />

1+<br />

sT<br />

B MIN<br />

6<br />

Thyristor Delay<br />

1 2 BSHUNT<br />

Position 1 is normal (open)<br />

If DV > 0,<br />

If VERR<br />

> DV 2, switch will<br />

DVLO<br />

= DV<br />

close after TDELAY cycles.<br />

DV = −DV<br />

HI<br />

B<br />

'<br />

R<br />

4<br />

BSVS<br />

+<br />

BIAS<br />

+<br />

Σ<br />

+<br />

Model supported by PSSE


Machine Model GENCC<br />

Machine Model GENCC<br />

Generator represented by uniform inductance ratios rotor<br />

modeling to match WSCC type F<br />

X<br />

X<br />

d<br />

'<br />

d<br />

−<br />

−<br />

X<br />

X<br />

'<br />

d<br />

''<br />

d<br />

States:<br />

1 – Angle<br />

2 – Speed w<br />

3 – Eqp<br />

4 – Eqpp<br />

5 – Edp<br />

6 - Edpp<br />

E fd<br />

−<br />

+<br />

Σ<br />

−<br />

X<br />

X<br />

1<br />

'<br />

sT do<br />

d<br />

'<br />

d<br />

−<br />

−<br />

X<br />

X<br />

''<br />

d<br />

d<br />

'<br />

E<br />

q<br />

+<br />

−<br />

Σ<br />

−<br />

X<br />

''<br />

sT do<br />

'<br />

d<br />

1<br />

− X<br />

''<br />

d<br />

'<br />

E q<br />

i d<br />

d axis<br />

π<br />

S e<br />

E 1<br />

X<br />

X<br />

q<br />

d<br />

q axis<br />

Model supported by PSLF


Machine Model GENCLS<br />

Machine Model GENCLS<br />

Synchronous machine represented by “classical” modeling or<br />

Thevenin Voltage Source to play Back known<br />

voltage/frequency signal<br />

Recorded<br />

Voltage<br />

Z<br />

ab<br />

= 0.03<br />

on 100 MVA base<br />

Responding<br />

System<br />

A<br />

B<br />

States:<br />

1 – Angle<br />

2 – Speed w<br />

gencls<br />

I ppd<br />

B<br />

Responding<br />

System<br />

gencls<br />

I ppd<br />

A<br />

Z<br />

ab<br />

= 0.03<br />

on 100 MVA base<br />

B<br />

Responding<br />

System<br />

Model supported by PSLF


Machine Model GENROU<br />

Machine Model GENROU<br />

Solid Rotor Generator represented by equal mutual<br />

inductance rotor modeling<br />

P fd<br />

X<br />

X<br />

''<br />

d<br />

'<br />

d<br />

−<br />

−<br />

X<br />

X<br />

l<br />

l<br />

E fd<br />

+<br />

Σ<br />

−<br />

1<br />

'<br />

sT do<br />

+<br />

Σ<br />

−<br />

−<br />

1<br />

''<br />

sT do<br />

P kd<br />

X<br />

X<br />

'<br />

d<br />

'<br />

d<br />

−<br />

−<br />

X<br />

X<br />

''<br />

d<br />

l<br />

+<br />

+<br />

Σ<br />

''<br />

P d<br />

+<br />

X<br />

−<br />

X<br />

X<br />

' ''<br />

d d<br />

'<br />

( Xd<br />

−<br />

l)**2<br />

X<br />

'<br />

d<br />

− X<br />

l<br />

d − AXIS<br />

L<br />

ad<br />

i<br />

fd<br />

Σ<br />

+<br />

''<br />

P d<br />

+<br />

X<br />

S e<br />

d<br />

− X<br />

'<br />

d<br />

Σ<br />

+<br />

+<br />

''<br />

P<br />

States:<br />

1 – Angle<br />

2 – Speed w<br />

3 – Eqp<br />

4 – PsiDp<br />

5 – PsiQpp<br />

6 – Edp<br />

i d<br />

X<br />

− X<br />

P '' q l<br />

q<br />

X d<br />

− X l<br />

( )<br />

*** q − AXIS identical,<br />

swapping d and q substripts<br />

Model supported by PSLF


Machine Model GENSAL<br />

Machine Model GENSAL<br />

Salient Pole Generator represented by equal mutual<br />

inductance rotor modeling<br />

X<br />

X<br />

''<br />

d<br />

'<br />

d<br />

−<br />

−<br />

X<br />

X<br />

l<br />

l<br />

E fd<br />

+<br />

Σ<br />

−<br />

1<br />

'<br />

sT do<br />

−<br />

P<br />

P<br />

' ''<br />

fd<br />

1<br />

kd<br />

Xd<br />

− Xd<br />

'<br />

+ Σ<br />

''<br />

sT do<br />

Xd<br />

− Xl<br />

−<br />

+<br />

+<br />

Σ<br />

''<br />

P d<br />

X<br />

−<br />

X<br />

X<br />

' ''<br />

d d<br />

'<br />

( Xd<br />

−<br />

l)**2<br />

X<br />

'<br />

d<br />

− X<br />

l<br />

L<br />

ad<br />

i<br />

fd<br />

SP<br />

e<br />

fd<br />

+<br />

Σ<br />

+<br />

States:<br />

1 – Angle<br />

2 – Speed w<br />

3 – Eqp<br />

4 – PsiDp<br />

5 – PsiQpp<br />

+<br />

X<br />

d<br />

− X<br />

'<br />

d<br />

Σ<br />

−<br />

−<br />

Σ<br />

+<br />

+<br />

1<br />

''<br />

sT qo<br />

X<br />

q<br />

P kd<br />

− X<br />

''<br />

q<br />

d − AXIS<br />

i d<br />

''<br />

P q<br />

q − AXIS<br />

i q<br />

Model supported by PSLF


Machine Model GENTPF<br />

Machine Model GENTPF<br />

Generator represented by uniform inductance ratios rotor<br />

modeling to match WSCC type F<br />

X<br />

X<br />

d<br />

'<br />

d<br />

−<br />

−<br />

X<br />

X<br />

'<br />

d<br />

''<br />

d<br />

S e<br />

E fd<br />

−<br />

+<br />

Σ<br />

−<br />

1<br />

'<br />

sT do<br />

'<br />

E<br />

q<br />

Se<br />

+<br />

−<br />

Σ<br />

−<br />

1<br />

''<br />

sT do<br />

'<br />

E q<br />

''<br />

ϕ d<br />

X<br />

X<br />

d<br />

'<br />

d<br />

−<br />

−<br />

X<br />

X<br />

''<br />

d<br />

''<br />

d<br />

X<br />

'<br />

d<br />

− X<br />

''<br />

d<br />

i d<br />

States:<br />

1 – Angle<br />

2 – Speed w<br />

3 – Eqp<br />

4 – Eqpp<br />

5 – Edp<br />

6 – Edpp<br />

S<br />

e<br />

( ϕag<br />

)<br />

Q − Axis Similar except:<br />

S<br />

e<br />

= 1. + fsat<br />

X<br />

= 1. +<br />

X<br />

q<br />

d<br />

( ϕag<br />

)<br />

Model supported by PSLF


Machine Model GENTRA<br />

Machine Model GENTRA<br />

Salient Pole Generator without Amortisseur Windings<br />

E fd<br />

+<br />

Σ<br />

−<br />

1<br />

sT<br />

'<br />

do<br />

+<br />

Σ<br />

−<br />

S e<br />

'<br />

X d<br />

d − AXIS<br />

+<br />

L<br />

ad<br />

i<br />

fd<br />

Σ<br />

+<br />

X<br />

d<br />

− X<br />

'<br />

d<br />

i d<br />

States:<br />

1 – Angle<br />

2 – Speed w<br />

3 - Eqp<br />

q − AXIS<br />

X q<br />

i q<br />

Model supported by PSLF


Machine Model GENWRI<br />

Machine Model GENWRI<br />

Wound-rotor Induction Generator Model with Variable External<br />

Rotor Resistance<br />

P ELEC<br />

P MECH<br />

+<br />

−<br />

Σ<br />

÷<br />

1<br />

2Hs<br />

ωr<br />

f S<br />

−<br />

+<br />

Σ<br />

ω 0<br />

slip<br />

ϕ<br />

ϕ<br />

fd<br />

fq<br />

R2Tpo<br />

=<br />

ω<br />

T<br />

'<br />

0<br />

=<br />

( L − L )<br />

'<br />

( Ls<br />

− L)<br />

( R2ex<br />

+ R2)<br />

'<br />

( ϕ<br />

fd<br />

+ Sd + ( Ls −L)<br />

id<br />

)<br />

'<br />

0<br />

'<br />

( ϕ<br />

fq<br />

+ Sq + ( Ls −L)<br />

iq<br />

)<br />

'<br />

d<br />

'<br />

q<br />

0<br />

R2Tpo<br />

=− + ( slip)<br />

ϕ<br />

T<br />

=− + ( slip)<br />

ϕ<br />

'<br />

T0<br />

ϕ = ϕ<br />

ϕ = ϕ<br />

s<br />

fd<br />

fq<br />

l<br />

fq<br />

fd<br />

States:<br />

1 – Epr<br />

2 – Epi<br />

3 – Speed wr<br />

'<br />

R2Tpo is a constant which is equal to T<br />

0<br />

times<br />

the total rotor resistance.<br />

R2 is the internal rotor resistance<br />

R2ex is the internal rotor resistance<br />

e = ωϕ −Li −R i<br />

' '<br />

q s d d a q<br />

e =− ωϕ + Li −R i<br />

' '<br />

d s q q a d<br />

( d) ( q)<br />

'<br />

= fsat<br />

( ϕ )<br />

'<br />

= S ( ϕ )<br />

'<br />

= S ( ϕ )<br />

' '<br />

2<br />

'<br />

2<br />

ϕ = ϕ + ϕ<br />

S<br />

S<br />

S<br />

e<br />

d e d<br />

q e d<br />

Model supported by PSLF


Machine Model GEWTG<br />

Machine Model GEWTG<br />

Generator/converter model for GE wind turbines –<br />

Doubly Fed Asynchronous Generator (DFAG) and<br />

Full Converter (FC) Models<br />

''<br />

E q cmd<br />

( efd)<br />

From<br />

exwtge<br />

1<br />

1+<br />

0.02s<br />

s0 1<br />

LVLP & rrpwr<br />

−1<br />

X ''<br />

High Voltage<br />

Reactive Current<br />

Management<br />

I sorc<br />

I Pcmd<br />

( ladifd)<br />

From<br />

exwtge<br />

1<br />

1+<br />

0.02s<br />

s1 2<br />

I Plv<br />

Low Voltage<br />

Active Current<br />

Management<br />

LVPL<br />

LVPL<br />

1.11<br />

V<br />

1<br />

1+<br />

0.02s<br />

V term<br />

States:<br />

1 – E q<br />

2 – I p<br />

3 – Vmeas<br />

xerox<br />

(0.5pu)<br />

brkpt<br />

(0.9pu)<br />

LowVoltage Power Logic<br />

V<br />

s2 3<br />

Figure 1. DFAG Generator / Converter Model<br />

''<br />

jX<br />

Model supported by PSLF


Machine Model GEWTG<br />

Generator/converter model for GE wind turbines –<br />

Doubly Fed Asynchronous Generator (DFAG) and<br />

Full Converter (FC) Models<br />

''<br />

E q cmd<br />

( efd)<br />

From<br />

exwtge<br />

1<br />

1+<br />

0.02s<br />

s0<br />

LVLP & rrpwr<br />

−1<br />

High Voltage<br />

Reactive Current<br />

Management<br />

I sorc<br />

I Pcmd<br />

( ladifd)<br />

From<br />

exwtge<br />

1<br />

1+<br />

0.02s<br />

s1<br />

I Plv<br />

Low Voltage<br />

Active Current<br />

Management<br />

LVPL<br />

LVPL<br />

1.11<br />

V<br />

1<br />

1+<br />

0.02s<br />

V term<br />

xerox<br />

(0.5pu)<br />

brkpt<br />

(0.7pu)<br />

LowVoltage Power Logic<br />

V<br />

s2<br />

Figure 1. Full Converter Generator / Converter Model<br />

Model supported by PSLF


Machine Model MOTOR1<br />

Machine Model MOTOR1<br />

“Two-cage” or “one-cage” induction machine<br />

States:<br />

1 – Epr<br />

2 – Epi<br />

3 – Ekr<br />

4 - Eki<br />

5 – Speed wr<br />

ψ dr 2<br />

+<br />

ψ dr1<br />

+<br />

Σ<br />

−<br />

Σ<br />

−<br />

ω o SLIP<br />

ωoR<br />

L<br />

lr 2<br />

ω o SLIP<br />

ωoR<br />

L<br />

lr1<br />

r2<br />

r1<br />

ψ<br />

+<br />

+<br />

+ ψ<br />

Σ<br />

Σ<br />

2 2<br />

md mq<br />

−<br />

+<br />

ψ qr 2<br />

ψ qr1<br />

S e<br />

1.<br />

L lr 2<br />

1.<br />

L lr 1<br />

+<br />

K<br />

+<br />

Σ<br />

L = L − L<br />

m s l<br />

'<br />

'<br />

Lm = 1./ (1./ Lm + 1./ Llr 1)<br />

= L −Ll<br />

''<br />

''<br />

Lm = 1./ (1./ Lm + 1./ Llr 1+ 1./ Llr 2)<br />

= L −Ll<br />

'<br />

'<br />

To = Llr 1Lm /( ωoRr1Lm ) = ( Llr 1+<br />

Lm )/( ωoRr1)<br />

T = L L /( ω R L ) = ( L + L )/( ω R )<br />

'' ' '' '<br />

o lr 2 m o r 2 m lr 2 m o r 2<br />

''<br />

L m sat<br />

= 1. + S ( ψ )<br />

sat e m<br />

ψ mq<br />

+<br />

Σ<br />

− E = ψ<br />

−<br />

''<br />

d<br />

''<br />

q<br />

''<br />

L m sat<br />

i qs<br />

ψ qr1<br />

ω o SLIP<br />

ψ m<br />

ψ md<br />

Σ<br />

+<br />

−<br />

''<br />

L m sat<br />

i ds<br />

+<br />

Σ<br />

−<br />

ωoR<br />

L<br />

lr1<br />

r1<br />

+<br />

Σ<br />

+<br />

ψ dr1<br />

1.<br />

L lr 1<br />

+ Σ<br />

+<br />

''<br />

L m sat<br />

E<br />

''<br />

q<br />

= ψ<br />

''<br />

d<br />

+<br />

Model supported by PSLF<br />

ψ qr 2<br />

Σ<br />

−<br />

ω o SLIP<br />

ωoR<br />

L<br />

lr 2<br />

r2<br />

+<br />

Σ<br />

+<br />

ψ dr 2<br />

1.<br />

L lr 2<br />

L<br />

''<br />

m sat<br />

=<br />

1.<br />

K / L + 1./ L + 1./ L<br />

sat m lr1 lr 2


Machine Model SVCWSC<br />

Machine Model SVCWSC<br />

Static Var device compatible with WSCC Vx/Wx models<br />

Voltage Clamp Logic<br />

if VbusV2vcl for Tdvcl sec., Kvc =1.<br />

V EMAX<br />

V 1MAX<br />

K<br />

VC<br />

* V<br />

2MAX<br />

B MAX<br />

V BUS<br />

+<br />

Σ<br />

−<br />

X C<br />

1+sT<br />

1+sT<br />

C<br />

S1<br />

−<br />

Σ<br />

V RET<br />

+<br />

Σ<br />

+ +<br />

V EMIN<br />

1+sT<br />

1+sT<br />

V 1MIN<br />

S2<br />

S3<br />

VSCS<br />

+ VS<br />

V (from external PSS)<br />

S<br />

K<br />

VC<br />

1+sT<br />

1+sT<br />

* V<br />

S4<br />

S5<br />

2MIN<br />

K SVS<br />

Fast<br />

Over<br />

Ride<br />

1<br />

1+sT<br />

B MIN<br />

S6<br />

B SVS<br />

π<br />

Input 1<br />

KS1<br />

1+sT<br />

S7<br />

1+sT<br />

1+sT<br />

8<br />

S9<br />

+<br />

Σ<br />

+<br />

sT<br />

1+sT<br />

S13<br />

S14<br />

K S3<br />

V SCSMAX<br />

V SCS<br />

Input 2<br />

KS2<br />

1+sT<br />

S10<br />

1+sT<br />

1+sT<br />

11<br />

S12<br />

V SCSMIN<br />

Model supported by PSLF


Generator Other Model LCFB1<br />

Turbine Load Controller Model LCFB1<br />

Freq<br />

1.0<br />

+<br />

−<br />

Σ<br />

K P<br />

−<br />

e MAX<br />

Pmwset<br />

1<br />

+<br />

1<br />

F b<br />

Σ<br />

−<br />

−db<br />

−e MAX<br />

db<br />

K<br />

s<br />

L rmax<br />

2<br />

+<br />

+<br />

Σ<br />

−L rmax<br />

L rmax<br />

+<br />

Σ<br />

+<br />

Pref<br />

1<br />

1+ sTPELEC<br />

−L rmax<br />

P ref 0<br />

P gen<br />

Frequency Bias Flag - fbf, set to 1 to enable or 0 to disable<br />

Power Controller Flag - pbf, set to 1 to enable or 0 to disable<br />

States<br />

1 - P Sensed<br />

elec<br />

2 - K<br />

I<br />

Model supported by PSLF


Generator Other Model COMP<br />

Voltage Regulator Current Compensating Model COMP<br />

V T<br />

I̅T<br />

V CC = |V T − j ∙ X e ∙ I̅T|<br />

V CT<br />

ECOMP<br />

Model supported by PSSE


Generator Other Model COMPCC<br />

Voltage Regulator Current Compensating Model for Cross-Compounds Units COMPCC<br />

I T1<br />

V T<br />

I T2<br />

E CCCC1 = V T − I T1 + I T2<br />

∙ (R<br />

2<br />

1 + j ∙ X 1 ) + I T1 ∙ (R 2 + j ∙ X 2 )<br />

E CCCC2 = V T − I T1 + I T2<br />

∙ (R<br />

2<br />

1 + j ∙ X 1 ) + I T2 ∙ (R 2 + j ∙ X 2 )<br />

Model supported by PSSE


Generator Other Model GP1<br />

Generic Generator Protection System GP1<br />

52G<br />

GSU<br />

CT<br />

Trip Signal<br />

PT<br />

V T<br />

I<br />

1<br />

flag<br />

0<br />

Generator<br />

Protection<br />

(GP)<br />

Alarm<br />

Only<br />

T 1<br />

T 2<br />

T 1 =<br />

T 2 =<br />

k<br />

1.05 − a<br />

k<br />

s2 − a<br />

I fd<br />

pick up<br />

1.05*pick up<br />

s 2<br />

Field<br />

Shunt<br />

Excitation<br />

System<br />

Notes: = isoc or ifoc*affl<br />

a = asoc or afoc<br />

k = ksoc or kfoc<br />

Model supported by PSLF


Generator Other Model IEEEVC<br />

Voltage Regulator Current Compensating Model IEEEVC<br />

V T<br />

I̅T<br />

V CC = |V T + (R C + j ∙ X C ) ∙ I̅T|<br />

V CT<br />

ECOMP<br />

Model supported by PSSE


Generator Other Model MAXEX1 and MAXEX2<br />

Maximum Excitation Limiter Model MAXEX1 and MAXEX2<br />

EFD DES *EFD RATED<br />

EFD<br />

-<br />

+<br />

⬚<br />

K MX<br />

0<br />

V OEL<br />

V LOW<br />

(EFD 1, TIME 1)<br />

Time (sec.)<br />

(EFD 2<br />

, TIME 2<br />

)<br />

(EFD 3<br />

, TIME 3<br />

)<br />

EFD (p.u. of Rated)<br />

Model supported by PSSE


Generator Other Model MNLEX1<br />

Minimum Excitation Limiter Model MNLEX1<br />

MELMAX<br />

I REAL<br />

+<br />

⬚<br />

PQSIG<br />

+<br />

K M +<br />

sK F2<br />

⬚<br />

1 + sT M 1 + sT F2<br />

-<br />

EFD<br />

1<br />

K<br />

0<br />

VUEL<br />

XADIFD<br />

Model supported by PSSE


Generator Other Model MNLEX2<br />

Minimum Excitation Limiter Model MNLEX2<br />

Q o ∙ E T<br />

2<br />

(R ∙ E T2<br />

) 2<br />

MELMAX<br />

Q<br />

-<br />

+<br />

⬚<br />

X 2<br />

+<br />

-<br />

+<br />

⬚<br />

PQSIG<br />

+<br />

X 2<br />

-<br />

⬚<br />

0<br />

K M<br />

1 + sT M<br />

VUEL<br />

Q o<br />

Q<br />

Radius<br />

P<br />

sK F2<br />

P<br />

1 + sT F2<br />

Model supported by PSSE


Generator Other Model MNLEX3<br />

Minimum Excitation Limiter Model MNLEX3<br />

Q<br />

V T<br />

+ Q/V<br />

Qo + +<br />

K VUEL<br />

⬚<br />

+<br />

M<br />

⬚<br />

⬚<br />

1 + sT<br />

(1.0 p.u.)<br />

PQSIG<br />

M<br />

+<br />

-<br />

sK<br />

B<br />

F2<br />

0<br />

Qo<br />

(1.0 p.u. V)<br />

P<br />

EFD<br />

V T<br />

1 + sT F2<br />

MELMAX<br />

B = Slope<br />

P/V<br />

Model supported by PSSE


Generator Other Model OEL1<br />

Over Excitation Limiter for Synchronous Machine Excitation Systems OEL1<br />

Generator<br />

CT<br />

PT<br />

Field<br />

Winding<br />

Field<br />

Current<br />

Transformer<br />

Voltage<br />

Regulator<br />

Reference<br />

Runback<br />

Voltage<br />

Reference<br />

Overexcitation<br />

Limiter<br />

Model supported by PSLF


Generator Other Model REMCMP<br />

Voltage Regulator Current Compensating Model REMCMP<br />

Remote bus<br />

Remote bus number<br />

Model supported by PSSE


Governor BPA GG<br />

Governor BPA GG<br />

WSCC Type G Governor Model<br />

P MO<br />

+<br />

'<br />

KΔω 1+<br />

sT 2<br />

1<br />

2<br />

1 3 1 4 1+<br />

sFT 1<br />

5<br />

1+ sT −<br />

Σ<br />

1 sT 1+<br />

sT 1+<br />

sT<br />

1<br />

P MAX<br />

+<br />

3<br />

4<br />

5<br />

P M<br />

+<br />

P e<br />

Σ<br />

−<br />

P -P<br />

M<br />

e<br />

States<br />

1 - P mech<br />

2 - Lead-Lag 1<br />

3 - Integrator 3<br />

4 - Integrator 4<br />

Model in the public domain, available from BPA


Governor BPA GH<br />

Governor BPA GH<br />

WSCC Type H Hydro-Mechanical Governor Turbine Model<br />

PILOT VALVE GATE SERVO TURBINE<br />

P0<br />

XR<br />

P UP<br />

P MAX(P.U.)<br />

'<br />

KΔω<br />

1<br />

−<br />

+<br />

Σ<br />

−<br />

1<br />

T (1 + sT )<br />

G<br />

P<br />

3<br />

1<br />

2<br />

1−<br />

sT<br />

W<br />

s 1+<br />

sTW<br />

/2<br />

1<br />

P M<br />

P DOWN<br />

P<br />

MIN<br />

=0<br />

Σ<br />

+<br />

+<br />

R<br />

SDdT<br />

1+ sT<br />

d<br />

d<br />

4<br />

States<br />

1 - P mech<br />

2 - P gate valve<br />

3 - y3<br />

4 - Feedback<br />

Model in the public domain, available from BPA


Governor BPA GIGATB, BPA GJGATB, BPA GKGATB, and BPA GLTB<br />

Governor BPA GIGATB, BPA GJGATB, BPA GKGATB, and<br />

BPA GLTB<br />

No block diagrams have been created


Governor BPA GSTA<br />

Governor BPA GSTA<br />

WSCC Type S Steam System Governor<br />

And Nonreheat Turbine (Type A) Model<br />

KΔω<br />

1<br />

1+<br />

sT<br />

1<br />

P 0<br />

−<br />

P MAX(P.U.)<br />

+<br />

3 2<br />

1<br />

Σ<br />

2<br />

−<br />

+ sT<br />

T<br />

1<br />

3<br />

1<br />

P UP<br />

1<br />

s<br />

P GV<br />

1<br />

1+ sTCH<br />

P M<br />

P DOWN<br />

P MIN(P.U.)<br />

States<br />

1 - P mech<br />

2 - P gate valve<br />

3 - Lead-lag<br />

Model in the public domain, available from BPA


Governor BPA GSTB<br />

Governor BPA GSTB<br />

WSCC Type S Steam System Governor and Tandem Compound<br />

Single Reheat Turbine (Type B) Model<br />

P 0<br />

P MAX(P.U.)<br />

P UP<br />

KΔω<br />

1<br />

1+<br />

sT<br />

1<br />

2<br />

2<br />

−<br />

+ sT<br />

T<br />

1<br />

3<br />

+<br />

Σ<br />

−<br />

1<br />

1<br />

s<br />

1<br />

P GV<br />

P DOWN<br />

P MIN(P.U.)<br />

+<br />

Σ<br />

+<br />

+<br />

Σ<br />

+<br />

P M<br />

FHP<br />

FIP<br />

FLP<br />

States<br />

1 - P gate valve<br />

2 - Lead-lag<br />

3 - y3<br />

4 - y4<br />

5 - y5<br />

1<br />

1+ sTCH<br />

Model in the public domain, available from BPA<br />

1<br />

1+ sTRH<br />

1<br />

1+ sTCO<br />

3 4 5


Governor BPA GSTC<br />

Governor BPA GSTC<br />

WSCC Type S Steam System Governor and Tandem Compound<br />

Double Reheat Turbine (Type C) Model<br />

P 0<br />

P MAX(P.U.)<br />

P UP<br />

KΔω<br />

1<br />

1+<br />

sT<br />

1<br />

2<br />

2<br />

−<br />

+ sT<br />

T<br />

1<br />

3<br />

+<br />

Σ<br />

−<br />

1<br />

1<br />

s<br />

1<br />

P GV<br />

P DOWN<br />

P MIN(P.U.)<br />

+<br />

Σ<br />

+<br />

+<br />

Σ<br />

+<br />

+<br />

Σ<br />

+<br />

P M<br />

States<br />

1 - P gate valve<br />

2 - Lead-lag<br />

3 - y3<br />

4 - y4<br />

5 - y5<br />

6 - y6<br />

1<br />

1 sTCH<br />

FVHP<br />

+ 1+ sTRH1<br />

1+ sTRH<br />

2<br />

Model in the public domain, available from BPA<br />

1<br />

FHP<br />

1<br />

FIP<br />

1<br />

1+ sTCO<br />

3 4 5 6<br />

F LP


Governor BPA GWTW<br />

Governor BPA GWTW<br />

WSCC Type W Hydro Governor System<br />

And Hydro Turbine (Type W) Model<br />

P 0<br />

P MAX/100<br />

KΔω<br />

1+<br />

sT2<br />

(1 + sT )(1 + sT )<br />

1 3<br />

−<br />

+<br />

Σ<br />

P GV<br />

1−<br />

sTW<br />

1+<br />

0.5sT<br />

W<br />

1<br />

P M<br />

2 3<br />

P MIN/100<br />

States<br />

1 - P mech<br />

2 - y0<br />

3 - y1<br />

Model in the public domain, available from BPA


Governor CCBT1<br />

Governor CCBT1<br />

Steam Plant Boiler/Turbine and Governor Model<br />

K<br />

MIN4<br />

−<br />

P mech<br />

K<br />

MIN3<br />

−<br />

1<br />

1+ sTF<br />

P4<br />

+<br />

6<br />

5<br />

P3<br />

K<br />

+<br />

s<br />

Σ<br />

Σ<br />

Σ<br />

I 4<br />

K<br />

+<br />

s<br />

Σ<br />

+<br />

7<br />

+<br />

MAX4<br />

MAX3<br />

I 3<br />

1<br />

1+ sTW<br />

+<br />

Σ<br />

MAX7<br />

K<br />

+<br />

P7<br />

8 9<br />

Σ sT D<br />

+<br />

Σ<br />

−<br />

+<br />

−<br />

Σ Bias<br />

sKD7<br />

+ +<br />

+<br />

+<br />

14<br />

1<br />

MIN5<br />

sT<br />

K<br />

D7<br />

MIN7<br />

P5<br />

4<br />

K<br />

+<br />

s<br />

1.0 −<br />

1.0<br />

K<br />

+<br />

1 r Σ L ref<br />

+<br />

-dbd<br />

−<br />

K B<br />

+dbd Σ Speed<br />

Model supported by PSLF<br />

Proportional-integral blocks 1-6 also have rate limits not shown in the block diagram<br />

1<br />

MAX2<br />

I 5<br />

K<br />

P2<br />

MAX5<br />

Press ref<br />

K<br />

+<br />

s<br />

MIN2<br />

10<br />

I 2<br />

−<br />

Σ<br />

−<br />

MIN1<br />

MAX1<br />

K<br />

K P<br />

+<br />

K<br />

1+ sT<br />

12<br />

P1<br />

Σ<br />

PLM<br />

PLM<br />

K<br />

+<br />

s<br />

I1<br />

π<br />

−<br />

P<br />

π<br />

lmref<br />

-1<br />

π<br />

•Press<br />

T = 50<br />

3<br />

PLM<br />

0<br />

MAX6<br />

11<br />

ref<br />

P6<br />

V MIN<br />

K<br />

K<br />

+<br />

s<br />

2<br />

1<br />

1+ sTG<br />

PGOV<br />

+<br />

−<br />

+<br />

+<br />

I 6<br />

K<br />

+<br />

s<br />

Σ<br />

ω<br />

ref<br />

MIN6<br />

1−<br />

ah<br />

IGOV<br />

ah<br />

V MAX<br />

15<br />

−<br />

−<br />

−<br />

Σ<br />

−<br />

+<br />

rvalve<br />

Σ<br />

−<br />

Σ<br />

+<br />

Valve Bias<br />

1<br />

sT RH<br />

P gen<br />

+<br />

1<br />

1+ sTPelec<br />

rpelec<br />

13<br />

Speed<br />

1<br />

Σ<br />

+<br />

P mech


Governor CRCMGV<br />

Governor CRCMGV<br />

Cross Compound Turbine-Governor Model<br />

Reference<br />

Speed<br />

(HP)<br />

( HP)<br />

1/ R 1<br />

−<br />

1+ sT<br />

Σ<br />

1( HP)<br />

+<br />

0<br />

High-Pressure Unit<br />

P MAX(HP)<br />

1+<br />

sF<br />

( HP) 5( HP)<br />

+<br />

Σ<br />

−<br />

2 3 4<br />

D E −<br />

( 1+ sT3( HP) )( 1+ sT4( HP) )( 1+<br />

sT5( HP)<br />

)<br />

T<br />

( )( ) 2<br />

H ( HP)<br />

T HP<br />

P mech(HP)<br />

Reference<br />

Speed (LP)<br />

−<br />

States<br />

1 - HPInput<br />

2 - HPState1<br />

3 - HPState2<br />

4 - HPState3<br />

5 - LPInput<br />

6 - LPState1<br />

7 - LPState2<br />

+<br />

Σ<br />

1/ R<br />

8 - LPState3<br />

Model supported by PSLF and PSSE<br />

1<br />

( LP)<br />

−<br />

+ sT<br />

Σ<br />

1( LP)<br />

P MAX(LP)<br />

1+<br />

sF<br />

+ ( LP) 5( LP)<br />

( 1+ sT3( LP) )( 1+ sT4( LP) )( 1+<br />

sT5( LP)<br />

)<br />

0<br />

Low-Pressure Unit<br />

5<br />

T<br />

6 7 8<br />

( −D )( ) 2<br />

H ( LP)<br />

ET − HP<br />

+<br />

Σ<br />

−<br />

P mech(LP)


Governor DEGOV<br />

Governor DEGOV<br />

Woodward Diesel Governor Model<br />

T MAX<br />

1+Speed<br />

Δω<br />

Speed<br />

( 1 sT )<br />

− +<br />

1+ sT +<br />

3<br />

2<br />

1<br />

s T2T1<br />

<br />

Electric Control Box<br />

1 2<br />

K ( 1+<br />

sT4<br />

)<br />

( 1+ )( 1+<br />

)<br />

s sT sT<br />

T MIN<br />

5 6<br />

<br />

Actuator<br />

sT<br />

e − D<br />

<br />

Engine<br />

π<br />

Pmech<br />

3 4 5<br />

States<br />

1 - Control box 1<br />

2 - Control box 2<br />

3 - Actuator 1<br />

4 - Actuator 2<br />

5 - Actuator 3<br />

Model supported by PSSE


Governor DEGOV1<br />

Governor DEGOV1<br />

Woodward Diesel Governor Model<br />

P ref<br />

T MAX<br />

1+Speed<br />

Δω<br />

Speed<br />

−<br />

+<br />

Σ<br />

−<br />

( 1 sT )<br />

− +<br />

1+ sT +<br />

3<br />

2<br />

1<br />

s T2T1<br />

<br />

Electric Control Box<br />

1 2<br />

DROOP<br />

K ( 1+<br />

sT4<br />

)<br />

( 1+ )( 1+<br />

)<br />

s sT sT<br />

T MIN<br />

5 6<br />

<br />

Actuator<br />

3 4 5<br />

0<br />

1<br />

sT<br />

e − D<br />

<br />

Engine<br />

6<br />

1<br />

1+ sTE<br />

π<br />

Droop Control<br />

Pmech<br />

SBASE<br />

MBASE<br />

P elec<br />

States<br />

1 - Control box 1<br />

2 - Control box 2<br />

3 - Actuator 1<br />

4 - Actuator 2<br />

5 - Actuator 3<br />

6 - Droop Input<br />

Model supported by PSSE


Governor G2WSCC<br />

Governor G2WSCC<br />

Double Derivative Hydro Governor and Turbine<br />

Represents WECC G2 Governor Plus Turbine Model<br />

P ref<br />

Δω<br />

(Speed)<br />

db 1<br />

eps<br />

1<br />

1+ sTD<br />

2 sK1<br />

3<br />

+ sT<br />

1<br />

F<br />

+<br />

+<br />

Σ<br />

+<br />

−<br />

+<br />

Σ<br />

−<br />

KI<br />

s<br />

6<br />

2<br />

sK2<br />

2<br />

+ sTF<br />

(1 )<br />

4 5<br />

R<br />

(T<br />

T<br />

=0)<br />

7<br />

1<br />

1+ sTT<br />

P elec<br />

States<br />

+<br />

Σ<br />

−<br />

KG<br />

1+ sT<br />

VEL CLOSE<br />

VEL OPEN<br />

P<br />

P MAX<br />

8<br />

1 9<br />

s<br />

P MIN<br />

Model supported by PSLF<br />

GV1, PGV1...GV6, PGV6 are the x,y coordinates of<br />

N GV<br />

block<br />

db 2<br />

GV 1+<br />

sA<br />

1+<br />

sB<br />

N GV<br />

P GV<br />

turb<br />

turb<br />

T<br />

T<br />

turb<br />

turb<br />

1<br />

P mech<br />

1 - P<br />

2 - T<br />

3 - K<br />

mech<br />

D<br />

1<br />

4 - K first<br />

2<br />

5 - K second<br />

2<br />

6 - Integrator<br />

7 - P Sensed<br />

elec<br />

8 - Valve<br />

9 - Gate


Governor GAST_GE<br />

Governor GAST_GE<br />

Gas Turbine-Governor Model<br />

if (D >L ) R =L<br />

5<br />

−<br />

V INC LIM TRAT<br />

else R<br />

LIM<br />

=R D<br />

Σ<br />

MAX V<br />

1<br />

1+ sTLTR<br />

+<br />

V MAX<br />

P ( )<br />

ref<br />

K<br />

A<br />

1+<br />

sT4<br />

Σ<br />

1+<br />

sT<br />

5<br />

1<br />

LV<br />

GATE<br />

+<br />

Σ<br />

−<br />

R LIM<br />

1<br />

sT<br />

1<br />

2<br />

+<br />

Σ<br />

−<br />

1+<br />

AsT<br />

1+<br />

BsT<br />

2<br />

2<br />

3<br />

P GV<br />

G V<br />

dbb<br />

P mech<br />

1<br />

R<br />

V MIN<br />

F IDLE<br />

eps<br />

F IDLE<br />

+ −<br />

Σ K T Σ +<br />

+<br />

−<br />

4<br />

1<br />

1+<br />

sT<br />

3<br />

db 0<br />

Δω<br />

(Speed)<br />

L MAX<br />

Model supported by PSLF<br />

GV1, PGV1...GV6, PGV6 are the x,y coordinates of P vs. GV block<br />

GV<br />

States<br />

1 - Input LL<br />

2 - Integrator<br />

3 - Governor LL<br />

4 - Load Limit<br />

5 - Temperature


Governor GAST_PTI<br />

Governor GAST_PTI<br />

Gas Turbine-Governor Model<br />

Speed<br />

D turb<br />

1<br />

R<br />

V MAX<br />

Load ref<br />

+<br />

−<br />

Σ<br />

LV<br />

Gate<br />

1<br />

1 sT<br />

1<br />

+<br />

1<br />

1+<br />

sT2<br />

1<br />

2<br />

+<br />

Σ<br />

−<br />

P mech<br />

V MIN<br />

Σ<br />

+<br />

+ −<br />

K T<br />

Σ<br />

+<br />

3<br />

1<br />

1+<br />

sT<br />

3<br />

States<br />

1 - Fuel Valve<br />

2 - Fuel Flow<br />

3 - Exhaust Temperature<br />

Model supported by PSSE<br />

A<br />

T<br />

(Load Limit)


Governor GAST2A<br />

States<br />

1 - Speed Governor<br />

2 - Valve Positioner<br />

3 - Fuel System<br />

4 - Radiation Shield<br />

5 - Thermocouple<br />

6 - Temp Control<br />

7 - Turbine Dynamics<br />

Reference<br />

+<br />

Σ<br />

−<br />

( + 1)<br />

W sX<br />

MIN<br />

Temperature<br />

Control*<br />

sY + Z<br />

MAX<br />

1<br />

Speed<br />

Governor<br />

1+<br />

sT<br />

sτ<br />

T<br />

Low<br />

Value<br />

Select<br />

Speed<br />

Control<br />

Governor GAST2A<br />

Gas Turbine-Governor Model<br />

MAX<br />

5<br />

6<br />

T C<br />

Thermocouple<br />

+<br />

1<br />

Σ −<br />

1+<br />

sT<br />

K 3<br />

4<br />

Fuel<br />

Control<br />

e −sT<br />

K<br />

Radiation<br />

Shield<br />

Δω P mech T RATE<br />

π<br />

MBASE<br />

+<br />

1.0 +<br />

Σ<br />

π<br />

5<br />

4<br />

5<br />

4<br />

+<br />

1 sT<br />

f<br />

+<br />

1<br />

3<br />

+<br />

K<br />

K 6<br />

+<br />

Σ<br />

−<br />

Turbine<br />

Valve<br />

Positioner<br />

A<br />

C + sB<br />

Turbine<br />

f 2<br />

w f1<br />

Fuel<br />

2 System 3<br />

K F<br />

1<br />

1+ sτ<br />

F<br />

7<br />

w f2<br />

Turbine<br />

Exhaust<br />

e −sE TD<br />

Wf<br />

Fuel<br />

Flow<br />

e −sE CR<br />

Gas Turbine<br />

Dynamics<br />

1<br />

1+ sTCD<br />

Model supported by PSSE<br />

* Temperature control output is set to output of speed governor when temperature control input changes from positive to negative<br />

f =T -A ⎛<br />

1.0-w ⎞<br />

-B ( Speed )<br />

1 R f1 ⎜ ⎟<br />

f ( f2 ) ( )<br />

⎝ f1 ⎠ f1<br />

2<br />

=Af2 -Bf2 w -Cf2<br />

Speed


Governor GASTWD<br />

SBASE<br />

T RATE<br />

K<br />

1+ sT<br />

1<br />

P elec<br />

P e<br />

DROOP<br />

D<br />

MAX<br />

Temperature<br />

Control*<br />

Governor GASTWD<br />

Woodward Gas Turbine-Governor Model<br />

sT<br />

sτ<br />

MAX<br />

5<br />

+ 1<br />

T<br />

Σ −<br />

+ 5<br />

Thermocouple<br />

1<br />

1+<br />

sT<br />

6<br />

T<br />

C<br />

Setpoint for<br />

Temperature Control<br />

4<br />

4<br />

K<br />

Radiation<br />

Shield<br />

K<br />

Turbine<br />

5<br />

4<br />

+<br />

1 sT<br />

f<br />

+<br />

1<br />

3<br />

w f1<br />

Turbine<br />

Exhaust<br />

e −sE TD<br />

Speed<br />

Reference<br />

States<br />

+<br />

Σ<br />

−<br />

−<br />

1 - Power Transducer<br />

2 - Valve Positioner<br />

3 - Fuel System<br />

4 - Radiation Shield<br />

5 - Thermocouple<br />

MIN<br />

Model supported by PSSE<br />

K P<br />

K I<br />

s<br />

sK D<br />

+<br />

+<br />

Σ<br />

8 9<br />

+<br />

Low<br />

Value<br />

Select<br />

Speed<br />

Control<br />

K 3<br />

Fuel<br />

Control<br />

e −sT<br />

Δω P mech T RATE<br />

π<br />

MBASE<br />

+<br />

1.0 +<br />

Σ<br />

π<br />

+<br />

K 6<br />

+<br />

Σ<br />

−<br />

Valve<br />

Positioner<br />

A<br />

C + sB<br />

Turbine<br />

f 2<br />

Fuel<br />

2 System 3<br />

K F<br />

1<br />

1+ sτ<br />

F<br />

f =T -A ( 1.0-w )-B ( Speed)<br />

f =A -B<br />

1 R f1 f1 f1<br />

( w )-C ( Speed)<br />

2 f2 f2 f2 f2<br />

w f2<br />

W f<br />

Fuel<br />

Flow<br />

e −sE CR<br />

1<br />

1+ sTCD<br />

Gas Turbine<br />

Dynamics<br />

6 - Temp Control<br />

7 - Turbine Dynamics<br />

8 - PID 1<br />

* Temperature control output is set to output of speed governor when temperature control input changes from positive to negative<br />

9 - PID 2<br />

7


Governor GGOV1<br />

Governor GGOV1 – GE General Governor-Turbine Model<br />

Ldref<br />

( L / K ) w<br />

dref turb fnl<br />

+ +<br />

Σ<br />

−<br />

6<br />

1<br />

1+ sTFload<br />

If D m > 0, (Speed) D If D<br />

**D m<br />

m<br />

m < 0, (Speed+1)<br />

−<br />

Pmech<br />

10<br />

1+<br />

sT<br />

1+<br />

sT<br />

SA<br />

SB<br />

π<br />

Σ<br />

+<br />

5<br />

P ref<br />

+<br />

8<br />

-1.1r<br />

P mwset<br />

Σ<br />

Speed<br />

+<br />

K IMW<br />

s<br />

+ Σ −<br />

1.1r<br />

+<br />

1<br />

Σ<br />

r<br />

−<br />

−<br />

s<br />

+ sT<br />

1<br />

A<br />

−<br />

maxerr<br />

-db<br />

db<br />

minerr<br />

−2<br />

aset<br />

−1<br />

Rselect<br />

UP DOWN CLOSE OPEN<br />

9<br />

+<br />

Σ<br />

K Pload<br />

K<br />

K Iload<br />

s<br />

A<br />

K Pgov<br />

K Igov<br />

s<br />

sK<br />

Dgov<br />

1+ sT<br />

∆t<br />

Dgov<br />

+<br />

3<br />

2<br />

7<br />

+<br />

+<br />

Σ<br />

+<br />

+<br />

+<br />

Σ<br />

Σ<br />

+<br />

1.0<br />

Timestep<br />

governor output<br />

valve stroke<br />

Low<br />

Value<br />

Select<br />

1<br />

1+ sTACT<br />

V MIN<br />

V MAX<br />

4<br />

π<br />

0 1<br />

1+<br />

sT<br />

1+<br />

sT<br />

+<br />

Flag<br />

1.0 (Speed+1)<br />

1<br />

1 - P<br />

elec<br />

Measured 5 - Turbine LL<br />

P elec 1<br />

2 - Governor Differential Control 6 - Turbine Load Limiter<br />

1+ sTPelec<br />

3 - Governor Integral Control 7 - Turbine Load Integral Control<br />

Model supported by PSLF<br />

4 - Turbine Actuator 8 - Supervisory Load Control<br />

Model supported by PSSE does not include non-windup limits on K<br />

IMW<br />

block<br />

9 - Accel Control<br />

R , R , R , and R inputs not implemented in Simulator<br />

10 - Temp Detection LL<br />

States<br />

V MAX<br />

V MIN<br />

C<br />

B<br />

sT eng<br />

e − turb<br />

K<br />

Σ<br />

−<br />

w fnl


Governor GGOV2<br />

Governor GGOV2 - GE General Governor-Turbine Model<br />

P ref<br />

+<br />

-1.1r<br />

8<br />

P mwset<br />

Σ<br />

Ldref<br />

+<br />

Speed<br />

K imw<br />

s<br />

s7<br />

+ Σ −<br />

P ELEC<br />

1.1r<br />

+<br />

1<br />

( L / K ) + w<br />

+<br />

Σ<br />

r<br />

−<br />

−<br />

1<br />

1+ sTPelec<br />

dref turb fnl<br />

s<br />

+ sT<br />

1<br />

a<br />

−2<br />

aset<br />

s8<br />

−1<br />

Rselect<br />

s0<br />

−<br />

maxerr<br />

-db<br />

db<br />

minerr<br />

Model supported by PSLF<br />

1<br />

9<br />

+<br />

Σ<br />

Ka<br />

K pgov<br />

K igov<br />

s<br />

sK<br />

dgov<br />

1+ sT<br />

K pload<br />

K iload<br />

s<br />

dgov<br />

∆t<br />

+<br />

s23<br />

s1 2<br />

7<br />

+<br />

Σ<br />

+<br />

Σ<br />

−<br />

1.0<br />

s6<br />

Timestep<br />

+<br />

Σ<br />

+<br />

+<br />

Σ<br />

+<br />

6<br />

1<br />

1+ sTfload<br />

fsrt<br />

fsra<br />

Low<br />

Value<br />

Select<br />

fsrn<br />

If D m > 0, (Speed) D m<br />

If D<br />

**D m<br />

−<br />

m < 0, (Speed+1)<br />

Σ<br />

10 1+<br />

sTsa<br />

π<br />

+<br />

1+<br />

sTsb<br />

5<br />

1+<br />

sT<br />

Speed<br />

c<br />

1+<br />

sTb<br />

Frequencydependent<br />

limit<br />

sT<br />

e − eng<br />

ropen<br />

vmax<br />

V MAX<br />

Kturb<br />

4<br />

1<br />

π<br />

+<br />

1+ sT<br />

Σ<br />

act<br />

−<br />

s3 Flag<br />

vmin<br />

rclose<br />

w<br />

0 fnl<br />

1<br />

1.0 (Speed+1)<br />

s5<br />

s9<br />

V MIN<br />

governor output<br />

valve stroke<br />

States<br />

PMECH<br />

1 - P<br />

elec<br />

Measured 5 - Turbine LL<br />

2 - Governor Differential Control 6 - Turbine Load Limiter<br />

3 - Governor Integral Control 7 - Turbine Load Integral Control<br />

4 - Turbine Actuator 8 - Supervisory Load Control<br />

9 - Accel Control<br />

s4<br />

10 - Temp Detection LL


Governor GGOV3<br />

P ref<br />

+<br />

8<br />

-1.1r<br />

P mwset<br />

Σ<br />

Ldref<br />

+<br />

K imw<br />

s<br />

Percieved<br />

Speed<br />

+ Σ −<br />

1.1r<br />

+<br />

1<br />

Governor GGOV3 - GE General Governor-Turbine Model<br />

( L / K ) + w<br />

+<br />

Σ<br />

R<br />

−<br />

−<br />

dref turb fnl<br />

s<br />

+ sT<br />

1<br />

a<br />

−2<br />

aset<br />

−1<br />

Rselect<br />

−<br />

9<br />

Maxerr<br />

-db<br />

db<br />

Minerr<br />

+<br />

Σ<br />

UP DOWN CLOSE OPEN<br />

Ka<br />

K pgov<br />

K igov<br />

s<br />

sK<br />

dgov<br />

1+ sT<br />

States<br />

K pload<br />

K iload<br />

s<br />

dgov<br />

∆t<br />

+<br />

+<br />

Σ<br />

+<br />

Σ<br />

Σ<br />

+<br />

−<br />

1.0<br />

1<br />

1+ sTfload<br />

Low<br />

Value<br />

1+<br />

sT<br />

1+<br />

sT<br />

+<br />

Select<br />

3<br />

1 4<br />

+ Σ<br />

1+ sTact<br />

+<br />

2<br />

7<br />

Timestep<br />

6<br />

governor output<br />

valve stroke<br />

10<br />

V MIN<br />

If D<br />

If D<br />

V MAX<br />

m ><br />

m <<br />

0, (Speed)<br />

0, (Speed+1)<br />

sa<br />

sb<br />

V MIN<br />

V MAX<br />

**D m<br />

π<br />

Dm<br />

π<br />

0 1<br />

+<br />

Flag<br />

−<br />

5<br />

1.0 (Speed+1)<br />

+<br />

1+<br />

sTc<br />

1+<br />

sT<br />

11<br />

e − Σ<br />

b<br />

sT eng<br />

K turb<br />

1+<br />

sT<br />

1+<br />

sT<br />

Σ<br />

−<br />

PMECH<br />

1<br />

1 - P<br />

elec<br />

Measured 5 - Turbine LL 9 - Accel Control<br />

P ELEC 1<br />

2 - Governor Differential Control 6 - Turbine Load Limiter 10 - Temp Detection LL<br />

1+ sTPelec<br />

3 - Governor Integral Control 7 - Turbine Load Integral Control 11 - Fuel System Lead Lag<br />

Model supported by PSLF 4 - Turbine Actuator 8 - Supervisory Load Control<br />

dnrate, R , R , R , and R inputs not implemented in Simulator<br />

cd<br />

bd<br />

w fnl


Governor GGOV3 - GE General Governor-Turbine Model<br />

slope = 1<br />

dnhi<br />

Measured<br />

Speed<br />

ffa<br />

ffb<br />

slope = ffc<br />

Filtered<br />

Speed<br />

dnlo<br />

Percieved<br />

Speed<br />

Nonlinear Speed Filter<br />

Model supported by PSLF<br />

Rate limit dnrate not used in Simulator


Governor GPWSCC<br />

Governor GPWSCC<br />

PID Governor-Turbine Model<br />

P ref<br />

K P<br />

Δω<br />

(Speed)<br />

db 1<br />

err<br />

−<br />

+<br />

Σ<br />

−<br />

1<br />

1+ sTD<br />

2<br />

K 1<br />

s<br />

3<br />

+<br />

+<br />

Σ<br />

+<br />

CV<br />

T<br />

t<br />

=<br />

0<br />

sKD<br />

1+ sT<br />

f<br />

4<br />

R<br />

( T<br />

t<br />

> 0)<br />

5<br />

1<br />

1+ sTt<br />

P elec<br />

VEL OPEN<br />

P MAX<br />

Σ<br />

+ −<br />

KG<br />

1+ sT<br />

P<br />

6<br />

1 7<br />

s db2<br />

GV 1+<br />

sA<br />

1+<br />

sB<br />

N GV<br />

P GV<br />

turb<br />

turb<br />

T<br />

T<br />

turb<br />

turb<br />

1<br />

P mech<br />

VEL CLOSE<br />

P MIN<br />

Model supported by PSLF<br />

GV1, PGV1...GV6, PGV6 are the x,y coordinates of<br />

N GV<br />

block<br />

States<br />

1 - P 5 - P Sensed<br />

mech<br />

D<br />

elec<br />

2 - T 6 - Valve<br />

3 - Integrator 7 - Gate<br />

4 - Derivative


Governor HYG3<br />

Governor HYG3<br />

PID Governor, Double Derivative Governor, and Turbine<br />

Δω = (speed-1)pu<br />

Δω<br />

Δω<br />

db 1<br />

db 1<br />

−<br />

R elec<br />

P ref<br />

+<br />

Σ<br />

−<br />

7<br />

−<br />

1<br />

1+ sTD<br />

R gate<br />

1<br />

1+ sTD<br />

1<br />

1+ sTt<br />

1<br />

1<br />

P elec<br />

sK1<br />

+ sT<br />

1<br />

f<br />

2<br />

sK2<br />

2<br />

( 1+ sTf<br />

)<br />

K 2<br />

K I<br />

s<br />

sK1<br />

+ sT<br />

1<br />

f<br />

2<br />

+<br />

+<br />

8<br />

9<br />

+<br />

3<br />

Σ<br />

2<br />

−<br />

+<br />

−<br />

R gate<br />

+<br />

+<br />

Σ<br />

P ref<br />

Σ<br />

−<br />

+<br />

R elec<br />

K I<br />

s<br />

7<br />

3<br />

1<br />

1+ sTt<br />

cflag>0<br />

cflag


Governor HYGOV<br />

Governor HYGOV<br />

Hydro Turbine-Governor Model<br />

Δω<br />

db 1<br />

1+<br />

sT<br />

1+<br />

sT<br />

n<br />

np<br />

P ref<br />

−<br />

+<br />

R<br />

−<br />

1<br />

1+ sTf<br />

G MAX<br />

1 1+ sT 2 1 3<br />

r<br />

rT s<br />

1+ sTg<br />

G MIN<br />

rate limit - V elm<br />

r<br />

db 2<br />

Δω<br />

D turb<br />

P GV<br />

N GV<br />

g<br />

GV<br />

P GV<br />

GV<br />

H − 1 4<br />

+<br />

Σ sT<br />

+<br />

W<br />

−<br />

Hdam=1<br />

qNL<br />

÷ π<br />

Σ π<br />

q/P GV<br />

Model supported by PSSE and PSLF<br />

Rperm shown as R, Rtemp shown as r<br />

GV0, PGV0...GV5, PGV5 are the x,y coordinates of N GV<br />

block<br />

Ttur, Tn, Tnp, db1, Eps, db2, Bgv0...Bgv5, Bmax, Tblade not implemented in Simulator<br />

At<br />

+<br />

π<br />

−<br />

Σ<br />

P mech<br />

States<br />

1 - Filter Output<br />

2 - Desired Gate<br />

3 - Gate<br />

4 - Turbine Flow


Governor HYGOV2<br />

Governor HYGOV2<br />

Hydro Turbine-Governor Model<br />

P ref<br />

Δω<br />

Speed<br />

K<br />

I<br />

+ sK<br />

s<br />

P<br />

+<br />

1<br />

−<br />

⎛1+<br />

sT ⎞ 2 1+<br />

sT 3<br />

1<br />

2<br />

Σ K −<br />

A ⎜ ⎟<br />

⎝ sT<br />

1+<br />

sT<br />

3 ⎠<br />

4<br />

−<br />

V GMAX<br />

1<br />

s<br />

5<br />

G MAX<br />

-V GMAX<br />

G MIN<br />

4<br />

sR<br />

R<br />

1<br />

temp<br />

T<br />

+ sT<br />

R<br />

R<br />

P mech<br />

P MAX<br />

6<br />

1−<br />

sT<br />

1+<br />

sT<br />

5<br />

6<br />

The G G limit is modeled as non-windup in PSSE but as a windup limit in Simulator.<br />

MAX<br />

MIN<br />

Model supported by PSSE<br />

States<br />

1 - Filter Output<br />

2 - Governor<br />

3 - Governor Speed<br />

4 - Droop<br />

5 - Gate<br />

6 - Penstock


Governor HYGOV4<br />

Governor HYGOV4<br />

Hydro Turbine-Governor Model<br />

Pref<br />

PMAX<br />

Δω<br />

db 1<br />

−<br />

+<br />

Σ<br />

−<br />

1<br />

1+ sTp<br />

1<br />

1<br />

T g<br />

U C<br />

U O<br />

1<br />

s<br />

2<br />

db 2<br />

GV<br />

Σ<br />

+<br />

+<br />

R perm<br />

3<br />

P MIN<br />

sT R<br />

r<br />

temp<br />

1+T s<br />

r<br />

π<br />

D turb<br />

P GV<br />

N GV<br />

GV<br />

PGV<br />

Bgv0...Bgv5, Bmax, Tblade not implemented in Simulator<br />

GV0, PGV0...GV5, PGV5 are the x,y coordinates of N GV<br />

block<br />

Model supported by PSLF<br />

q<br />

H − 1 4 +<br />

Σ sT<br />

+<br />

W<br />

−<br />

Hdam<br />

qNL<br />

÷ π<br />

Σ π<br />

q/P<br />

GV<br />

A t<br />

+<br />

−<br />

Σ<br />

P mech<br />

States<br />

1 - Velocity<br />

2 - Gate<br />

3 - Rtemp<br />

4 - T<br />

W


Governor HYST1<br />

Governor HYST1<br />

Hydro Turbine with Woodward Electro-Hydraulic PID Governor,<br />

Surge Tank, and Inlet Tunnel<br />

R<br />

perm<br />

1+ sT<br />

reg<br />

Σ +<br />

−<br />

P gen<br />

P ref<br />

Δω<br />

−<br />

+<br />

Σ<br />

1<br />

K<br />

p<br />

Ki<br />

+<br />

s<br />

2<br />

1<br />

1+ sTa<br />

4<br />

+<br />

Σ<br />

+<br />

1<br />

1+ sTa<br />

5<br />

sKd<br />

1+ sT<br />

a<br />

3<br />

G MAX<br />

1<br />

1+ sTb<br />

G MIN<br />

6<br />

P GV<br />

GV<br />

Gs ()<br />

7<br />

8<br />

9<br />

+<br />

Σ<br />

−<br />

P mech<br />

D turb<br />

Not yet implemented in Simulator<br />

Model supported by PSLF


Governor IEEEG1<br />

Governor IEEEG1<br />

IEEE Type 1 Speed-Governor Model<br />

Δω<br />

SPEED<br />

HP<br />

db 1<br />

+<br />

Σ<br />

+<br />

+<br />

Σ<br />

+<br />

+<br />

Σ<br />

+<br />

PMECH HP<br />

P M1<br />

K(1 + sT )<br />

1<br />

2<br />

−<br />

P ref<br />

+<br />

Σ<br />

2<br />

+ sT<br />

T<br />

1<br />

3<br />

−<br />

1<br />

U C<br />

U O<br />

P MIN<br />

1<br />

s<br />

P MAX<br />

1<br />

db 2<br />

P GV<br />

GV<br />

1<br />

1+<br />

sT<br />

4<br />

K 1<br />

1<br />

1+<br />

sT<br />

5<br />

K 3<br />

3 4 5<br />

1<br />

1+<br />

sT<br />

6<br />

K 5<br />

1<br />

1+<br />

sT<br />

7<br />

K 7<br />

K2<br />

K4<br />

K6<br />

K8<br />

6<br />

States<br />

1 - Governor Output<br />

2 - Lead-Lag<br />

3 - Turbine Bowl<br />

4 - Reheater<br />

5 - Crossover<br />

6 - Double Reheat<br />

Model supported by PSLF includes hysteresis that is read but not implemented in Simulator<br />

Model supported by PSSE does not include hysteresis and nonlinear gain<br />

GV1, PGV1...GV6, PGV6 are the x,y coordinates of P vs. GV block<br />

GV<br />

+<br />

Σ<br />

+<br />

+<br />

Σ<br />

+<br />

+<br />

Σ<br />

+<br />

PMECH LP<br />

P M2


Governor IEEEG2<br />

Governor IEEEG2<br />

IEEE Type 2 Speed-Governor Model<br />

P ref<br />

Δω<br />

Speed<br />

K(1 + sT2<br />

)<br />

(1 + sT )(1 + sT )<br />

1 3<br />

P MAX<br />

+<br />

2 − 1−<br />

sT4<br />

1<br />

Σ<br />

3<br />

1+<br />

0.5sT4<br />

P mech<br />

P MIN<br />

States<br />

1 - P mech<br />

2 - First Integrator<br />

3 - Second Integrator<br />

Model supported by PSSE


Governor IEEEG3_GE<br />

Governor IEEEG3_GE<br />

IEEE Type 3 Speed-Governor Model IEEEG3<br />

P REF<br />

P MAX<br />

Δω<br />

Speed<br />

db 1<br />

−<br />

+<br />

Σ<br />

Σ<br />

−<br />

+<br />

+<br />

1<br />

1+ sTP<br />

2<br />

R PERM<br />

1<br />

T G<br />

U C<br />

U O<br />

P MIN<br />

1<br />

s<br />

3<br />

db 2<br />

GV<br />

P GV<br />

GV<br />

PGV<br />

( 1+<br />

)<br />

K A sT<br />

TURB TURB W<br />

1+<br />

B<br />

TURB<br />

sT<br />

W<br />

P mech<br />

1<br />

4<br />

RTEMPsT<br />

1+ sT<br />

R<br />

R<br />

States<br />

PSLF model includes db1, db2, and Eps read but not implemented in Simulator<br />

Model supported by PSLF<br />

1 - P mech<br />

2 - Servomotor position<br />

3 - Gate position<br />

4 - Transient droop


Governor IEEEG3_PTI<br />

Governor_IEEEG3_PTI<br />

IEEE Type 3 Speed-Governor Model IEEEG3<br />

P REF<br />

U O<br />

P MAX<br />

Δω<br />

Speed<br />

−<br />

+<br />

Σ<br />

−<br />

1<br />

T (1 + sT )<br />

G<br />

P<br />

2<br />

1<br />

s<br />

3<br />

⎡<br />

⎛<br />

13 21<br />

a23 ⎢1<br />

+ ⎜a11<br />

− ⎟sTW<br />

a23<br />

⎣<br />

⎝<br />

1+<br />

a sT<br />

11<br />

a a<br />

W<br />

⎞<br />

⎠<br />

⎤<br />

⎥<br />

⎦<br />

1<br />

P mech<br />

U C<br />

P MIN<br />

Σ<br />

+<br />

+<br />

R PERM<br />

4<br />

RTEMPsT<br />

1+ sT<br />

R<br />

R<br />

States<br />

Model supported by PSSE<br />

1 - P mech<br />

2 - Servomotor position<br />

3 - Gate position<br />

4 - Transient droop


Governor IEESGO<br />

Governor IEESGO<br />

IEEE Standard Model IEEESGO<br />

P O<br />

Speed<br />

K1(1 + sT2)<br />

(1 + sT )(1 + sT )<br />

1 3<br />

1<br />

2<br />

−<br />

+<br />

Σ<br />

P MAX<br />

P MIN<br />

1<br />

1+<br />

sT<br />

4<br />

3<br />

1−<br />

K 2<br />

+<br />

Σ<br />

+ +<br />

P mech<br />

1−<br />

K 2<br />

K2<br />

1+ sT<br />

5<br />

K3<br />

1+ sT<br />

4 6 5<br />

Model supported by PSSE<br />

States<br />

1 - First Integrator<br />

2 - Second Integrator<br />

3 - Turbine T4<br />

4 - Turbine T5<br />

5 - Turbine T6


Governor PIDGOV<br />

Governor PIDGOV - Hydro Turbine and Governor Model PIDGOV<br />

Σ +<br />

−<br />

1<br />

P REF<br />

Δω<br />

Speed<br />

−<br />

R<br />

perm<br />

1+ sT<br />

+<br />

Σ<br />

reg<br />

2<br />

K<br />

p<br />

Ki<br />

+<br />

s<br />

0<br />

3<br />

sKd<br />

1+ sT<br />

a<br />

Feedback signal<br />

SBASE<br />

MBASE<br />

1<br />

1+ sTa<br />

5<br />

4<br />

P elec<br />

+<br />

Σ<br />

+<br />

1<br />

1+ sTa<br />

6<br />

States<br />

1 - Mechanical Output<br />

2 - Measured Delta P<br />

3 - PI<br />

4 - Reg1<br />

5 - Derivative<br />

6 - Reg2<br />

7 - Gate<br />

+<br />

Σ<br />

−<br />

1<br />

T b<br />

Vel MIN<br />

Vel MAX<br />

G MAX<br />

1<br />

s<br />

G MIN<br />

Power<br />

1<br />

2<br />

3<br />

Gate<br />

1−<br />

sTZ<br />

1+<br />

sT 2<br />

7 mech<br />

Z<br />

1<br />

T<br />

Z<br />

= ( A<br />

tw )*Tw<br />

+<br />

Σ<br />

−<br />

P<br />

Model supported by PSLF<br />

Model supported by PSSE<br />

D turb<br />

(G0,0), (G1,P1), (G2,P2), (1,P3) are x,y coordinates of Power vs. Gate function


Governor TGOV1<br />

Governor TGOV1<br />

Steam Turbine-Governor Model TGOV1<br />

V MAX<br />

PREF<br />

+<br />

Σ<br />

−<br />

1<br />

R<br />

1<br />

1+<br />

sT<br />

1<br />

1+<br />

sT<br />

1+<br />

sT<br />

2 1<br />

2<br />

3<br />

+<br />

Σ<br />

−<br />

Pmech<br />

V MIN<br />

Δω<br />

Speed<br />

D t<br />

States<br />

1 - Turbine Power<br />

2 - Valve Position<br />

Model supported by PSLF<br />

Model supported by PSSE


Governor TGOV2<br />

Governor TGOV2<br />

Steam Turbine-Governor with Fast Valving Model TGOV2<br />

V MAX<br />

K<br />

Reference<br />

+<br />

1<br />

1<br />

Σ<br />

R 1+<br />

sT1<br />

1+<br />

sT3<br />

1+ sTt<br />

−<br />

1<br />

1−<br />

K<br />

2<br />

v<br />

3<br />

4<br />

+<br />

+<br />

Σ<br />

−<br />

PMECH<br />

V MIN<br />

Δω<br />

Speed<br />

D t<br />

T :<br />

I<br />

Time to initiate fast valving.<br />

T<br />

A: Intercept valve, v, fully closed T<br />

A<br />

seconds after fast valving initiation.<br />

T<br />

B: Intercept valve starts to reopen T<br />

B<br />

seconds after fast valving initiation.<br />

T<br />

C: Intercept valve again fully open T<br />

C<br />

seconds after fast valving initiation.<br />

Intercept Valve Position<br />

1.<br />

0.<br />

T C<br />

T B<br />

T A<br />

( )<br />

T T T<br />

I I A<br />

( ) ( )<br />

+ T T<br />

I<br />

+ T + T<br />

B I C<br />

Time, seconds<br />

States<br />

1 - Throttle<br />

2 - Reheat Pressure<br />

3 - Reheat Power<br />

4 - Intercept Valve<br />

Model supported by PSSE


Governor TGOV3<br />

Governor TGOV3<br />

Modified IEEE Type 1 Speed-Governor with Fast Valving Model<br />

+<br />

Σ<br />

+<br />

+<br />

Σ<br />

P MECH<br />

+<br />

Δω<br />

Speed<br />

K(1 + sT )<br />

1<br />

1<br />

−<br />

P REF<br />

+<br />

Σ<br />

2<br />

+ sT1<br />

T3<br />

−<br />

1<br />

U C<br />

U O<br />

1<br />

s<br />

2<br />

P MIN<br />

P MAX<br />

1<br />

1+<br />

sT<br />

4<br />

K<br />

P RMAX<br />

1<br />

K2<br />

3<br />

+<br />

Σ<br />

−<br />

1<br />

sT<br />

5<br />

4<br />

v<br />

6<br />

Flow<br />

0.8<br />

0 0.3<br />

Intercept Valve<br />

Position<br />

1<br />

1+<br />

sT<br />

6<br />

K 3<br />

5<br />

T :<br />

I<br />

Time to initiate fast valving.<br />

T<br />

A: Intercept valve, v, fully closed T<br />

A<br />

seconds after fast valving initiation.<br />

T<br />

B: Intercept valve starts to reopen T<br />

B<br />

seconds after fast valving initiation.<br />

T<br />

C: Intercept valve again fully open T<br />

C<br />

seconds after fast valving initiation.<br />

Intercept Valve Position<br />

1.<br />

0.<br />

T C<br />

T B<br />

T A<br />

( )<br />

T T T<br />

I I A<br />

( ) ( )<br />

+ T T<br />

I<br />

+ T + T<br />

B I C<br />

Time, seconds<br />

States<br />

1 - LL<br />

2 - StateT3<br />

3 - StateT4<br />

4 - StateT5<br />

5 - StateT6<br />

6 - Intercept Valve<br />

Model supported by PSLF<br />

Model supported by PSSE<br />

Gv1,Pgv1 ... Gv6, Pgv6 are x,y coordinates of Flow vs. Intercept Valve Position function


Governor TGOV5<br />

Governor_TGOV5 - IEEE Type 1 Speed-Governor Model Modified to Include Boiler Controls<br />

+<br />

Σ<br />

+<br />

Σ<br />

+<br />

+<br />

+<br />

PMECH HP<br />

Σ<br />

+<br />

P M 1<br />

SPEED ω<br />

K 13<br />

Σ<br />

C 3<br />

K(1 + sT )<br />

−<br />

−<br />

1<br />

U O<br />

V MAX<br />

2<br />

∆ 1+ sT<br />

1+<br />

sT<br />

1<br />

T3<br />

s<br />

4<br />

+<br />

HP ∆f P<br />

U C<br />

O<br />

V MIN<br />

+<br />

MW<br />

Demand<br />

+<br />

+<br />

Σ<br />

KMW<br />

B<br />

P ELEC 1+ sTMW<br />

−<br />

−<br />

+<br />

Σ Desired Σ + Σ<br />

MW<br />

−<br />

−<br />

C2<br />

+ Σ π<br />

+<br />

P E<br />

(Pressure Error)<br />

PSP<br />

Model supported by PSSE<br />

P O<br />

K 12<br />

π<br />

Desired<br />

MW<br />

1<br />

K 11<br />

K 14<br />

−DPE<br />

R MIN<br />

K L<br />

DPE<br />

Dead Band<br />

+<br />

π<br />

Σ<br />

+ +<br />

R MAX<br />

1<br />

L MIN<br />

L MAX<br />

1<br />

s<br />

P O<br />

Fuel Dynamics<br />

m s<br />

K 1<br />

1<br />

1+<br />

sT<br />

5<br />

K 3<br />

1<br />

1+<br />

sT<br />

6<br />

K 5<br />

1<br />

1+<br />

sT<br />

K2<br />

K4<br />

K6<br />

K8<br />

C MAX<br />

+<br />

( 1+ )( 1+<br />

)<br />

s ( 1+<br />

sT )<br />

K sT sT<br />

I I R<br />

R1<br />

C MIN<br />

P T<br />

+<br />

Σ<br />

+<br />

P SP<br />

P E<br />

Σ<br />

K 10<br />

+<br />

Σ −<br />

−<br />

+<br />

1<br />

sC B<br />

P T<br />

+<br />

Σ<br />

Σ<br />

P D<br />

−<br />

+<br />

m s<br />

π<br />

π<br />

K 9<br />

7<br />

+<br />

K 7<br />

+<br />

Σ<br />

P M 2<br />

PMECH LP<br />

C 1<br />

− +<br />

Σ<br />

m s


Governor_TGOV5 - IEEE Type 1 Speed-Governor Model Modified to Include Boiler Controls<br />

States:<br />

1 – Governor Output<br />

2 – Speed Lead-Lag<br />

3 – Turbine Bowl<br />

4 – Reheater<br />

5 – Crossover<br />

6 – Double Reheat<br />

7 – P ELEC<br />

8 – P O<br />

9 – FuelDyn1<br />

10 – FuelDyn2<br />

11 – Controller1<br />

12 – Controller2<br />

13 – P D<br />

14 – Delay1<br />

15 – Delay2<br />

16 – Delay3<br />

17 – Delay4<br />

Model supported by PSSE


Governor URGS3T<br />

Governor URGS3T<br />

WECC Gas Turbine Model<br />

If (D >L ), then R = L<br />

e lse, R = R<br />

V INC LIM TRAT<br />

LIM<br />

MAX<br />

D V<br />

−<br />

Σ<br />

+<br />

5<br />

1<br />

1+ sTLTR<br />

States<br />

1 - Input LL<br />

2 - Integrator<br />

3 - Governor LL<br />

4 - Load Limit<br />

5 - Temperature<br />

P<br />

ref<br />

+<br />

Σ<br />

−<br />

db 1<br />

err<br />

Ka<br />

(1 + sT4<br />

)<br />

1+<br />

sT<br />

5<br />

1<br />

LV<br />

GATE<br />

−<br />

+<br />

Σ<br />

V MAX<br />

R LIM<br />

V MIN<br />

1<br />

sT<br />

1<br />

+<br />

2<br />

Σ<br />

−<br />

F IDLE<br />

1+<br />

AsT<br />

1+<br />

BsT<br />

2<br />

2<br />

3<br />

P GV<br />

GV<br />

db 2<br />

+<br />

Σ<br />

−<br />

P mech<br />

1<br />

R<br />

F IDLE<br />

Σ<br />

+ −<br />

+<br />

K T<br />

Σ<br />

−<br />

4<br />

+<br />

1<br />

1+<br />

sT<br />

3<br />

L MAX<br />

Speed<br />

D turb<br />

Model supported by PSSE<br />

GV1, PGV1...GV5, PGV5 are the x,y coordinates of P vs. GV block<br />

GV


Governor WT12T1<br />

Governor WT12T1<br />

Two-Mass Turbine Model for Type 1 and Type 2 Wind Generators<br />

From<br />

WT12A<br />

Model<br />

+<br />

+<br />

Σ<br />

−<br />

Σ<br />

+<br />

1<br />

2Hs<br />

t<br />

1<br />

ω base<br />

D shaft<br />

Σ<br />

+<br />

−<br />

Σ<br />

+<br />

−<br />

K shaft<br />

s<br />

2<br />

Damp<br />

+<br />

+<br />

Σ<br />

+<br />

Tmech<br />

Σ<br />

−<br />

−<br />

T elec<br />

1<br />

2Hs<br />

g<br />

3<br />

Speed<br />

ω base<br />

+<br />

Σ<br />

−<br />

ω base<br />

1<br />

s<br />

4 Rotor<br />

angle<br />

deviation<br />

H<br />

t<br />

=H×H<br />

H =H-H<br />

g<br />

t<br />

tfrac<br />

2H<br />

t×H g×(2π×Freq1)<br />

K<br />

shaft<br />

=<br />

H×ω0<br />

Model supported by PSSE<br />

2<br />

Initial rotor slip<br />

States<br />

1 - TurbineSpeed<br />

2 - ShaftAngle<br />

3 - GenSpeed<br />

4 - GenDeltaAngle


Governor W2301<br />

Governor W2301<br />

Woodward 2301 Governor and Basic Turbine Model<br />

P ref<br />

Speed<br />

Ref<br />

P elec<br />

Speed<br />

1<br />

1+ sTp<br />

1<br />

−<br />

+<br />

Σ<br />

Gamma<br />

1+ 2Beta ⋅s<br />

+<br />

Σ<br />

+<br />

−<br />

1+ 0.5Rho ⋅s<br />

Beta ⋅s(1.05 −Alpha)<br />

PI<br />

Controller<br />

2<br />

Gmax<br />

Valve Servo<br />

1<br />

1+ sTV<br />

Gmin<br />

3<br />

+<br />

Σ<br />

−<br />

gnl<br />

1+<br />

sKtT<br />

1+<br />

sT<br />

turb<br />

turb<br />

Turbine<br />

4<br />

+<br />

Σ<br />

−<br />

P mech<br />

D<br />

States<br />

1 - PelecSensed<br />

2 - PI<br />

Gain, Velamx read but not implemented in Simulator.<br />

Model supported by PSLF<br />

3 - Valve<br />

4 - Turbine


Governor WEHGOV<br />

Governor WEHGOV<br />

Woodward Electric Hydro Governor Model<br />

P ref<br />

0<br />

Feedback<br />

signal<br />

P elec<br />

+<br />

1<br />

7<br />

Σ<br />

−<br />

−<br />

ERR<br />

0<br />

−<br />

RpermPE<br />

+ sT<br />

1 PE<br />

SBASE<br />

MBASE<br />

(*)<br />

1<br />

Speed deadband<br />

sKD<br />

1+ sT<br />

Gmax+DICN<br />

K I<br />

s<br />

K P<br />

Gmin-DICN<br />

RpermGate<br />

D<br />

(*) Out = 0 if ERR < (Speed deadband)<br />

Out = ERR( I) − (Speed deadband) if ERR > (Speed deadband)<br />

Out = ERR( I) + (Speed deadband) if ERR


Governor WESGOV<br />

Governor WESGOV<br />

Westinghouse Digital Governor for Gas Turbine Model<br />

K P<br />

Δω<br />

Speed<br />

*<br />

Reference<br />

−<br />

+<br />

Σ<br />

−<br />

1<br />

I<br />

2<br />

+<br />

sT + Σ ( 1+ sT )( 1+<br />

sT )<br />

1<br />

1 2<br />

3<br />

4<br />

P mech<br />

P elec<br />

1<br />

1+ sTpe<br />

1<br />

**<br />

Droop<br />

Digital Control***<br />

*Sample hold with sample period defined by Delta TC.<br />

**Sample hold with sample period defined by Delta TP.<br />

***Maximum change is limited to A between sampling times.<br />

lim<br />

States<br />

1 - PEMeas<br />

2 - Control<br />

3 - Valve<br />

4 - PMech<br />

Model supported by PSSE<br />

A read but not implemented in Simulator<br />

lim


Governor WNDTGE<br />

Spdwl<br />

Wind<br />

Speed<br />

(glimv)<br />

WTG Ter<br />

Bus Freq<br />

Auxiliary<br />

Signal<br />

(psig)<br />

P dbr<br />

P elec<br />

Blade<br />

Pitch<br />

θ<br />

1<br />

Wind<br />

Power<br />

Model<br />

1<br />

1+ sTp<br />

P mech<br />

ω rotor<br />

PIMax & PIRat<br />

θ cmd<br />

PImin & -PIRat<br />

+<br />

Σ<br />

Governor WNDTGE<br />

Wind Turbine and Turbine Control Model for GE Wind Turbines<br />

+<br />

Rotor<br />

Model<br />

+<br />

Pitch<br />

Compensation<br />

Wind<br />

Power<br />

Model<br />

Σ<br />

+<br />

+<br />

+<br />

Σ<br />

fbus<br />

P avl<br />

2<br />

Anti-windup on<br />

Pitch Limits<br />

K + K / s<br />

pp<br />

ip<br />

ω<br />

ω<br />

+<br />

−<br />

Σ<br />

ω err<br />

Over/Under<br />

Speed Trip<br />

ω ref<br />

1<br />

1+ s5<br />

Anti-windup on<br />

Power Limits<br />

−<br />

Trip<br />

Signal<br />

Kptrq<br />

+ Kitrq<br />

/ s<br />

Pitch Control<br />

Torque<br />

Anti-windup on Pitch Limits Control<br />

+<br />

Kpc<br />

+ Kic<br />

/ s Σ<br />

4<br />

1<br />

1+ sTpav<br />

P avf<br />

12<br />

Frequency<br />

Response<br />

Curve<br />

if (fbus < fb OR<br />

fbus > fc)<br />

7<br />

9<br />

8<br />

10<br />

Active Power<br />

Control<br />

(optional)<br />

p<br />

set<br />

To gewtg<br />

Trip Signal<br />

(glimit)<br />

fflg<br />

1<br />

1<br />

6<br />

1<br />

apcflg<br />

0<br />

P<br />

min<br />

p<br />

stl<br />

P max<br />

− + +<br />

2<br />

0.67Pelec<br />

1.42Pelec<br />

0.51<br />

3<br />

Release<br />

PMAX<br />

if fflg set<br />

ω<br />

π<br />

P setAPC<br />

PWmax & PWrat<br />

1<br />

1+ sTpc<br />

5<br />

PWmin & -PWrat<br />

plim<br />

P ord<br />

Power Response<br />

Rate Limit<br />

P elec<br />

+ sTW<br />

Σ perr<br />

− 1+ sT<br />

W<br />

11<br />

wsho<br />

+ +<br />

Σ<br />

States<br />

1 - Pitch<br />

2 - Pitch Control<br />

3 - Torque Control<br />

4 - Pitch Compensation<br />

5 - Power Control<br />

6 - Speed Reference<br />

7 - Mech Speed<br />

8 - Mech Angle<br />

9 - Elect Speed<br />

10- ElectAngle<br />

11- Washout<br />

12- Active Power<br />

P ord<br />

Model supported by PSLF<br />

Apcflg is set to zero. Limits on states 2 and 3 and trip signal are not implemented.<br />

Simulator calculates initial windspeed Spdwl.


Governor WNDTGE<br />

Wind Turbine and Turbine Control Model for GE Wind Turbines<br />

Two - Mass Rotor Model<br />

+<br />

Σ<br />

ω 0<br />

+<br />

ω rotor<br />

Turbine Speed<br />

T<br />

mech<br />

T<br />

elec<br />

=<br />

ω<br />

T mech<br />

P<br />

mech<br />

T elec<br />

+ +<br />

+ ω<br />

mech 0<br />

−<br />

−<br />

−<br />

Pelec<br />

=<br />

ω + ω<br />

elec 0<br />

Σ<br />

Σ<br />

1<br />

2H<br />

1<br />

2H<br />

g<br />

D tg<br />

1<br />

s<br />

1<br />

s<br />

7<br />

ω 1 8<br />

base<br />

s<br />

−<br />

Σ<br />

+<br />

9 ω elec<br />

ω<br />

1 10<br />

base<br />

s<br />

∆ω<br />

ω mech<br />

+<br />

Σ<br />

ω<br />

Σ<br />

+<br />

K tg<br />

T shaft<br />

Generator Speed<br />

ω + 0<br />

Wind Power Model<br />

ρ<br />

( λθ)<br />

3<br />

P<br />

mech<br />

= Av C ,<br />

2 r w p<br />

λ = K ( ω/ v )<br />

b<br />

w<br />

4 4<br />

i j<br />

C<br />

p ( λθ , ) = ∑∑αθλ<br />

ij<br />

i= 0 j=<br />

0<br />

See charts for curve fit values<br />

Model supported by PSLF


Governor WNDTRB<br />

Governor WNDTRB<br />

Wind Turbine Control Model<br />

90<br />

Rotor speed<br />

ω +<br />

r<br />

Σ<br />

−<br />

KP<br />

(1 + sT1<br />

)<br />

1+<br />

sT<br />

2<br />

BPR MX<br />

1<br />

s<br />

1<br />

+ sT<br />

1 2 3<br />

cos<br />

1<br />

a<br />

π<br />

P mech<br />

ω ref<br />

-BPR MX<br />

0<br />

P wo<br />

States<br />

1 - Input<br />

2 - Blade Angle (Deg)<br />

Model supported by PSLF<br />

3 - Blade Pitch Factor


Governor WPIDHY<br />

Governor WPIDHY<br />

Woodward PID Hydro Governor Model<br />

States<br />

1 - Mechanical Output<br />

P ELEC<br />

P REF<br />

−<br />

+<br />

Σ<br />

REG<br />

+ sT<br />

1<br />

REG<br />

sK D<br />

Per Unit Output<br />

(MBASE)<br />

0<br />

( G1, P1)<br />

0 ( G ,0)<br />

1.0<br />

Gate Position (pu)<br />

(1, P3<br />

)<br />

( G , P )<br />

2 2<br />

2 - Measured Delta P<br />

3 - PID1<br />

4 - PID2<br />

5 - PID3<br />

6 - Velocity<br />

7 - Gate<br />

Δω<br />

Speed<br />

−<br />

+<br />

Σ<br />

2<br />

K P<br />

+<br />

Σ<br />

+ ( ) 2<br />

+<br />

1<br />

+ sT<br />

1<br />

A<br />

3<br />

4<br />

5<br />

1<br />

1+ sTB<br />

6<br />

Vel MAX<br />

Vel MIN<br />

1<br />

s<br />

7<br />

G MIN<br />

G MAX<br />

G P<br />

1−<br />

sTW<br />

TW<br />

1+<br />

s<br />

2<br />

1<br />

P MAX<br />

P MIN<br />

K i<br />

s<br />

D<br />

−<br />

+<br />

Σ<br />

P MECH<br />

Model supported by PSSE


Governor WSHYDD<br />

Governor WSHYDD<br />

WECC Double-Derivative Hydro Governor Model<br />

P ref<br />

Δω<br />

(Speed)<br />

db 1<br />

err<br />

1<br />

1+ sTD<br />

2 sK1<br />

3<br />

+ sT<br />

1<br />

F<br />

2<br />

sK2<br />

2<br />

1<br />

F<br />

( + sT )<br />

4 5<br />

+<br />

Σ<br />

+<br />

+<br />

−<br />

+<br />

Σ<br />

−<br />

K I<br />

s<br />

R<br />

6<br />

T<br />

T<br />

=<br />

0<br />

7<br />

( T<br />

T<br />

> 0)<br />

1<br />

1+ sTT<br />

P elec<br />

VEL OPEN<br />

P MAX<br />

+<br />

Σ<br />

−<br />

KG<br />

1+ sT<br />

P<br />

8<br />

1<br />

s<br />

9<br />

db 2<br />

GV GV 1+<br />

sA<br />

1+<br />

sB<br />

N GV<br />

P<br />

turb<br />

turb<br />

T<br />

T<br />

turb<br />

turb<br />

T rate<br />

MVA<br />

Pmech<br />

1<br />

VEL P MIN<br />

CLOSE<br />

Model supported by PSSE<br />

Inputs GV1, PGV1...GV5, PGV5 are the x,y coordinates of<br />

N GV<br />

block<br />

States<br />

1 - P 6 - Integrator<br />

mech<br />

2 - T 7 - P Sensed<br />

D<br />

1<br />

2<br />

2<br />

elec<br />

3 - K 8 - Valve<br />

4 - K first 9 - Gate<br />

5 - K second


Governor WSHYGP<br />

Governor WSHYGP<br />

WECC GP Hydro Governor Plus Model<br />

K P<br />

P ref<br />

Δω<br />

(Speed)<br />

db 1<br />

err<br />

−<br />

+<br />

Σ<br />

−<br />

1<br />

1+ sTD<br />

2<br />

K I<br />

s<br />

3<br />

+<br />

+<br />

Σ<br />

+<br />

CV<br />

T<br />

t<br />

=<br />

0<br />

sKD<br />

1+ sT<br />

f<br />

4<br />

R<br />

5<br />

( T<br />

t<br />

> 0)<br />

1<br />

1+ sTt<br />

P elec<br />

VEL OPEN<br />

P MAX<br />

+<br />

Σ<br />

−<br />

KG<br />

1+ sT<br />

P<br />

6<br />

1 7<br />

s db2<br />

GV 1+<br />

sA<br />

1+<br />

sB<br />

N GV<br />

P GV<br />

turb<br />

turb<br />

T<br />

T<br />

turb<br />

turb<br />

1<br />

T rate<br />

MVA<br />

P mech<br />

VEL P MIN<br />

CLOSE<br />

Model supported by PSSE<br />

GV1, PGV1...GV5, PGV5 are the x,y coordinates of<br />

N GV<br />

block<br />

States<br />

1 - P 5 - P Sensed<br />

mech<br />

D<br />

elec<br />

2 - T 6 - Valve<br />

3 - Integrator 7 - Gate<br />

4 - Derivative


Governor WSIEG1<br />

Governor WSIEG1<br />

WECC Modified IEEE Type 1 Speed-Governor Model<br />

GV 0<br />

P MAX<br />

Δω<br />

db 1<br />

err<br />

K<br />

1+<br />

sT2<br />

1+<br />

sT<br />

1<br />

1<br />

+<br />

CV − Σ<br />

−<br />

1<br />

T<br />

3<br />

U C<br />

U O<br />

P MIN<br />

1<br />

s<br />

2<br />

db 2<br />

GV<br />

N GV<br />

PGV<br />

1<br />

1+<br />

sT<br />

4<br />

K 1<br />

3<br />

1<br />

4<br />

1+<br />

sT<br />

5<br />

+<br />

Σ<br />

K 3<br />

+<br />

1<br />

1+<br />

sT<br />

6<br />

Σ<br />

K 5<br />

1<br />

1+<br />

sT<br />

K2<br />

K4<br />

K6<br />

K8<br />

+<br />

5<br />

+<br />

7<br />

+<br />

Σ<br />

+<br />

K 7<br />

6<br />

PMECH HP<br />

P M1<br />

States<br />

1 - Lead-lag<br />

2 - Governor Output<br />

3 - Turbine 1<br />

4 - Turbine 2<br />

5 - Turbine 3<br />

6 - Turbine 4<br />

Iblock = 1 : if P =0, P =Pinitial<br />

MIN<br />

MIN<br />

Iblock = 2 : if P =0, P =Pinitial<br />

MAX<br />

MAX<br />

Iblock = 3 : if P<br />

MIN<br />

=0, P<br />

MIN<br />

=Pinitial<br />

: if P =0, P =Pinitial<br />

MAX<br />

MAX<br />

+<br />

+<br />

Σ<br />

+<br />

+<br />

Σ<br />

+<br />

+<br />

Σ<br />

PMECH LP<br />

P M2<br />

GV1, PGV1...GV5, PGV5 are the x,y coordinates of<br />

Model supported by PSSE<br />

N GV<br />

block


Governor WT1T<br />

Governor WT1T<br />

Wind Turbine Model for Type-1 Wind Turbines<br />

P gen<br />

From<br />

Generator<br />

Model<br />

From<br />

Governor<br />

Model<br />

P mech<br />

−<br />

+ T 1<br />

Σ ÷<br />

acc<br />

2H<br />

−<br />

1<br />

s<br />

1<br />

ω<br />

To<br />

Generator<br />

Model and<br />

Governor<br />

Model<br />

Damp<br />

Type 1 WTG Turbine One - mass Model<br />

From<br />

Governor<br />

Model<br />

From<br />

Generator<br />

Model<br />

P mech<br />

P gen<br />

ω t<br />

÷<br />

÷<br />

ω g<br />

T mech<br />

T elec<br />

Model supported by PSLF<br />

+<br />

+<br />

−<br />

+<br />

Σ<br />

Σ<br />

−<br />

−<br />

1<br />

2H<br />

t<br />

D shaft<br />

1<br />

2H<br />

g<br />

1<br />

s<br />

∆ω tg<br />

1<br />

s<br />

1<br />

Σ<br />

3<br />

ω 0<br />

∆ω t<br />

+<br />

−<br />

∆ω g<br />

∆ω tg<br />

ω 0<br />

Type 1 WTG Turbine Two - mass Model<br />

Σ<br />

Σ<br />

1<br />

s<br />

ω t<br />

2<br />

ω g<br />

K<br />

1<br />

s<br />

4<br />

H<br />

t<br />

=H×H<br />

H =H-H<br />

g<br />

K =<br />

t<br />

t<br />

tfrac<br />

2H ×H ×(2π×Freq1)<br />

g<br />

H<br />

States<br />

1 - TurbineSpeed<br />

2 - ShaftAngle<br />

3 - GenSpeed<br />

4 - GenDeltaAngle<br />

2


Governor WT3T<br />

Governor WT3T<br />

Wind Turbine Model for Type-3 (Doubly-fed) Wind Turbines<br />

Blade<br />

Pitch<br />

θ<br />

From<br />

Pitch Control<br />

Model<br />

Simplified<br />

Aerodynamic Model<br />

+<br />

+<br />

Σ π K aero<br />

−<br />

θ 0<br />

−<br />

Σ<br />

P mo<br />

+<br />

P mech<br />

From<br />

Generator<br />

Model<br />

P gen<br />

−<br />

+ T 1<br />

Σ ÷<br />

acc<br />

2H<br />

−<br />

1<br />

s<br />

1<br />

ω<br />

To Pitch<br />

Control Model<br />

and Converter<br />

Control Model<br />

Damp<br />

Type 3 WTG Turbine One - mass Model<br />

Theta2⎛<br />

1 ⎞<br />

When windspeed > rated windspeed, blade pitch initialized to θ = ⎜1−<br />

2 ⎟<br />

0.75 ⎝ VW<br />

⎠<br />

P mech<br />

P gen<br />

ω t<br />

÷<br />

÷<br />

ω g<br />

T mech<br />

T elec<br />

Model supported by PSLF<br />

+<br />

+<br />

−<br />

+<br />

Σ<br />

Σ<br />

−<br />

−<br />

1<br />

2H<br />

t<br />

D shaft<br />

1<br />

2H<br />

g<br />

1<br />

s<br />

∆ω tg<br />

1<br />

s<br />

1<br />

Σ<br />

3<br />

ω 0<br />

∆ω t<br />

+<br />

−<br />

∆ω g<br />

∆ω tg<br />

ω 0<br />

Type 3 WTG Turbine Two - mass Model<br />

Σ<br />

Σ<br />

1<br />

s<br />

ω t<br />

2<br />

ω g<br />

K<br />

1<br />

s<br />

4<br />

States<br />

H<br />

t<br />

=H×Htfrac<br />

H<br />

g=H-H<br />

t<br />

2H<br />

t×H g×(2π×Freq1)<br />

K =<br />

H<br />

1 - TurbineSpeed<br />

2 - ShaftAngle<br />

3 - GenSpeed<br />

4 - GenDeltaAngle<br />

2


Governor WT3T1<br />

Governor WT3T1<br />

Mechanical System Model for Type 3 Wind Generator<br />

Blade<br />

Pitch<br />

From θ<br />

WT3P1 Model<br />

+ −<br />

Σ<br />

π<br />

+<br />

K aero<br />

−<br />

Σ<br />

+<br />

P<br />

aero<br />

initial<br />

Initial<br />

Pitch<br />

Angle<br />

θ 0<br />

1<br />

1+<br />

State 1<br />

+<br />

+<br />

Σ<br />

−<br />

T mech<br />

Σ<br />

+<br />

D shaft<br />

1<br />

2Hs<br />

t<br />

Damp<br />

1<br />

∆ω tg<br />

∆ω t<br />

+ +<br />

−<br />

Σ<br />

ω base<br />

−<br />

Σ<br />

K shaft<br />

s<br />

2<br />

H<br />

t<br />

=H×H<br />

H =H-H<br />

g<br />

K =<br />

shaft<br />

t<br />

tfrac<br />

2H ×H ×(2π×Freq1)<br />

t<br />

g<br />

H×ω<br />

0<br />

+<br />

Σ<br />

+<br />

2<br />

+<br />

T mech<br />

Σ<br />

T elec<br />

−<br />

−<br />

1<br />

2Hs<br />

g<br />

3<br />

∆ω g<br />

+<br />

ω 0<br />

Σ<br />

ω base<br />

ω g<br />

ω base<br />

−<br />

Initial rotor slip<br />

1<br />

s<br />

4<br />

Rotor<br />

Angle<br />

Deviation<br />

Model supported by PSSE


Governor BBGOV1<br />

European Governor Model BBGOV1<br />

PELEC<br />

SWITCH = 0<br />

SWITCH ≠ 0<br />

1<br />

1+<br />

sT<br />

1<br />

P O<br />

∆ω<br />

Speed<br />

f cut<br />

f cut<br />

K S<br />

−<br />

+<br />

Σ<br />

−<br />

−K LS<br />

K LS<br />

+<br />

−<br />

⎛ 1 ⎞ sKD<br />

Σ KP<br />

⎜ ⎟<br />

⎝1+<br />

sT 1+ sT<br />

N ⎠<br />

+<br />

D<br />

P MAX<br />

P MIN<br />

1<br />

s<br />

K<br />

K<br />

G<br />

LS<br />

1<br />

1+<br />

sT<br />

4<br />

1−<br />

K 2<br />

+<br />

Σ PMECH<br />

+ +<br />

1−<br />

K 3<br />

1<br />

2 3 4 5 6<br />

K2<br />

1+ sT<br />

5<br />

K3<br />

1+ sT<br />

6


Governor IVOGO<br />

IVO Governor Model IVOGO<br />

REF<br />

MAX 1<br />

MAX 3<br />

SPEED<br />

−<br />

+<br />

Σ<br />

( + )<br />

K A sT<br />

1 1 1<br />

A<br />

+ sT<br />

2 2<br />

( + )<br />

K A sT<br />

3 3 3<br />

A<br />

+ sT<br />

4 4<br />

( + )<br />

K A sT<br />

5 5 5<br />

A<br />

+ sT<br />

6 6<br />

MAX 5<br />

P MECH<br />

MIN 5<br />

MIN 1<br />

MIN 3<br />

1<br />

2 3 4 5 6


Governor TURCZT<br />

Czech Hydro and Steam Governor Model TURCZT<br />

Frequency Bias<br />

BSFREQ<br />

PELEC<br />

+<br />

Σ<br />

−<br />

dF REF<br />

SBASE<br />

MBASE<br />

f MIN<br />

f MAX<br />

f DEAD<br />

1<br />

1+ sTC<br />

K KOR<br />

N TREF<br />

K M<br />

+<br />

−<br />

Σ<br />

−<br />

Power Regulator<br />

K P<br />

N TMAX<br />

1<br />

sT I<br />

+<br />

Σ<br />

+<br />

Frequency Bias<br />

Hydro Converter<br />

1<br />

1+ sTEHP<br />

+<br />

Σ<br />

−<br />

Y<br />

REG<br />

Measuring Transducer<br />

N TMIN<br />

s DEAD<br />

K STAT<br />

Governor<br />

Y REG<br />

+<br />

Σ<br />

1<br />

−<br />

V MIN<br />

2 3 4 5 6<br />

Regulation Valves<br />

V MAX<br />

1<br />

T U<br />

G MIN<br />

G MAX<br />

1<br />

s<br />

SWITCH =1<br />

SWITCH = 0<br />

HP Part<br />

1<br />

1+ sTHP<br />

Reheater<br />

1<br />

1+ sTR<br />

1<br />

1 2 + sT H<br />

K HP<br />

1− KHP<br />

2<br />

3<br />

Steam Unit<br />

−<br />

+<br />

Σ<br />

+<br />

Σ<br />

+<br />

1<br />

K M<br />

1<br />

K M<br />

Hydro Unit<br />

PMECH<br />

PMECH<br />

Turbine


Governor URCSCT<br />

Combined Cycle on Single Shaft Model URCSCT<br />

Plant<br />

Output<br />

( MW )<br />

( STOUT C, POUT C)<br />

(Steam Turbine Rating,<br />

Steam & Gas Turbine Rating)<br />

( STOUT B, POUT B)<br />

( STOUT A, POUT A)<br />

Steam Turbine Output (MW)<br />

1<br />

2 3 4 5 6


Governor HYGOVM<br />

Hydro Turbine-Governor Lumped Parameter Model HYGOVM<br />

H SCH<br />

( V )<br />

SCHARE<br />

H LAKE<br />

( V )<br />

TUNNEL<br />

TUNL / A, TUNLOS<br />

Q TUN<br />

Q SCH<br />

H BSCH<br />

SURGE<br />

CHAMBER<br />

SCHLOS<br />

PENSTOCK<br />

PENL / A, PENLOS<br />

Q PEN<br />

TURBINE<br />

H TAIL<br />

( V )<br />

Hydro Turbine Governor Lumped Parameter Model


Governor HYGOVM<br />

Hydro Turbine-Governor Lumped Parameter Model HYGOVM<br />

2<br />

Q PEN<br />

π<br />

INPUT<br />

Gate +<br />

Relief Valve<br />

π<br />

A t<br />

O 2<br />

÷<br />

H BSCH<br />

2<br />

QPEN<br />

At<br />

2<br />

O<br />

PENLOS<br />

Σ<br />

+<br />

Σ<br />

+ − +<br />

+<br />

Σ<br />

−<br />

gv<br />

s PENL A<br />

OUTPUT<br />

+<br />

Σ<br />

+<br />

H LAKE<br />

+<br />

H BSCH<br />

−<br />

Σ −<br />

H TAIL<br />

2<br />

Q TUN<br />

Q PEN<br />

2<br />

Q<br />

SCH<br />

SCHLOS<br />

π<br />

H SCH<br />

gv<br />

sTUNL A<br />

Σ<br />

Q SCH<br />

−<br />

+<br />

Q TUN<br />

gv<br />

sTUNL A<br />

TUNLOS<br />

π<br />

Q PEN<br />

LEGEND :<br />

gv Gravitational acceleration<br />

TUNL/A Summation of length/cross section of tunnel<br />

SCHARE Surge chamber cross section<br />

PENLOS Penstock head loss coeficient<br />

FSCH Surge chamber orifice head loss coeficient<br />

PENL/A Summation of length/cross section of penstock,<br />

s croll case and draft tube<br />

A t<br />

O<br />

HSCH<br />

QPEN<br />

QTUN<br />

QSCH<br />

1 2 3 4 5 6<br />

Turbine flow gain<br />

Gate + relief valve opening<br />

Water level in surge chamber<br />

Penstock flow<br />

Tunnel flow<br />

Surge chamber flow<br />

Hydro Turbine Governor Lumped Parameter Model


Governor HYGOVM<br />

Hydro Turbine-Governor Lumped Parameter Model HYGOVM<br />

Jet Deflector<br />

MXJDOR<br />

+<br />

Σ<br />

−<br />

1<br />

T g<br />

MXJDCR<br />

1<br />

s<br />

Deflector<br />

Position<br />

Speed<br />

Reference<br />

+<br />

Speed<br />

R<br />

−<br />

Σ<br />

−<br />

Governor<br />

1<br />

1+ sTf<br />

G MIN<br />

G MAX<br />

1+<br />

sTr<br />

rsT<br />

0.01<br />

r<br />

+<br />

Σ<br />

+<br />

+<br />

Σ<br />

−<br />

1<br />

T g<br />

Gate Servo<br />

MXGTOR or<br />

MXBGOR<br />

MXGTCR or<br />

MXBGCR<br />

1<br />

s<br />

Gate<br />

Opening<br />

LEGEND :<br />

R Permanent droop<br />

r Temporary droop<br />

T<br />

r<br />

Governor time constant<br />

T<br />

f<br />

Filter time constant<br />

T<br />

g<br />

Servo time constant<br />

MXGTOR Maximum gate opening rate<br />

MXGTCR Maximum gate closing rate<br />

MXBGOR Maximum buffered gate opening rate<br />

1<br />

2 3 4 5 6<br />

RVLVCR +<br />

−<br />

Σ<br />

Relief Valve<br />

RVLMAX<br />

0<br />

1<br />

s<br />

Relief Valve<br />

Opening<br />

MXBGCR Maximum buffered gate closing opening<br />

GMAX Maximum gate limit<br />

GMIN Minimum gate limit<br />

RVLVCR Relief valve closing rate<br />

RVLMAX Maximum relief valve limit<br />

MXJDOR Maximum jet deflector opening rate<br />

MXJDCR Maximum jet deflector closing rate


Governor HYGOVT<br />

Hydro Turbine-Governor Traveling Wave Model HYGOVT<br />

H LAKE<br />

( V )<br />

H SCH<br />

( V )<br />

Q SCH<br />

SCHARE<br />

SURGE<br />

CHAMBER<br />

TUNNEL<br />

SCHLOS<br />

Q TUN<br />

H BSCH<br />

PENSTOCK<br />

Q PEN<br />

TURBINE<br />

H TAIL<br />

( V )<br />

Tunnel Inlet<br />

Constraint<br />

Time<br />

TUNNEL<br />

( TUNLGTH, TUNSPD, TUNARE, TUNLOS)<br />

Surge Chamber<br />

Constraints<br />

⎧<br />

⎪<br />

DELT * ICON( M 3)<br />

Flows<br />

Heads<br />

VAR(L+46)<br />

VAR(L+66)<br />

+ ⎨<br />

⎪⎩<br />

Hydro Turbine Governor Traveling Wave Model<br />

<br />

TUNLGTH / ( ICON( M + 2) + 1)<br />

Space<br />

VAR(L+45+ ICON(M +2))= Q<br />

VAR(L+65+ ICON(M +2))= H<br />

TUN<br />

BSCH


Governor HYGOVT<br />

Hydro Turbine-Governor Traveling Wave Model HYGOVT<br />

Surge Chamber<br />

Q TUN<br />

1<br />

+ Σ<br />

sSCHARE H +<br />

Q SCH<br />

SCH<br />

Σ<br />

+<br />

H BSCH<br />

Q PEN<br />

π<br />

2<br />

Q<br />

SCH<br />

SCHLOS<br />

Surge Chamber<br />

Constraints<br />

Time<br />

PENSTOCK<br />

( PENLGTH , PENSPD, PENARE, PENLOS)<br />

Turbine<br />

Constraint<br />

⎧<br />

⎪<br />

DELT * ICON( M 1)<br />

Flows<br />

Heads<br />

VAR(L+6)<br />

= Q<br />

VAR(L+26)<br />

= H<br />

PEN<br />

BSCH<br />

+ ⎨<br />

⎪⎩<br />

Hydro Turbine Governor Traveling Wave Model<br />

<br />

PENLGTH / ( ICON( M ) + 1)<br />

VAR(L+55+ ICON(M))<br />

VAR(L+25+ ICON(M))<br />

Space


Governor HYGOVT<br />

Hydro Turbine-Governor Traveling Wave Model HYGOVT<br />

Jet Deflector<br />

MXJDOR<br />

+<br />

Σ<br />

−<br />

1<br />

T g<br />

MXJDCR<br />

1<br />

s<br />

Deflector<br />

Position<br />

Speed<br />

Reference<br />

+<br />

Speed<br />

R<br />

−<br />

Σ<br />

−<br />

Governor<br />

1<br />

1+ sTf<br />

1<br />

G MIN<br />

G MAX<br />

1+<br />

sTr<br />

rsT<br />

2 3 4 5 6<br />

0.01 +<br />

Σ<br />

r<br />

+<br />

+<br />

Σ<br />

−<br />

1<br />

T g<br />

Gate Servo<br />

MXGTOR or<br />

MXBGOR<br />

MXGTCR or<br />

MXBGCR<br />

RVLVCR +<br />

LEGEND :<br />

R Permanent droop<br />

r Temporary droop<br />

T<br />

r<br />

Governor time constant<br />

T<br />

f<br />

Filter time constant<br />

T<br />

g<br />

Servo time constant<br />

MXGTOR Maximum gate opening rate<br />

MXGTCR Maximum gate closing rate<br />

MXBGOR Maximum buffered gate opening rate<br />

Hydro Turbine Governor Traveling Wave Model<br />

−<br />

Σ<br />

1<br />

s<br />

RVLMAX<br />

1<br />

s<br />

Gate<br />

Opening<br />

Relief Valve<br />

Relief Valve Opening<br />

0<br />

MXBGCR Maximum buffered gate closing opening<br />

GMAX Maximum gate limit<br />

GMIN Minimum gate limit<br />

RVLVCR Relief valve closing rate<br />

RVLMAX Maximum relief valve limit<br />

MXJDOR Maximum jet deflector opening rate<br />

MXJDCR Maximum jet deflector closing rate


Governor TGOV4<br />

Modified IEEE Type 1 Speed-Governor Model with PLU and EVA Model TGOV4<br />

Generator Power<br />

sT<br />

1+ sT<br />

REVA<br />

REVA<br />

EVA > Rate<br />

Level<br />

Y<br />

IV #1<br />

−<br />

Σ<br />

+<br />

EVA ><br />

Unbalance<br />

Level<br />

Y<br />

AND<br />

OR<br />

T IV1<br />

T IV 2<br />

IV #2<br />

Reheat Pressure<br />

CV #1<br />

Generator Current<br />

sT<br />

1+ sT<br />

RPLU<br />

RPLU<br />

PLU > Rate Timer<br />

Level<br />

Y<br />

T CV1<br />

T CV 2<br />

CV #2<br />

−<br />

+<br />

Σ<br />

PLU ><br />

Unbalance<br />

Level<br />

Y<br />

AND<br />

LATCH<br />

T CV 3<br />

T CV 4<br />

CV #3<br />

CV #4<br />

N<br />

1<br />

2 3 4 5 6<br />

PLU and EVA Logic Diagram


Governor TWDM1T<br />

Tail Water Depression Hydro Governor Model TWDM 1T<br />

VELM OPEN<br />

GATE MAX<br />

N REF<br />

Speed<br />

+<br />

+<br />

Σ<br />

−<br />

Σ<br />

+<br />

1<br />

1+ sTf<br />

e<br />

1+ sTr<br />

1<br />

rT r<br />

VELM CLOSE<br />

1<br />

s<br />

GATE MIN<br />

c<br />

1<br />

1+ sTg<br />

g<br />

R<br />

−<br />

÷ π Σ<br />

h<br />

+<br />

1<br />

sTW<br />

q<br />

+<br />

Σ<br />

−<br />

π<br />

+<br />

A 1.0<br />

1 qNL Dturb<br />

t<br />

Σ<br />

−<br />

0.<br />

PMECH<br />

1<br />

2 3 4 5 6<br />

Tail Water Depression Model 1<br />

Speed<br />

∆ f < F 2<br />

∆FREQ<br />

1<br />

+ sT<br />

1<br />

ft<br />

∆f<br />

s∆ f < sF 2<br />

TF 2LATCH<br />

AND<br />

OR<br />

Trip Tail<br />

Water<br />

Depression<br />

Measured Frequency<br />

∆ f < F 1<br />

TF1LATCH<br />

Tail Water Depression Trip Model


Governor TWDM2T<br />

Tail Water Depression Hydro Governor Model TWDM 2T<br />

∆ω<br />

SPEED −<br />

Σ<br />

+<br />

TWD Lock MAX<br />

1<br />

s<br />

+<br />

Σ<br />

+<br />

+<br />

LOGIC<br />

1<br />

( + sT ) 2<br />

1<br />

A<br />

V ELMX<br />

1<br />

1+ sTB<br />

G ATMX<br />

1<br />

s<br />

Reg<br />

+ sT<br />

1<br />

REG<br />

TWD Lock MIN<br />

K P<br />

Two<br />

Trip<br />

V ELMN<br />

G ATMN<br />

P REF<br />

−<br />

+<br />

Σ<br />

sK D<br />

P ELECT<br />

−<br />

÷ π Σ<br />

h<br />

+<br />

1<br />

sTW<br />

q<br />

+<br />

Σ<br />

−<br />

π<br />

+<br />

A 1.0<br />

t<br />

Σ<br />

−<br />

PMECH<br />

1 qNL<br />

0.<br />

Tail Water Depression Model 2<br />

D turb<br />

1<br />

2 3 4 5 6<br />

∆FREQ<br />

1<br />

+ sT<br />

1<br />

ft<br />

∆f<br />

∆ f < F 2<br />

s∆ f < sF 2<br />

TF 2LATCH<br />

AND<br />

OR<br />

Trip Tail<br />

Water<br />

Depression<br />

Measured Frequency<br />

∆ f < F 1<br />

TF1LATCH<br />

Tail Water Depression Trip Model


Governor SHAF25<br />

25 Masses Torsional Shaft Governor Model SHAF25<br />

State #<br />

State number containing delta speed<br />

Var #<br />

Variable number containing electrical torque<br />

Xd - Xdp X d - X' d<br />

Tdop<br />

T' do<br />

Exciter # Exciter number<br />

Gen #<br />

Generator number<br />

H 1 to H 25 H of mass 1 to H of mass 25<br />

PF 1 to PF 25 Power fraction of 1 to power fraction of 25<br />

D 1 to D 25 D of mass 1 to D of mass 25<br />

K 1-2 to K 24-25 K shaft mass 1-2 to K shaft 25-25<br />

Model supported by PSSE


Governor HYGOVR<br />

Fourth Order Lead-lag Governor and Hydro Turbine Model<br />

HYGOVR<br />

Δω<br />

db1<br />

-<br />

P ref<br />

+<br />

gmax<br />

CV<br />

1<br />

2 3 4 5 6<br />

P elec<br />

-<br />

R<br />

gmin<br />

10<br />

V elop<br />

P max<br />

db2<br />

CV<br />

+<br />

G V<br />

-<br />

7<br />

8<br />

G V<br />

V elcl<br />

P min<br />

States: 1 – Input Speed 5 – LL78 9 – Flow<br />

2 – LL12 6 – Governor 10 – P elec<br />

3 – LL34 7 – Velocity<br />

4 – LL56 8 – Gate<br />

P gv<br />

π<br />

H<br />

-<br />

q<br />

+<br />

π<br />

At<br />

Δω<br />

π<br />

Dturb<br />

-<br />

+ P mech<br />

q/P gv<br />

+<br />

9<br />

-<br />

H0<br />

qn1<br />

Model supported by PSLF


Governor WT2T<br />

Governor Model WT2T<br />

H<br />

Damp<br />

Htfrac<br />

Freq1<br />

DShaft<br />

Inertia<br />

Damping factor<br />

Turbine inertia fraction<br />

First shaft torsional frequency<br />

Shaft damping factor<br />

Model supported by PSLF


Line Relays SERIESCAPRELAY<br />

Line Relay Model SERIESCAPRELAY<br />

Tfilter<br />

tbOn<br />

tbOff<br />

V1On<br />

t1On<br />

V2On<br />

t2On<br />

V1Off<br />

t1Off<br />

V2Off<br />

t2Off<br />

Voltage filter time constant in sec.<br />

Switching time On in sec.<br />

Switching time Off in sec.<br />

First voltage threshold for switching series capacitor ON in p.u.<br />

First time delay for switching series capacitor ON in sec.<br />

Second voltage threshold for switching series capacitor ON in p.u.<br />

Second time delay for switching series capacitor ON in sec.<br />

First voltage threshold for switching series capacitor OFF in p.u.<br />

First time delay for switching series capacitor OFF in sec.<br />

Second voltage threshold for switching series capacitor OFF in p.u.<br />

Second time delay for switching series capacitor OFF in sec.<br />

Model supported by ???


Line Relays OOSLEN<br />

Out-of-step relay with 3 zones OOSLEN<br />

“Lens”<br />

x<br />

“Tomato”<br />

x<br />

Rf<br />

Rf<br />

Alpha<br />

R<br />

Alpha<br />

R<br />

Rr<br />

Wl<br />

Rr<br />

Wl<br />

Nf Nt Nfar<br />

Model supported by PSLF


Line Relays TLIN1<br />

Under-voltage or Under-frequency Relay Tripping Line Circuit Breaker(s) TLIN1<br />

Time<br />

t1<br />

v1<br />

Input<br />

Nf Nt Nfar<br />

Model supported by PSLF


Load Characteristic CIM5<br />

Load Characteristic CIM5<br />

Induction Motor Load Model<br />

Type 1<br />

Type 2<br />

R<br />

A<br />

+ jX<br />

A<br />

R<br />

A<br />

+ jX<br />

A<br />

jX 1<br />

jX m<br />

jX 1<br />

R 1<br />

s<br />

jX 2<br />

R 2<br />

s<br />

jX R<br />

m<br />

1<br />

s<br />

jX 2<br />

R 2<br />

s<br />

Impedances on Motor MVA Base<br />

Model Notes:<br />

1. To model single cage motor: set R = X = 0.<br />

breaker delay time cycles.<br />

Model supported by PSSE<br />

L<br />

D<br />

ω<br />

2 2<br />

2. When MBASE = 0.; motor MVA base = PMULT*MW load. When MBASE > 0.; motor MVA base = MBASE<br />

3. Load Torque, T = T(1+ D )<br />

4. For motor starting, T=T is specified by the user in CON(J+18). For motor online studies, T=T is calculated<br />

|<br />

nom 0<br />

in the code during initialization and stored in VAR(L+4).<br />

5. V is the per unit voltage level below which the relay to trip the motor will begin timing. To display relay, set<br />

V =0<br />

|<br />

|<br />

6. T is the time in cycles for which the voltage must remain below the threshold for the relay to trip. T<br />

B<br />

is the


Load Characteristic CIM6<br />

Load Characteristic CIM6<br />

Induction Motor Load Model<br />

Type 1<br />

Type 2<br />

R<br />

A<br />

+ jX<br />

A<br />

R<br />

A<br />

+ jX<br />

A<br />

jX 1<br />

jX m<br />

jX 1<br />

R 1<br />

s<br />

jX 2<br />

R 2<br />

s<br />

jX R<br />

m<br />

1<br />

s<br />

jX 2<br />

R 2<br />

s<br />

Impedances on Motor MVA Base<br />

Model Notes:<br />

1. To model single cage motor: set R = X = 0.<br />

breaker delay time cycles.<br />

Model supported by PSSE<br />

2 2<br />

2. When MBASE = 0.; motor MVA base = PMULT*MW load. When MBASE > 0.; motor MVA base = MBASE<br />

2<br />

E<br />

( ω ω ω)<br />

3. Load Torque, T = T A + B + C + D<br />

4.<br />

|<br />

L 0<br />

D<br />

For motor starting, T=T is specified by the user in CON(J+22). For motor online studies, T=T is calculated<br />

nom 0<br />

in the code during initialization and stored in VAR(L+4).<br />

5. V is the per unit voltage level below which the relay to trip the motor will begin timing. To display relay, set<br />

V =0<br />

|<br />

|<br />

6. T is the time in cycles for which the voltage must remain below the threshold for the relay to trip. T<br />

B<br />

is the


Load Characteristic CIMW<br />

Load Characteristic CIMW<br />

Induction Motor Load Model<br />

Type 1<br />

Type 2<br />

R<br />

A<br />

+ jX<br />

A<br />

R<br />

A<br />

+ jX<br />

A<br />

jX 1<br />

jX m<br />

jX 1<br />

R 1<br />

s<br />

jX 2<br />

R 2<br />

s<br />

jX R<br />

m<br />

1<br />

s<br />

jX 2<br />

R 2<br />

s<br />

Impedances on Motor MVA Base<br />

Model Notes:<br />

1. To model single cage motor: set R = X = 0.<br />

breaker delay time cycles.<br />

Model supported by PSSE<br />

2 2<br />

2. When MBASE = 0.; motor MVA base = PMULT*MW load. When MBASE > 0.; motor MVA base = MBASE<br />

2<br />

E<br />

( )<br />

D<br />

2<br />

E<br />

L ω ω 0 ω<br />

−<br />

ω<br />

−<br />

ω<br />

−<br />

0 ω0<br />

3. Load Torque, T = T A + B + C + D where C0=1 A B D .<br />

4. This model cannot be used formotor starting studies. T is calculated in the code during initialization and<br />

stored in VAR(L+4).<br />

5. V is the per unit voltage level below which the relay to trip the motor will begin timing. To display relay, set<br />

|<br />

|<br />

V =0<br />

|<br />

6. T is the time in cycles for which the voltage must remain below the threshold for the relay to trip. T<br />

B<br />

is the<br />

0


Load Characteristic CLOD<br />

Load Characteristic CLOD<br />

Complex Load Model<br />

P + jQ<br />

Tap<br />

R + jX<br />

P<br />

O<br />

P = Load MW input on system base<br />

O<br />

M<br />

M<br />

I<br />

V<br />

I<br />

V<br />

K<br />

Constant P=<br />

P * P<br />

RO<br />

V<br />

MVA<br />

2<br />

Q=<br />

Q * V<br />

RO<br />

Large<br />

Motors<br />

Small<br />

Motors<br />

Discharge<br />

Motors<br />

Transformer<br />

Saturation<br />

Remaining<br />

Loads<br />

Model supported by PSSE


Load Characteristic EXTL<br />

Load Characteristic EXTL<br />

Complex Load Model<br />

P initial<br />

PMLTMX<br />

Q initial<br />

QMLTMX<br />

P actual<br />

π<br />

−<br />

Σ<br />

+<br />

1<br />

P initial<br />

K P<br />

s<br />

P MULT<br />

Q actual<br />

π<br />

−<br />

Σ<br />

+<br />

1<br />

Q initial<br />

K Q<br />

s<br />

Q MULT<br />

PMLTMN<br />

QMLTMN<br />

States:<br />

1 – P MULT<br />

2 - Q MULT


Load Characteristic IEEL<br />

Load Characteristic IEEL<br />

Complex Load Model<br />

load<br />

load<br />

n1 n2<br />

n3<br />

( 1 2 3 )( 1<br />

7 )<br />

n4<br />

n5 n6<br />

( 4 5 6 )( 1<br />

8 )<br />

P= P av + av + av + a∆f<br />

Q= Q av + av + av + a∆f<br />

Model supported by PSSE


Load Characteristic LDFR<br />

Load Characteristic LDFR<br />

Complex Load Model<br />

P<br />

Q<br />

I<br />

I<br />

p<br />

q<br />

= PO<br />

⎜ ⎟<br />

ωO<br />

m<br />

⎛ ω ⎞<br />

⎝<br />

⎠<br />

= QO<br />

⎜ ⎟<br />

ωO<br />

n<br />

⎛ ω ⎞<br />

⎝<br />

⎠<br />

= Ipo<br />

⎜ ⎟<br />

ωO<br />

= Iqo<br />

⎜ ⎟<br />

ωO<br />

s<br />

r<br />

⎛ ω ⎞<br />

⎝<br />

⎠<br />

⎛ ω ⎞<br />

⎝<br />

⎠<br />

Model supported by PSSE


Load Characteristic BPA INDUCTION MOTOR I<br />

Load Characteristic BPA Induction MotorI<br />

Induction Motor Load Model<br />

R<br />

S<br />

+ jX<br />

S<br />

jX R<br />

MECHANICAL<br />

LOAD<br />

jX m<br />

R R<br />

R = T, EMWS<br />

s<br />

Model Notes:<br />

2<br />

Mechanical Load Torque, ( )<br />

T= Aω<br />

+ Bω+<br />

CT O<br />

where C is calculated by the program such that<br />

ω + ω+ = 1.0<br />

2<br />

A B C<br />

ω = 1−ω<br />

Model in the public domain, available from BPA


Load Characteristic BPA TYPE LA<br />

Load Characteristic BPA Type LA<br />

Load Model<br />

2<br />

( ( ))<br />

P = P0 PV 1 * 1<br />

+ PV<br />

2<br />

+ P3+ P4 +∆f LDP<br />

Model in the public domain, available from BPA


Load Characteristic BPA TYPE LB<br />

Load Characteristic BPA Type LB<br />

Load Model<br />

2<br />

( )( )<br />

P = P0 PV<br />

1<br />

+ PV<br />

2<br />

+ P3 1 +∆f * L DP<br />

Model in the public domain, available from BPA


Load Characteristic DLIGHT<br />

Load Characteristic Model DLIGHT<br />

Real Power Coefficient<br />

Reactive Power Coefficient<br />

Breakpoint Voltage<br />

Extinction Voltage<br />

Real Power Coefficient<br />

Reactive Power Coefficient<br />

Breakpoint Voltage<br />

Extinction Voltage<br />

Model supported by PW


Load Characteristic LD1PAC<br />

Load Characteristic Model LD1PAC<br />

Pul<br />

TV<br />

Tf<br />

CompPF<br />

Vstall<br />

Rstall<br />

Xstall<br />

Tstall<br />

LFadj<br />

KP1 to KP2<br />

NP1 to NP2<br />

KQ1 to KQ2<br />

NQ1 to NQ2<br />

Vbrk<br />

Frst<br />

Vrst<br />

Trst<br />

CmpKpf<br />

CmpKqf<br />

Fraction of constant power load<br />

Voltage input time in sec.<br />

Frequency input time constant in sec.<br />

Compressor Power Factor<br />

Compressor Stalling Voltage in p.u.<br />

Compressor Stall resistance in p.u.<br />

Compressor Stall impedance in p.u.<br />

Compressor Stall delay time in sec.<br />

Vstall adjustment proportional lo loading<br />

factor<br />

Real power coefficient for running states,<br />

p.u.P/p.u.V<br />

Real power exponent for running states<br />

Reactive power coefficient for running<br />

states, p.u.Q/p.u.<br />

Reactive power exponent for running states<br />

Compressor motor breakdown voltage in<br />

p.u<br />

Restarting motor fraction<br />

Restart motor voltage in p.u.<br />

Restarting time delay in sec.<br />

Real power frequency sensitivity,<br />

p.u.P/p.u.<br />

Reactive power frequency sensitivity,<br />

p.u.Q/p.u.<br />

Vc1off<br />

Vc2off<br />

Vc1on<br />

Vc2on<br />

Tth<br />

Th1t<br />

Th2t<br />

fuvr<br />

uvtr1 to uvtr2<br />

ttr1 to ttr2<br />

Voltage 1 contactor disconnect load in p.u.<br />

Voltage 2 contactor disconnect load in p.u.<br />

Voltage 1 contactor re-connect load in p.u.<br />

Voltage 2 contactor re-connect load in p.u.<br />

Compressor heating time constant in sec.<br />

Compressor motors begin tripping<br />

Compressor motors finished tripping<br />

Fraction of compressor motors with<br />

undervoltage relays<br />

Undervoltage pickup level in p.u.<br />

Undervoltage definite time in sec.<br />

Model supported by PSLF


Load Characteristic WSCC<br />

Load Characteristic Model WSCC<br />

p1<br />

q1<br />

p2<br />

q2<br />

p3<br />

q3<br />

p4<br />

q4<br />

lpd<br />

lqd<br />

Constant impedance fraction in p.u.<br />

Constant impedance fraction in p.u.<br />

Constant current fraction in p.u.<br />

Constant current fraction in p.u.<br />

Constant power fraction in p.u.<br />

Constant power fraction in p.u.<br />

Frequency dependent power fraction in p.u.<br />

Frequency dependent power fraction in p.u.<br />

Real power frequency index in p.u.<br />

Reactive power frequency index in p.u.<br />

Model supported by PSLF


Load Characteristic CMPLD<br />

Composite Load Model CMPLD<br />

V sec_measured<br />

V sec_init<br />

Discrete Tap<br />

Change Control<br />

V 4 V sec<br />

V 3<br />

Polynomial load<br />

P far<br />

+ jQ far<br />

r 4<br />

x 4<br />

i 4<br />

i sec<br />

2 nd motor<br />

Polynomial load<br />

P sec + jQ sec<br />

1 st motor<br />

Model supported by PSLF


Load Characteristic CMPLDW<br />

Composite Load Model CMPLDW<br />

Substation<br />

System bus<br />

(230, 115, 69 – kV)<br />

Low-side<br />

Feeder<br />

R.X.<br />

Load<br />

Bus<br />

M<br />

Motor A<br />

LTC<br />

Bss Bf1 Bf2<br />

M<br />

Motor B<br />

M<br />

Motor C<br />

M<br />

Motor D<br />

Electronic Load<br />

Static Load<br />

Model supported by PSLF


Load Characteristic MOTORW<br />

Two-cage or One-cage Induction Machine for Part of a Bus Load Model MOTORW<br />

-<br />

⬚<br />

-<br />

1<br />

-<br />

1<br />

E' q<br />

+ ⬚ +<br />

T pp s<br />

-<br />

⬚<br />

1<br />

T ppp<br />

+<br />

+<br />

⬚<br />

+<br />

1<br />

s<br />

E'' q<br />

d-axis<br />

ω o SLIP T PO<br />

Lp-Lpp<br />

ω o<br />

SLIP<br />

+ i<br />

⬚<br />

Ls-Lp<br />

d<br />

+<br />

ω o<br />

SLIP T PO<br />

ω o<br />

SLIP<br />

+<br />

⬚<br />

-<br />

1<br />

-<br />

1<br />

E' d<br />

+ ⬚ +<br />

T pp s<br />

+<br />

⬚<br />

1<br />

T ppp<br />

+<br />

+<br />

-<br />

⬚<br />

1<br />

s<br />

E'' d<br />

q-axis<br />

Lp-Lpp<br />

+ I<br />

⬚<br />

Ls-Lp<br />

q<br />

-<br />

Model supported by PSLF


Load Relays DLSH<br />

Rate of Frequency Load Shedding Model DLSH<br />

f1 to f3<br />

t1 to t3<br />

Frac1 to frac3<br />

tb<br />

df1 to df3<br />

Frequency load shedding point<br />

Pickup time<br />

Fraction of load to shed<br />

Breaker time<br />

Rate of frequency shedding point<br />

Model supported by PSSE


Load Relays LDS3<br />

Underfrequency Load Shedding Model with Transfer Trip LDS3<br />

Tran Trip Obj<br />

SC<br />

f1 to f5<br />

t1 to t5<br />

tb1 to tb5<br />

Frac1 to frac5<br />

ttb<br />

Transfer Trip Object<br />

Shed Shunts<br />

Frequency load shedding point<br />

Pickup time<br />

Breaker time<br />

Fraction of load to shed<br />

Transfer trip breaker time<br />

Model supported by PSSE


Load Relays LDSH<br />

Underfrequency Load Shedding Model LDSH<br />

f1 to f3<br />

t1 to t3<br />

frac1 to frac3<br />

tb<br />

Frequency load shedding point<br />

Pickup time<br />

Fraction of load to shed<br />

Breaker time<br />

Model supported by PSSE


Load Relays LDST<br />

Time Underfrequency Load Shedding Model LDST<br />

f1 to f4<br />

z1 to z4<br />

tb<br />

frac<br />

freset<br />

tres<br />

Frequency load shedding point<br />

Nominal operating time<br />

Breaker time<br />

Fraction of load to shed<br />

Reset frequency<br />

Resetting time<br />

Model supported by PSSE


Load Relays LSDT1<br />

Definite-Time Underfrequency Load Shedding Relay Model LSDT1<br />

Tfilter<br />

tres<br />

f1 to f3<br />

t1 to t3<br />

tb1 to tb3<br />

frac1 to frac3<br />

Input transducer time constant<br />

Resetting time<br />

Frequency load shedding point<br />

Pickup time<br />

Breaker time<br />

Fraction of load to shed<br />

Bus Frequency<br />

Definite Time<br />

Characteristic<br />

Shed (p.u.)<br />

Model supported by PSLF


Load Relays LSDT2<br />

Definite-Time Undervoltage Load Shedding Relay Model LSDT2<br />

Rem Bus<br />

Voltage Mode<br />

Tfilter<br />

tres<br />

v1 to v3<br />

t1 to t3<br />

tb1 to tb3<br />

frac1 to frac3<br />

Remote Bus<br />

Voltage mode: 0 for deviation; 1 for absolute<br />

Input transducer time constant<br />

Resetting time<br />

Voltage load shedding point<br />

Pickup time<br />

Breaker time<br />

Fraction of load to shed<br />

Bus Frequency<br />

Definite Time<br />

Characteristic<br />

Shed (p.u.)<br />

Model supported by PSLF


Load Relays LSDT8<br />

Definite-Time Underfrequency Load Shedding Relay Model LSDT8<br />

Tfilter<br />

tres<br />

f1 to f3<br />

t1 to t3<br />

tb1 to tb3<br />

frac1 to frac3<br />

df1 to df3<br />

Input transducer time constant<br />

Resetting time<br />

Frequency load shedding point<br />

Pickup time<br />

Breaker time<br />

Fraction of load to shed<br />

Rate of frequency shedding point<br />

Bus Frequency<br />

Definite Time<br />

Characteristic<br />

Shed (p.u.)<br />

Model supported by PSLF


Load Relays LSDT9<br />

Definite Time Underfrequency Load Shedding Relay Model LSDT9<br />

Tfilter<br />

tres<br />

f1 to f9<br />

t1 to t9<br />

tb1 to tb9<br />

frac1 to frac9<br />

Input transducer time constant<br />

Resetting time<br />

Frequency load shedding point<br />

Pickup time<br />

Breaker time<br />

Fraction of load to shed<br />

Bus Frequency<br />

Definite Time<br />

Characteristic<br />

Shed (p.u.)<br />

Model supported by PSLF


Load Relays LVS3<br />

Undervoltage Load Shedding Model with Transfer Trip LVS3<br />

FirstTran Trip Obj<br />

SecondTran Trip Obj<br />

SC<br />

v1 to v5<br />

t1 to t5<br />

tb1 to tb5<br />

Frac1 to frac5<br />

ttb1 to ttb2<br />

First Transfer Trip Object<br />

First Transfer Trip Object<br />

Shed Shunts<br />

Voltage load shedding point<br />

Pickup time<br />

Breaker time<br />

Fraction of load to shed<br />

Transfer trip breaker time<br />

Model supported by PSSE


Load Relays LVSH<br />

Undervoltage Load Shedding Model LVSH<br />

v1 to v3<br />

t1 to t3<br />

frac1 to frac3<br />

tb<br />

Voltage load shedding point<br />

Pickup time<br />

Fraction of load to shed<br />

Breaker time<br />

Model supported by PSSE


Machine Model CBEST<br />

EPRI Battery Energy Storage Model CBEST<br />

P INIT<br />

P MAX<br />

I ACMAX V AC<br />

P AUX<br />

1<br />

MMMMM<br />

+<br />

+ P AC<br />

⬚ 1 1<br />

MMMMM<br />

SSSSS<br />

P OUT<br />

-P MAX<br />

- I ACMAX V AC<br />

P OUT<br />

P OUT > 0<br />

P OUT<br />

< 0<br />

O UU E FF<br />

s<br />

I NN E FF<br />

s<br />

5<br />

+<br />

⬚<br />

+<br />

4<br />

E OUT<br />

States:<br />

1 – VLL1<br />

2 – VLL2<br />

3 – IQ<br />

4 – EnergyIn<br />

5 - EnergyOut<br />

E COMP<br />

-<br />

+<br />

V REF<br />

+<br />

⬚<br />

-<br />

V MAX<br />

(1 + sT 1 )(1 + sT 1 )<br />

(1 + sT 3 )(1 + sT 4 )<br />

1 2<br />

K AAA<br />

s<br />

I QMAX<br />

I Q<br />

3<br />

π<br />

MMMMM<br />

SSSSS<br />

P OUT<br />

V OTHSG<br />

V MIN<br />

DROOP<br />

-I QMAX<br />

2<br />

I QQQQ = I AAAAA − P 2<br />

AA<br />

<br />

V AA<br />

Model supported by PSSE


Machine Model CIMTR1<br />

Induction Generator Model CIMTR1<br />

Tp<br />

Tpp<br />

H<br />

X<br />

Xp<br />

Xpp<br />

Xl<br />

E1<br />

SE1<br />

E2<br />

SE2<br />

Switch<br />

Ra<br />

T' - Transient rotor time constant<br />

T'' – Sub-transient rotor time constant in sec.<br />

Inertia constant in sec.<br />

Synchronous reactance<br />

X' – Transient Reactance<br />

X'' – Sub-transient Reactance<br />

Stator leakage reactance in p.u.<br />

Field voltage value E1<br />

Saturation value at E1<br />

Field voltage value E2<br />

Saturation value at E2<br />

Switch<br />

Stator resistance in p.u.<br />

States:<br />

1 – Epr<br />

2 – Epi<br />

3 – Ekr<br />

4 – Eki<br />

5 – Speed wr<br />

Model supported by PSSE


Machine Model CIMTR2<br />

Induction Motor Model CIMTR2<br />

Tp<br />

Tpp<br />

H<br />

X<br />

Xp<br />

Xpp<br />

Xl<br />

E1<br />

SE1<br />

E2<br />

SE2<br />

D<br />

T' - Transient rotor time constant<br />

T'' – Sub-transient rotor time constant in sec.<br />

Inertia constant in sec.<br />

Synchronous reactance<br />

X' – Transient Reactance<br />

X'' – Sub-transient Reactance<br />

Stator leakage reactance in p.u.<br />

Field voltage value E1<br />

Saturation value at E1<br />

Field voltage value E2<br />

Saturation value at E2<br />

Damping<br />

States:<br />

1 – Epr<br />

2 – Epi<br />

3 – Ekr<br />

4 – Eki<br />

5 – Speed wr<br />

Model supported by PSSE


Machine Model CIMTR3<br />

Induction Generator Model CIMTR3<br />

Tp<br />

T' - Transient rotor time constant<br />

Tpp<br />

T'' – Sub-transient rotor time constant in sec.<br />

H<br />

Inertia constant in sec.<br />

X<br />

Synchronous reactance<br />

Xp<br />

X' – Transient Reactance<br />

Xpp<br />

X'' – Sub-transient Reactance<br />

Xl<br />

Stator leakage reactance in p.u.<br />

E1<br />

Field voltage value E1<br />

SE1<br />

Saturation value at E1<br />

E2<br />

Field voltage value E2<br />

Switch<br />

Switch<br />

SYN-POW Mechanical power at synchronous speed (p.u. > 0)<br />

States:<br />

1 – Epr<br />

2 – Epi<br />

3 – Ekr<br />

4 – Eki<br />

5 – Speed wr<br />

Model supported by PSSE


Machine Model CIMTR4<br />

Induction Motor Model CIMTR4<br />

Tp<br />

T' - Transient rotor time constant<br />

Tpp<br />

T'' – Sub-transient rotor time constant in sec.<br />

H<br />

Inertia constant in sec.<br />

X<br />

Synchronous reactance<br />

Xp<br />

X' – Transient Reactance<br />

Xpp<br />

X'' – Sub-transient Reactance<br />

Xl<br />

Stator leakage reactance in p.u.<br />

E1<br />

Field voltage value E1<br />

SE1<br />

Saturation value at E1<br />

E2<br />

Field voltage value E2<br />

D<br />

Damping<br />

SYN-TOR Synchronous torque (p.u. < 0)<br />

States:<br />

1 – Epr<br />

2 – Epi<br />

3 – Ekr<br />

4 – Eki<br />

5 – Speed wr<br />

Model supported by PSSE


Machine Model CSTATT<br />

Static Condenser (STATCON) Model CSTATT<br />

V REF<br />

V MAX<br />

Limit Max<br />

|V|<br />

-<br />

+<br />

+<br />

⬚<br />

-<br />

(1 + sT 1 )(1 + sT 1 )<br />

(1 + sT 3 )(1 + sT 4 )<br />

1 2<br />

K<br />

s<br />

VAR(L)<br />

3<br />

+<br />

⬚<br />

-<br />

1<br />

X t<br />

MMMMM<br />

SSSSS<br />

ISTATC<br />

VAR(L+1)<br />

V OTHSG<br />

V MIN<br />

DROOP<br />

Limit Min<br />

E T<br />

Limit Max = V T + X T I CMAX0<br />

Limit Min = V T + X T I LMAX0<br />

Limit Max ≤ E limit<br />

Where:<br />

I CMAX0 = I CMAX when V T ≥ VCUTOUT<br />

States:<br />

1 – Regulator 1<br />

2 – Regulator 2<br />

3 – Thyristor<br />

I CCCC0 = I CCCC ∙ V T<br />

V CCCCCC<br />

otherwise<br />

I LMAX0<br />

= I LMAX<br />

when V T<br />

≥ VCUTOUT<br />

I LLLL0 = I LLLL ∙ V T<br />

V CCCCCC<br />

otherwise<br />

Note: |V| is the voltage magnitude on the high side of generator step-up transformer, if present.<br />

Model supported by PSSE


Machine Model GENCLS_PLAYBACK<br />

Machine Model GENCLS_PLAYBACK<br />

Synchronous machine represented by “classical” modeling or<br />

Thevenin Voltage Source to play Back known<br />

voltage/frequency signal<br />

Recorded<br />

Voltage<br />

Z<br />

ab<br />

= 0.03<br />

on 100 MVA base<br />

Responding<br />

System<br />

A<br />

B<br />

States:<br />

1 – Angel<br />

2 – Speed w<br />

gencls<br />

I ppd<br />

B<br />

Responding<br />

System<br />

gencls<br />

I ppd<br />

A<br />

Z<br />

ab<br />

= 0.03<br />

on 100 MVA base<br />

B<br />

Responding<br />

System<br />

Model supported by PSLF


Machine Model GENDCO<br />

Round Rotor Generator Model Including DC Offset Torque<br />

Component GENDCO<br />

H<br />

D<br />

Ra<br />

Xd<br />

Xq<br />

Xdp<br />

Xqp<br />

Xl<br />

Tdop<br />

Tqop<br />

Tdopp<br />

Tqopp<br />

S(1.0)<br />

S(1.2)<br />

Ta<br />

Inertia constant in sec.<br />

Damping<br />

Stator resistance in p.u.<br />

X d – Direct axis synchronous reactance<br />

X q – Quadrature axis synchronous reactance<br />

X' d – Direct axis synchronous reactance<br />

X' q – Quadrature axis synchronous reactance<br />

Stator leakage reactance in p.u.<br />

T' do – Open circuit direct axis transient time constant<br />

T' qo – Quadrature axis transient time constant<br />

T'' do – Open circuit direct axis subtransient time constant<br />

T'' qo – Quadrature axis subtransient time constant<br />

Saturation factor at 1.0 p.u. flux<br />

Saturation factor at 1.2 p.u. flux<br />

T a<br />

Model supported by PSSE


Machine Model GEPWTwoAxis<br />

Model GENPWTwoAxis<br />

H<br />

D<br />

Ra<br />

Xd<br />

Xq<br />

Xdp<br />

Xqp<br />

Tdop<br />

Tqop<br />

Inertia constant in sec.<br />

Damping<br />

Stator resistance in p.u.<br />

X d – Direct axis synchronous reactance<br />

X q – Quadrature axis synchronous reactance<br />

X' d – Direct axis synchronous reactance<br />

X' q – Quadrature axis synchronous reactance<br />

T' do – Open circuit direct axis transient time constant<br />

T' qo – Quadrature axis transient time constant<br />

States:<br />

1 – Angel<br />

2 – Speed w<br />

3 – Eqp<br />

4 – Edp<br />

Model supported by PW


Machine Model GENIND<br />

Two Cage or One Cage Induction Generator Model GENIND<br />

+<br />

ψ dr2<br />

⬚<br />

-<br />

ω o SLIP<br />

ω o ∙ R r2<br />

L ll2<br />

+<br />

-<br />

⬚<br />

Ψ qr2<br />

1<br />

L ll2<br />

States:<br />

1 – Epr<br />

2 – Epi<br />

3 – Ekr<br />

4 – Eki<br />

5 – Speed wr<br />

ψ dr1<br />

Model supported by PSLF<br />

ω o<br />

SLIP<br />

ω o ∙ R<br />

+ r1<br />

⬚<br />

⬚<br />

L ll1<br />

+<br />

-<br />

Ψ qr1<br />

ω o ∙ R<br />

+ r1<br />

⬚<br />

⬚<br />

L ll1 +<br />

-<br />

Ψ qr2<br />

2<br />

ψ mm<br />

+ ψ<br />

2<br />

mm<br />

ω o<br />

SLIP<br />

ω o<br />

SLIP<br />

ω o ∙ R<br />

+ r2<br />

⬚<br />

⬚<br />

L ll2<br />

+<br />

-<br />

-<br />

+<br />

+<br />

S e<br />

Ψ m<br />

Ψ qr1<br />

Ψ dr1<br />

Ψ dr2<br />

1<br />

L ll1<br />

1<br />

L ll1<br />

+<br />

⬚<br />

+<br />

K sat = 1 + Se(ψ m<br />

)<br />

1<br />

L ll2<br />

⬚<br />

+<br />

+<br />

L'' m sat<br />

Ψ mq<br />

′′<br />

L m sss =<br />

L'' m sat<br />

Ψ md<br />

K sss<br />

+<br />

⬚<br />

-E'' d = ψ' q<br />

L'' m sat<br />

1<br />

⁄ L m + 1⁄ L ll1 + 1⁄<br />

L ll2<br />

⬚<br />

+<br />

-<br />

-<br />

L'' m sat<br />

E'' q<br />

= ψ' d<br />

L m = L s − L l<br />

′<br />

L m = 1/(1/L m + 1/L ll1 ) = L ′ − L l<br />

′′<br />

L m = 1/(1/L m + 1/L ll1 + 1/L ll2 )<br />

= L ′′ − L l<br />

T ′ ′<br />

o = L ll1 ∙ L m /(ω o ∙ R r1 ∙ L m )<br />

= (L ll1 + L m )/(ω o ∙ R r1 )<br />

T ′′ ′<br />

o = L ll2 ∙ L m /(ω o ∙ R r2 ∙ L ′′ m )<br />

′<br />

= (L ll2 + L m )/(ω o ∙ R r2 )<br />

i qs<br />

i ds


Machine Model GENROE<br />

Round Rotor Generator Model GENROE<br />

States:<br />

1 – Angle<br />

2 – Speed w<br />

3 – Eqp<br />

4 – PsiDp<br />

5 – PsiQpp<br />

6 – Edp<br />

H<br />

D<br />

Ra<br />

Xd<br />

Xq<br />

Xdp<br />

Xqp<br />

Xdpp<br />

Xl<br />

Tdop<br />

Tqop<br />

Tdopp<br />

Tqopp<br />

S(1.0)<br />

S(1.2)<br />

Rcomp<br />

Xcomp<br />

Inertia constant in sec.<br />

Damping factor in p.u.<br />

Stator resistance in p.u.<br />

X d – Direct axis synchronous reactance<br />

X q – Quadrature axis synchronous reactance<br />

X' d – Direct axis synchronous reactance<br />

X' q – Quadrature axis synchronous reactance<br />

X'' d – Direct axis subtransient reactacne<br />

Stator leakage reactance in p.u.<br />

T' do – Open circuit direct axis transient time constant<br />

T' qo – Quadrature axis transient time constant<br />

T'' do – Open circuit direct axis subtransient time constant<br />

T'' qo – Quadrature axis subtransient time constant<br />

Saturation factor at 1.0 p.u. flux<br />

Saturation factor at 1.2 p.u. flux<br />

Compensating resistance for voltage control in p.u.<br />

Compensating reactance for voltage control in p.u.<br />

Model supported by PSSE


Machine Model GENSAE<br />

Salient Pole Generator Model GENSAE<br />

States:<br />

1 – Angle<br />

2 – Speed w<br />

3 – Eqp<br />

4 – PsiDp<br />

5 – PsiQpp<br />

H<br />

D<br />

Ra<br />

Xd<br />

Xq<br />

Xdp<br />

Xqp<br />

Xdpp<br />

Xl<br />

Tdop<br />

Tqop<br />

Tdopp<br />

Tqopp<br />

S(1.0)<br />

S(1.2)<br />

Rcomp<br />

Xcomp<br />

Inertia constant in sec.<br />

D<br />

Stator resistance in p.u.<br />

X d – Direct axis synchronous reactance<br />

X q – Quadrature axis synchronous reactance<br />

X' d – Direct axis synchronous reactance<br />

X' q – Quadrature axis synchronous reactance<br />

X'' d – Direct axis subtransient reactacne<br />

Stator leakage reactance in p.u.<br />

T' do – Open circuit direct axis transient time constant<br />

T' qo – Quadrature axis transient time constant<br />

T'' do – Open circuit direct axis subtransient time constant<br />

T'' qo – Quadrature axis subtransient time constant<br />

Saturation factor at 1.0 p.u. flux<br />

Saturation factor at 1.2 p.u. flux<br />

Compensating resistance for voltage control in p.u.<br />

Compensating reactance for voltage control in p.u.<br />

Model supported by PSSE


Machine Model GENTPJ<br />

Generator Represented by Uniform Inductance Ratios Rotor<br />

Modeling to Match WSCC Type F Model GENTPJ<br />

L d − L d<br />

′<br />

L d<br />

′<br />

− L d<br />

′′<br />

S e<br />

E fd<br />

+<br />

+<br />

⬚<br />

-<br />

1<br />

E' q<br />

S<br />

′<br />

e<br />

+<br />

1<br />

⬚<br />

sT ′′<br />

dd<br />

sT dd<br />

-<br />

′′<br />

L d − L d<br />

′ ′′<br />

L d − L d<br />

-<br />

L d<br />

′<br />

− L d<br />

′′<br />

E'' q<br />

i d<br />

φ'' d<br />

S e = 1 + ffffφ aa + K ii ∙ I t ∙ ssss(i d )<br />

Q – Axis similar except:<br />

S e = 1 + L q<br />

L d<br />

ffffφ aa + K ii ∙ I t ∙ ssss(i d )<br />

States:<br />

1 – Angle<br />

2 – Spped w<br />

3 – Eqp<br />

4 – Eqpp<br />

5 – Edp<br />

6 – Edpp<br />

Model supported by PSLF


Machine Model STCON<br />

Static Synchronous Condenser Model STCON<br />

V int<br />

∠ ∥θ<br />

|i term<br />

|<br />

If q term<br />

≥ 0<br />

5<br />

V max<br />

If q term<br />

≤ 0<br />

5<br />

V min<br />

-<br />

+<br />

⬚<br />

V t<br />

∠ ∥θ<br />

K ii<br />

s<br />

K ii<br />

+<br />

V ctr<br />

i term<br />

+<br />

R<br />

⬚<br />

If S4 5 > I max<br />

+ ⬚<br />

If S4 5 < (I<br />

s<br />

max<br />

- I mxeps<br />

)<br />

and<br />

-<br />

v term<br />

> v thresh<br />

-<br />

X t<br />

1<br />

1 + sT f<br />

+<br />

⬚<br />

i term<br />

, q term<br />

p term = 0<br />

5<br />

K ii<br />

s<br />

K ii<br />

If S4 5 > I max<br />

+ If S4 5 < (I<br />

⬚<br />

max<br />

- I mxeps<br />

)<br />

s<br />

and<br />

-<br />

v term<br />

> v thresh<br />

3<br />

4<br />

K ii<br />

s<br />

+<br />

1<br />

- ⬚ + ⬚<br />

1 + sT f<br />

1<br />

+ +<br />

K i<br />

s<br />

V ref<br />

+<br />

V min<br />

+<br />

V max<br />

-<br />

-<br />

V sig<br />

⬚<br />

⬚<br />

6<br />

K ii<br />

s<br />

K ii<br />

s<br />

V MIN<br />

4<br />

3<br />

K p<br />

+<br />

V MAX<br />

q set<br />

⬚ -<br />

2<br />

q term<br />

π<br />

U MAX<br />

= S2 3<br />

U MAX<br />

U MIN<br />

U MIN<br />

= S3 4<br />

V int<br />

States:<br />

1 – Vsens<br />

2 – Integrator<br />

3 – Umax<br />

4 – Umin<br />

5 – I termSens<br />

6 – Qerr<br />

Model supported by PSLF


Machine Model SVCWSC<br />

Static Var Device Model SVCWSC<br />

Voltage Clamp Logic<br />

If V bus<br />

< V1 vd<br />

, K vc<br />

= 0.<br />

If V bus<br />

> V2 vd<br />

for T dvcl<br />

sec., K vc<br />

= 1.<br />

V1 MAX<br />

K vc·V2 MAX<br />

B MAX<br />

V bus<br />

+<br />

⬚<br />

-<br />

X C<br />

Ve MAX<br />

1 + sT C<br />

1 + sT<br />

-<br />

s2 1 + sT s4<br />

Fast<br />

1<br />

⬚ ⬚<br />

K<br />

1 + sT s1 +<br />

SVS Over<br />

1 + sT s3 b + sT s5 1 + sT<br />

Ride<br />

s6<br />

+ + Ve MIN<br />

1 B<br />

V<br />

V1 2 MIN<br />

ref V scs<br />

+ V MIN<br />

K<br />

3<br />

vc·V2<br />

MIN<br />

4<br />

s<br />

V s<br />

(from external PSS)<br />

B svs<br />

π<br />

Input 1<br />

Input 2<br />

Model supported by PSLF<br />

K s1<br />

1 + sT s8<br />

1 + sT s7 5 1 + sT s9<br />

⬚<br />

K s2<br />

1 + sT s11<br />

+<br />

7<br />

6<br />

8<br />

+<br />

ss s13<br />

1 + sT s14<br />

9<br />

K S3<br />

Vscs MIN<br />

Vscs MAX<br />

Vscs<br />

States:<br />

1 – LLVbus<br />

2 – Regulator1<br />

3 – Regulator2<br />

4 – Thyristor<br />

5 – Transducer1<br />

6 – LL1<br />

7 – Transducer2<br />

8 - LL2<br />

9 – WO13


Machine Model VWSCC<br />

Static Var Device Model VWSCC<br />

B MAX<br />

V bus<br />

+<br />

⬚<br />

-<br />

X C<br />

Ve MAX<br />

1 + sT C<br />

A + sT<br />

-<br />

s2<br />

1 + sT s4<br />

Fast<br />

1<br />

⬚ ⬚<br />

e -sTd1<br />

K<br />

1 + sT s1 +<br />

SVS Over<br />

B + sT s3<br />

1 + sT s5 1 + sT<br />

Ride<br />

s6<br />

+ + Ve MIN<br />

1 V<br />

2 B MIN<br />

ref V<br />

3<br />

scs<br />

4<br />

B svs<br />

(from Stabilizer)<br />

π<br />

States:<br />

1 – LLVBus<br />

2 – Regulator1<br />

3 – Regulator2<br />

4 – Thyristor<br />

Model supported by PSLF


Machine Model WT1G<br />

Generator Model for Generic Type-1 Wind Turbines WT1G<br />

+<br />

ψ dr2<br />

⬚<br />

-<br />

ω o SLIP<br />

ω o ∙ R r2<br />

L ll2<br />

+<br />

-<br />

⬚<br />

Ψ qr2<br />

1<br />

L ll2<br />

States:<br />

1 – Epr<br />

2 – Epi<br />

3 – Ekr<br />

4 – Eki<br />

ψ dr1<br />

ω o<br />

SLIP<br />

ω o ∙ R<br />

+ r1<br />

⬚<br />

⬚<br />

L ll1<br />

+<br />

-<br />

2<br />

ψ mm<br />

+ ψ<br />

2<br />

mm<br />

-<br />

S e<br />

Ψ qr1<br />

1<br />

L ll1<br />

+<br />

⬚<br />

+<br />

K sat = 1 + Se(ψ m<br />

)<br />

L'' m sat<br />

Ψ mq<br />

′′<br />

L m sss =<br />

K sss<br />

+<br />

⬚<br />

-<br />

-E'' d = ψ' q<br />

L'' m sat<br />

1<br />

⁄ L m + 1⁄ L ll1 + 1⁄<br />

L ll2<br />

i qs<br />

Ψ qr1<br />

Model supported by PSLF<br />

ω o<br />

SLIP<br />

+<br />

ω o ∙ R<br />

+ r1<br />

⬚<br />

⬚<br />

L ll1 +<br />

-<br />

Ψ qr2<br />

ω o<br />

SLIP<br />

+<br />

ω o ∙ R<br />

+ r2<br />

⬚<br />

⬚<br />

L ll2<br />

+<br />

-<br />

Ψ m<br />

Ψ dr1<br />

Ψ dr2<br />

1<br />

L ll1<br />

1<br />

L ll2<br />

+<br />

⬚<br />

+<br />

L'' m sat<br />

Ψ md<br />

⬚<br />

+<br />

-<br />

L'' m sat<br />

E'' q<br />

= ψ' d<br />

L m = L s − L l<br />

′<br />

L m = 1/(1/L m + 1/L ll1 ) = L ′ − L l<br />

′′<br />

L m = 1/(1/L m + 1/L ll1 + 1/L ll2 )<br />

= L ′′ − L l<br />

T ′ ′<br />

o = L ll1 ∙ L m /(ω o ∙ R r1 ∙ L m )<br />

= (L ll1 + L m )/(ω o ∙ R r1 )<br />

T ′′ ′<br />

o = L ll2 ∙ L m /(ω o ∙ R r2 ∙ L ′′ m )<br />

′<br />

= (L ll2 + L m )/(ω o ∙ R r2 )<br />

i ds


Machine Model WT1G1<br />

Direct Connected Type 1 Generator Model WT1G1<br />

Tpo T' – Open circuit transient rotor time constant<br />

Tppo T'' – Open circuit sub-transient rotor time constant in sec.<br />

Ls Synchronous reactance<br />

Lp L' – Transient Reactance<br />

Lpp L'' – Sub-transient Reactance<br />

Ll Stator leakage reactance (p.u. > 0)<br />

E1 Field voltage value E1<br />

SE1 Saturation value at E1<br />

E2 Field voltage value E2<br />

SE2 Saturation value at E2<br />

States:<br />

1 – Epr<br />

2 – Epi<br />

3 – Ekr<br />

4 – Eki<br />

Model supported by PSSE


Machine Model WT2G<br />

Model WT2G<br />

Ls Synchronous reactance, (p.u. > 0)<br />

Lp Transient reactance, (p.u. > 0)<br />

Ll Stator leakage reactance, (p.u. > 0)<br />

Ra<br />

Stator resistance in p.u.<br />

Tpo Transient rotor time constant in sec.<br />

S(1.0) Saturation factor at 1.0 p.u. flux<br />

S(1.2) Saturation factor at 1.2 p.u. flux<br />

spdrot Initial electrical rotor speed, p.u. of system frequency<br />

Accel Factor Acceleration factor<br />

States:<br />

1 – Epr<br />

2 – Epi<br />

3 – Ekr<br />

4 – Eki<br />

Model supported by PSLF


Machine Model WT2G1<br />

Induction Generator with Controlled External Rotor Resistor Type 2<br />

Model WT2G1<br />

Xa<br />

Xm<br />

X1<br />

R_Rot_Mach<br />

R_Rot_Max<br />

E1<br />

SE1<br />

E2<br />

SE2<br />

Power_Ref1 to Power_Ref_5<br />

Slip_1 to Slip_5<br />

Stator reactance<br />

Magnetizing reactance<br />

Rotor reactance<br />

Rotor resistance<br />

Sum of R_Rot_Mach and total external resistance<br />

Field voltage value E1<br />

Saturation value at E1<br />

Field voltage value E2<br />

Saturation value at E2<br />

Coordinate pairs of the power-slip curve<br />

Power-Slip<br />

States:<br />

1 – Epr<br />

2 – Epi<br />

3 – Ekr<br />

4 – Eki<br />

Model supported by PSSE


Machine Model WT3G<br />

Generator/converter Model for Type-3 (Double-Fed) Wind Turbines WT3G<br />

E'' q cmd<br />

1<br />

E'' q<br />

−1<br />

I Yinj<br />

I̅ssss<br />

(efd)<br />

1 + 0.02s<br />

X′′<br />

From<br />

exwtge<br />

1<br />

T<br />

I P cmd<br />

(ladifd)<br />

1<br />

1 + 0.02s<br />

I P<br />

Low Voltage<br />

Active Current<br />

Regulation<br />

I Xinj<br />

From<br />

exwtge<br />

2<br />

3<br />

V term<br />

∠ θ<br />

jX''<br />

States:<br />

1 – E q<br />

2 – I p<br />

3 – Vmeas<br />

Model supported by PSLF


Machine Model WT3G1<br />

Double-Fed Induction Generator (Type 3) Model WT3G1<br />

E q cmd<br />

1<br />

E q<br />

−1<br />

I Yinj<br />

I̅ssss<br />

(efd)<br />

1 + 0.02s<br />

X ee<br />

States:<br />

1 – Eq<br />

2 – Iq<br />

3 – Vmeas<br />

4 – PLL1<br />

5 – Delta<br />

From<br />

Converter<br />

Control<br />

I P cmd<br />

1<br />

1<br />

1 + 0.02s<br />

2<br />

P llmax<br />

I P<br />

I Xinj<br />

T<br />

V term<br />

∠ θ<br />

K iiii<br />

s<br />

4<br />

jX''<br />

-P llmax<br />

V tttt<br />

3<br />

T -1<br />

V Y<br />

K ppp<br />

ω o<br />

+<br />

+<br />

⬚<br />

-P llmax<br />

P llma<br />

ω o<br />

s<br />

5<br />

δ<br />

V X<br />

Notes: 1. V tttt and I̅ssss are complex values on network reference frame.<br />

2. In steady-state, V Y<br />

= 0, V X<br />

= V term<br />

, and δ = θ.<br />

3. X eq<br />

= Imaginary (ZSOURCE)<br />

Model supported by PSEE


Machine Model WT3G2<br />

Double-Fed Induction Generator (Type 3) Model WT3G2<br />

WEPCMD<br />

1<br />

1 + sT iiiii<br />

1<br />

−1<br />

X ee<br />

High Voltage<br />

Reactive Current<br />

Logic<br />

T<br />

I̅ssss<br />

WIPCMD<br />

+<br />

-<br />

⬚<br />

R ip_LVPL<br />

1<br />

sT iiiii<br />

2<br />

LVPL<br />

Low Voltage<br />

Reactive Current<br />

Logic<br />

LVPL<br />

1<br />

V T<br />

G LVPL<br />

LVPL<br />

V LVPL1<br />

V LVPL2 V<br />

1 + sT _LLLL<br />

P LLMAX<br />

3<br />

V T<br />

T -1<br />

V Y<br />

K PPP<br />

ω o<br />

K IIII<br />

s<br />

P LLMIN<br />

+<br />

4<br />

+<br />

⬚<br />

P LLMAX<br />

ω o<br />

s<br />

5<br />

States:<br />

1 – Eq<br />

2 – Iq<br />

3 – Vmeas<br />

4 – PLL1<br />

5 – Delta<br />

P LLMIN<br />

V X<br />

Model supported by PSEE<br />

Angle of V T<br />

If K PLL<br />

= 0 and K IPLL<br />

= 0


Machine Model WT4G1<br />

States:<br />

1 – Eq<br />

2 – Iq<br />

3 – Vmeas<br />

WEPCMD<br />

Wind Generator Model with Power Converter WT4G1<br />

1<br />

1 + sT eeeee<br />

1<br />

High Voltage<br />

Reactive Current<br />

Logic<br />

I̅ssss<br />

R ip_LVPL<br />

WIPCMD +<br />

1<br />

⬚<br />

-<br />

sT iiiii<br />

2<br />

LVPL<br />

Low Voltage<br />

Reactive Current<br />

Logic<br />

LVPL<br />

LVPL<br />

G LVPL<br />

V LVPL1<br />

V LVPL2 V<br />

1<br />

1 + sT _LLLL<br />

V T<br />

3<br />

Model supported by PSEE


Machine Model WT4G<br />

Model WT4G<br />

Tiqcmd<br />

Tipcmd<br />

VLVPL1<br />

VLVPL2<br />

GLVLP<br />

VHVRCR<br />

CurHVRCR<br />

RIP_LVPL<br />

T_LVLP<br />

Q command time constant<br />

P command time constant<br />

Low voltage regulation breakpoints<br />

Low voltage regulation breakpoints<br />

Low voltage regulation breakpoints<br />

High Voltage limit in p.u.<br />

High voltage reactive current limit<br />

Maximum Ip rate in p.u.<br />

Voltage sensor time constant<br />

States:<br />

1 – Eq<br />

2 – Ip<br />

3 – Vmeas<br />

Model supported by PSLF


Stabilizer BPA SF, BPA SP, BPA SS, and BPA SG<br />

Stabilizer BPA SF, BPA SP, BPA SS, and BPA SG<br />

Stabilizer Models<br />

⎧<br />

⎪<br />

⎪<br />

⎪<br />

⎪<br />

CHOICE OF<br />

INPUT SIGNALS⎨<br />

⎪<br />

⎪<br />

⎪<br />

⎪<br />

⎪<br />

⎩<br />

V =V<br />

− V<br />

T TO T<br />

e ts<br />

SHAFT SLIP,<br />

∆ FREQ. OR<br />

ACCEL. POWER<br />

K<br />

QV<br />

1+sT<br />

K QS<br />

K<br />

QS<br />

1+sT<br />

QV<br />

QS<br />

+<br />

2<br />

−<br />

+<br />

Σ<br />

1<br />

sT<br />

Q<br />

1+sT<br />

Q<br />

3 4 5 6<br />

1+sT<br />

1+sT<br />

'<br />

Q1<br />

Q1<br />

1+sT<br />

1+sT<br />

'<br />

Q2<br />

Q2<br />

∆V T<br />

1+sT<br />

1+sT<br />

'<br />

Q3<br />

Q3<br />

States<br />

1 - K<br />

2 - K<br />

3 - T<br />

4 - T<br />

5 - T<br />

6 - T<br />

QS<br />

Q<br />

QV<br />

Q1<br />

Q2<br />

Q3<br />

If V ≤ 0.0, then V =V<br />

'<br />

CUTOFF S S<br />

If V >0.0, then<br />

CUTOFF<br />

V =V if ∆V ≤V<br />

'<br />

S S T CUTOFF<br />

V =0.0 if ∆V >V<br />

S T CUTOFF<br />

∆V =V<br />

−V<br />

T TO T<br />

Model in the public domain, available from BPA<br />

V SMAX<br />

V SMIN<br />

'<br />

V S<br />

ZERO<br />

V ST


Stabilizer BPA SH, BPA SHPLUS, and BPA SI<br />

Stabilizer BPA SH, BPA SHPLUS, and BPA SI<br />

Stabilizer Models<br />

No block diagrams have been created


Stabilizer IEE2ST<br />

Stabilizer IEE2ST<br />

IEEE Stabilizing Model with Dual-Input Signals<br />

Input Signal #1<br />

K1<br />

1+sT<br />

1<br />

1<br />

+<br />

Σ<br />

+<br />

sT3<br />

1+sT<br />

4<br />

3 4 5<br />

1+sT<br />

1+sT<br />

5<br />

6<br />

1+sT<br />

1+sT<br />

7<br />

8<br />

Input Signal #2<br />

K2<br />

1+sT<br />

2<br />

2<br />

Output Limiter<br />

1+sT<br />

1+sT<br />

9<br />

10<br />

6<br />

L SMAX<br />

V SS<br />

L SMIN<br />

V = V if (V > V > V )<br />

S SS CU CT CL<br />

V = 0 if (V < V )<br />

S CT CL<br />

V = 0 if (V > V )<br />

S CT CU<br />

V ST<br />

States<br />

1 - Transducer1<br />

2 - Transducer2<br />

3 - Washout<br />

4 - LL1<br />

5 - LL2<br />

6 - Unlimited Signal<br />

Model supported by PSSE


Stabilizer IEEEST<br />

Stabilizer IEEEST<br />

IEEE Stabilizing Model<br />

Input Signal<br />

Filter<br />

1+A s+A s<br />

(1+A s+A s )(1+A s+A s )<br />

2<br />

5 6<br />

2 2<br />

1 2 3 4<br />

1+sT1<br />

1+sT<br />

2<br />

1+sT<br />

1+sT<br />

3<br />

4<br />

1 2 3 4<br />

5 6<br />

sT<br />

5<br />

KS<br />

1+sT<br />

6<br />

LSMIN<br />

L SMAX<br />

Output Limiter<br />

7<br />

V SS<br />

V = V if (V > V > V )<br />

S SS CU CT CL<br />

V = 0 if (V < V )<br />

S CT CL<br />

V = 0 if (V > V )<br />

S CT CU<br />

V ST<br />

States<br />

1 - Filter 1<br />

2 - Filter 2<br />

3 - Filter 3<br />

4 - Filter Out<br />

5 - LL1<br />

6 - LL2<br />

7 - Unlimited Signal<br />

Model supported by PSLF with time delay that is not implemented in Simulator<br />

Model supported by PSSE


Stabilizer PFQRG<br />

Stabilizer PFQRG<br />

Power-Sensitive Stabilizing Unit<br />

Reactive<br />

Power<br />

J=1<br />

J=0<br />

Power<br />

Factor<br />

+<br />

+<br />

Σ<br />

Reference Signal,<br />

Reactive power or<br />

Power Factor<br />

K<br />

P<br />

K<br />

+<br />

s<br />

I<br />

1<br />

MAX<br />

-MAX<br />

To Voltage<br />

Regulator<br />

V ST<br />

Supplementary<br />

Signal<br />

States<br />

1 - PI<br />

Model supported by PSLF


Stabilizer PSS1A<br />

Stabilizer PSS1A<br />

Single-Input Stabilizer Model<br />

Input Signal<br />

Filter<br />

1<br />

sT<br />

1<br />

1 + sT 6 1 + A 1 s+A 2 s 2<br />

5<br />

KS<br />

1+sT<br />

6<br />

Output Limiter<br />

1+sT1<br />

1+sT<br />

2<br />

1+sT<br />

1+sT<br />

3<br />

4<br />

L SMIN<br />

L SMAX<br />

Vllout<br />

If (Vcu and (Vct > Vcu))<br />

V ST = 0.0<br />

If (Vcl and (Vct < Vcu))<br />

V ST = 0.0<br />

Else<br />

V ST = Vllout<br />

V ST<br />

Model supported by PSLF with time delay that is not implemented in Simulator<br />

Model supported by PSSE


Stabilizer PSS2A<br />

Stabilizer PSS2A<br />

IEEE Dual-Input Stabilizer Model<br />

Input Signal #1<br />

sT<br />

1 2 3<br />

sT<br />

W1<br />

W2<br />

1+sT 1+sT<br />

W1<br />

W2 1+sT6<br />

1<br />

+<br />

Σ<br />

+<br />

⎡ 1+sT<br />

⎢<br />

⎣(1+sT )<br />

8<br />

M<br />

9<br />

9 − 18<br />

⎤<br />

⎥<br />

⎦<br />

N<br />

+<br />

Σ<br />

−<br />

K S1<br />

1+sT1<br />

1+sT<br />

2<br />

7 8<br />

1+sT<br />

1+sT<br />

3<br />

4<br />

Input Signal #2<br />

sT<br />

1+sT<br />

W3<br />

W3<br />

4 5 6<br />

sT<br />

1+sT<br />

W4<br />

W4<br />

KS2<br />

1+sT<br />

7<br />

K S3<br />

K S4<br />

A+sT<br />

1+sT<br />

B<br />

A<br />

19<br />

V STMAX<br />

V ST<br />

V STMIN<br />

States<br />

1 - WOTW1 11 - RampFilter3<br />

2 - WOTW2 12 - RampFilter4<br />

3 - Transducer1 13 - RampFilter5<br />

4 - WOTW3 14 - RampFilter6<br />

5 - WOTW4 15 - RampFilter7<br />

6 - Transducer2 16 - RampFilter8<br />

7 - LL1 17 - RampFilter9<br />

8 - LL2 18 - RampFilter10<br />

9 - RampFilter1 19 - LLGEOnly<br />

10 - RampFilter2<br />

Model supported by PSLF<br />

Model supported by PSSE without T ,T lead/lag block and with K = 1<br />

A B S4


Stabilizer PSS2B<br />

Stabilizer PSS2B<br />

IEEE Dual-Input Stabilizer Model<br />

V S1<br />

V S1MAX<br />

sT<br />

1 2 3<br />

sT<br />

W1<br />

W2<br />

1+sTW1<br />

1+sT 1+sT<br />

W2<br />

6<br />

1<br />

+<br />

Σ<br />

+<br />

⎡ 1+sT<br />

⎢<br />

⎣(1+sT )<br />

8<br />

M<br />

9<br />

⎤<br />

⎥<br />

⎦<br />

N<br />

+<br />

Σ<br />

−<br />

K S1<br />

1+sT1<br />

1+sT<br />

2<br />

7 8<br />

1+sT<br />

1+sT<br />

3<br />

4<br />

1+sT<br />

1+sT<br />

10<br />

11<br />

20<br />

V S1MIN<br />

9 − 18<br />

V S2<br />

V S2MIN<br />

V S2MAX<br />

sT<br />

1+sT<br />

W3<br />

W3<br />

4 5 6<br />

sT<br />

1+sT<br />

W4<br />

W4<br />

KS2<br />

1+sT<br />

7<br />

K S3<br />

K S4<br />

A+sT<br />

1+sT<br />

B<br />

A<br />

19<br />

V STMAX<br />

V ST<br />

V STMIN<br />

States<br />

1 - WOTW1 11 - RampFilter3<br />

2 - WOTW2 12 - RampFilter4<br />

3 - Transducer1 13 - RampFilter5<br />

4 - WOTW3 14 - RampFilter6<br />

5 - WOTW4 15 - RampFilter7<br />

6 - Transducer2 16 - RampFilter8<br />

7 - LL1 17 - RampFilter9<br />

8 - LL2 18 - RampFilter10<br />

9 - RampFilter1 19 - LLGEOnly<br />

10 - RampFilter2 20 - LL3<br />

Model supported by PSLF<br />

Model supported by PSSE without T ,T lead/lag block and with K = 1<br />

A B S4


Stabilizer PSSSB<br />

Stabilizer PSSSB<br />

IEEE PSS2A Dual-Input Stabilizer Plus Voltage Boost Signal<br />

Transient Stabilizer and Vcutoff<br />

Input 1<br />

Input 2<br />

States<br />

sTW1<br />

sT<br />

1<br />

W2<br />

1+sT 1+sT 1+sT6<br />

sT<br />

1+sT<br />

W1<br />

W3<br />

W3<br />

1 2 3<br />

W2<br />

4 5 6<br />

sT<br />

1+sT<br />

W4<br />

W4<br />

1 - WOTW1 11 - RampFilter3<br />

2 - WOTW2 12 - RampFilter4<br />

3 - Transducer1 13 - RampFilter5<br />

4 - WOTW3 14 - RampFilter6<br />

5 - WOTW4 15 - RampFilter7<br />

KS2<br />

1+sT<br />

6 - Transducer2 16 - RampFilter8<br />

7 - LL1 17 - RampFilter9<br />

8 - LL2 18 - RampFilter10<br />

9 - RampFilter1 19 - TransducerTEB<br />

10 - RampFilter2 20 - WOTEB<br />

Model supported by PSLF<br />

7<br />

+<br />

Σ<br />

+<br />

K S3<br />

⎡ 1+sT<br />

⎢<br />

⎣(1+sT )<br />

8<br />

M<br />

9<br />

9 − 18<br />

V K<br />

⎤<br />

⎥<br />

⎦<br />

N<br />

1<br />

+<br />

Sw1<br />

Σ<br />

−<br />

K S4<br />

0<br />

1+sT<br />

1<br />

KS1<br />

1+sT2<br />

1<br />

1+sT<br />

0<br />

d1<br />

19<br />

sTd2<br />

1+sT<br />

7 8<br />

d2<br />

1+sT<br />

1+sT<br />

3<br />

4<br />

V STMIN<br />

20<br />

V tl<br />

+<br />

+<br />

Σ<br />

V STMAX<br />

≤ 0<br />

ΔV<br />

T<br />

=VT0-VT<br />

ΔV<br />

T<br />

>Vcutoff<br />

0<br />

Vcutoff<br />

V ST


Stabilizer PTIST1<br />

Stabilizer PTIST1<br />

PTI Microprocessor-Based Stabilizer<br />

1<br />

Ms<br />

1+sT<br />

K(1+sT )(1+sT )<br />

(1+sT )(1 + sT )<br />

Δω +<br />

M<br />

1 3<br />

F<br />

Σ<br />

+<br />

P'<br />

+<br />

Σ<br />

−<br />

2 4<br />

Tap<br />

Selection<br />

Table<br />

−<br />

Σ<br />

+<br />

π<br />

V ST<br />

1<br />

1+sT<br />

P<br />

P<br />

e<br />

on machine MVA base<br />

E t<br />

Model supported by PSSE but not yet implemented in Simulator


Stabilizer PTIST3<br />

Stabilizer PTIST3<br />

PTI Microprocessor-Based Stabilizer<br />

Ms<br />

1+sT<br />

K(1+sT )(1+sT )<br />

(1+sT )(1 + sT )<br />

Δω 1 3<br />

F<br />

+<br />

Σ<br />

P' M<br />

+<br />

Σ<br />

+<br />

−<br />

2 4<br />

1+sT<br />

1+sT<br />

5<br />

6<br />

(A +A s+A s )(A +A s+A s )<br />

(B +B s+B s )(B +B s+B s )<br />

2 2<br />

0 1 2 3 4 5<br />

2 2<br />

0 1 2 3 4 5<br />

1<br />

1+sT<br />

P<br />

P<br />

e<br />

on machine MVA base<br />

Averaging<br />

Function<br />

Limit<br />

Function<br />

Switch = 0<br />

−DL<br />

DL<br />

AL<br />

Tap<br />

Selection<br />

Table<br />

1<br />

E t<br />

+<br />

−<br />

Σ π<br />

V ST<br />

Switch = 1<br />

−AL<br />

Model supported by PSSE but not yet implemented in Simulator


Stabilizer ST2CUT<br />

Stabilizer ST2CUT<br />

Stabilizing Model with Dual-Input Signals<br />

Input Signal #1<br />

K1<br />

1+sT<br />

1<br />

1<br />

+<br />

+<br />

Σ<br />

sT3<br />

1+sT<br />

4<br />

3 4 5 6<br />

1+sT<br />

1+sT<br />

5<br />

6<br />

1+sT<br />

1+sT<br />

7<br />

8<br />

1+sT<br />

1+sT<br />

9<br />

10<br />

Input Signal #2<br />

K2<br />

1+sT<br />

2<br />

2<br />

L SMIN<br />

L SMAX<br />

V SS<br />

Output Limiter<br />

V = V if (V +V >V >V +V )<br />

S SS CU TO T CL TO<br />

V = 0 if (V < V +V )<br />

S T TO CL<br />

V = 0 if (V > V +V )<br />

S CT TO CU<br />

V ST<br />

States<br />

1 - Transducer1<br />

2 - Transducer2<br />

3 - Washout<br />

4 - LL1<br />

5 - LL2<br />

6 - Unlimited Signal<br />

Model supported by PSSE<br />

V = initial terminal voltage<br />

TO<br />

V = terminal voltage<br />

T


Stabilizer STAB1<br />

Stabilizer STAB1<br />

Speed-Sensitive Stabilizing Model<br />

Speed (pu)<br />

Ks<br />

1+sT<br />

1+sT1<br />

1+sT<br />

3<br />

1+sT<br />

1+sT<br />

1 2 3<br />

2<br />

4<br />

H LIM<br />

V ST<br />

-H LIM<br />

States<br />

1 - Washout<br />

2 - Lead-lag 1<br />

3 - Lead-lag 2<br />

Model supported by PSSE


Stabilizer STAB2A<br />

Stabilizer STAB2A<br />

Power-Sensitive Stabilizing Unit<br />

P<br />

e<br />

on machine<br />

MVA base<br />

⎡K2sT<br />

⎤<br />

2<br />

− ⎢ ⎥<br />

⎣1+sT2<br />

⎦<br />

3<br />

K3<br />

1+sT<br />

K 4<br />

3<br />

4<br />

+<br />

+<br />

Σ<br />

⎡ K ⎤<br />

5<br />

⎢ ⎥<br />

⎣1+sT5<br />

⎦<br />

1 − 3<br />

5 − 6<br />

2<br />

H LIM<br />

-H LIM<br />

V ST<br />

States<br />

1 - Input State 1<br />

2 - Input State 2<br />

3 - Input State 3<br />

4 - T<br />

3<br />

5 - Output State 1<br />

6 - Output State 2<br />

Model supported by PSSE


Stabilizer STAB3<br />

Stabilizer STAB3<br />

Power-Sensitive Stabilizing Unit<br />

P<br />

ref<br />

P<br />

e<br />

on machine<br />

MVA base<br />

1<br />

1+sT<br />

t<br />

1<br />

−<br />

2 3<br />

1<br />

1+sT<br />

+ Σ X1<br />

-sK<br />

1+sT<br />

X<br />

X2<br />

V LIM<br />

V ST<br />

-V LIM<br />

States<br />

1 - Int T<br />

2 - Int T<br />

t<br />

X1<br />

3 - Unlimited Signal<br />

Model supported by PSSE


Stabilizer STAB4<br />

Stabilizer STAB4<br />

Power-Sensitive Stabilizer<br />

P<br />

e<br />

on machine<br />

MVA base<br />

1<br />

1+sT<br />

t<br />

1<br />

P<br />

ref<br />

−<br />

sK<br />

1+sT<br />

+ Σ XX2<br />

2 3 4 5 6<br />

1+sT<br />

1+sT<br />

a<br />

X1<br />

1+sT<br />

1+sT<br />

b<br />

c<br />

1<br />

1+sT<br />

d<br />

1<br />

1+sT<br />

e<br />

L1<br />

L2<br />

V ST<br />

States<br />

1 - Input<br />

2 - Reset<br />

3 - LL1<br />

4 - LL2<br />

5 - T<br />

d<br />

6 - Unlimited Signal<br />

Model supported by PSSE


Stabilizer STBSVC<br />

Stabilizer STBSVC<br />

WECC Supplementary Signal for Static var Compensator<br />

1 2<br />

Input Signal #1<br />

Input Signal #2<br />

KS1<br />

1+sT<br />

S7<br />

KS2<br />

1+sT<br />

S10<br />

1+sT<br />

1+sT<br />

+<br />

+<br />

3 4<br />

1+sT<br />

1+sT<br />

S8<br />

S9<br />

S11<br />

S12<br />

Σ<br />

sT<br />

1+sT<br />

S13<br />

K S3<br />

S14<br />

5<br />

K S3<br />

-V SCS<br />

V SCS<br />

V ST<br />

States<br />

1 - Transducer1<br />

2 - LL1<br />

3 - Transducer2<br />

4 - LL2<br />

5 - Washout<br />

Model supported by PSSE


Stabilizer WSCCST<br />

Stabilizer WSCCST<br />

WSCC Power System Stabilizer<br />

V T<br />

k<br />

+<br />

V T0<br />

Σ<br />

signal j<br />

−−−−−−<br />

speed 1<br />

accpw 2<br />

freq 3<br />

−<br />

f(U)<br />

K<br />

qv<br />

1+sT<br />

1<br />

1+sT<br />

1<br />

1+sT<br />

1<br />

qs<br />

qv<br />

2<br />

1<br />

sT2<br />

1+sT<br />

2<br />

+<br />

Σ<br />

+<br />

sT<br />

K qs<br />

K t<br />

3<br />

1+sT3<br />

1+sT4<br />

s<br />

+<br />

−<br />

Σ<br />

Σ<br />

+<br />

−<br />

+<br />

'<br />

V s<br />

U<br />

States<br />

1 - Transducer1<br />

2 - Transducer2<br />

3 - WashoutTq<br />

4 - LL1<br />

5 - LL2<br />

6 - LL3<br />

V SMAX<br />

0<br />

ΔV<br />

T<br />

=VT0-VT<br />

ΔV<br />

T<br />

>Vcutoff<br />

sT<br />

q<br />

1+sT<br />

q<br />

3 '<br />

'<br />

1+sT 4 1+sT 5 1+sT 6<br />

1+sT<br />

q1<br />

q1<br />

1+sT<br />

'<br />

q2<br />

q2<br />

1+sT<br />

q3<br />

q3<br />

V SLOW<br />

+<br />

+<br />

Σ<br />

≤ 0<br />

Vcutoff<br />

V S<br />

0<br />

Model supported by PSLF<br />

Sw1<br />

Blocks in gray have not been implemented in Simulator<br />

V K<br />

0<br />

1<br />

1<br />

1+sT<br />

d1<br />

sTd2<br />

1+sT<br />

d2<br />

V tl


Stabilizer WT12A1 and WT1P<br />

Stabilizer WT12A1 and WT1P<br />

Pseudo Governor Model for Type 1 and Type 2 Wind Turbines<br />

Speed<br />

K P<br />

P gen<br />

1<br />

1+sT<br />

PE<br />

1<br />

ω ref<br />

+<br />

−<br />

+<br />

Σ K droop<br />

−<br />

+<br />

Σ<br />

K I<br />

1<br />

s<br />

+<br />

+<br />

Σ<br />

2<br />

PI MIN<br />

PI MAX<br />

1<br />

1+sT<br />

1<br />

3 4<br />

1<br />

1+sT<br />

2<br />

P mech<br />

P ref<br />

States<br />

1 - P<br />

2 - K<br />

3 - T<br />

4 - P<br />

gen<br />

1<br />

I<br />

mech<br />

WT12A1 supported by PSSE with K<br />

I<br />

= T<br />

I<br />

WT1P supported by PSLF<br />

1


Stabilizer WT2P<br />

Stabilizer Model WT2P<br />

Tpe<br />

Kdroop<br />

Kp<br />

Ki<br />

Pimax<br />

Pimin<br />

T1<br />

T2<br />

Kw<br />

T'e – Time constant in sec.<br />

Droop gain<br />

PI proportional gain<br />

PI proportional gain<br />

Maximum pitch in deg.<br />

Minimum pitch in deg.<br />

Lead/lag time constant in sec.<br />

Lead/lag time constant in sec.<br />

Speed gain in p.u.<br />

Model supported by PSLF


Stabilizer WT3P and WT3P1<br />

Stabilizer WT3P and WT3P1<br />

Pitch Control Model for Type 3 Wind Generator<br />

Theta MAX<br />

Theta MAX<br />

ω<br />

ω ref<br />

P ORD<br />

2<br />

+ K +<br />

IP<br />

+<br />

Σ K<br />

PP<br />

+ s<br />

Σ Σ<br />

−<br />

+ −<br />

Theta MIN<br />

+<br />

3<br />

KIC<br />

K + s<br />

−<br />

Σ<br />

PC<br />

RTheta MAX<br />

1<br />

sT<br />

-RTheta MAX<br />

Theta MIN<br />

P<br />

1<br />

Pitch<br />

P set<br />

0<br />

States<br />

1 - Pitch<br />

2 - PitchControl<br />

3 - PitchComp<br />

WT3P supported by PSLF<br />

T =T , Theta =PI , Theta =PI , and RTheta = PI<br />

P PI MAX MAX MIN MIN MAX RATE<br />

WT3P1 supported by PSSE with no non-windup limits on pitch control


Switched Shunt Relay CAPRELAY<br />

Switched Shunt Relay CAPRELAY<br />

Rem Bus<br />

Tfilter<br />

tbClose<br />

tbOpen<br />

V1On<br />

T1On<br />

V2On<br />

T2On<br />

V1Off<br />

T1Off<br />

V2Off<br />

T2Off<br />

Remote Bus<br />

Voltage filter time constant in sec.<br />

Circuit breaker closing time for switching shunt ON in sec.<br />

Circuit breaker closing time for switching shunt OFF in sec.<br />

First voltage threshold for switching shunt capacitor ON in sec.<br />

First time delay for switching shunt capacitor ON in sec.<br />

Second voltage threshold for switching shunt capacitor ON in sec.<br />

Second time delay for switching shunt capacitor ON in sec.<br />

First voltage threshold for switching shunt capacitor OFF in sec.<br />

First time delay for switching shunt capacitor OFF in sec.<br />

Second voltage threshold for switching shunt capacitor OFF in sec.<br />

Second time delay for switching shunt capacitor OFF in sec.<br />

Model supported by PSLF


Exciter WT4E<br />

Exciter WT4E<br />

Electrical Control for Full Converter Wind-turbine generators (FC WTG)<br />

V C<br />

1<br />

1+ sTRV<br />

V RFQ<br />

+<br />

5 +<br />

− 1<br />

4<br />

∑<br />

K IV<br />

s<br />

KPV<br />

1+ sT<br />

V<br />

∑<br />

+<br />

3<br />

Q MIN<br />

Q MAX<br />

1+ sTFV<br />

6<br />

States:<br />

1 – Vref 6 - Qord<br />

2 - IqCMD 7 - Pmeas<br />

3 – Kpv<br />

4 – VregMeas<br />

5 – Kiv<br />

P FAREF<br />

P elec<br />

1<br />

1+ sTP<br />

tan<br />

7<br />

π<br />

Q REF<br />

0<br />

1<br />

pfaflg<br />

0<br />

1<br />

Q MAX<br />

+<br />

Q elec<br />

−<br />

∑<br />

V MAXCL<br />

K QI<br />

s<br />

1<br />

+<br />

−<br />

∑<br />

I QMAX<br />

K VI<br />

s<br />

2<br />

I QCMD<br />

varflg<br />

Q MIN<br />

V MINCL<br />

V TERM<br />

I QMIN<br />

pqflag<br />

Converter Current Limit<br />

+<br />

P ORD<br />

÷<br />

I PMAX<br />

I PCMD<br />

V TERM<br />

Model supported by PSSE


Exciter ESST5B and ST5B<br />

Exciter ESST5B and ST5B<br />

IEEE (2005) Type ST5B Excitation System<br />

V rmax /K r<br />

V rmax<br />

/K r<br />

7 8<br />

V c<br />

V rmin<br />

/K r<br />

V rmin<br />

/K r<br />

V ref<br />

+<br />

2<br />

_<br />

V oel<br />

HV<br />

Gate<br />

LV<br />

Gate<br />

+<br />

+<br />

V rmax<br />

/K r<br />

3<br />

V rmax<br />

/K r<br />

0<br />

4<br />

+1<br />

-1<br />

V rmax<br />

V r<br />

+<br />

_<br />

V t V rmax<br />

E fd<br />

1<br />

V uel<br />

V s<br />

V rmin<br />

/K r<br />

V rmin<br />

/K r<br />

V rmin<br />

V t V rmin<br />

V rmax<br />

/K r<br />

V rmax<br />

/K r<br />

I fd<br />

States:<br />

1 – Efd<br />

2 – Sensed Vt<br />

3 – LL1<br />

4 – LL2<br />

5 – LLU1<br />

6 – LLU2<br />

7 – LLO1<br />

8 – LLO2<br />

V rmin<br />

/K r<br />

5 6<br />

V rmin<br />

/K r<br />

Model supported by PSLF and PSSE


Exciter ESST6B<br />

Exciter ESST6B<br />

IEEE 421.5 2005 ST6B Excitation System Model<br />

I FD<br />

V C<br />

1<br />

1+ sT R<br />

2<br />

I LR<br />

K CL<br />

+<br />

−<br />

Σ<br />

K LR<br />

VOEL<br />

(OEL=1)<br />

Alternate OEL Inputs<br />

VOEL<br />

(OEL=2)<br />

V AMAX<br />

K FF<br />

V RMIN<br />

1<br />

0<br />

V T<br />

V RMULT<br />

−<br />

−<br />

+<br />

Σ<br />

V UEL<br />

HV<br />

Gate<br />

+<br />

−<br />

+<br />

Σ<br />

K<br />

PA<br />

V AMIN<br />

+ KIA<br />

sK<br />

s<br />

+ 1 + sT<br />

DA<br />

DA<br />

3 4<br />

V A<br />

+<br />

−<br />

Σ<br />

KM<br />

+<br />

+<br />

Σ<br />

V RMAX<br />

V RMIN<br />

LV<br />

Gate<br />

V R<br />

V B<br />

π<br />

1<br />

1+ sTS<br />

E FD<br />

1<br />

V REF<br />

V S<br />

States<br />

1 - E<br />

FD<br />

2 - Sensed V<br />

3 - PID1<br />

4 - PID2<br />

5 - V<br />

G<br />

t<br />

ESST6B is the same as model ST6B<br />

ESST6B is a PSLF model and ST6B is a PSSE model<br />

V G<br />

5<br />

sKG<br />

1+ sT<br />

G


Exciter ESST7B<br />

Exciter ESST7B<br />

IEEE 421.5 2005 ST7B Excitation System Model<br />

V DROOP<br />

V<br />

OEL<br />

(OEL=1)<br />

Alternate<br />

OEL Inputs<br />

VOEL<br />

(OEL=2)<br />

V C<br />

1<br />

1+ sT R<br />

1+<br />

sT<br />

1+<br />

sT<br />

G<br />

2 3<br />

F<br />

V S<br />

V SCL<br />

+<br />

+<br />

+<br />

Σ<br />

+<br />

+<br />

+<br />

Σ<br />

LV<br />

Gate<br />

HV<br />

Gate<br />

V MIN<br />

V MAX<br />

V REF_FB<br />

Σ<br />

Σ<br />

K PA<br />

Alternate UEL Inputs<br />

V REF<br />

VUEL<br />

(UEL=1)<br />

VUEL<br />

(UEL=2)<br />

VOEL<br />

(OEL=3)<br />

VUEL<br />

(UEL=3)<br />

VV<br />

T<br />

RMAX<br />

States:<br />

1 – EField<br />

2 – VTerminalSensed<br />

3 – InputLL<br />

4 – LL2<br />

5 – Feedback<br />

VV<br />

T<br />

RMIN<br />

+<br />

Σ<br />

−<br />

HV<br />

Gate<br />

Σ<br />

−<br />

+<br />

LV<br />

Gate<br />

VV<br />

T<br />

RMAX<br />

K L<br />

1+<br />

sT<br />

1+<br />

sT<br />

C<br />

B<br />

4<br />

+<br />

+<br />

Σ<br />

LV<br />

Gate<br />

5<br />

sKIA<br />

1+ sT<br />

IA<br />

HV<br />

Gate<br />

VV<br />

T<br />

RMIN<br />

1<br />

1+ sTS<br />

E FD<br />

1<br />

ESST7B is the same as model ST7B<br />

ESST7B is a PSLF model and ST7B is a PSSE model<br />

K H


Exciter BBSEX1<br />

Exciter BBSEX1<br />

Brown Boveri Static Exciter<br />

V ref<br />

E c<br />

V<br />

+<br />

rmax<br />

_ +<br />

+<br />

V t<br />

EFD max<br />

E fd<br />

2<br />

+<br />

1<br />

+<br />

V rmin<br />

+<br />

V t<br />

EFD min<br />

3<br />

0 Switch = 0<br />

States:<br />

1 – VLL34<br />

2 – Sensed Vt<br />

3 – Feedback<br />

V S<br />

Model supported by PSSE


Exciter IVOEX<br />

Exciter IVOEX<br />

IVO Excitation Model<br />

V ref<br />

E c<br />

2<br />

_<br />

+<br />

+<br />

MIN 1<br />

MAX 1<br />

1<br />

MIN 3<br />

MAX 3<br />

3<br />

4<br />

MIN 5<br />

MAX 5<br />

E fd<br />

V S<br />

States:<br />

1 – VLL12<br />

2 – Sensed Vt<br />

3 – VLL34<br />

4 – VLL56<br />

Model supported by PSSE


Exciter EXIVO<br />

Exciter EXIVO<br />

IVO Excitation Model<br />

V ref<br />

V comp<br />

2<br />

_<br />

+<br />

+<br />

MIN 1<br />

MAX 1<br />

1<br />

MIN 3<br />

MAX 3<br />

3<br />

4<br />

MIN 5<br />

MAX 5<br />

E fd<br />

V S<br />

States:<br />

1 – VLL12<br />

2 – Sensed Vt<br />

3 – VLL34<br />

4 – VLL56<br />

Model supported by PSLF


Generator Other Model LHFRT<br />

Low/High Frequency Ride through Generator Protection<br />

Fref<br />

dftrp1 to dftrp10<br />

Frequency ref. in Hz<br />

Delta Frequency Trip Level in p.u.<br />

Model supported by PSLF


Generator Other Model LHVRT<br />

Low/High Voltage Ride through Generator Protection<br />

Vref<br />

dvtrp1 to dftrp10<br />

Voltage ref. in p.u.<br />

Delta Voltage Trip Level in p.u.<br />

Model supported by PSLF


Governor HYPID<br />

Governor HYPID<br />

Hydro Turbine and Governor<br />

|ds2/dt| 0<br />

1 + sT eeee 2<br />

b<br />

T elec<br />

< 0<br />

R<br />

1<br />

1 + sT bbbbb<br />

6<br />

g min<br />

speed<br />

π<br />

D turb<br />

g<br />

÷<br />

π<br />

_<br />

⬚<br />

+<br />

1<br />

sT w<br />

4<br />

+<br />

⬚<br />

_<br />

π<br />

At<br />

_<br />

+<br />

⬚<br />

P mech<br />

Pv = f(g,b)<br />

hdam<br />

qnl<br />

States:<br />

1 – Ki<br />

2 – RPelec<br />

3 – Gate<br />

4 – Turbine Flow<br />

5 – Derivative<br />

6 - Blade<br />

+<br />

Model supported by PSLF


Governor WT4T<br />

Governor WT4T<br />

Simplified Type-4 (Full Converter) Wind Turbine<br />

P ref<br />

P ref<br />

dP max<br />

P elec<br />

1<br />

_<br />

+<br />

P iin<br />

1 s 2<br />

_<br />

K ii<br />

⬚<br />

K<br />

1 + sT pp+<br />

PP<br />

P iou<br />

_<br />

+<br />

⬚<br />

P ord<br />

dP min<br />

3<br />

sK f<br />

1 + sT f<br />

States:<br />

1 – Pelec<br />

2 – PIOut<br />

3 – Feedback<br />

Model supported by PSSE


Stabilizer PSSSH<br />

Stabilizer PSSSH<br />

Model for Siemens “H infinity” Power System Stabilizer with Generator Electrical<br />

Power Input<br />

V smax<br />

P e<br />

1<br />

1 + sT d<br />

⬚<br />

1<br />

K 0<br />

+<br />

+<br />

⬚<br />

+<br />

+<br />

⬚<br />

K 1 K 2 K 3<br />

K 4<br />

+<br />

+<br />

⬚<br />

+<br />

+<br />

⬚<br />

K<br />

V smin<br />

V s<br />

_<br />

+<br />

_<br />

1<br />

sT 1<br />

⬚<br />

1<br />

sT 2<br />

2 3 4 5<br />

+<br />

+<br />

+<br />

+<br />

⬚<br />

+<br />

1<br />

1<br />

sT 3 sT 4<br />

⬚<br />

+<br />

States:<br />

1 – Pe<br />

2 – Int1<br />

3 – Int2<br />

4 – Int3<br />

5 – Int4<br />

Model supported by PSLF


Stabilizer IVOST<br />

Stabilizer IVOST<br />

IVO Stabilizer Model<br />

MAX 3<br />

MAX 5<br />

P elec<br />

K 1<br />

A 1 + ss 1<br />

A 2 + sT 2<br />

MAX 1<br />

A 3 + ss 3<br />

A 5 + ss 5<br />

K 3 K 5<br />

1 A 4 + sT 4 2 A 6 + sT 6<br />

MIN 1<br />

MIN 3<br />

3<br />

MIN 5<br />

V OTHSG<br />

States:<br />

1 – VLL12<br />

2 – VLL34<br />

3 – VLL56<br />

Model supported by PSSE


Stabilizer PSS3B<br />

Stabilizer PSS3B<br />

IEEE Dual-Input Stabilizer model<br />

V s1<br />

K s1<br />

ss w1<br />

1 + sT 1 1 1 + sT w1<br />

3<br />

V STMAX<br />

+<br />

+ ss w3 1 + sA 1 + s 2 A 2 1 + sA 5 + s 2 A 6<br />

V S<br />

⬚<br />

1 + sT w3<br />

5<br />

1 + sA 3 + s 2 A 4<br />

1 + sA 7 + s 2 A 8<br />

+<br />

6 7 8 9<br />

V STMIN<br />

V s2<br />

K s2<br />

ss w2<br />

1 + sT 2 2 1 + sT w2<br />

4<br />

States:<br />

1 – Input 1<br />

2 – Input 2<br />

3 – Washout 1<br />

4 – Washout 2<br />

5 – Washout 3<br />

6 – Filter 1 Internal<br />

7 – Filter 1 Output<br />

8 – Filter 2 Internal<br />

9 – Filter 2 Output<br />

Model supported by PSLF

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!