15.03.2015 Views

Hydrological modelling of the Zambezi catchment for ... - TU Delft

Hydrological modelling of the Zambezi catchment for ... - TU Delft

Hydrological modelling of the Zambezi catchment for ... - TU Delft

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Master's Thesis<br />

<strong>Hydrological</strong> <strong>modelling</strong> <strong>of</strong> <strong>the</strong><br />

<strong>Zambezi</strong> <strong>catchment</strong> <strong>for</strong> gravity<br />

measurements<br />

A.M.J. Gerrits<br />

February 2005


Master’s Thesis<br />

<strong>Hydrological</strong> <strong>modelling</strong> <strong>of</strong> <strong>the</strong> <strong>Zambezi</strong> <strong>catchment</strong> <strong>for</strong> gravity<br />

measurements<br />

<strong>Delft</strong>, February 2005<br />

Author:<br />

A.M.J. Gerrits<br />

Graduation committee:<br />

Pr<strong>of</strong>.dr.ir. H.H.G. Savenije (<strong>Delft</strong> University <strong>of</strong> Technology, CiTG, Water Resources Section)<br />

Ir. W.M.J. Luxemburg (<strong>Delft</strong> University <strong>of</strong> Technology, CiTG, Water Resources Section)<br />

Dr. L.L.A. Vermeersen (<strong>Delft</strong> University <strong>of</strong> Technology, L&R, Astrodynamics & Satellite Systems)<br />

Ir. N.J. de Vos (<strong>Delft</strong> University <strong>of</strong> Technology, CiTG, Water Resources Section)<br />

Dr.ir. M.G.F. Werner (WL | <strong>Delft</strong> Hydraulics)


PREFACE<br />

Preface<br />

This Master’s Thesis describes <strong>the</strong> results <strong>of</strong> my research on hydrological <strong>modelling</strong> <strong>of</strong> <strong>the</strong><br />

<strong>Zambezi</strong> <strong>catchment</strong> <strong>for</strong> gravity measurements. The research was carried out at <strong>the</strong> Water<br />

Resources Section <strong>of</strong> <strong>the</strong> faculty <strong>of</strong> Civil Engineering and Geosciences <strong>of</strong> <strong>Delft</strong> University <strong>of</strong><br />

Technology. During this research project, I investigated several rainfall algorithms to obtain<br />

accurately input data <strong>for</strong> <strong>the</strong> hydrological model, recalibrated <strong>the</strong> <strong>Zambezi</strong>-model and<br />

executed a sensitivity analysis on <strong>the</strong> model, in order to obtain a hydrological model with less<br />

error as possible. This is necessary to be able to compare hydrological data with data from<br />

gravity measurements provided by <strong>the</strong> satellite GRACE. In <strong>the</strong>ory, it should be possible to<br />

detect variations in <strong>the</strong> water storage from gravity changes, caused by mass redistributions. In<br />

this <strong>the</strong>sis a first qualitative comparison is made.<br />

In relation to my research I owe gratitude to a lot <strong>of</strong> people who have encouraged and helped<br />

me during my study. First my words <strong>of</strong> thanks go to my graduation committee. I would like to<br />

thank pr<strong>of</strong>essor Savenije <strong>for</strong> his helping thoughts on <strong>the</strong> improvement <strong>the</strong> <strong>Zambezi</strong> model in<br />

<strong>Delft</strong> and via long distance communication to Australia. I would like to thank Wim<br />

Luxemburg <strong>for</strong> his critical reading <strong>of</strong> my reports and <strong>for</strong> being a wonderful colleague during<br />

several field trips during my study time. I would like to thank Bert Vermeersen, from <strong>the</strong><br />

faculty <strong>of</strong> Aerospace, <strong>for</strong> introducing me into <strong>the</strong> world <strong>of</strong> satellites and gravity. I would like<br />

to thank Nico de Vos <strong>for</strong> being a nice room mate and giving me advise about model<br />

uncertainties and last but not least Micha Werner, from WL | <strong>Delft</strong> hydraulics, <strong>for</strong> providing<br />

me his GLUE code and expertise.<br />

I would also like to thank Jeroen Aerts and Aad Versteeg from <strong>the</strong> ‘Vrije Universiteit’ <strong>of</strong><br />

Amsterdam <strong>for</strong> providing me and helping me with <strong>the</strong> model environment STREAM.<br />

I would like to thank my Italian MSc.-colleague, Alessandro Ficara, <strong>for</strong> starting with<br />

improving <strong>of</strong> <strong>the</strong> <strong>Zambezi</strong> model.<br />

Thanks to Hessel Winsemius <strong>for</strong> being a nice study friend and helping me with Matlab and<br />

special thanks to Hanneke Marcano Bakker, from <strong>the</strong> faculty <strong>of</strong> Aerospace, <strong>for</strong> providing me<br />

analyzed GRACE data. I wish Hessel and Hanneke good luck with continuing this very<br />

interesting and promising topic about gravity measurements in hydrology.<br />

iii


PREFACE<br />

Fur<strong>the</strong>rmore, I would like to thank all my colleagues <strong>of</strong> <strong>the</strong> Water Resource Section during<br />

my work as student assistant. They provided me a nice and stimulating environment to<br />

accomplish my Master’s Study in hydrology. They motivated me and gave me <strong>the</strong> opportunity<br />

to learn more about hydrology than just <strong>the</strong> knowledge in <strong>the</strong> regular lecture notes <strong>of</strong> <strong>the</strong><br />

curriculum.<br />

Finally I am very grateful to my boyfriend Jeroen Coenders. Besides helping me with<br />

computer related problems, he encouraged me to learn a new programming language,<br />

stimulated me during my research by listening and talking toge<strong>the</strong>r about <strong>the</strong> gravity<br />

measurements and he supported me to develop myself in a way to come to a fine research<br />

result.<br />

Miriam Gerrits<br />

<strong>Delft</strong>, February 2005<br />

iv


TABLE OF CONTENTS<br />

Table <strong>of</strong> contents<br />

PREFACE..............................................................................................................................................................III<br />

SUMMARY ..........................................................................................................................................................VII<br />

ACRONYMS & SYMBOLS .............................................................................................................................XI<br />

2.1 ACRONYMS............................................................................................................................................XI<br />

2.2 SYMBOLS..............................................................................................................................................XII<br />

1 INTRODUCTION ........................................................................................................................................1<br />

2 PROBLEM ANALYSIS ..............................................................................................................................3<br />

2.1 GRAVITY MEASUREMENTS RESEARCH................................................................................................3<br />

2.1.1 Problem definition <strong>of</strong> <strong>the</strong> research ................................................................................................7<br />

2.1.2 Objective <strong>of</strong> <strong>the</strong> research.................................................................................................................7<br />

2.1.3 System boundaries ............................................................................................................................7<br />

2.2 APPROACH ..............................................................................................................................................8<br />

2.2.1 Remarks..............................................................................................................................................9<br />

2.3 PROBLEM DEFINITION AND OBJECTIVE ............................................................................................. 11<br />

2.4 S<strong>TU</strong>DY AREA DESCRIPTION: Z AMBEZI RIVER BASIN...................................................................... 11<br />

2.4.1 Climate ............................................................................................................................................. 15<br />

2.4.2 Land cover / Dambos..................................................................................................................... 18<br />

3 HYDROLOGICAL MODEL INPUT DATA...................................................................................... 21<br />

3.1 PRECIPITATION DATA.......................................................................................................................... 21<br />

3.1.1 Microwave-Infrared Rainfall Algorithm (MIRA)...................................................................... 22<br />

3.1.1.1 Data.......................................................................................................................................... 24<br />

3.1.1.2 Per<strong>for</strong>mance............................................................................................................................. 25<br />

3.1.2 Famine Early Warning Systems (FEWS) ................................................................................... 27<br />

3.1.2.1 Data.......................................................................................................................................... 31<br />

3.1.2.2 Per<strong>for</strong>mance............................................................................................................................. 31<br />

3.1.3 Comparison precipitation algorithms......................................................................................... 35<br />

3.2 POTENTIAL EVAPORATION DATA ....................................................................................................... 38<br />

4 HYDROLOGICAL MODEL DESCRIPTION................................................................................... 41<br />

4.1 STREAM.............................................................................................................................................. 41<br />

4.2 Z AMBEZI SCRIPT ................................................................................................................................... 42<br />

4.2.1 Conceptual rainfall-run<strong>of</strong>f model <strong>of</strong> <strong>the</strong> <strong>Zambezi</strong> in STREAM............................................... 45<br />

4.2.1.1 Land process: evaporation through interception...................................................................... 46<br />

4.2.1.2 Land process: transpiration...................................................................................................... 48<br />

4.2.1.3 Land process: ground water flow ............................................................................................ 53<br />

4.2.1.4 Land process: capillary rise ..................................................................................................... 56<br />

4.2.1.5 Lake process: evaporation ....................................................................................................... 57<br />

v


TABLE OF CONTENTS<br />

4.2.2 Routing in spreadsheet .................................................................................................................. 57<br />

4.2.2.1 Muskingum routing................................................................................................................. 57<br />

4.2.2.2 Reservoir routing: Kariba ........................................................................................................ 61<br />

4.2.2.3 Reservoir routing: Itezhitezhi .................................................................................................. 62<br />

4.2.2.4 Reservoir routing: Cabora Bassa ............................................................................................. 63<br />

4.2.2.5 Reservoir routing: Nyasa ......................................................................................................... 64<br />

5 ERROR- & SENSITIVITY ANALYSIS .............................................................................................. 67<br />

5.1 ERRORS .................................................................................................................................................. 67<br />

5.2 M ODEL RESULTS ..................................................................................................................................72<br />

5.3 GENERALISED LIKELIHOOD UNCERTAINTY ESTIMATOR (GLUE)............................................... 81<br />

5.4 IMPLEMENTATION OF GLUE FOR THE ZAMBEZI-SCRIPT............................................................... 86<br />

5.4.1 Determination <strong>of</strong> dominant parameters...................................................................................... 88<br />

5.4.2 Objective function and likelihood measure................................................................................ 91<br />

5.5 GLUE RESULTS .................................................................................................................................... 91<br />

5.5.1 GLUE <strong>for</strong> parameter uncertainty................................................................................................ 92<br />

5.5.2 GLUE <strong>for</strong> input uncertainty.......................................................................................................... 97<br />

6 GRAVITY MEASUREMENTS AND HYDROLOGY..................................................................103<br />

6.1 BACKGROUND ....................................................................................................................................103<br />

6.2 RELATION SURFACE MASS TO GRAVITY..........................................................................................105<br />

6.3 ERROR SOURCES IN GRACE DATA .................................................................................................106<br />

6.4 DIRECT ESTIMATION OF HYDROLOGY FROM GRACE DATA.......................................................108<br />

7 CONCLUSIONS & RECOMMENDATIONS..................................................................................113<br />

REFERENCES ....................................................................................................................................................119<br />

2.1 LITERA<strong>TU</strong>RE........................................................................................................................................119<br />

2.2 DATA...................................................................................................................................................123<br />

APPENDIX 1: DATA TRANSFORMATIONS IN IDRISI........................................................ 127<br />

APPENDIX 2: FAO SOIL UNITS DESCRIPTION............................................................... 153<br />

APPENDIX 3: ZAMBEZI SCRIPT..................................................................................... 157<br />

APPENDIX 4: MODEL RESULTS..................................................................................... 161<br />

APPENDIX 5: GLUE SCRIPT......................................................................................... 167<br />

APPENDIX 6: ROUTING MODEL .................................................................................... 173<br />

APPENDIX 7: GRACE RESULTS ................................................................................... 177<br />

vi


SUMMARY<br />

Summary<br />

Hydrologists are interested in determining each term <strong>of</strong> <strong>the</strong> water balance, so <strong>the</strong>y can predict<br />

<strong>for</strong> example floods and droughts. Besides <strong>the</strong> problems with determining <strong>the</strong> precipitation, <strong>the</strong><br />

evaporation and <strong>the</strong> river discharge, most difficulties occur at determining <strong>the</strong> storage stock. It<br />

is possible to carry out ground measurements, but this will only result in point values and is<br />

not providing spatial in<strong>for</strong>mation. Also microwave remote sensing and modeling techniques<br />

have <strong>the</strong>ir limitations. However, with <strong>the</strong> launch <strong>of</strong> <strong>the</strong> twin satellite GRACE (Gravity<br />

Recovery and Climate Experiment) on <strong>the</strong> 17 th <strong>of</strong> March 2002 new opportunities have arisen<br />

<strong>for</strong> measuring <strong>the</strong> water storage stock.<br />

GRACE is able to measure tiny differences in <strong>the</strong> Earth’s gravity field. These spatial and<br />

monthly changes are caused by variations in <strong>the</strong> mass distribution on <strong>the</strong> surface <strong>of</strong> <strong>the</strong> earth,<br />

which are caused by processes like: ocean current changes, terrestrial water storage changes,<br />

postglacial rebound, atmospherically changes, etc. Processes like <strong>the</strong> movement <strong>of</strong> continents<br />

are neglected, because <strong>the</strong>y only vary on geological time scales and not on a monthly time<br />

scale. Despite <strong>the</strong> different processes, which are influencing <strong>the</strong> gravity measurements, it<br />

should be possible to filter out <strong>the</strong> hydrological (= terrestrial water storage) signal. To find <strong>the</strong><br />

relation between <strong>the</strong> gravity and <strong>the</strong> storage stock, first a hydrological model will be built,<br />

which will simulate <strong>the</strong> terrestrial water storage on a monthly basis. From <strong>the</strong>se results <strong>the</strong><br />

spherical harmonic coefficients, which are describing <strong>the</strong> Earth’s gravity field, will be<br />

calculated and compared to measured GRACE data.<br />

<strong>Hydrological</strong> model<br />

For <strong>the</strong> above described approach, <strong>the</strong> <strong>Zambezi</strong> <strong>catchment</strong> in Sou<strong>the</strong>rn Africa is chosen as<br />

study case, mainly because <strong>of</strong> its large basin size and <strong>the</strong> absence <strong>of</strong> tidal influences. Because<br />

<strong>the</strong> quality <strong>of</strong> <strong>the</strong> precipitation input data is very important <strong>for</strong> <strong>the</strong> per<strong>for</strong>mance <strong>of</strong> <strong>the</strong><br />

hydrological model, different rainfall algorithms are investigated <strong>for</strong> <strong>the</strong> period after 1992.<br />

First <strong>the</strong> MIRA-algorithm (Microwave-Infrared Rainfall Algorithm) is researched. This<br />

algorithm calculates from IR-measurements rain rates and combines <strong>the</strong>se with Passive<br />

Microwave data in order to obtain optimized rainfall estimates. If <strong>the</strong> estimates are compared<br />

with ground measurements it can be concluded that <strong>the</strong> per<strong>for</strong>mances is fair: <strong>the</strong> correlation is<br />

high, but <strong>the</strong> rainfall is overestimated. To compensate <strong>for</strong> this deficiency <strong>the</strong> MIRA-data<br />

needs to be corrected.<br />

vii


SUMMARY<br />

The second rainfall-algorithm is <strong>the</strong> FEWS RFE 1.0. This algorithm first estimates <strong>the</strong> rainfall<br />

based on <strong>the</strong>rmal Infrared data with <strong>the</strong> GPI-algorithm. Next, <strong>the</strong> estimates are corrected by<br />

fitting <strong>the</strong> values to ground stations. Finally, an orographic lifting and humidity model is<br />

applied on <strong>the</strong> estimates. A comparison between <strong>the</strong> RFE 1.0 estimates and <strong>the</strong> observed data<br />

shows that <strong>the</strong> algorithm overestimates <strong>the</strong> rainfall somewhat. However, <strong>the</strong> correlation<br />

coefficient is 0.85, which is quite low compared to <strong>the</strong> o<strong>the</strong>r algorithms.<br />

The last algorithm, which has been investigated, is <strong>the</strong> FEWS RFE 2.0. This algorithm first<br />

estimates <strong>the</strong> rainfall separately on three satellite sources: Special Sensor Microwave/Imager,<br />

AMSU-A microwave and METEOSAT Infrared. Next <strong>the</strong> estimated are weighted to reduce<br />

<strong>the</strong> error. The last step is to correct <strong>the</strong> weighted estimates with observed data. The<br />

per<strong>for</strong>mance <strong>of</strong> <strong>the</strong> RFE 2.0 is very good, with a correlation coefficient <strong>of</strong> 0.97 and a very<br />

little overestimation.<br />

Finally after a comparison between <strong>the</strong> algorithms, <strong>the</strong> corrected MIRA-algorithm is chosen<br />

<strong>for</strong> <strong>the</strong> period 1993-2000 and <strong>the</strong> FEWS RFE 2.0 <strong>for</strong> <strong>the</strong> period 2001-2003. For <strong>the</strong> period<br />

be<strong>for</strong>e 1993 interpolated rainfall data from ground stations is used.<br />

The hydrological model, which is built, consists <strong>of</strong> two sub models: a water balance model<br />

created in STREAM and a Muskingum routing model. The water balance model is a storage<br />

reservoir model, which contains three levels. First, <strong>the</strong> shallow soil from where interception<br />

takes place. Second, <strong>the</strong> unsaturated zone with <strong>the</strong> transpiration process and third, <strong>the</strong><br />

saturated zone. From <strong>the</strong> saturated zone three ground water outflows are implemented: <strong>the</strong><br />

saturation overland flow, <strong>the</strong> quick flow and <strong>the</strong> slow flow.<br />

The model is only calibrated <strong>for</strong> <strong>the</strong> western part <strong>of</strong> <strong>the</strong> <strong>catchment</strong> on <strong>the</strong> locations Lukulu<br />

and Victoria Falls, because in <strong>the</strong> western part less influence <strong>of</strong> tides exists. Looking at <strong>the</strong><br />

results it can be concluded that <strong>the</strong> model is quite reasonable in simulating <strong>the</strong> discharge with<br />

a Nash-Suttcliffe coefficient <strong>of</strong> 0.70 and 0.68 <strong>for</strong> Lukulu and Victoria Falls respectively.<br />

However <strong>the</strong> model underestimates <strong>the</strong> discharge slightly, especially <strong>the</strong> high peaks.<br />

GLUE<br />

To obtain more knowledge about <strong>the</strong> sensitivity <strong>of</strong> <strong>the</strong> model, <strong>the</strong> GLUE-procedure (Beven,<br />

1989) is used twice. First, <strong>the</strong> procedure is carried out on <strong>the</strong> uncertainty <strong>of</strong> four parameters<br />

and second, <strong>the</strong> procedure was executed <strong>for</strong> <strong>the</strong> uncertainty in <strong>the</strong> precipitation and potential<br />

evaporation input data <strong>of</strong> <strong>the</strong> <strong>Zambezi</strong> model.<br />

viii


SUMMARY<br />

The results <strong>of</strong> <strong>the</strong> GLUE <strong>for</strong> <strong>the</strong> uncertainty in <strong>the</strong> parameters showed that it is not possible to<br />

define an optimal parameter set. Only <strong>the</strong> separation parameter cr shows an optimum around<br />

<strong>the</strong> default value. The o<strong>the</strong>r parameters are not very sensitive on <strong>the</strong> discharge output. From<br />

<strong>the</strong> difference between <strong>the</strong> 5% and 95% uncertainty bound <strong>of</strong> <strong>the</strong> total water storage it appears<br />

that an uncertainty <strong>of</strong> 30 mm can be expected due to parameter uncertainty.<br />

The uncertainties in <strong>the</strong> total water storage stock due to input uncertainties are much higher<br />

with an average <strong>of</strong> about 310 mm. Because this is mainly caused by <strong>the</strong> highly sensitive<br />

precipitation data, this emphasis <strong>the</strong> importance to obtain good rainfall data as input <strong>for</strong> a<br />

hydrological model. From <strong>the</strong> GLUE results it also appears that <strong>the</strong> optimal precipitation data<br />

should be multiplied by a factor <strong>of</strong> 0.95. Such an optimum could not be found <strong>for</strong> <strong>the</strong><br />

potential evaporation data.<br />

GRACE<br />

Besides errors at <strong>the</strong> field <strong>of</strong> hydrology also errors are introduced by GRACE. Next to <strong>the</strong><br />

measuring error, which is increasing significantly by an increasing degree, also errors occur<br />

due to truncation, interpolation, leakage and errors due to <strong>the</strong> not correct removal <strong>of</strong> processes<br />

like atmospheric pressure, postglacial rebound, etc.<br />

As a first attempt GRACE data (spherical harmonic coefficients provided by GRACE) is<br />

trans<strong>for</strong>med into a hydrological signal, which is called <strong>the</strong> ‘direct estimation <strong>of</strong> hydrology<br />

from GRACE data’-method. Comparing <strong>the</strong> calculated hydrological signal from GRACE with<br />

<strong>the</strong> <strong>Zambezi</strong>-model results, shows that in qualitative terms a clear relation exists. Only <strong>the</strong><br />

amplitude from <strong>the</strong> GRACE-data is higher <strong>the</strong>n <strong>the</strong> amplitude <strong>of</strong> <strong>the</strong> <strong>Zambezi</strong>-model. This<br />

could be due to leakage error. By using averaging kernel functions this error could be<br />

reduced.<br />

The next step is to compare <strong>the</strong> GRACE and <strong>the</strong> hydrological data spatially and try to find <strong>the</strong><br />

relation by <strong>the</strong> use <strong>of</strong> <strong>the</strong> ‘inverse estimation <strong>of</strong> GRACE data’-method. This method<br />

calculates from <strong>the</strong> hydrological model output <strong>the</strong> GRACE data in term <strong>of</strong> spherical harmonic<br />

coefficients. However, at this stage <strong>of</strong> this research, this in<strong>for</strong>mation was not available yet.<br />

ix


SUMMARY<br />

x


ACRONYMS & SYMBOLS<br />

Acronyms & symbols<br />

2.1 Acronyms<br />

ATI<br />

CPC<br />

DEM<br />

FEWS<br />

GIS<br />

GLUE<br />

GPI<br />

GPS<br />

GTS<br />

IR<br />

ITCZ<br />

MIRA<br />

NASA<br />

NDVI<br />

NOAA<br />

NS<br />

PMM<br />

PMW<br />

RFE<br />

RMSE<br />

RS<br />

SAFARI<br />

SD<br />

SSM/I<br />

TRMM<br />

WAD<br />

Area-Time-Integral<br />

Climate Prediction Center<br />

Digital Elevation Model<br />

Famine Early Warning Systems<br />

Geographic In<strong>for</strong>mation System<br />

Generalized Likelihood Uncertainty Estimation<br />

GOES Precipitation Index<br />

Global Positioning System<br />

Global Telecommunication System<br />

Infrared<br />

Inter-Tropical Convergence Zone<br />

Microwave-Infrared Rainfall Algorithm<br />

National Aeronautic and Space Administration<br />

Normalized Difference Vegetation Index<br />

National Oceanic and Atmospheric Administration<br />

Nash-Sutcliffe coefficient<br />

Probability Matching Method<br />

Passive MicroWave<br />

Rainfall estimation<br />

Root Mean Square Error<br />

Remote Sensing<br />

Sou<strong>the</strong>rn African Regional Science Initiative<br />

Standard Deviation<br />

Special Sensor Microwave/Imager<br />

Tropical Rainfall Measuring Mission<br />

Weighted Average Distance<br />

xi


ACRONYMS & SYMBOLS<br />

2.2 Symbols<br />

ρ<br />

ave Average density <strong>of</strong> <strong>the</strong> earth (=5517 kg/m³) [kg/m³]<br />

θ Co-latitude [-]<br />

ρ<br />

w Density <strong>of</strong> water [kg/m³]<br />

P lm Legendre function [-]<br />

φ longitude [-]<br />

λ Spatial scale [km]<br />

σ Surface density [kg/m²]<br />

a Radius <strong>of</strong> <strong>the</strong> Earth [km]<br />

blue Blue water (colors <strong>of</strong> water) [mm/month]<br />

cap Capillary rise [mm/month]<br />

caprise Actual capillary rise [mm/month]<br />

C lm , S lm Dimensionless Stokes coefficient [-]<br />

cr Separation coefficient [%]<br />

D Interception threshold [mm/month]<br />

dsw Open water evaporation [mm/month]<br />

f Tree-top factor [%]<br />

fd Flow direction [-]<br />

green Green water (colors <strong>of</strong> water) [mm/month]<br />

GWS Ground Water Storage level [mm]<br />

GWSmax Threshold value <strong>for</strong> sa<strong>of</strong> [mm]<br />

GWSquick Threshold value <strong>for</strong> Qflo [mm]<br />

int Interception by threshold method [mm/month]<br />

intmar Interception by Marieke de Groen-method [mm/month]<br />

k Recession constant overtop [month]<br />

k l Elastic love number <strong>of</strong> degree l [-]<br />

l Degree [-]<br />

Ln_gwsmax Logarithm <strong>of</strong> gwsmax [mm]<br />

m Order [-]<br />

N Shape <strong>of</strong> <strong>the</strong> geoid [gal]<br />

overtop Percolation [mm/month]<br />

pe Potential Evaporation [mm/month]<br />

pnet Net precipitation [mm/month]<br />

prec Precipitation [mm/month]<br />

qc Coefficient to determine threshold GWSquick [%]<br />

xii


ACRONYMS & SYMBOLS<br />

qflo Quick flow [mm/month]<br />

qout Run<strong>of</strong>f [m³/s]<br />

rtq Recession constant Qflo [month]<br />

rts Recession constant Sflo [month]<br />

run<strong>of</strong>f Discharge [mm/month]<br />

sa<strong>of</strong> Saturation overland flow [mm/month]<br />

sflo Slow flow [mm/month]<br />

smax Field capacity [mm]<br />

su Storage Unsaturated zone [mm]<br />

subsub GIS-map with <strong>the</strong> sub <strong>catchment</strong>s [-]<br />

tp Potential transpiration [mm/month]<br />

tra Actual transpiration [mm/month]<br />

water GIS-map with <strong>the</strong> water bodies [-]<br />

wetland GIS-map with <strong>the</strong> wetlands [-]<br />

white White water (colours <strong>of</strong> water) [mm/month]<br />

W l Gausian filter weights [-]<br />

xiii


ACRONYMS & SYMBOLS<br />

xiv


INTRODUCTION<br />

1 Introduction<br />

High precipitation can result into large floods. However, <strong>the</strong> response <strong>of</strong> a <strong>catchment</strong> on<br />

precipitation depends on more. Sometimes, <strong>the</strong> response is limited after intensive rain. At<br />

o<strong>the</strong>r times, big floods can occur after an average rainstorm. Besides non-uni<strong>for</strong>m appearance<br />

<strong>of</strong> rain over a <strong>catchment</strong> in time and space, <strong>the</strong> variability in response is caused by <strong>the</strong> initial<br />

state <strong>of</strong> <strong>the</strong> water storage in a <strong>catchment</strong> at <strong>the</strong> beginning <strong>of</strong> <strong>the</strong> rainstorm.<br />

Because <strong>of</strong> this <strong>for</strong> discharge <strong>for</strong>ecasting, it is <strong>of</strong> importance to know <strong>the</strong> actual state <strong>of</strong> <strong>the</strong><br />

water storage stock. Most <strong>of</strong> <strong>the</strong> stock appears as ground water, which in quantitative terms is<br />

hard to assess <strong>for</strong> a complete <strong>catchment</strong>. However, with <strong>the</strong> introduction <strong>of</strong> <strong>the</strong> satellite<br />

GRACE <strong>the</strong>re will be new opportunities. GRACE is a satellite, which measures <strong>the</strong> local<br />

gravity field. This gravity field is related to <strong>the</strong> amount <strong>of</strong> mass including water stock. If <strong>the</strong>re<br />

is a possibility to find a relation between GRACE data and <strong>the</strong> water stock, this would<br />

enhance prediction <strong>of</strong> floods and droughts. For finding this relation a hydrological model will<br />

be built and <strong>the</strong> results will be compared to <strong>the</strong> measured data <strong>of</strong> GRACE. Be<strong>for</strong>e making this<br />

comparison it is important to obtain knowledge about <strong>the</strong> errors and sensitivity <strong>of</strong> <strong>the</strong><br />

hydrological model and GRACE.<br />

In Chapter 2 <strong>the</strong> problem analysis <strong>of</strong> <strong>the</strong> research will be given. It describes <strong>the</strong> research<br />

approach, <strong>the</strong> problem definition and gives a short description <strong>of</strong> <strong>the</strong> study area: <strong>the</strong> <strong>Zambezi</strong><br />

<strong>catchment</strong> in Sou<strong>the</strong>rn Africa. From <strong>the</strong> problem analysis it follows that a hydrological model<br />

is necessary. In Chapter 3 is described what kind <strong>of</strong> input data is used <strong>for</strong> <strong>the</strong> hydrological<br />

model. Three different rainfall algorithms are investigated and assessed on <strong>the</strong>re per<strong>for</strong>mance.<br />

Next in Chapter 4 <strong>the</strong> used hydrological model is described and in Chapter 5 <strong>the</strong> model results<br />

are presented. To obtain more knowledge about <strong>the</strong> sensitivity <strong>of</strong> <strong>the</strong> hydrological model <strong>the</strong><br />

GLUE procedure is used. This procedure is explained in Chapter 5 and also shows <strong>the</strong> results.<br />

In Chapter 6, <strong>the</strong> <strong>the</strong>oretical relation between gravity measurements and hydrology is<br />

described. It gives <strong>the</strong> possible error sources and it shows some preliminary results. Finally in<br />

Chapter 7, <strong>the</strong> conclusions and recommendations are presented.<br />

1


INTRODUCTION<br />

2


PROBLEM ANALYSIS<br />

2 Problem analysis<br />

This problem analysis consists <strong>of</strong> two parts: one dealing with <strong>the</strong> larger framework <strong>of</strong> gravity<br />

measurements and one about <strong>the</strong> MSc.-work. In Section 2.1 <strong>the</strong> analysis <strong>of</strong> <strong>the</strong> research on<br />

gravity measurements is discussed. The approach to reaching <strong>the</strong> objective is presented in<br />

Section 2.2. This approach results in <strong>the</strong> problem analysis <strong>of</strong> <strong>the</strong> MSc.-work, which is<br />

described in 2.3. Last in Section 2.4 a description <strong>of</strong> <strong>the</strong> study area is given.<br />

2.1 Gravity measurements research<br />

Hydrologists are interested in <strong>the</strong> cycle <strong>of</strong> water on earth. They want to know how water is<br />

moving around <strong>the</strong> world and its atmosphere to <strong>for</strong>ecast <strong>for</strong> example floods, droughts, etc. For<br />

<strong>the</strong> understanding <strong>of</strong> <strong>the</strong> water cycle <strong>the</strong> water balance is used. The water balance describes<br />

<strong>the</strong> amount <strong>of</strong> water that is going into an area and that is going out <strong>of</strong> an area. The difference<br />

between <strong>the</strong> incoming and <strong>the</strong> outgoing terms is <strong>the</strong> storage change.<br />

Evaporation (E)<br />

Precipitation (P)<br />

A<br />

dS<br />

P−E A− Q=<br />

dt<br />

( )<br />

River discharge (Q)<br />

Figure 2.1: Catchment and water balance<br />

The incoming term in Figure 2.1 is <strong>the</strong> precipitation [L/T], <strong>the</strong> main outgoing terms are<br />

evaporation [L/T] and river discharge [L³/T]. The difference between <strong>the</strong>m will result in a<br />

change <strong>of</strong> <strong>the</strong> storage (dS).<br />

3


PROBLEM ANALYSIS<br />

Hydrologists attempt to determine each term <strong>of</strong> <strong>the</strong> water balance. Difficulties are:<br />

Precipitation (flux)<br />

We are able to measure precipitation with rain gauges. Besides <strong>the</strong> instrumentation<br />

and installation errors, <strong>the</strong> most important error is <strong>the</strong> spatial variability. The data<br />

from <strong>the</strong> rain gauges are ‘point values’ instead <strong>of</strong> spatial in<strong>for</strong>mation and<br />

interpolation techniques (e.g. Thiessen polygons, Kriging, Inverse Weighted<br />

Distance, etc.) have to make a spatial distribution <strong>of</strong> that data. A way <strong>of</strong> reducing <strong>the</strong><br />

error <strong>of</strong> <strong>the</strong> spatial variability is to take a larger time step, so <strong>the</strong> spatial correlation is<br />

higher. The use <strong>of</strong> satellites will also be helpful (e.g. TRMM or MIRA), because <strong>the</strong>y<br />

represent <strong>the</strong> spatial variability very well. On <strong>the</strong> o<strong>the</strong>r hand, satellites usually suffer<br />

from inaccuracy at this moment.<br />

Evaporation and transpiration (flux)<br />

Evaporation also has <strong>the</strong> difficulty <strong>of</strong> spatial variability, but less <strong>the</strong>n precipitation.<br />

The largest problem in determining evaporation is that <strong>the</strong>re is no possibility to<br />

measure evaporation directly.<br />

River discharge (flux)<br />

At this moment, measuring <strong>the</strong> river discharge is <strong>the</strong> easiest <strong>of</strong> all terms <strong>of</strong> <strong>the</strong> water<br />

balance. However, also on this flux large errors occur. Depending on <strong>the</strong> accuracy <strong>of</strong><br />

measurements and interpretation <strong>of</strong> measurements, errors <strong>of</strong> 10-20% are no<br />

exception.<br />

Storage (stock)<br />

In general <strong>the</strong> amount <strong>of</strong> stored water consists <strong>of</strong> <strong>the</strong> sum <strong>of</strong>:<br />

• Interception storage (storage on vegetation and <strong>the</strong> surface floor)<br />

• Soil moisture storage (storage in <strong>the</strong> unsaturated zone)<br />

• Ground water storage (storage in <strong>the</strong> saturated zone)<br />

• Surface water storage (storage in lakes, rivers, etc)<br />

It is very hard to determine <strong>the</strong> amount <strong>of</strong> water that is stored in a <strong>catchment</strong>, because<br />

a large part is sub surface storage, which is <strong>the</strong> water that is stored in <strong>the</strong> ground.<br />

Even if only is considered <strong>the</strong> change <strong>of</strong> <strong>the</strong> storage in time (which is <strong>the</strong> part we are<br />

interested in), it is still difficult to quantify this term <strong>of</strong> <strong>the</strong> water balance.<br />

4


PROBLEM ANALYSIS<br />

GRACE<br />

As explained above, <strong>the</strong> changes in sub surface storage are hard to determine. GRACE<br />

(Gravity Recovery and Climate Experiment) <strong>of</strong>fers new opportunities. GRACE is a satellite<br />

that can measure <strong>the</strong> gravitational field <strong>of</strong> <strong>the</strong> earth on a local scale.This local gravity is a<br />

measure <strong>for</strong> <strong>the</strong> amount <strong>of</strong> mass.<br />

Figure 2.2: GRACE consists <strong>of</strong> a twin satellite [from: www.csr.utexas.edu/grace]<br />

The GRACE-mission consists in fact <strong>of</strong> twin satellites (see Figure 2.2). Orbiting, <strong>the</strong>y follow<br />

with a distance <strong>of</strong> approximate 220 km (Davis, 2004). If <strong>the</strong> locally mass (i.e. <strong>the</strong> amount <strong>of</strong><br />

mass, which is most close to <strong>the</strong> satellite and thus has a large influence on <strong>the</strong> gravity<br />

measurements) on earth is increasing <strong>the</strong> first satellite will accelerate and <strong>the</strong> distance<br />

between <strong>the</strong> two satellites will increase (see Figure 2.3). This distance will be precisely<br />

measured and toge<strong>the</strong>r with GPS-satellites, it is possible to determine <strong>the</strong> gravity and <strong>the</strong><br />

position. Chapter 6 gives a more detailed description <strong>of</strong> GRACE.<br />

5


PROBLEM ANALYSIS<br />

≈220 km<br />

distance<br />

2<br />

G⋅ m⋅M<br />

m⋅v<br />

Fg<br />

= = F =<br />

2<br />

c<br />

R<br />

R<br />

v<br />

Fc<br />

Fg<br />

If M increases and R is negligibly<br />

decreasing, <strong>the</strong>n v will increase and<br />

R<br />

M<br />

<strong>the</strong> distance increases.<br />

F g<br />

F c<br />

= Gravitational <strong>for</strong>ce [N]<br />

= Centripetal <strong>for</strong>ce [N]<br />

G = Gravitational constant, 6.673E-11 m³ s -2 kg -1<br />

m = Mass <strong>of</strong> object [kg]<br />

M = Locally mass <strong>of</strong> earth [kg]<br />

R = Radius from object to center <strong>of</strong> earth [m]<br />

v = Velocity <strong>of</strong> object [m/s]<br />

Figure 2.3: Working <strong>of</strong> GRACE, with simplified gravitation <strong>for</strong>ce equation, which assumes <strong>the</strong> mass as<br />

a point mass.<br />

Because GRACE is traveling each 30 days above each place on earth (sun synchronized),<br />

GRACE will be able to give monthly mass variations on each location. These fluctuations in<br />

mass are <strong>the</strong> sum <strong>of</strong> different effects/noises (all varying on a monthly time step), like<br />

(Flechtner, 2000):<br />

• Deep ocean current changes (reallocation <strong>of</strong> water through <strong>the</strong> oceans)<br />

• Large-scale evapotranspiration (reallocation <strong>of</strong> water from <strong>the</strong> earth to <strong>the</strong><br />

atmosphere).<br />

• Soil moisture changes (reallocation <strong>of</strong> water in <strong>the</strong> unsaturated zone)<br />

• Mass balance <strong>of</strong> ice sheets and glaciers (melted ice has a larger density as frozen ice)<br />

• Changes in <strong>the</strong> storage <strong>of</strong> water and snow <strong>of</strong> <strong>the</strong> continents (idem)<br />

• Mantle and lithospheric density variations (<strong>the</strong> lithosphere is moving under <strong>the</strong> earth<br />

mantle and vice versa)<br />

• Postglacial rebound (through melting <strong>of</strong> <strong>the</strong> icecaps, decrease in weight, which causes<br />

<strong>the</strong> rebound <strong>of</strong> <strong>the</strong> earth crust)<br />

• Solid Earth's isostatic response (like <strong>the</strong> law <strong>of</strong> Archimedes)<br />

6


PROBLEM ANALYSIS<br />

Hence it is not possible to link an increase in gravity linear to an increase in <strong>the</strong> water amount<br />

in a <strong>catchment</strong>. The hydrological signal has to be filtered out.<br />

2.1.1 Problem definition <strong>of</strong> <strong>the</strong> research<br />

For discharge predictions it is important to know <strong>the</strong> amount <strong>of</strong> water that is stored in a<br />

<strong>catchment</strong> area. The measuring methods, which are used until now, are not sufficient to<br />

determine <strong>the</strong> water content on <strong>the</strong> scale <strong>of</strong> a <strong>catchment</strong>.<br />

2.1.2 Objective <strong>of</strong> <strong>the</strong> research<br />

To find <strong>the</strong> relation between <strong>the</strong> GRACE data and water storage fluctuations.<br />

2.1.3 System boundaries<br />

In Figure 2.4 <strong>the</strong> total and <strong>the</strong> hydrological system boundaries are depicted. Satellites are<br />

measuring <strong>the</strong> total system, which is represented in <strong>the</strong> figure. However, hydrology describes<br />

just a part <strong>of</strong> that total system. Horizontally <strong>the</strong> hydrological boundaries are determined by <strong>the</strong><br />

<strong>catchment</strong> area. Vertically <strong>the</strong> boundaries are restricted by <strong>the</strong> canopy <strong>of</strong> <strong>the</strong> vegetation and<br />

<strong>the</strong> deep groundwater. This implies that evaporation and river discharges are considered as<br />

‘losses’ and that precipitation is an incoming flux.<br />

E<br />

P<br />

Total system<br />

boundaries<br />

Q<br />

<strong>Hydrological</strong><br />

system boundaries<br />

deep gr.<br />

deep earth<br />

Figure 2.4: System boundaries<br />

7


PROBLEM ANALYSIS<br />

2.2 Approach<br />

In order to find <strong>the</strong> relation between <strong>the</strong> GRACE data and water storage fluctuations in a<br />

<strong>catchment</strong>, <strong>the</strong>re is a need to know what <strong>the</strong> storage fluctuations were in a certain time period.<br />

These fluctuations can be calculated with a hydrological model. In this case <strong>the</strong> model<br />

environment STREAM is used. STREAM is a grid-based spatial water balance model, which<br />

is able to make each time step grid-based maps with <strong>the</strong> change in <strong>the</strong> water storage. Read <strong>for</strong><br />

more explanation about STREAM Section 4.1.<br />

From <strong>the</strong> obtained grid-based maps by STREAM, it is possible to translate <strong>the</strong> monthly<br />

changes in water storage to <strong>the</strong> signal, which GRACE should have measured. GRACE<br />

measures changes in gravity field (dG).<br />

By comparing <strong>the</strong> calculated GRACE signals and <strong>the</strong> measured results <strong>of</strong> GRACE it may be<br />

possible to find <strong>the</strong> hydrological signal inside <strong>the</strong> signal <strong>of</strong> GRACE. If that is successful it is<br />

possible to directly derive <strong>the</strong> change <strong>of</strong> water storage from <strong>the</strong> GRACE-data (see Figure 2.5).<br />

HYDROLOGY<br />

AEROSPACE/<br />

GEODESY<br />

Real world<br />

Input-data:<br />

• Precipitation + error<br />

• Evaporation + error<br />

• DEM + error<br />

• Land cover + error<br />

• Etc.<br />

<strong>Hydrological</strong><br />

model<br />

GRACE measured (dG) +<br />

Error<br />

Comparison<br />

GRACE calc signal (dG)<br />

+ Error<br />

Try to find<br />

<strong>the</strong> relation<br />

between<br />

GRACEdata<br />

and<br />

water<br />

storage<br />

changes<br />

dS+ Error map<br />

Algorithm<br />

Figure 2.5: Approach<br />

8


PROBLEM ANALYSIS<br />

As study case <strong>the</strong> <strong>Zambezi</strong> <strong>catchment</strong> in Sou<strong>the</strong>rn Africa will be used (Figure 2.6). This<br />

<strong>catchment</strong> is suitable first because its large area (1,3 x 10 6 km²), which is necessary <strong>for</strong> <strong>the</strong><br />

constrains in <strong>the</strong> current resolution <strong>of</strong> <strong>the</strong> GRACE-satellite. The second advantage <strong>of</strong> this<br />

<strong>catchment</strong> is that a large part is out <strong>of</strong> <strong>the</strong> influence <strong>of</strong> tides, which affects <strong>the</strong> measurements<br />

because <strong>the</strong>y are changing within <strong>the</strong> monthly temporal resolution <strong>of</strong> GRACE. A third<br />

advantage is <strong>the</strong> quite constant atmospheric pressure during summer, which is also a<br />

disturbance with a monthly time step. And <strong>the</strong> last reason to choose <strong>for</strong> <strong>the</strong> <strong>Zambezi</strong><br />

<strong>catchment</strong> is that a hydrological model with a grid-based water balance model already exists,<br />

which is very desirable <strong>for</strong> remote sensing applications.<br />

Figure 2.6: Location <strong>of</strong> <strong>the</strong> <strong>Zambezi</strong> <strong>catchment</strong>.<br />

2.2.1 Remarks<br />

In using this approach attention should be paid to <strong>the</strong> errors introduced during <strong>the</strong> different<br />

processes. Not having a good overview over <strong>the</strong> errors makes it difficult to do a good<br />

comparison between <strong>the</strong> modeled gravity field and <strong>the</strong> measured field by GRACE. Figure 2.7<br />

shows a more detailed picture <strong>of</strong> <strong>the</strong> existing errors.<br />

9


PROBLEM ANALYSIS<br />

Error(measurement)<br />

Real world<br />

Error(measurement)<br />

Error(measurement)<br />

River measurements<br />

Satellite<br />

measurements<br />

GRACE<br />

measurements<br />

STREAM input maps<br />

Error(interpolation)<br />

Algorithm<br />

1<br />

Error(calculation)<br />

STREAMmodel<br />

dG measured<br />

map<br />

Error(algorithm1)<br />

comparison<br />

Error(model)<br />

Error(model)<br />

dG calculated<br />

map<br />

Calculated<br />

River<br />

discharge<br />

Modeled<br />

River<br />

discharge<br />

dS hydro map<br />

Algorithm<br />

2<br />

calibration<br />

Figure 2.7: Overview <strong>of</strong> errors. Hydrology: yellow left side. Geodesy/Aerospace: green right side.<br />

Aerospace/Geodesy errors<br />

Figure 2.7 shows three types <strong>of</strong> errors are shown. First <strong>the</strong>re are measuring errors. GRACE<br />

measures <strong>the</strong> distance between <strong>the</strong> two satellites. Although <strong>the</strong> equipment is very precise,<br />

<strong>the</strong>re will still be a measuring error. Also in <strong>the</strong> determination <strong>of</strong> <strong>the</strong> position <strong>of</strong> <strong>the</strong> two<br />

satellites with GPS are deviations.<br />

Second, <strong>the</strong>re are algorithm(1) errors. GRACE measures <strong>the</strong> distance between <strong>the</strong> twin<br />

satellites. The measured distance has to be converted to gravity field values. Some kind <strong>of</strong><br />

algorithm will do this, but <strong>the</strong>re will be errors inside, because <strong>of</strong> unknown effects,<br />

misunderstanding <strong>of</strong> <strong>the</strong> system, etc.<br />

Finally, <strong>the</strong>re will be errors (algorithm(2)) introduced by ‘up scaling’ <strong>the</strong> dS-maps, calculated<br />

by STREAM, to <strong>the</strong> signal that GRACE would have measured.<br />

10


PROBLEM ANALYSIS<br />

<strong>Hydrological</strong> errors<br />

Also at <strong>the</strong> side <strong>of</strong> hydrology are errors. First <strong>the</strong>re are, just like at <strong>the</strong> GRACE-satellite,<br />

measuring errors: errors in <strong>the</strong> measuring equipment. The images also have to be corrected <strong>for</strong><br />

<strong>the</strong> earth curvature, cloudiness, etc.<br />

Second, <strong>the</strong>re are interpolation errors. Although satellite date is quite continuous in time and<br />

space, a certain interpolation technique needs to be applied to make <strong>the</strong> data completely<br />

continuous (gap filling).<br />

Last, <strong>the</strong>re are model errors due to wrong model schematizations, wrong assumptions and/or<br />

wrong parameter estimation. For example, <strong>the</strong> NDVI-maps (Normalized Difference<br />

Vegetation Index) are used to select <strong>the</strong> wetlands and <strong>the</strong> high lands to say something about<br />

<strong>the</strong> importance <strong>of</strong> capillary rise and <strong>the</strong> DEM (Digital Elevation Model) is used to determine<br />

<strong>the</strong> flow direction <strong>of</strong> <strong>the</strong> water. These assumptions introduce errors. To get an impression <strong>of</strong><br />

<strong>the</strong> importance <strong>of</strong> <strong>the</strong> parameter errors, a sensitivity analysis is necessary.<br />

2.3 Problem definition and objective<br />

Resulting from <strong>the</strong> approach described in <strong>the</strong> previous section, <strong>the</strong> problem definition and <strong>the</strong><br />

objective <strong>of</strong> this study are:<br />

Problem definition<br />

In order to find <strong>the</strong> relation between <strong>the</strong> GRACE measurement and <strong>the</strong> water storage<br />

fluctuation, <strong>the</strong>re is a need to have knowledge about <strong>the</strong> magnitude <strong>of</strong> <strong>the</strong> errors introduced by<br />

<strong>the</strong> hydrological model and about <strong>the</strong> sensitivity <strong>of</strong> <strong>the</strong> model.<br />

Objective <strong>of</strong> <strong>the</strong> study<br />

To obtain knowledge about <strong>the</strong> sensitivity and about <strong>the</strong> errors <strong>of</strong> <strong>the</strong> hydrological <strong>Zambezi</strong><br />

model in STREAM to be able to find <strong>the</strong> relation between <strong>the</strong> GRACE data and <strong>the</strong> water<br />

storage fluctuation.<br />

2.4 Study area description: <strong>Zambezi</strong> River Basin<br />

The <strong>Zambezi</strong> <strong>catchment</strong> is <strong>the</strong> fourth-largest river basin <strong>of</strong> Africa, after <strong>the</strong> <strong>catchment</strong>s <strong>of</strong> <strong>the</strong><br />

Nile, <strong>the</strong> Congo and <strong>the</strong> Niger and drains an area <strong>of</strong> 1.3*10 6 km² (Shahin, 2002). The <strong>Zambezi</strong><br />

basin consists <strong>of</strong> eight countries: Zambia, Angola, Namibia, Botswana, Zimbabwe, Tanzania<br />

11


PROBLEM ANALYSIS<br />

and Mozambique. In Figure 2.8 <strong>the</strong> percentage <strong>of</strong> <strong>the</strong> total <strong>Zambezi</strong> <strong>catchment</strong> area <strong>of</strong> each<br />

country is written between <strong>the</strong> brackets.<br />

Figure 2.8: <strong>Zambezi</strong> River Basin.<br />

The <strong>catchment</strong> is divided into eight sub <strong>catchment</strong>s according to <strong>the</strong> Digital Elevation Model<br />

(DEM) [1]. In Figure 2.9 <strong>the</strong> DEM and <strong>the</strong> sub <strong>catchment</strong>s <strong>of</strong> <strong>the</strong> <strong>Zambezi</strong> are depicted. In<br />

Table 2.1 <strong>the</strong> surface area <strong>of</strong> each <strong>of</strong> <strong>the</strong> sub <strong>catchment</strong>s are written down. The names <strong>of</strong> <strong>the</strong><br />

sub <strong>catchment</strong>s are taken from Chapagain (2000) except from <strong>the</strong> change <strong>of</strong> name <strong>of</strong> Lake<br />

Malawi into Lake Nyasa.<br />

Table 2.1: Surface area <strong>of</strong> <strong>the</strong> sub <strong>catchment</strong>s.<br />

Sub <strong>catchment</strong> Surface area (km²) Sub <strong>catchment</strong> Surface area (km²)<br />

Upper <strong>Zambezi</strong> 242.985 Kafue 163.974<br />

Barotse 96.448 Luangwa 170.955<br />

Cuando-Chobe 147.212 Lake Nyasa-shire 198.670<br />

Middle <strong>Zambezi</strong> 192.419 Lower <strong>Zambezi</strong> 165.488<br />

12


PROBLEM ANALYSIS<br />

UPPER ZAMBEZI<br />

KAFUE<br />

LUANGWA<br />

LAKE NYASA-<br />

SHIRE<br />

CUANDO-<br />

CHOBE<br />

BAROTSE<br />

LOWER ZAMBEZI<br />

MIDDLE ZAMBEZI<br />

Figure 2.9: DEM [1] <strong>of</strong> <strong>the</strong> <strong>Zambezi</strong> <strong>catchment</strong> and <strong>the</strong> eight sub <strong>catchment</strong>s..<br />

The <strong>Zambezi</strong> River starts from <strong>the</strong> Kalene hills in Zambia in <strong>the</strong> Upper <strong>Zambezi</strong> sub<br />

<strong>catchment</strong> (Shahin, 2002) and crosses <strong>the</strong> border <strong>of</strong> Angola. This sub <strong>catchment</strong> is a huge<br />

shallow basin, which consists <strong>of</strong> alluvial deposits like Karoo (or Barotse) sands. These Karoo<br />

sands are very permeable, which causes that <strong>the</strong>re is no significant surface run<strong>of</strong>f<br />

(Bastiaansen, 1990). As can be seen from <strong>the</strong> soil classification map [2] in Figure 2.10 <strong>the</strong><br />

main soil types in <strong>the</strong> Upper <strong>Zambezi</strong> are arenosols 1 , gleysols 2 and ferralsols 3 .<br />

When <strong>the</strong> <strong>Zambezi</strong> crosses again <strong>the</strong> border <strong>of</strong> Zambia, <strong>the</strong> river enters <strong>the</strong> Barotse flood plain<br />

and turns eastwards. Just up to Lukulu <strong>the</strong> tributaries Lungue-Bungo and Kabompo<br />

confluence with <strong>the</strong> <strong>Zambezi</strong>.<br />

Downstream Lukulu <strong>the</strong> <strong>Zambezi</strong> enters <strong>the</strong> Barotse sub <strong>catchment</strong>. Its main tributary is <strong>the</strong><br />

Luanginga. Nearby Kassane <strong>the</strong> sub <strong>catchment</strong> ends after <strong>the</strong> confluence with <strong>the</strong> mouth <strong>of</strong><br />

<strong>the</strong> Cuando-Chobe sub basin. This system consists <strong>of</strong> <strong>the</strong> Cuando River and <strong>the</strong> Okavango-<br />

Chobe River. The Okavango-Chobe River is <strong>the</strong> spillway between <strong>the</strong> <strong>Zambezi</strong> and <strong>the</strong><br />

Okavango <strong>catchment</strong> and can work in two directions (Shahin, 2002). The Cuando-Chobe is a<br />

1 Arenosols: sandy soils with little pr<strong>of</strong>ile development.<br />

2 Gleysols: water saturated soils that are not salty.<br />

3 Ferralsols: highly wea<strong>the</strong>red soils rich in sesquioxide clays and with low cation exchange capacities.<br />

13


PROBLEM ANALYSIS<br />

large tributary, although its contribution to <strong>the</strong> main river discharge is small. Because<br />

Cuando-Chobe is low and swampy area evaporation plays a major part (Chapagain, 2000).<br />

Figure 2.10: Soil classification map [2] <strong>of</strong> <strong>the</strong> <strong>Zambezi</strong> <strong>catchment</strong>. In Appendix 2 a short description <strong>of</strong><br />

<strong>the</strong> soil types can be found.<br />

After <strong>the</strong> confluence <strong>of</strong> <strong>the</strong> Barotse and <strong>the</strong> Cuando-Chobe basin into <strong>the</strong> Middle <strong>Zambezi</strong> <strong>the</strong><br />

terrain changes (Shahin, 2002). From Victoria Falls <strong>the</strong> <strong>Zambezi</strong> flows through a narrow<br />

gorge, with waterfalls and rapids. The gorge is excavated in crushed rock produced by fault<br />

lines.<br />

The <strong>Zambezi</strong> follows its way to <strong>the</strong> Kariba Reservoir. This reservoir is an artificial lake<br />

<strong>for</strong>med by <strong>the</strong> Kariba Dam, which was build in 1961 (Index <strong>of</strong> World lakes). The lake has a<br />

surface area <strong>of</strong> about 4422 km². The Kariba Dam was mainly build <strong>for</strong> <strong>the</strong> generation <strong>of</strong><br />

hydropower and has an installed capacity <strong>of</strong> 1266 MW (Chapagain, 2000).<br />

About 150 km downstream <strong>of</strong> <strong>the</strong> outlet <strong>of</strong> Lake Kariba, <strong>the</strong> <strong>Zambezi</strong> River confluences with<br />

<strong>the</strong> tributary <strong>of</strong> <strong>the</strong> Kafue basin. In <strong>the</strong> Kafue sub basin two dams are build in <strong>the</strong> river: <strong>the</strong><br />

Itezhitezhi dam and <strong>the</strong> dam at Kafue Gorge. The dams were constructed to generate<br />

hydropower.<br />

14


PROBLEM ANALYSIS<br />

Just be<strong>for</strong>e <strong>the</strong> inlet <strong>of</strong> Lake Cabora Bassa a second large tributary enters <strong>the</strong> <strong>Zambezi</strong>: <strong>the</strong><br />

Luangwa. The soil type in <strong>the</strong> Luangwa sub <strong>catchment</strong> is mainly classified as luvisols 4 , just as<br />

in <strong>the</strong> Lower <strong>Zambezi</strong> sub basin.<br />

The Lower <strong>Zambezi</strong> is <strong>the</strong> last sub basin be<strong>for</strong>e <strong>the</strong> <strong>Zambezi</strong> drains into <strong>the</strong> Indian Ocean.<br />

The basin has one large reservoir: Lake Cabora Bassa. Again is <strong>the</strong> main purpose <strong>of</strong> <strong>the</strong><br />

reservoir <strong>the</strong> generation <strong>of</strong> hydroelectric power. With a capacity <strong>of</strong> 2075 MW (Chapagain,<br />

2000) it is <strong>the</strong> largest barrage <strong>of</strong> Africa.<br />

Be<strong>for</strong>e <strong>the</strong> <strong>Zambezi</strong> enters <strong>the</strong> ocean, <strong>the</strong> last large tributary, named Shire, confluences with<br />

<strong>the</strong> <strong>Zambezi</strong> River. The Shire drains mainly water from Lake Nyasa (or Lake Malawi). Lake<br />

Nyasa is <strong>the</strong> most sou<strong>the</strong>rn <strong>of</strong> <strong>the</strong> African Rift Valley lakes. It is, especially <strong>the</strong> north and east<br />

part, delimited by faults (Index <strong>of</strong> World Lakes). After <strong>the</strong> confluence, <strong>the</strong> <strong>Zambezi</strong> enters<br />

through a swampy area into <strong>the</strong> Indian Ocean, which is <strong>the</strong> end <strong>of</strong> its 3000 km long trip.<br />

2.4.1 Climate<br />

The climate in <strong>the</strong> <strong>Zambezi</strong> <strong>catchment</strong> can be divided into three main parts as can be seen in<br />

Figure 2.11. The nor<strong>the</strong>rn part <strong>of</strong> <strong>the</strong> <strong>catchment</strong> has mainly a Cwa-climate, according to<br />

Köppens climate classification system [3]. The Cwa-climate is a temperate climate with a dry<br />

season in <strong>the</strong> winter. The Cwa-climate is <strong>the</strong> most dominant climate type in <strong>the</strong> <strong>Zambezi</strong><br />

<strong>catchment</strong>.<br />

The second existing climate type is <strong>the</strong> BSh-climate, or <strong>the</strong> steppe climate. This climate is<br />

distinguished by <strong>the</strong> fact that <strong>the</strong> annual evaporation is exceeding <strong>the</strong> annual rainfall.<br />

The third climate type in <strong>the</strong> <strong>Zambezi</strong> <strong>catchment</strong> is <strong>the</strong> Am-climate. This tropical climate<br />

exists in <strong>the</strong> upper northwest and <strong>the</strong> east part <strong>of</strong> <strong>the</strong> <strong>catchment</strong>. High temperatures and a short<br />

dry period characterize <strong>the</strong> Am-climate.<br />

4 Luvisols: soils with strong accumulation <strong>of</strong> clay in <strong>the</strong> B-horizon and not dark in color.<br />

15


PROBLEM ANALYSIS<br />

Figure 2.11: Climate classification according to Köppen [3]. Am=tropical, monsoon type;<br />

Ami=tropical, monsoon type, iso<strong>the</strong>rmal subtype; Cw=temperate, winter dry season; Cwa=temperate,<br />

winter dry season, hot summer; Cwb=temperate, winter dry season, cool summer; BSh=dry, steppe<br />

climate, subtropical desert.<br />

Seasonal variability<br />

The movement <strong>of</strong> <strong>the</strong> Inter-Tropical Convergence Zone (ITCZ) is a very important factor,<br />

which affects <strong>the</strong> climate <strong>of</strong> Africa. The ITCZ is a surface <strong>of</strong> discontinuity, which separates a<br />

warm and dry air mass from a cooler and moist air mass (Shahin, 2002). Its movement during<br />

<strong>the</strong> season is related with <strong>the</strong> position <strong>of</strong> <strong>the</strong> sun compared to earth. In January, <strong>the</strong> position <strong>of</strong><br />

<strong>the</strong> ITCZ in Africa is, until 30° E, parallel to latitude 5° N (Figure 2.12). Then <strong>the</strong> ITCZ has a<br />

depression due to <strong>the</strong> orography <strong>of</strong> <strong>the</strong> region. When <strong>the</strong> ITCZ crosses <strong>the</strong> 18 th eastern<br />

longitude it bends again to <strong>the</strong> east. By July <strong>the</strong> ITCZ is moved up to 18° N. At this position<br />

<strong>the</strong> ITCZ has reached its most nor<strong>the</strong>rn position and in August <strong>the</strong> ITCZ is moving back to<br />

<strong>the</strong> south.<br />

Figure 2.12: Position <strong>of</strong> <strong>the</strong> ITCZ during <strong>the</strong> year (from: http://www.planearthsci.com).<br />

16


PROBLEM ANALYSIS<br />

In <strong>the</strong> center <strong>of</strong> <strong>the</strong> ITCZ <strong>the</strong> solar radiation is maximal (Magdelyns, 2004). The warm air<br />

rises and new air is supplied by <strong>the</strong> trade winds. The rising warm air is cooling down and is<br />

condensing, which causes rainfall. That’s why <strong>the</strong> ITCZ is characterized by warm and wet<br />

wea<strong>the</strong>r.<br />

The movement <strong>of</strong> <strong>the</strong> ITCZ can be seen very well in<br />

<strong>the</strong> rainfall and temperature patterns <strong>of</strong> <strong>the</strong> <strong>Zambezi</strong><br />

<strong>catchment</strong>. In January <strong>the</strong> ITCZ has moved to its<br />

/////// ///////<br />

most sou<strong>the</strong>rn position. As can be seen in Figure<br />

2.14 that is <strong>the</strong> moment with <strong>the</strong> highest rainfall<br />

amounts and <strong>the</strong> highest temperatures. Also <strong>the</strong><br />

depression <strong>of</strong> <strong>the</strong> ITCZ near Malawi is easy to find.<br />

ITCZ<br />

nor<strong>the</strong>rn<br />

sou<strong>the</strong>rn<br />

trade winds<br />

trade winds<br />

During <strong>the</strong> season <strong>the</strong> ITCZ is moving up. In May Figure 2.13: ITCZ (after Magdelyns,<br />

<strong>the</strong> dry season starts with its top in July when <strong>the</strong><br />

2004).<br />

ITCZ is at <strong>the</strong> most nor<strong>the</strong>rn position. After July <strong>the</strong> ITCZ is moving back to <strong>the</strong> south.<br />

October is <strong>the</strong> end <strong>of</strong> <strong>the</strong> dry season.<br />

January<br />

May<br />

September<br />

February<br />

June<br />

October<br />

March<br />

July<br />

November<br />

Unit:<br />

mm/month<br />

April<br />

August<br />

December<br />

Figure 2.14: Monthly precipitation in 2003 based on FEWS [11].<br />

17


PROBLEM ANALYSIS<br />

January<br />

May<br />

September<br />

February<br />

June<br />

October<br />

March<br />

July<br />

November<br />

Unit:<br />

°C<br />

April<br />

August<br />

December<br />

Figure 2.15: Long term mean monthly temperature [4] 1930-1960.<br />

2.4.2 Land cover / Dambos<br />

The <strong>Zambezi</strong> <strong>catchment</strong> is mostly covered with savannas (Figure 2.16) and in <strong>the</strong> northwest<br />

<strong>of</strong> <strong>the</strong> <strong>catchment</strong> with woody savannas and dense <strong>for</strong>est. Fur<strong>the</strong>rmore a lot <strong>of</strong> cropland can be<br />

found, especially in <strong>the</strong> center and nor<strong>the</strong>ast part.<br />

Figure 2.16: Land cover [6].<br />

18


PROBLEM ANALYSIS<br />

Table 2.2: Land cover percentage <strong>of</strong> <strong>the</strong> <strong>catchment</strong>.<br />

Land cover<br />

% <strong>of</strong> basin<br />

Forests 3.8<br />

Closed Shrublands 0.0<br />

Open Shrublands 0.0<br />

Woody savannas 15.4<br />

Savannas 57.1<br />

Grassland 0.3<br />

Croplands 5.3<br />

Urban and Built-up 0.1<br />

Croplands and natural vegetation mosaic 14.4<br />

Barren <strong>of</strong> sparsely vegetated 1.0<br />

Water 2.6<br />

Along <strong>the</strong> river <strong>the</strong>re are also some grasslands. These grasslands are wetlands. The wetlands<br />

can be divided into three categories: pan dambos, river valleys or flood plains (Bastiaansen,<br />

1990). The latter two are caused by cracks in <strong>the</strong> earth crust. Dambos are natural depressions<br />

without a clear outlet. Likely, <strong>the</strong>y are <strong>for</strong>med by strong winds. There is made a distinction<br />

between dambos, which are permanently flooded (type I) and dambos, which are only flooded<br />

during <strong>the</strong> wet season (type II). See Figure 2.17.<br />

In <strong>the</strong> part, which is permanently flooded, <strong>the</strong> vegetation is mostly dense reed and <strong>the</strong> soil<br />

contains very <strong>of</strong>ten loam. Near <strong>the</strong> edge where seepage occurs <strong>the</strong> dambo has a thick peat<br />

layer. The space between <strong>the</strong> inner part and <strong>the</strong> edges is mostly covered with sandy soils and<br />

is vegetated with grass.<br />

A logic result <strong>of</strong> <strong>the</strong> open water in <strong>the</strong> dambos, originate from seepage, is that <strong>the</strong> evaporation<br />

is high.<br />

Figure 2.17: Schematization <strong>of</strong> two types <strong>of</strong> dambos. Type I is permanently flooded and type II only<br />

during <strong>the</strong> wet season (Bastiaansen, 1990).<br />

19


PROBLEM ANALYSIS<br />

20


HYDROLOGICAL MODEL INPUT DATA<br />

3 <strong>Hydrological</strong> model input data<br />

3.1 Precipitation data<br />

One <strong>of</strong> <strong>the</strong> most important inputs <strong>of</strong> a rainfall run<strong>of</strong>f model is <strong>the</strong> precipitation. This is <strong>the</strong><br />

reason why it is important to have good rainfall maps, which reflect <strong>the</strong> rainfall intensity and<br />

<strong>the</strong> spatial variation in an accurate manner.<br />

For <strong>the</strong> time period 1978-1992 Seyam (2002) has<br />

chosen to use <strong>the</strong> data from rain gauges [8]. Seyam<br />

has interpolated <strong>the</strong>se point data with <strong>the</strong> weightedaverage-distance<br />

method. A disadvantage <strong>of</strong> this<br />

method is that it is only quite reliable if <strong>the</strong>re are<br />

enough rain stations in <strong>the</strong> <strong>catchment</strong> to reflect <strong>the</strong><br />

Figure 3.1: Maximum available rain<br />

spatial variability. Because this is not <strong>the</strong> case <strong>for</strong><br />

stations in ‘78-‘93<br />

1993 until present and because it is very <strong>of</strong>ten not<br />

possible to obtain from every station an (almost) complete data series <strong>for</strong> <strong>the</strong> period 1993-<br />

present, o<strong>the</strong>r methods to determine <strong>the</strong> precipitation have been studied.<br />

In <strong>the</strong> next sections an investigation is made <strong>of</strong> two different rainfall algorithms: MIRA and<br />

FEWS. First each algorithm will be described and afterwards <strong>the</strong> output will be compared<br />

with observed rainfall data from ten rain gauges in <strong>the</strong> <strong>Zambezi</strong> <strong>catchment</strong> (Figure 3.2).<br />

Magoye<br />

Mongu<br />

Figure 3.2: Location <strong>of</strong> <strong>the</strong> ten rain stations, which are used to verify <strong>the</strong> satellite precipitation data.<br />

21


HYDROLOGICAL MODEL INPUT DATA<br />

3.1.1 Microwave-Infrared Rainfall Algorithm (MIRA)<br />

Due to large demand from meteorologists, climatologists and hydrologists on accurate and<br />

high-resolution rainfall estimates on a daily base, <strong>the</strong> MIRA [10] algorithm was developed<br />

(Todd et al, 2001). Previous algorithms, which determine <strong>the</strong> rainfall by remote sensing,<br />

usually have a spatial resolution <strong>of</strong> 2.5° and a monthly time scale. Some algorithms have a<br />

better spatial resolution, but this mostly means that <strong>the</strong> temporal resolution is bad and vice<br />

versa. The MIRA algorithm avoids this constraint by combining <strong>the</strong> input <strong>of</strong> <strong>the</strong> different<br />

satellite sources. The MIRA algorithm uses two sources:<br />

• Passive Microwave (PMW) and<br />

• Infrared (IR)<br />

The PMW is a low orbiting sensor that can provide accurate rainfall estimates, but suffer from<br />

poor temporal sampling. Conversely, <strong>the</strong> IR sensor provides high temporal data, but gives<br />

only a very weak signal and an indirect relationship with <strong>the</strong> surface rain.<br />

GOES Precipitation Index<br />

The most common algorithm to derive rainfall estimates out <strong>of</strong> <strong>the</strong> IR-sensor is <strong>the</strong> GOES<br />

Precipitation Index (GPI) (Arkin and Meisner, 1987). For large grid cells <strong>the</strong> IR-sensor<br />

measures <strong>the</strong> temperature <strong>of</strong> <strong>the</strong> cloud top and next <strong>the</strong> rainfall is calculated by:<br />

R = Fc<br />

× G× T<br />

Equation 3.1<br />

Where:<br />

R = rainfall per cell [mm]<br />

F c = fractional coverage <strong>of</strong> each cell by cloud colder than 235 K [%]<br />

G = GPI coefficient equal to 3.0 [mm/h]<br />

T = number <strong>of</strong> hours in <strong>the</strong> integration period [h]<br />

Atlas and Bell (1992) showed that <strong>the</strong> GPI (Equation 3.1) is essentially an area-time-integral<br />

(ATI) approach. This ATI approach (Doneaud et al., 1984) has been used to estimate <strong>the</strong><br />

storm rainfall volume from <strong>the</strong> area and duration <strong>of</strong> <strong>the</strong> storm measured by radar. As <strong>the</strong> GPI<br />

uses cold cloud area as a surrogate <strong>for</strong> rain, Atlas and Bell (1992) showed that G can be<br />

defined as:<br />

−1<br />

⎛A ⎞<br />

G = R ⎜ c ⎟ c ⎜A ⎟<br />

⎝ r ⎠<br />

Where:<br />

Equation 3.2<br />

22


HYDROLOGICAL MODEL INPUT DATA<br />

R c<br />

A c<br />

A r<br />

= climatological conditional rain rate [mm]<br />

= average area <strong>of</strong> cold cloud [L²]<br />

= average area <strong>of</strong> rain [L²]<br />

Richards and Arkin (1981) found that if <strong>the</strong> GPI is calculated over a large enough domain it is<br />

satisfied to say that <strong>the</strong> GPI coefficient is stable (mostly 3.0). This assumption is only true <strong>for</strong><br />

grid cells <strong>of</strong> 2.5° <strong>for</strong> periods as short as one hour. So <strong>for</strong> <strong>the</strong> objective <strong>of</strong> MIRA to obtain<br />

high-resolution rainfall estimates, this assumption is not satisfactory. Fur<strong>the</strong>rmore Arkin et al.<br />

(1994) revealed that because <strong>of</strong> <strong>the</strong> fact that R c and A c /A r vary over space and time it is<br />

unlikely that one single G value or IR threshold will be appropriate <strong>for</strong> all regions (dominant<br />

cloud microphysical processes). Hence it is necessary to optimize <strong>the</strong> IR threshold and <strong>the</strong><br />

GPI coefficient. The MIRA algorithm calculates such optimized G and IR threshold fields by<br />

comparing <strong>the</strong> IR data with <strong>the</strong> PMW data.<br />

MIRA<br />

The MIRA algorithm is based on <strong>the</strong> assumption that PMW data gives accurate rainfall<br />

estimations and that <strong>the</strong>se results can be used to calibrate <strong>the</strong> IR-parameters. This will lead to<br />

improved rainfall estimates obtained from IR data at a high temporal frequency.<br />

To calibrate <strong>the</strong> IR-parameters, frequency distributions from both satellite estimates are made<br />

from coincident satellite imagery. The frequency distribution <strong>of</strong> <strong>the</strong> PMW sensor contains<br />

rain rate estimates (R MW ) and <strong>the</strong> distribution <strong>of</strong> <strong>the</strong> IR contains brightness temperature<br />

(IR TB ). To ensure sufficient observations <strong>of</strong> <strong>the</strong> PMW and <strong>the</strong> IR estimates <strong>the</strong> imagery is<br />

accumulated over some time and space domain. To derive <strong>the</strong> optimized IR TB /R MW<br />

relationship <strong>the</strong> Probability Matching Method (PMM) is used. This method <strong>of</strong> Atlas et al.<br />

(1990) compares <strong>the</strong> histograms <strong>of</strong> <strong>the</strong> coinciding R MW and IR TB observations in such way<br />

that <strong>the</strong> proportion <strong>of</strong> <strong>the</strong> R MW distribution above a certain rain rate is equal to <strong>the</strong> proportion<br />

<strong>of</strong> <strong>the</strong> IR TB below <strong>the</strong> associated IR TB threshold. The method is carried out from <strong>the</strong> highest to<br />

<strong>the</strong> lowest rain rates. In this way <strong>the</strong> optimized IR TB /R MW relationship is produced.<br />

Subsequently, this relationship can be applied on <strong>the</strong> IR images to derive accurate rainfall<br />

estimates at a high temporal scale.<br />

For <strong>the</strong> validation <strong>the</strong> results were compared to o<strong>the</strong>r rainfall estimates. As can be seen in<br />

Table 3.1 and Figure 3.3 a large improvement between <strong>the</strong> MIRA algorithm and <strong>the</strong> GPI is<br />

realized.<br />

23


HYDROLOGICAL MODEL INPUT DATA<br />

Table 3.1: Validation statistics <strong>of</strong> rainfall estimates from MIRA and GPI compared with o<strong>the</strong>r rainfall<br />

estimation methods (Todd et al., 2001)<br />

Independent validation data MIRA GPI<br />

CC Ratio RMSE CC Ratio RMSE<br />

SSM/I BUC [1]<br />

0.47 1.1 2.2 0.04 1.54 2.84<br />

SSM/I BUC [2]<br />

EPSAT gauge data [3]<br />

GPCP gauge data [4]<br />

WetNet PIP-3 GPCP land based<br />

gauges [5]<br />

WetNet PIP-3 Comprehensive Pacific<br />

Rainfall Data Base [6]<br />

0.54 1.01 2.02 0.24 1.97 1.98<br />

0.96 1.08 2.04 0.76 1.4 5.3<br />

0.54 1.76 25.17 0.66 2.74 36.9<br />

0.8 1.24 82.6 0.69 1.69 147.5<br />

0.85 0.96 74.6 0.75 1.08 100.8<br />

[1] 140°-180°E, 20°S-20°N, July 1991, 0.25°, conditional instantaneous, n= 515, mean=1.7mmhr -1<br />

[2] 140°-180°E, 20°S-20°N, July 1991, 0.5°, conditional instantaneous, n= 228, mean=1.04 mmhr -1<br />

[3] 2°-3°E, 13°-14°N, July 1992, 1°, daily, n=30, mean=3.5mm.day -1<br />

[4] Selected locations (see Todd et al., 2001; Table 2), July 1991,2.5°, pentad, n= 46, mean=8.7mm.pentad -1<br />

[5] Selected locations (see Morrissey et al., 1994), 2.5°, monthly, n=159, mean =83.7mm<br />

[6] Selected locations (see Morrissey et al., 1994), 2.5°/monthly, n=17, mean=217.6mm<br />

Rain rate [mm/h]<br />

40<br />

30<br />

20<br />

10<br />

0<br />

1<br />

Validation Validatation <strong>of</strong> <strong>of</strong> MIRA and GPI<br />

4<br />

7<br />

10<br />

13<br />

16<br />

19<br />

22<br />

25<br />

Time [days]<br />

Gauge MIRA GPI<br />

28<br />

Figure 3.3: MIRA and GPI compared to rain gauges (Todd et al., 2001).<br />

3.1.1.1 Data<br />

The MIRA algorithm has calculated daily rainfall estimates in mean mm/hour <strong>for</strong> <strong>the</strong> period<br />

from 1993 till 2002. It covers only <strong>the</strong> African continent and has a spatial resolution <strong>of</strong> 0.1° x<br />

0.1°. The rainfall estimates from MIRA can be downloaded from <strong>the</strong> Sou<strong>the</strong>rn African<br />

Regional Science Infinitive (SAFARI 2000)-site:<br />

http://ltpwww.gsfc.nasa.gov/s2k/html_pages/groups/precip/daily_rainfall_mira. html<br />

Although <strong>the</strong> high temporal resolution <strong>of</strong> <strong>the</strong> rainfall estimates, <strong>the</strong>re are un<strong>for</strong>tunately some<br />

gaps (Table 3.2). These gaps are <strong>for</strong> example due to <strong>the</strong> fact that some data files became<br />

corrupt by archiving on CD. To repair <strong>the</strong> data one <strong>of</strong> <strong>the</strong> following actions is executed:<br />

24


HYDROLOGICAL MODEL INPUT DATA<br />

1. If <strong>the</strong> missing day(s) are in <strong>the</strong> dry season (May-October) <strong>the</strong>re is no precipitation<br />

added to <strong>the</strong> month value. It is assumed that <strong>the</strong> precipitation in those days is zero.<br />

The month sum is easily obtained by summing all <strong>the</strong> daily values.<br />

2. If one or two days successive are lacking data, <strong>the</strong> value <strong>of</strong> <strong>the</strong> day be<strong>for</strong>e and/or <strong>the</strong><br />

day after, is filled in. Assumed is a high correlation between two successive days.<br />

Again is <strong>the</strong> month sum easily obtained by simply summing up all <strong>the</strong> daily values<br />

inclusive <strong>the</strong> new values.<br />

3. If more <strong>the</strong>n two days are missing and at least one rain station is available with a<br />

complete daily range <strong>of</strong> rainfall data, <strong>the</strong> percentage (p) <strong>of</strong> <strong>the</strong> amount <strong>of</strong> rainfall <strong>of</strong><br />

<strong>the</strong> missing days is calculated from <strong>the</strong> rain station. The month sum is <strong>the</strong>n divided<br />

by (1-p) to obtain a repaired new month value.<br />

4. If more than two days are missing data and <strong>the</strong>re are no rain stations available, <strong>the</strong><br />

average percentage (p) <strong>of</strong> <strong>the</strong> amount <strong>of</strong> rainfall <strong>of</strong> <strong>the</strong> missing days is computed<br />

from o<strong>the</strong>r years <strong>of</strong> that month. The month sum is <strong>the</strong>n divided by (1-p) to obtain a<br />

repaired new month value.<br />

5. If a complete month is missing, a highly correlated year is looked <strong>for</strong>. The missing<br />

month is filled in with <strong>the</strong> same month <strong>of</strong> <strong>the</strong> found correlated year.<br />

A complete overview <strong>of</strong> <strong>the</strong> data trans<strong>for</strong>mations and gap repair is given in Appendix 1.2.6.<br />

Table 3.2: Number <strong>of</strong> gaps in <strong>the</strong> MIRA data.<br />

rainy<br />

dry<br />

rainy<br />

1993 1994 1995 1996 1997 1998 1999 2000 2001 2002<br />

January 0 0 0 1 5 0 9 2 10 0<br />

February 0 0 0 10 1 0 0 0 2 0<br />

March 1 0 0 0 1 0 1 0 0 0<br />

April 0 0 9 0 6 2 0 0 0 0<br />

May 2 10 0 0 0 0 2 0 0 0<br />

June 0 0 4 0 0 5 0 0 0 0<br />

July 0 0 31 10 0 1 0 0 0 11<br />

August 0 0 10 0 0 0 0 0 0 21<br />

September 0 0 0 0 0 0 0 0 0 0<br />

October 0 0 0 0 0 0 0 0 0 21<br />

November 0 0 8 5 1 0 0 0 0 11<br />

December 0 0 0 9 0 4 12 0 0 31<br />

Tot perc. <strong>of</strong> gaps 0.82% 2.74% 16.99% 9.56% 3.84% 3.29% 6.58% 0.55% 3.29% 26.03%<br />

rainy season 0.27% 0.00% 4.66% 6.83% 3.84% 1.64% 6.03% 0.55% 3.29% 11.51%<br />

dry season 0.55% 2.74% 12.33% 2.73% 0.00% 1.64% 0.55% 0.00% 0.00% 14.52%<br />

3.1.1.2 Per<strong>for</strong>mance<br />

To verify <strong>the</strong> rainfall estimates <strong>of</strong> <strong>the</strong> MIRA algorithm, <strong>the</strong> output is compared with ten rain<br />

stations in <strong>the</strong> <strong>catchment</strong>. From <strong>the</strong> selected stations <strong>the</strong> average is plotted in time. The same<br />

is done to <strong>the</strong> values <strong>of</strong> MIRA on <strong>the</strong> locations <strong>of</strong> <strong>the</strong> rain stations. See Figure 3.4. Also a<br />

double mass curve and a scatter plot are made (Figure 3.5. and Figure 3.6).<br />

25


HYDROLOGICAL MODEL INPUT DATA<br />

Monthly precipitation data<br />

(average <strong>of</strong> 10 stations)<br />

450.00<br />

400.00<br />

350.00<br />

300.00<br />

[mm/month]<br />

250.00<br />

200.00<br />

150.00<br />

100.00<br />

50.00<br />

0.00<br />

jan-93 mei-94 sep-95 feb-97 jun-98 nov-99 mrt-01 aug-02 dec-03<br />

[month]<br />

RAIN GAUGES<br />

MIRA<br />

Figure 3.4: Output <strong>of</strong> MIRA compared with rain gauges in <strong>the</strong> <strong>Zambezi</strong> <strong>catchment</strong>.<br />

cum. Observed<br />

9,000<br />

8,000<br />

7,000<br />

6,000<br />

5,000<br />

4,000<br />

3,000<br />

2,000<br />

1,000<br />

0<br />

MIRA [mm/month] y = 0.8693x<br />

R 2 = 0.9991<br />

0 2000 4000 6000 8000 10000<br />

cum MIRA<br />

Figure 3.5: Double Mass Curve <strong>of</strong> MIRA.<br />

26


HYDROLOGICAL MODEL INPUT DATA<br />

MIRA [mm/month]<br />

Observed<br />

500<br />

450<br />

400<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

0 100 200 300 400 500<br />

MIRA<br />

Figure 3.6: Scatter plot <strong>of</strong> MIRA with 45° line<br />

As can be seen from Figure 3.5 MIRA over-estimates <strong>the</strong> rainfall with circa 15%. The<br />

correlation coefficient between <strong>the</strong> satellite estimates and <strong>the</strong> rain gauges is 0.93, which is<br />

very high.<br />

3.1.2 Famine Early Warning Systems (FEWS)<br />

In framework to identify problems in <strong>the</strong> food supply system a network named ‘U.S. Agency<br />

<strong>for</strong> International Development, Famine Early Warning System Network’<br />

(USAID/FEWSNET) has been developed. This network has <strong>the</strong> objective to provide timely<br />

and accurate in<strong>for</strong>mation regarding potential food-insecure conditions. Toge<strong>the</strong>r with <strong>the</strong><br />

‘National Aeronautic and Space Administration’ (NASA) and <strong>the</strong> ‘National Oceanic and<br />

Atmospheric Administration’ (NOAA) <strong>the</strong>y collect and process satellite data to provide<br />

rainfall estimations.<br />

The FEWS rainfall estimations [11] are operational from July 1995. Since <strong>the</strong>n <strong>the</strong>re have<br />

been two algorithm versions. The first version, RFE 1.0 (Herman et al., 1997), was<br />

operational since July 1995 till December 2000 and <strong>the</strong> second, RFE 2.0 (Xie and Arkin,<br />

1997), started at January 2001 and is still operational.<br />

RFE 1.0<br />

The RFE 1.0 algorithm uses <strong>for</strong> its rainfall estimates:<br />

• METEOSAT 5 <strong>the</strong>rmal Infrared (IR) satellite data,<br />

27


HYDROLOGICAL MODEL INPUT DATA<br />

• Global Telecommunication System (GTS) rain gauges and<br />

• Model analyses <strong>of</strong> wind and relative humidity and orography.<br />

The first step <strong>of</strong> <strong>the</strong> algorithm is to make a preliminary estimate <strong>of</strong> <strong>the</strong> precipitation based on<br />

<strong>the</strong> GOES Precipitation Index algorithm (GPI) (Arkin and Meisner, 1987). The amount <strong>of</strong><br />

precipitation is determined by measuring <strong>the</strong> duration <strong>of</strong> cold cloud tops with <strong>the</strong><br />

METEOSAT 5 satellite. Each hour that <strong>the</strong> temperature <strong>of</strong> <strong>the</strong> top <strong>of</strong> <strong>the</strong> cloud is below 235<br />

Kelvin (≈ -38° C) will result in 3 mm <strong>of</strong> accumulated rainfall.<br />

The next step is to correct <strong>the</strong> estimates <strong>of</strong> <strong>the</strong> GPI-algorithm by fitting <strong>the</strong> estimates to <strong>the</strong><br />

rain gauge data. This is done by calculating <strong>the</strong> difference between <strong>the</strong> GPI estimate and <strong>the</strong><br />

rain gauge data and subsequently creating a gridded bias field via an optimum interpolation<br />

scheme. This scheme assumes that in each grid square one or more observation points are<br />

available. Based on one rainfall observation (d v ) on location (x v ,y v ) within a grid cell and <strong>the</strong><br />

GPI-estimates (z i,j ) a precipitation estimate (m v ) is made (Equation 3.3). For each observation<br />

point this procedure is carried out. By minimizing <strong>the</strong> cost function J (Equation 3.4) a gridded<br />

precipitation field is obtained.<br />

mυ =α<br />

υzi,j +β<br />

υ<br />

zi+ 1,j<br />

+γ<br />

υ<br />

zi,j+ 1<br />

+ζ<br />

υ<br />

zi+ 1,j+<br />

1<br />

Equation 3.3<br />

where:<br />

(xi+ 1−x υ<br />

)(yj+ 1−y υ)<br />

α<br />

υ<br />

=<br />

(x −x )(y −y )<br />

i+ 1 i j+<br />

1 j<br />

(xυ −x i)(yj+ 1−y υ)<br />

β<br />

υ<br />

=<br />

(x −x)(y −y)<br />

i+ 1 i j+<br />

1 j<br />

(xi+ 1−x υ)(yυ<br />

−y j)<br />

γ<br />

υ<br />

=<br />

(x −x )(y −y )<br />

i+ 1 i j+<br />

1 j<br />

(xυ<br />

−x i)(yυ<br />

−y j)<br />

ζ<br />

υ<br />

=<br />

(x −x)(y −y)<br />

i+ 1 i j+<br />

1 j<br />

j + 1<br />

j<br />

i i + 1<br />

= z i,j (GPI estimate)<br />

= d v (observed)<br />

Cost function:<br />

2<br />

( ) ∑ ( ) 2<br />

υ υ<br />

J = 1/2σ m −d<br />

υ<br />

Equation 3.4<br />

where:<br />

2<br />

σ = variance <strong>of</strong> measurements<br />

28


HYDROLOGICAL MODEL INPUT DATA<br />

The last step <strong>of</strong> <strong>the</strong> RFE 1.0 algorithm is to take precipitation due to orographic lifting into<br />

account. Orographic precipitation occurs during favorable low-level wind conditions, when<br />

moist air masses are condensing. In regions where warm cloud tops are presents (temperatures<br />

between 275 and 235 Kelvin (2 till -38°C) an analysis <strong>of</strong> <strong>the</strong> ‘Environmental Modeling<br />

Center, Global Data Assimilation System’ (EMC/GDAS) is executed. This analysis combines<br />

<strong>the</strong> relative humidity, wind direction and <strong>the</strong> terrain slope. First <strong>the</strong> dot product <strong>of</strong> <strong>the</strong> wind<br />

direction (u(x,y), v(x,y)) and <strong>the</strong> horizontal gradient <strong>of</strong> <strong>the</strong> terrain slope (grad[h(x,y]) is<br />

defined. Subsequently, <strong>the</strong> scalar product is calculated (Equation 3.5) and multiplied by <strong>the</strong><br />

relative humidity to incorporate <strong>the</strong> orographic lift <strong>of</strong> low-level moisture.<br />

⎡ ∂h<br />

∂h⎤<br />

⎢u<br />

+ v<br />

∂x<br />

∂y<br />

⎥<br />

⎣ ⎦<br />

Equation 3.5<br />

After this multiplication, <strong>the</strong> outcome is converted to rainfall estimates and is calibrated with<br />

<strong>the</strong> values from <strong>the</strong> rain gauge reports.<br />

For <strong>the</strong> validation <strong>of</strong> <strong>the</strong> RFE 1.0 algorithm field data, which was not <strong>the</strong> same as <strong>the</strong> WMO<br />

stations used to calibrate <strong>the</strong> model, was collected. The evaluation is based on 180 stations<br />

yielding 1882 observations in <strong>the</strong> period from June to September 1995 in <strong>the</strong> Sahel region <strong>of</strong><br />

Africa. Comparing <strong>the</strong> estimates with <strong>the</strong> rain gauge reports, it can be concluded that <strong>the</strong><br />

rainfall estimates have a maximum error <strong>of</strong> 40% <strong>of</strong> <strong>the</strong> measured rainfall value with a 68.3%<br />

assurance.<br />

RFE 2.0<br />

As RFE 1.0 only uses one satellite data source, RFE 2.0 uses two extra satellite sources, but<br />

did not incorporated orographic precipitation anymore. So <strong>the</strong> successor <strong>of</strong> RFE 1.0 uses <strong>the</strong><br />

following data sources (NOAA CPC):<br />

• Special Sensor Microwave/Imager (SSM/I) satellite data,<br />

• AMSU-A (till June 2001) or AMSU-B (from June 2001) microwave satellite data,<br />

• METEOSAT Infrared (IR) satellite data and<br />

• Global Telecommunication System (GTS) rain gauges.<br />

The main idea behind RFE 2.0 is to merge all <strong>the</strong> satellite data and next merge <strong>the</strong> results to<br />

<strong>the</strong> rain gauges. Combining is advantageous, because separately each satellite input is not<br />

complete in spatial coverage and contains significant random error and systematic bias.<br />

Merging <strong>the</strong> data will improve <strong>the</strong> accuracy enormous.<br />

29


HYDROLOGICAL MODEL INPUT DATA<br />

The first step <strong>of</strong> <strong>the</strong> RFE 2.0 algorithm is to estimate <strong>the</strong> rainfall out <strong>of</strong> <strong>the</strong> separated satellite<br />

sources. The SSM/I detects four times per day <strong>the</strong> scattering <strong>of</strong> upwelling radiation by<br />

precipitation sized ice particles within <strong>the</strong> cloud layer. The obtained patterns are compared<br />

with previously derived rainfall amounts to make rainfall estimates. Just as <strong>the</strong> SSM/I<br />

algorithm converts emissivity to rain rates, <strong>the</strong> AMSU-A and AMSU-B data are converted in<br />

same way. Over land estimates are obtained by measuring <strong>the</strong> brightness temperature<br />

differences due to ice concentration. Over <strong>the</strong> ocean <strong>the</strong> cloud liquid water determines <strong>the</strong><br />

rainfall estimate. The difference between <strong>the</strong> AMSU-A and AMSU-B data is only <strong>the</strong><br />

increased temporal and spatial resolution.<br />

The GOES Precipitation Index (GPI) is calculated at <strong>the</strong> same way as <strong>the</strong> RFE 1.0 algorithm<br />

does. Based on <strong>the</strong> Cold Cloud Duration measured by <strong>the</strong> METEOSAT IR satellite <strong>the</strong><br />

algorithm will calculate <strong>the</strong> rain rate.<br />

The next step is divided in two parts. In <strong>the</strong> first part all <strong>the</strong> rainfall estimates <strong>of</strong> <strong>the</strong> satellite<br />

data are linearly combined through a maximum likelihood estimation method (Equation 3.6).<br />

This reduces <strong>the</strong> random error significantly.<br />

W<br />

σ<br />

−2<br />

i<br />

i<br />

=<br />

3<br />

−2<br />

∑σi<br />

i−1<br />

Equation 3.6<br />

Where:<br />

W<br />

i<br />

2<br />

σ<br />

i<br />

= weighting coefficient<br />

= random error (rainfall estimate – observed rainfall)<br />

= method 1 (SSM/I), 2 (AMSU) or 3 (IR)<br />

After <strong>the</strong> determination <strong>of</strong> <strong>the</strong> weighting coefficients <strong>the</strong> new (weighted) rainfall estimate (S)<br />

can be made based on <strong>the</strong> coefficients and <strong>the</strong> individual satellite rainfall estimate (S i ).<br />

3<br />

S= ∑ WS<br />

Equation 3.7<br />

i=<br />

1<br />

i<br />

i<br />

The second part <strong>of</strong> <strong>the</strong> merging process deals with removing <strong>the</strong> bias as much as possible.<br />

Comparing <strong>the</strong> output <strong>of</strong> <strong>the</strong> first part with <strong>the</strong> rain gauges can reduce <strong>the</strong> bias (Xie and Arkin,<br />

1996). There<strong>for</strong>e <strong>the</strong> satellite rainfall estimates reflect <strong>the</strong> shape <strong>of</strong> <strong>the</strong> precipitation and <strong>the</strong><br />

values <strong>of</strong> <strong>the</strong> rain gauges determine <strong>the</strong> magnitude <strong>of</strong> <strong>the</strong> rainfall intensity. This involves that<br />

30


HYDROLOGICAL MODEL INPUT DATA<br />

near <strong>the</strong> rain station <strong>the</strong> final precipitation is equal to <strong>the</strong> rain station value. If <strong>the</strong> distance to<br />

<strong>the</strong> rain gauge increases, <strong>the</strong> rainfall estimates will more rely on <strong>the</strong> satellite rainfall estimates.<br />

The validation <strong>of</strong> <strong>the</strong> RFE 2.0 algorithm is carried out by repeatedly removing 10% <strong>of</strong> <strong>the</strong> rain<br />

stations and <strong>the</strong>n run <strong>the</strong> RFE 2.0 algorithm again. Sequentially <strong>the</strong> outcome is compared to<br />

<strong>the</strong> values <strong>of</strong> <strong>the</strong> removed rain gauges. This is repeated in such way that each station is<br />

removed one time. The result <strong>of</strong> this cross validation is a bias <strong>of</strong> –0.15 mm/day and a<br />

correlation coefficient <strong>of</strong> 0.501 (based on <strong>the</strong> AMSU-A).<br />

3.1.2.1 Data<br />

The FEWS-algorithm provides daily and decal rainfall estimates in mm <strong>for</strong> <strong>the</strong> African<br />

continent (long: -20° to 55° and lat: 40° to –40°). The first algorithm RFE 1.0 started at July<br />

1995 and ended in December 2000. The second algorithm RFE 2.0 started at January 2001<br />

and is still operational. The spatial resolution <strong>of</strong> FEWS is 0.1° x 0.1°.<br />

The rainfall estimates are downloadable from <strong>the</strong> site <strong>of</strong> FEWS/NET:<br />

http://edcw2ks21.cr.usgs.gov/adds/ or from <strong>the</strong> website <strong>of</strong> <strong>the</strong> NOAA CPC:<br />

http://www.cpc.ncep.noaa.gov/products/fews/data.html. In appendix 1.2.7 an overview <strong>of</strong> <strong>the</strong><br />

data trans<strong>for</strong>mations done on <strong>the</strong> raw FEWS-data is given.<br />

3.1.2.2 Per<strong>for</strong>mance<br />

To verify <strong>the</strong> satellite rainfall data with measured rainfall data in <strong>the</strong> <strong>Zambezi</strong> <strong>catchment</strong>, <strong>the</strong><br />

average rainfall values <strong>of</strong> ten locations (Figure 3.2) are compared with each o<strong>the</strong>r. In Figure<br />

3.7 until Figure 3.9 a rainfall graph, a double mass curve and a scatter plot are plotted. In <strong>the</strong><br />

graphs <strong>of</strong> <strong>the</strong> double mass curve also <strong>the</strong> regression line and regression <strong>for</strong>mula and R² are<br />

depicted.<br />

31


HYDROLOGICAL MODEL INPUT DATA<br />

450.00<br />

FEWS (RFE 1.0 & RFE 2.0)<br />

Monthly precipitation data<br />

(average <strong>of</strong> 10 stations)<br />

400.00<br />

350.00<br />

RFE 1.0 RFE 2.0<br />

300.00<br />

[mm/month]<br />

250.00<br />

200.00<br />

150.00<br />

100.00<br />

50.00<br />

0.00<br />

jul-95 nov-96 mrt-98 aug-99 dec-00 mei-02 sep-03<br />

[month]<br />

RAIN GAUGES<br />

FEWS<br />

Figure 3.7: Output <strong>of</strong> FEWS compared with rain gauges in <strong>the</strong> <strong>Zambezi</strong> <strong>catchment</strong>. Note: from January<br />

2001 a new algorithm is used.<br />

cum Observed<br />

8,000<br />

7,000<br />

6,000<br />

5,000<br />

4,000<br />

3,000<br />

2,000<br />

1,000<br />

0<br />

y = 0.9029x<br />

FEWS [mm/month]<br />

R 2 = 0.9799<br />

RFE 1.0 RFE 2.0<br />

0 2000 4000 6000 8000 10000<br />

cum FEWS<br />

Figure 3.8: Double Mass Curve <strong>of</strong> FEWS.<br />

32


HYDROLOGICAL MODEL INPUT DATA<br />

FEWS [mm/month]<br />

Observed<br />

400<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

0 100 200 300 400<br />

FEWS<br />

Figure 3.9: Scatter plot <strong>of</strong> FEWS with 45° line.<br />

As can be seen from <strong>the</strong> graphs, FEWS averagely over-estimates <strong>the</strong> rainfall with about 11%.<br />

The correlation coefficient is 0.87. It can also clearly be seen that <strong>the</strong>re is a large<br />

improvement in <strong>the</strong> rainfall estimates with <strong>the</strong> RFE 2.0 algorithm. Splitting <strong>the</strong> double mass<br />

curve into two curves, respectively RFE 1.0 and RFE 2.0, shows <strong>the</strong> large difference between<br />

<strong>the</strong> two algorithms.<br />

6,000<br />

5,000<br />

FEWS [mm/month]<br />

RFE 1.0<br />

y = 0.9624x<br />

R 2 = 0.9504<br />

cum Observed<br />

4,000<br />

3,000<br />

2,000<br />

1,000<br />

0<br />

0 1000 2000 3000 4000 5000 6000<br />

cum FEWS<br />

Figure 3.10: Double Mass Curve <strong>of</strong> FEWS calculated with RFE 1.0.<br />

33


HYDROLOGICAL MODEL INPUT DATA<br />

FEWS [mm/month]<br />

RFE 1.0<br />

Observed<br />

400<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

0 100 200 300 400<br />

FEWS<br />

Figure 3.11: Scatter plot <strong>of</strong> FEWS calculated with RFE 1.0. In pink <strong>the</strong> 45° line.<br />

FEWS [mm/month]<br />

RFE 2.0<br />

y = 0.9893x<br />

R 2 = 0.9978<br />

2,500<br />

cum Observed<br />

2,000<br />

1,500<br />

1,000<br />

500<br />

0<br />

0 500 1000 1500 2000 2500<br />

cum FEWS<br />

Figure 3.12: Double Mass Curve <strong>of</strong> FEWS calculated with RFE 2.0.<br />

FEWS [mm/month]<br />

RFE 2.0<br />

Observed<br />

400<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

0 100 200 300 400<br />

FEWS<br />

Figure 3.13: Scatter plot <strong>of</strong> FEWS calculated with RFE 2.0. In pink <strong>the</strong> 45° line.<br />

34


HYDROLOGICAL MODEL INPUT DATA<br />

Looking at <strong>the</strong> graphs <strong>of</strong> <strong>the</strong> separated FEWS algorithms, it can be concluded that RFE 2.0<br />

per<strong>for</strong>ms much better. Also <strong>the</strong> correlation coefficient is improved from 0.85 <strong>for</strong> RFE 1.0 to<br />

0.97 <strong>for</strong> RFE 2.0.<br />

3.1.3 Comparison precipitation algorithms<br />

As can be seen from <strong>the</strong> previous sections, <strong>the</strong> different algorithms have different results if<br />

compared with measured rainfall data. In Table 3.3 is given an overview <strong>of</strong> <strong>the</strong> per<strong>for</strong>mances.<br />

Table 3.3: Summary <strong>of</strong> <strong>the</strong> per<strong>for</strong>mance <strong>of</strong> <strong>the</strong> precipitation algorithms.<br />

Algorithm<br />

Correlation<br />

coefficient<br />

Gradient <strong>of</strong> trendline<br />

R² trendline<br />

MIRA (ended)<br />

(jan 1993 - dec 2002)<br />

FEWS RFE 1.0 + RFE 2.0<br />

(operational)<br />

(jul 1995 - dec 2003)<br />

FEWS RFE 1.0 (ended)<br />

(jul 1995 - dec 2000)<br />

0.93 0.8693 0.9991<br />

0.87 0.9029 0.9799<br />

0.85 0.9624 0.9504<br />

FEWS RFE 2.0 (operational)<br />

(jan 2001 – dec 2003)<br />

0.97 0.9893 0.9978<br />

The MIRA and <strong>the</strong> FEWS RFE 2.0 algorithm have a very high correlation coefficient. Also<br />

looking at <strong>the</strong> gradient <strong>of</strong> <strong>the</strong> trendline, which is an indication <strong>of</strong> an over- or an<br />

underestimation, FEWS RFE 2.0 is <strong>the</strong> preferred algorithm. In order to obtain a complete time<br />

serie from January 1993 till present, it is also desirable to use <strong>the</strong> MIRA algorithm <strong>for</strong> <strong>the</strong><br />

months be<strong>for</strong>e <strong>the</strong> FEWS RFE 2.0 algorithm starts.<br />

To achieve even better absolute values <strong>of</strong> <strong>the</strong> MIRA-algorithm, <strong>the</strong> algorithm has been<br />

corrected. Each month a comparison is made between <strong>the</strong> average <strong>of</strong> <strong>the</strong> MIRA rainfall values<br />

on <strong>the</strong> location <strong>of</strong> <strong>the</strong> rain stations (1, 2, … , n) and <strong>the</strong> average <strong>of</strong> <strong>the</strong> observed rainfall values<br />

[7]. Subsequently, <strong>the</strong> correction α is calculated by dividing <strong>the</strong> average <strong>of</strong> <strong>the</strong> observed<br />

rainfall by <strong>the</strong> average <strong>of</strong> <strong>the</strong> MIRA rainfall. These correction factors (see appendix 1.2.8) are<br />

subsequently multiplied by <strong>the</strong> MIRA rainfall each month. In <strong>for</strong>mula:<br />

35


HYDROLOGICAL MODEL INPUT DATA<br />

α =<br />

t<br />

n<br />

1<br />

∑ rainstation<br />

n i=<br />

1<br />

n<br />

1<br />

i<br />

∑ MIRAt<br />

n<br />

i=<br />

1<br />

i<br />

t<br />

Equation 3.8<br />

MIRA<br />

=α ∗ MIRA<br />

Equation 3.9<br />

corrected,t t t<br />

In Figure 3.14 and Figure 3.15 are depicted <strong>the</strong> double mass curve and <strong>the</strong> scatter plot if<br />

compared with <strong>the</strong> ten selected stations in Figure 3.2.<br />

cum. Observed<br />

8,000<br />

7,000<br />

6,000<br />

5,000<br />

4,000<br />

3,000<br />

2,000<br />

1,000<br />

0<br />

MIRA_corrected<br />

[mm/month]<br />

y = 0.9819x<br />

R 2 = 0.9982<br />

0 1000 2000 3000 4000 5000 6000 7000<br />

cum MIRA_corrected<br />

Figure 3.14: Double Mass Curve <strong>of</strong> MIRA corrected [=MIRA * α].<br />

500<br />

MIRA_corrected<br />

[mm/month]<br />

400<br />

Observed<br />

300<br />

200<br />

100<br />

0<br />

0 100 200 300 400 500<br />

combi MIRA_corrected<br />

Figure 3.15: Scatter plot <strong>of</strong> MIRA corrected with 45° line.<br />

36


HYDROLOGICAL MODEL INPUT DATA<br />

As can be observed in <strong>the</strong> graphs <strong>the</strong> MIRA corrected per<strong>for</strong>ms well with a correlation coefficient<br />

<strong>of</strong> 0,98, when compared with <strong>the</strong> ten selected rain stations. The final precipitation input <strong>for</strong><br />

<strong>the</strong> model will be a combination <strong>of</strong> MIRA corrected and FEWS RFE 2.0. For <strong>the</strong> time period<br />

January 1993 to December 2000 MIRA corrected will be used and <strong>for</strong> <strong>the</strong> period January 2001 till<br />

present is FEWS RFE 2.0 suitable.<br />

Table 3.4: Summary <strong>of</strong> per<strong>for</strong>mance best algorithms.<br />

Algorithm<br />

Correlation<br />

coefficient<br />

Gradient <strong>of</strong> trendline<br />

R² trendline<br />

MIRA corrected<br />

(jan 1993 – dec 2000)<br />

0.98 0.9819 0.9982<br />

FEWS RFE 2.0 (operational)<br />

(jan 2001 – dec 2003)<br />

0.97 0.9893 0.9978<br />

Combi MIRA_cor & FEWS RFE 2.0<br />

(jan 1993 – dec 2003)<br />

0.98 0.9760 0.9992<br />

The final precipitation data is plotted in Figure 3.16 against <strong>the</strong> average <strong>of</strong> <strong>the</strong> ten selected<br />

rain stations. In Figure 3.17 and Figure 3.18 are given <strong>the</strong> double mass curve and <strong>the</strong> scatter<br />

plot.<br />

450.00<br />

COMBINATION OF MIRA_CORRECTED & FEWS RFE 2.0<br />

Monthly precipitation data<br />

(average <strong>of</strong> 10 stations)<br />

400.00<br />

350.00<br />

300.00<br />

[mm/month]<br />

250.00<br />

200.00<br />

150.00<br />

100.00<br />

50.00<br />

0.00<br />

jan-93 mei-94 sep-95 feb-97 jun-98 nov-99 mrt-01 aug-02 dec-03<br />

[month]<br />

MIRA_cor -----|----- FEWS<br />

RFE 2.0<br />

RAIN GAUGES<br />

Combi<br />

Figure 3.16: Output <strong>of</strong> final precipitation data compared with rain gauges in <strong>the</strong> <strong>Zambezi</strong> <strong>catchment</strong>.<br />

37


HYDROLOGICAL MODEL INPUT DATA<br />

Combi MIRA_cor & FEWS RFE2.0<br />

[mm/month]<br />

y = 0.976x<br />

R 2 = 0.9992<br />

10,000<br />

cum. Observed<br />

8,000<br />

6,000<br />

4,000<br />

2,000<br />

0<br />

0 2000 4000 6000 8000 10000<br />

cum combi<br />

Figure 3.17: Double Mass Curve <strong>of</strong> a combination <strong>of</strong> MIRA corrected and FEWS RFE 2.0.<br />

Observed<br />

Combi MIRA_cor & FEWS RFE2.0<br />

[mm/month]<br />

500<br />

450<br />

400<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

0 100 200 300 400 500<br />

combi<br />

Figure 3.18: Scatter plot <strong>of</strong> final precipitation data with 45° line.<br />

3.2 Potential evaporation data<br />

The potential evaporation is necessary to calculate <strong>the</strong> open water evaporation <strong>of</strong> <strong>the</strong> lakes<br />

and to calculate <strong>the</strong> potential transpiration on land. For <strong>the</strong> calculation <strong>of</strong> <strong>the</strong> monthly<br />

potential evaporation <strong>the</strong> Thornwai<strong>the</strong> (1948) <strong>for</strong>mula is used. The main variable in this<br />

equation is <strong>the</strong> temperature. Because <strong>of</strong> this simplicity, Thornwai<strong>the</strong> is chosen instead <strong>of</strong> <strong>for</strong><br />

example Penman or Makkink. Thornwai<strong>the</strong> calculates <strong>the</strong> potential evaporation with Equation<br />

3.10.<br />

38


HYDROLOGICAL MODEL INPUT DATA<br />

⎧<br />

⎫<br />

⎪<br />

2<br />

⎪<br />

− 415.85 + 32.24*T − 0.43*T ,T > 26.5<br />

⎪<br />

⎪<br />

Epot<br />

= ⎨<br />

0 ,T<<br />

0 ⎬*dlf<br />

⎪<br />

a<br />

⎪<br />

⎪ ⎛ T ⎞<br />

16* 10* ,0 < T < 26.5⎪<br />

⎪ ⎜ ⎟<br />

⎩ ⎝ I ⎠ ⎪⎭<br />

Equation 3.10<br />

I<br />

12 1.514<br />

⎛Tm<br />

⎞<br />

= ⎜ ⎟<br />

1 5<br />

∑ ⎝ ⎠<br />

Equation 3.11<br />

a 0.49 1.79*10 *I 7.71*10 *I 6.75*10 *I<br />

−2 −5 2 −7 3<br />

= + − + Equation 3.12<br />

Where<br />

Epot = potential evaporation [mm/month]<br />

T<br />

= average monthly temperature [°C]<br />

I<br />

= annual heat index<br />

a<br />

= time dependent factor<br />

dlf = daylight factor (see Table 3.5, chosen is latitude –15°)<br />

Tm<br />

= mean long term monthly temperature [°C]<br />

Table 3.5: Daylight factors <strong>for</strong> each month (Lorente, 1961).<br />

39


HYDROLOGICAL MODEL INPUT DATA<br />

As can be seen from <strong>the</strong> <strong>for</strong>mulas, two types <strong>of</strong> monthly temperature data are necessary:<br />

average temperatures and long-term temperatures [4]. The latter is obtained from <strong>the</strong> IIASAdatabase<br />

and covers <strong>the</strong> years 1930 till 1960. Because near Malawi <strong>the</strong>re were some gaps, a<br />

simple gap-repair was done. In appendix 1.2.4 is written which data trans<strong>for</strong>mations have<br />

been carried out.<br />

The average monthly temperature data is obtained from different sources. For <strong>the</strong> period<br />

1978-1992 Seyam (2002) has made temperature maps interpolated from ground stations<br />

(Figure 3.19). The interpolation technique he has used is <strong>the</strong> weighted-average distance<br />

method (see Section 5.1 Figure 5.3).<br />

Figure 3.19: Maximum available temperature stations <strong>for</strong> <strong>the</strong> period 1978-1992 (Seyam, 2002).<br />

For <strong>the</strong> period from 1993 until 1998 gridded temperature data [5] from <strong>the</strong> SAFARI project is<br />

used. The resolution <strong>of</strong> <strong>the</strong>se temperature data is 0.5° x 0.5°. Because less temperature ground<br />

stations are available no comparison between <strong>the</strong> observed and gridded data is executed.<br />

For <strong>the</strong> period 1998 until 2003 completely no temperature data was available. Because <strong>the</strong><br />

temperature does not differ much from year to year and <strong>the</strong> spatial variability is not large, <strong>the</strong><br />

period July 1993 until December 1998 is used <strong>for</strong> <strong>the</strong> period July 1998 until December 2003.<br />

40


HYDROLOGICAL MODEL DESCRIPTION<br />

4 <strong>Hydrological</strong> model description<br />

4.1 STREAM<br />

For making <strong>the</strong> hydrological model <strong>the</strong> s<strong>of</strong>tware package STREAM is used. STREAM is an<br />

abbreviation <strong>of</strong> ‘Spatial Tools <strong>for</strong> River basins and Environment and Analysis <strong>of</strong> Management<br />

options’ and is still under development by <strong>the</strong> Institute <strong>of</strong> Environmental Studies <strong>of</strong> <strong>the</strong> ‘Vrije<br />

Universiteit’ <strong>of</strong> Amsterdam. STREAM enables <strong>the</strong><br />

user to make grid-based spatial water balance models.<br />

By writing <strong>the</strong> code in <strong>the</strong> scripting language ‘Blaise’<br />

<strong>the</strong> user can implement <strong>the</strong> hydrological processes.<br />

Because STREAM is grid-based, it is very suitable <strong>for</strong><br />

working with GIS-maps, <strong>for</strong> example obtained from<br />

Remote Sensing (RS).<br />

Figure 4.1: GUI STREAM.<br />

STREAM is based upon a ‘multi-compartment’ methodology (Aerts and Bouwer, 2003),<br />

which means that <strong>the</strong> hydrological cycle <strong>of</strong> a <strong>catchment</strong> is described as a serie <strong>of</strong> storage<br />

compartments and flows. Each time step (iteration) STREAM calculates per grid cell <strong>the</strong><br />

trans<strong>for</strong>mation <strong>of</strong> <strong>the</strong> input (precipitation) and <strong>the</strong> output (evaporation and run<strong>of</strong>f).<br />

Successively, <strong>the</strong> flows are calculated by collecting <strong>the</strong> flows according to <strong>the</strong> flow direction<br />

(Figure 4.3). The flow direction is mostly determined by <strong>the</strong> DEM <strong>of</strong> <strong>the</strong> <strong>catchment</strong>. By<br />

dumping <strong>the</strong> calculated cell run<strong>of</strong>f in one go to <strong>the</strong> downstream cells, <strong>the</strong>re is introduced an<br />

error. In <strong>the</strong> <strong>catchment</strong> <strong>the</strong> ground water is flowing from one cell into <strong>the</strong> o<strong>the</strong>r. And it takes<br />

some time to travel that distance. In STREAM this time is set to zero (Figure 4.2). This<br />

assumption is reasonable because <strong>the</strong> model is on a monthly basis. In one month it is<br />

presumable that <strong>the</strong> water is drained into <strong>the</strong> river.<br />

Q Q Q Q Q Q<br />

Q<br />

Figure 4.2: Model assumption by accumulation <strong>of</strong> flows. Q is <strong>the</strong> run<strong>of</strong>f <strong>of</strong> that specific cell<br />

(Ficara, 2004).<br />

41


HYDROLOGICAL MODEL DESCRIPTION<br />

For models with large lakes, it is possible to define lake cells (Figure 4.3). In those cells all<br />

<strong>the</strong> processes, which take place on land (e.g. interception, transpiration, infiltration,<br />

percolation, etc.) are set to zero. Processes, which take place in lakes, like open water<br />

evaporation, are implemented in <strong>the</strong> lake cells. After running <strong>the</strong> complete model it is possible<br />

to calculate <strong>the</strong> discharge <strong>of</strong> <strong>the</strong> outlet <strong>of</strong> <strong>the</strong> lake in a spreadsheet program with reservoir<br />

routing <strong>for</strong>mulas. Then, <strong>the</strong> flows <strong>of</strong> <strong>the</strong> outlet <strong>of</strong> <strong>the</strong> lake can be added to <strong>the</strong> land cells and<br />

those can be recalculated through <strong>the</strong> <strong>catchment</strong>. This is possible with <strong>for</strong> example<br />

Muskingum routing implemented.<br />

Lake script:<br />

Land processes=0<br />

- Precipitation<br />

- Open water<br />

evaporation<br />

Lake<br />

grid<br />

cell<br />

Land<br />

grid<br />

cell<br />

Land script:<br />

Lake processes=0<br />

- Precipitation<br />

- Interception<br />

- Transpiration<br />

- Infiltration<br />

- Percolation<br />

- Soil moisture<br />

- Ground water<br />

- Capillary rise<br />

- Run<strong>of</strong>f<br />

Run<strong>of</strong>f (according<br />

to flow direction)<br />

Figure 4.3: Principle <strong>of</strong> calculating <strong>the</strong> water balance by STREAM.<br />

4.2 <strong>Zambezi</strong> script<br />

The original <strong>Zambezi</strong> script (period: 1978-1993) was developed by Seyam in 2002, but<br />

contained some shortcomings. Seyam did some recommendations about changing <strong>the</strong><br />

interception and transpiration process, including <strong>the</strong> capillary rise and about implementing <strong>of</strong><br />

threshold values <strong>for</strong> <strong>the</strong> ground water flows. In 2004 Ficara has looked to <strong>the</strong>se<br />

recommendations and implemented <strong>the</strong>m. He also extended <strong>the</strong> model <strong>for</strong> <strong>the</strong> period 1993-<br />

2002. Because <strong>the</strong> model did not fit <strong>the</strong> observed data well, <strong>the</strong> model is fur<strong>the</strong>r calibrated and<br />

is extended till June 2004 to cover <strong>the</strong> time period <strong>of</strong> <strong>the</strong> GRACE-measurements. Also <strong>the</strong><br />

size <strong>of</strong> <strong>the</strong> maps <strong>for</strong> <strong>the</strong> period 1978-1993 to <strong>the</strong> same size as <strong>for</strong> <strong>the</strong> period 1993-2004 are<br />

fixed (see Appendix 1.2.9). This has <strong>the</strong> advantage that it is possible to carry out one single<br />

run <strong>for</strong> <strong>the</strong> entire time period.<br />

42


HYDROLOGICAL MODEL DESCRIPTION<br />

The final <strong>Zambezi</strong> script has a spatial resolution <strong>of</strong> 3x3 km and has a monthly time scale. The<br />

model consists <strong>of</strong> two parts: pre-routing and routing. Pre-routing is modelled in STREAM and<br />

comprises most hydrological processes. After <strong>the</strong> pre-routing is executed, <strong>the</strong> outcome is<br />

imported in a spreadsheet program like MS EXCEL (later in a Java program, see Chapter 5).<br />

In <strong>the</strong> spreadsheet <strong>the</strong> flows are routed with Muskingum routing and <strong>the</strong> outflow <strong>of</strong> <strong>the</strong><br />

reservoirs is calculated with different spillway <strong>for</strong>mulas.<br />

Next to <strong>the</strong> calculation <strong>of</strong> all <strong>the</strong> water balance terms to simulate <strong>the</strong> hydrological system, also<br />

<strong>the</strong> <strong>Zambezi</strong> script in STREAM calculates <strong>the</strong> colours <strong>of</strong> water described by Savenije in 2000.<br />

In Figure 4.4 is given a schematic representation <strong>of</strong> <strong>the</strong> stocks and fluxes in a hydrological<br />

system. The abbreviations used in this figure are different from <strong>the</strong> ones in <strong>the</strong> <strong>Zambezi</strong>script.<br />

Figure 4.4: Global Water Resources: Blue, Green, White (Savenije, 2000).<br />

The first and most important flux is precipitation (P), <strong>the</strong> origin <strong>of</strong> water, which can come<br />

down on <strong>the</strong> surface or in water bodies, like rivers or lakes. If <strong>the</strong> rainfall comes down in <strong>the</strong><br />

water bodies it is directly in <strong>the</strong> blue-compartment. The only way <strong>for</strong> depletion is through<br />

open water evaporation (O) or through <strong>the</strong> drainage to <strong>the</strong> sea or ocean (Q).<br />

When <strong>the</strong> precipitation comes down on <strong>the</strong> surface it enters <strong>the</strong> white component from where<br />

it feeds back directly to <strong>the</strong> atmosphere through evaporation from interception or bare soil (I).<br />

From <strong>the</strong> surface <strong>the</strong> water can also drain to <strong>the</strong> water bodies (Qs). This is called Horton<br />

43


HYDROLOGICAL MODEL DESCRIPTION<br />

overland flow. In <strong>the</strong> <strong>Zambezi</strong>-script this process is neglected due to <strong>the</strong> well permeable soil<br />

in <strong>the</strong> <strong>Zambezi</strong> <strong>catchment</strong>.<br />

The water that did not quickly evaporated to <strong>the</strong> atmosphere infiltrates (F) into <strong>the</strong> unsaturated<br />

zone. This is <strong>the</strong> green compartment, where transpiration (T) (≈ plant evaporation) takes<br />

place. When <strong>the</strong> unsaturated zone is saturated <strong>the</strong> water will percolate (R) to <strong>the</strong> (renewable)<br />

ground water. Through seepage (Qg) <strong>the</strong> water can flow from <strong>the</strong> ground water to <strong>the</strong> water<br />

bodies.<br />

For each <strong>of</strong> <strong>the</strong> resources <strong>the</strong> quantities <strong>of</strong> <strong>the</strong> fluxes and stocks can be calculated. This results<br />

in <strong>the</strong> average residence time. In Table 4.1 <strong>the</strong> average values at a global scale are given.<br />

Table 4.1: Global Water Resources, fluxes, storage and average residence times (Savenije, 2000).<br />

Resource Fluxes [L/T] or [L 3 /T] Storage [L] or [L 3 ]<br />

Residence<br />

time<br />

[T]<br />

Green T 100 mm/month S u 440 mm S u /T 4 months<br />

White I 5 mm/d *) S s 3 mm *) S s /I 0.6 days<br />

Blue Q 46 x 10 12 m 3 /a S w 124 x 10 12 m 3 S w /Q 2.7 years<br />

Deep blue Q g 5 x 10 12 m 3 /a *) S g 750 x 10 12 m 3 *) S g /Q g 150 years<br />

Atmosphere P 510 x 10 12 m 3 /a S a 12 x 10 12 m 3 S a /P 0.3 month<br />

Oceans A 46 x 10 12 m 3 /a S o 1.3 x 10 18 m 3 S o /A 28000 year<br />

Note: transpiration and interception fluxes apply to tropical areas storage in <strong>the</strong> root zone can be<br />

significantly less than 440 mm<br />

*) Indicate rough estimates<br />

In Section 4.2.1 all <strong>the</strong> hydrological processes <strong>of</strong> <strong>the</strong> <strong>Zambezi</strong> script will be described and in<br />

Section 4.2.2 <strong>the</strong> routing will be explained. In Appendix 3 <strong>the</strong> code <strong>of</strong> <strong>the</strong> <strong>Zambezi</strong>-script can<br />

be found, written in <strong>the</strong> scripting-language Blaise.<br />

44


HYDROLOGICAL MODEL DESCRIPTION<br />

4.2.1 Conceptual rainfall-run<strong>of</strong>f model <strong>of</strong> <strong>the</strong> <strong>Zambezi</strong> in STREAM<br />

Figure 4.5 shows a schematization <strong>of</strong> <strong>the</strong> <strong>Zambezi</strong> script. In <strong>the</strong> following sub-paragraphs<br />

each process will be described.<br />

Prec<br />

Int<br />

Shallow soil<br />

Unsaturated zone<br />

(SU)<br />

Cap<br />

D<br />

Pnet<br />

cr x Pnet<br />

(1-cr)Pnet<br />

Smax<br />

Tra<br />

Overtop<br />

K=3<br />

Run<strong>of</strong>f <strong>Zambezi</strong><br />

River<br />

Sa<strong>of</strong><br />

Ground water (GWS)<br />

0<br />

GWSmax<br />

GWSquick<br />

Rtq = 4<br />

Rts = 12<br />

Qflo<br />

Sflo<br />

-25<br />

Figure 4.5: <strong>Zambezi</strong>-model schematization. The unit is millimeters and months.<br />

45


HYDROLOGICAL MODEL DESCRIPTION<br />

4.2.1.1 Land process: evaporation through interception<br />

As known, not all <strong>the</strong> precipitation will infiltrate in <strong>the</strong> subsurface. Be<strong>for</strong>e <strong>the</strong> rainfall can<br />

infiltrate a part is already back in <strong>the</strong> atmosphere to account <strong>for</strong> <strong>the</strong> moisture recycling<br />

process. This part, which is a feedback component within a monthly time scale, consists <strong>of</strong><br />

several processes (Savenije, 1997):<br />

• Canopy interception<br />

• Shallow soil interception<br />

• Evaporation from temporary surface storage (pools)<br />

• Immediate transpiration (within a month)<br />

All <strong>the</strong>se interception processes can be modelled with one simple threshold value D. By<br />

subtracting <strong>the</strong> threshold D from <strong>the</strong> precipitation (Prec), <strong>the</strong> net precipitation (Pnet) will be<br />

obtained. Because it is not possible to evaporate more than <strong>the</strong> precipitation, Pnet is minimal<br />

zero. The net precipitation will successively infiltrate in <strong>the</strong> unsaturated zone.<br />

Pnet = max(Pr ec − D,0)<br />

Equation 4.1<br />

The threshold value D is <strong>of</strong> course a calibration parameter, although it can roughly be<br />

determined with <strong>the</strong> RAINRU-model (Savenije, 1997). Because <strong>the</strong> run<strong>of</strong>f on time step t is<br />

dependent on <strong>the</strong> rainfall amount <strong>of</strong> that month and <strong>the</strong> rainfall <strong>of</strong> <strong>the</strong> previous months, <strong>the</strong><br />

run<strong>of</strong>f can be written in <strong>the</strong> following linear transfer function:<br />

n<br />

∑ i ( )<br />

Equation 4.2<br />

Q(t) = b × max Pr ec(t −i) −D,0<br />

i=<br />

0<br />

The net run<strong>of</strong>f coefficient c can <strong>the</strong>n defined as:<br />

c =<br />

m<br />

t=<br />

1<br />

m<br />

∑<br />

t=<br />

1<br />

∑<br />

Q(t)<br />

Pr ec(t)<br />

Equation 4.3<br />

Ma<strong>the</strong>matically, it can be demonstrated that <strong>the</strong> net run<strong>of</strong>f coefficient also follows from:<br />

n<br />

c= ∑ b<br />

i=<br />

0<br />

i<br />

Equation 4.4<br />

In Table 4.2 and Table 4.3 are depicted <strong>the</strong> results <strong>of</strong> <strong>the</strong> regression analysis. As can be seen<br />

has a threshold value D <strong>of</strong> 80 mm/month <strong>the</strong> largest R². With D=80 mm/month <strong>the</strong> run<strong>of</strong>f<br />

coefficient c will be 0.14 <strong>for</strong> Lukulu and 0.10 <strong>for</strong> Victoria Falls.<br />

46


HYDROLOGICAL MODEL DESCRIPTION<br />

Table 4.2: Regression results <strong>for</strong> Lukulu.<br />

D<br />

[mm/month]<br />

R² b0 b1 b2 b3 b4 b5 b6 c<br />

80 0.72 0.01 0.04 0.04 0.03 0.02 0.01 0.14<br />

90 0.71 0.01 0.04 0.05 0.03 0.03 0.01 0.16<br />

100 0.70 0.01 0.04 0.05 0.03 0.03 0.01 0.17<br />

Table 4.3: Regression results <strong>for</strong> Victoria Falls.<br />

D<br />

[mm/month]<br />

R² b0 b1 b2 b3 b4 b5 b6 c<br />

80 0.75 0.00 0.00 0.02 0.03 0.03 0.02 0.00 0.10<br />

90 0.75 0.00 0.00 0.02 0.04 0.03 0.02 0.00 0.11<br />

100 0.75 0.01 0.01 0.02 0.04 0.03 0.02 0.00 0.13<br />

For <strong>the</strong> interception calculation <strong>of</strong> <strong>the</strong> model <strong>the</strong> threshold-concept is used. However in <strong>the</strong><br />

model also <strong>the</strong> white, green and <strong>the</strong> blue water (Savenije, 2000) are calculated. The white<br />

water consists <strong>of</strong> <strong>the</strong> part <strong>of</strong> <strong>the</strong> rainfall that feeds back directly to <strong>the</strong> atmosphere. The white<br />

water is calculated with <strong>the</strong> method <strong>of</strong> De Groen (2002). The difference between <strong>the</strong> threshold<br />

method and <strong>the</strong> method <strong>of</strong> De Groen is that De Groen only considers canopy, mulch and wet<br />

soil interception. De Groen calculates monthly interception (intmar) based on <strong>the</strong> Markov<br />

property <strong>of</strong> daily rainfall and using a daily interception threshold D d :<br />

⎡ ⎛ nD<br />

r d ⎞⎤<br />

Intmar = Pr ec ⎢ 1−exp<br />

⎜ − ⎟<br />

Pr ec ⎥<br />

⎣ ⎝ ⎠⎦<br />

Equation 4.5<br />

Where:<br />

Intmar<br />

n r<br />

D d<br />

Prec<br />

= monthly interception by Marieke de Groen<br />

= number <strong>of</strong> rain days per month<br />

= daily interception threshold<br />

= monthly precipitation<br />

The number <strong>of</strong> rain days follows directly from <strong>the</strong> Markov process:<br />

n<br />

r<br />

n ⋅p<br />

=<br />

1−<br />

C<br />

m 01<br />

Equation 4.6<br />

Where:<br />

n m = number <strong>of</strong> days in a month (30)<br />

C = p 11 - p 01<br />

p 01<br />

= probability <strong>of</strong> a rain day after a dry day<br />

47


HYDROLOGICAL MODEL DESCRIPTION<br />

p 11<br />

= probability <strong>of</strong> a rain day after a rain day<br />

De Groen demonstrated that <strong>the</strong> transition probabilities can be described as:<br />

p01<br />

p11<br />

( ) r<br />

= q Prec<br />

Equation 4.7<br />

( ) v<br />

= u Prec<br />

Equation 4.8<br />

The parameters q, r, u and v are only calibration parameters, which have to be calibrated at<br />

different locations, although p11 is spatial quite homogenous.<br />

For <strong>the</strong> <strong>Zambezi</strong> <strong>catchment</strong> <strong>the</strong> C can be regarded as a constant (De Groen, 2002). With D d =<br />

4.75 mm/day, q = 0.03, r = 0.4 and C=0.6 <strong>the</strong> interception is calculated by:<br />

⎡ ⎛<br />

Intmar = Prec⎢1−exp⎜−4.75<br />

⎣ ⎝<br />

0.4⋅<br />

Pr ec<br />

0.9<br />

0.6<br />

⎞⎤<br />

⎟⎥<br />

⎠⎦<br />

Equation 4.9<br />

The white water is equal to <strong>the</strong> interception calculated by De Groen.<br />

Interception [mm/month]<br />

100<br />

Interception<br />

80<br />

60<br />

40<br />

20<br />

0<br />

0 50 100 150 200<br />

Int (Threshold =80) Intmar (De Groen)<br />

Prec<br />

Figure 4.6: Interception as a function <strong>of</strong> precipitation (prec) calculated by <strong>the</strong> threshold-method and<br />

by De Groen’s method.<br />

4.2.1.2 Land process: transpiration<br />

After some water is evaporated through interception, <strong>the</strong> o<strong>the</strong>r part is infiltrating in <strong>the</strong><br />

subsurface. However, a part <strong>of</strong> <strong>the</strong> water is going directly to <strong>the</strong> ground water. This fast<br />

component is <strong>the</strong> water that flows through macro pores and cracks. The division between <strong>the</strong><br />

fast and <strong>the</strong> slow component is determined by <strong>the</strong> separation coefficient cr. Seyam<br />

investigated <strong>the</strong> relation between <strong>the</strong> separation coefficient and <strong>the</strong> slope and/or <strong>the</strong> land use.<br />

48


HYDROLOGICAL MODEL DESCRIPTION<br />

His first attempt was if <strong>the</strong> slope is steep <strong>the</strong> separation coefficient is high and he assumed<br />

that <strong>the</strong> separation coefficient would be higher if <strong>the</strong> <strong>catchment</strong> is covered with <strong>for</strong> example<br />

grass <strong>the</strong>n with <strong>for</strong>est. Although his sample size was too small to draw a conclusion, he did<br />

not find any rough correlation between cr and <strong>the</strong> slope or <strong>the</strong> land cover. Hence <strong>the</strong> values <strong>of</strong><br />

cr are found by trail-and-error.<br />

During <strong>the</strong> calibration, it appeared that introducing a higher separation coefficient in <strong>the</strong><br />

dambos gave better results. This is explainable by <strong>the</strong> small unsaturated zone in <strong>the</strong> dambos,<br />

which causes <strong>the</strong> quick percolation to <strong>the</strong> ground water. To model this process <strong>the</strong> cr is<br />

increased. In Figure 4.7 <strong>the</strong> distribution <strong>of</strong> <strong>the</strong> separation coefficient can be seen.<br />

Figure 4.7: Separation coefficient value cr.<br />

The water <strong>of</strong> <strong>the</strong> slow component fills <strong>the</strong> unsaturated zone. This water in <strong>the</strong> unsaturated<br />

zone is available <strong>for</strong> transpiration. Transpiration is <strong>the</strong> process <strong>of</strong> <strong>the</strong> absorption <strong>of</strong> water by<br />

plants, usually through <strong>the</strong> roots, <strong>the</strong> movement <strong>of</strong> water through plants, and <strong>the</strong> release <strong>of</strong> <strong>the</strong><br />

water to <strong>the</strong> atmosphere through small openings on <strong>the</strong> leaves (from USGS-glossary).<br />

However not all <strong>the</strong> water that is infiltrating in <strong>the</strong> unsaturated zone is available <strong>for</strong><br />

transpiration. Because <strong>the</strong>re is a limit in <strong>the</strong> amount <strong>of</strong> water that <strong>the</strong> soil is able to hold (field<br />

capacity, Smax), <strong>the</strong> amount <strong>of</strong> water above field capacity will percolate (overtop) to <strong>the</strong><br />

groundwater. Because <strong>of</strong> deeply rooted vegetation, which causes that <strong>the</strong>re is still<br />

transpiration possible during <strong>the</strong> percolation process, <strong>the</strong>re is modelled a time delay through<br />

dividing <strong>the</strong> overtop by a recession constant, K <strong>of</strong> 3 months.<br />

The field capacity (Smax) <strong>of</strong> <strong>the</strong> soil is roughly depending on <strong>the</strong> land cover. The estimates<br />

are shown in Table 4.4 and are depicted in Figure 4.8.<br />

49


HYDROLOGICAL MODEL DESCRIPTION<br />

Table 4.4: Field capacity (Smax) based on land cover (Seyam, 2002).<br />

Land cover<br />

% <strong>of</strong> basin<br />

Smax<br />

[mm]<br />

Forests 3.8 270<br />

Closed Shrublands 0.0 180<br />

Open Shrublands 0.0 130<br />

Woody savannas 15.4 280<br />

Savannas 57.1 320<br />

Grassland 0.3 150<br />

Croplands 5.3 250<br />

Urban and Built-up 0.1 170<br />

Croplands and natural vegetation mosaic 14.4 330<br />

Barren or sparsely vegetated 1.0 110<br />

Water 2.6 0<br />

Figure 4.8: Field capacity (Smax).<br />

The field capacity (Smax) determines <strong>the</strong> amount <strong>of</strong> water that will percolate to <strong>the</strong> ground<br />

water and which part will stay in <strong>the</strong> unsaturated zone. This water in <strong>the</strong> unsaturated zone is<br />

stored in <strong>the</strong> pores <strong>of</strong> <strong>the</strong> soil toge<strong>the</strong>r with air and is called soil moisture (Su). If <strong>the</strong>re is<br />

enough soil moisture <strong>the</strong> transpiration can be potential (Tp). However due to soil moisture<br />

depletion, <strong>the</strong> actual transpiration can be less. Rijtema and Aboukhaled (1975) found <strong>the</strong><br />

following relation between <strong>the</strong> soil moisture and <strong>the</strong> actual transpiration:<br />

⎛ 1<br />

⎞<br />

Tra = min ⎜<br />

× Tp×<br />

Su,Tp<br />

( 1−p)<br />

⋅Smax<br />

⎟<br />

⎝<br />

⎠<br />

Equation 4.10<br />

Where:<br />

Tra<br />

p<br />

Smax<br />

Tp<br />

= Monthly actual transpiration [mm/month]<br />

= Amount <strong>of</strong> maximum available moisture that is readily available<br />

<strong>for</strong> transpiration (≈ 0.5) [-]<br />

= Water holding capacity [mm]<br />

= Montly potential transpiration [mm/month]<br />

50


HYDROLOGICAL MODEL DESCRIPTION<br />

Su<br />

= Monthly soil moisture [mm]<br />

In Figure 4.9 is given <strong>the</strong> relation between <strong>the</strong> soil moisture and <strong>the</strong> actual transpiration.<br />

Sub surface<br />

Infil.<br />

Field capacity<br />

Su<br />

Unsaturated<br />

zone<br />

Smax<br />

(1-p)*smax<br />

Wilting point: Su = 0<br />

Tp<br />

Tra<br />

Percolation<br />

(su>field capacity)<br />

Figure 4.9: Relation between soil moisture (Su) and actual transpiration (Tra).<br />

Normally, <strong>the</strong> potential transpiration (Tp) used in Equation 4.10 follows from:<br />

Pe = Int + Tp<br />

Equation 4.11<br />

Where:<br />

Pe = Monthly potential evaporation by Thornwai<strong>the</strong> [mm]<br />

Int = Monthly interception [mm]<br />

Tp = Monthly potential evaporation [mm]<br />

This equation assumes that <strong>the</strong> potential evaporation properly accounts <strong>for</strong> interception.<br />

However <strong>the</strong> potential evaporation is in our case calculated with <strong>the</strong> Thornwai<strong>the</strong> <strong>for</strong>mula.<br />

This <strong>for</strong>mula only takes temperature into account and so it is not clear to what extent this<br />

assumption is true. There<strong>for</strong>e three possibilities <strong>for</strong> relating potential transpiration to <strong>the</strong><br />

potential evaporation are considered (Seyam, 2002).<br />

1. Potential evaporation (pe) does not account at all <strong>for</strong> interception (int); Because <strong>the</strong><br />

potential evaporation is calculated based on surface temperatures and <strong>the</strong> interception<br />

process mostly takes place at a higher level and is driven by mechanisms as wind and<br />

air temperature, <strong>the</strong> potential transpiration is equal to <strong>the</strong> potential evaporation. A<br />

typical example where this could happen is in dense <strong>for</strong>ests.<br />

2. Potential evaporation does account <strong>for</strong> interception;<br />

51


HYDROLOGICAL MODEL DESCRIPTION<br />

This is <strong>the</strong> case where interception is mainly evaporated from bare soil. The potential<br />

transpiration is <strong>the</strong>n equal to <strong>the</strong> potential evaporation minus <strong>the</strong> interception.<br />

3. Potential evaporation does partly account <strong>for</strong> interception;<br />

This situation happens between option 1 and 2 and depends on <strong>the</strong> land cover.<br />

In Figure 4.10 <strong>the</strong> three possibilities <strong>for</strong> <strong>the</strong> calculation <strong>of</strong> <strong>the</strong> potential transpiration are<br />

schematically depicted.<br />

Option 1<br />

Option 2<br />

Option 3<br />

Pe<br />

Tp Int<br />

Pe<br />

Tp Int<br />

f x Int<br />

Pe<br />

Tp Int<br />

Dense <strong>for</strong>est<br />

f = 1<br />

Bare soil<br />

f = 0<br />

Partly vegetated<br />

0 < f < 1<br />

Figure 4.10: Three possibilities <strong>for</strong> potential transpiration.<br />

As can be concluded from <strong>the</strong> description <strong>of</strong> <strong>the</strong> three options is that <strong>the</strong> land cover<br />

determines <strong>the</strong> potential transpiration. If <strong>the</strong> <strong>catchment</strong> is covered with dense <strong>for</strong>est <strong>the</strong>n <strong>the</strong>re<br />

can be assumed that interception is not included in <strong>the</strong> potential evaporation. The treetop<br />

factor f is set to one. If <strong>the</strong> <strong>catchment</strong> is not covered at all (bare soil) it is likely that<br />

interception is included in <strong>the</strong> potential evaporation and f is set to zero. In general <strong>the</strong><br />

potential transpiration can <strong>the</strong>n be written as:<br />

Tp = Pe −( 1− f ) × Int<br />

Equation 4.12<br />

Where:<br />

Tp<br />

Pe<br />

f<br />

Int<br />

= Monthly potential transpiration [mm]<br />

= Monthly potential evaporation by Thornwai<strong>the</strong> [mm]<br />

= Treetop factor (between 0 and 1) based on land cover map<br />

= Monthly interception [mm]<br />

In Table 4.5 and Figure 4.11 <strong>the</strong> values <strong>of</strong> <strong>the</strong> treetop factor f are depicted.<br />

52


HYDROLOGICAL MODEL DESCRIPTION<br />

Table 4.5: Relation between land cover and <strong>the</strong> treetop-factor.<br />

Land cover % <strong>of</strong> basin f<br />

Forests 3.8 1.00<br />

Closed Shrublands 0.0 0.50<br />

Open Shrublands 0.0 0.50<br />

Woody savannas 15.4 0.70<br />

Savannas 57.1 0.60<br />

Grassland 0.3 0.15<br />

Croplands 5.3 0.25<br />

Urban and Built-up 0.1 0.50<br />

Croplands and natural vegetation mosaic 14.4 0.25<br />

Barren or sparsely vegetated 1.0 0.15<br />

Water 2.6 /<br />

Figure 4.11: Map <strong>of</strong> <strong>the</strong> treetop factor f multiplied with 100.<br />

With <strong>the</strong> calculation <strong>of</strong> <strong>the</strong> actual transpiration it is now possible to determine <strong>the</strong> amount <strong>of</strong><br />

green water. The green water consists <strong>of</strong> <strong>the</strong> water in <strong>the</strong> unsaturated zone and is calculated<br />

with Equation 4.13.<br />

Green = Tra + (I nt− I nt mar)<br />

Equation 4.13<br />

4.2.1.3 Land process: ground water flow<br />

The ground water is recharged with <strong>the</strong> fast component (cr*Pnet), which is <strong>the</strong> water that<br />

flows through macro pores and cracks, and <strong>the</strong> slow component: Overtop. The Overtop is <strong>the</strong><br />

water that percolates from <strong>the</strong> unsaturated zone if <strong>the</strong> field capacity (= Smax) is reached.<br />

From <strong>the</strong> ground water <strong>the</strong> depletion is separated into three components: <strong>the</strong> saturation<br />

overland flow (sa<strong>of</strong>), <strong>the</strong> quick flow (qflo) and <strong>the</strong> slow flow (sflo).<br />

Saturation overland flow is <strong>the</strong> very fast component. This is <strong>the</strong> water that flows over <strong>the</strong><br />

surface, because <strong>the</strong> ground water table has reached <strong>the</strong> surface due to <strong>the</strong> saturated soil. The<br />

Digital Elevation Model (DEM) and <strong>the</strong> bottom <strong>of</strong> <strong>the</strong> draining river (GWS 0 ) determine when<br />

53


HYDROLOGICAL MODEL DESCRIPTION<br />

<strong>the</strong> ground water table reaches <strong>the</strong> surface. The distance between <strong>the</strong> surface and <strong>the</strong> bottom is<br />

called GWS dem (see Figure 4.12).<br />

Water divide<br />

Surface according to DEM<br />

GWS dem<br />

Reference level, GWS 0<br />

Figure 4.12: Schematization <strong>of</strong> GWS dem .<br />

The space GWS dem is not completely available <strong>for</strong> water, because <strong>of</strong> <strong>the</strong> porosity and <strong>the</strong><br />

compression <strong>of</strong> <strong>the</strong> soil. That’s why <strong>the</strong> empirical equation written in Figure 4.13 is used to<br />

give <strong>the</strong> relation between <strong>the</strong> GWS dem and <strong>the</strong> actual space, GWSmax. When <strong>the</strong> ground water<br />

table exceeds <strong>the</strong> GWSmax <strong>the</strong>n <strong>the</strong> water will directly drain into <strong>the</strong> river.<br />

GWSmax<br />

GWSmax [mm]<br />

180<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

( )<br />

GWSmax = 0.025⋅<br />

ln GWSdem<br />

0 100 200 300 400 500<br />

GWSdem [m]<br />

Figure 4.13: Relation between GWS dem and GWSmax.<br />

54


HYDROLOGICAL MODEL DESCRIPTION<br />

The second ground water component is <strong>the</strong> quick flow (qflo). This component is <strong>the</strong> quick<br />

ground water flow through macro pores and cracks. It is assumed that <strong>the</strong> outflow linearly<br />

depends on <strong>the</strong> ground water level minus <strong>the</strong> threshold level, GWSquick. This level is found<br />

by multiplying <strong>the</strong> GWSmax with <strong>the</strong> calibration factor qc. The qc-factors differ from sub<br />

<strong>catchment</strong> to sub <strong>catchment</strong> (Table 4.6). Subsequently, <strong>the</strong> outflow is calculated with<br />

Equation 4.14. The recession coefficient rtq is set to 4 months.<br />

Table 4.6: qc-factors <strong>for</strong> each sub <strong>catchment</strong>.<br />

Sub <strong>catchment</strong> qc-factor Sub <strong>catchment</strong> qc-factor<br />

Upper <strong>Zambezi</strong> 0.70 Kafue 0.50<br />

Barotse 0.30 Luangwa 0.30<br />

Cuando-Chobe 0.50 Lake Nyasa-Shire 0.30<br />

Middle <strong>Zambezi</strong> 0.30 Lower <strong>Zambezi</strong> 0.30<br />

max(GWS−<br />

GWSmax,0)<br />

Qflo = Equation 4.14<br />

rtq<br />

The third and last component is <strong>the</strong> slow ground water flow (sflo). Again calculated as a<br />

linear reservoir, however with a recession coefficient (rts) <strong>of</strong> 12 months.<br />

As can be seen from Figure 4.14 <strong>the</strong>re is a water loss in <strong>the</strong> recession period: <strong>the</strong> river is given<br />

its water to <strong>the</strong> cells around <strong>the</strong> river. In <strong>the</strong> existing model this is modelled with a negative<br />

ground water level, which causes negative slow flows. The calculation <strong>of</strong> slow flow in <strong>the</strong><br />

exiting model is given in Equation 4.15.<br />

max(GWS, −15)<br />

Sflo = Equation 4.15<br />

rts<br />

In STREAM this is a good manner to simulate infiltration from <strong>the</strong> river to <strong>the</strong> ground water.<br />

However, problems occur when using negative discharges in <strong>the</strong> routing procedure. There<strong>for</strong>e<br />

it is recommended to limit <strong>the</strong> slow flow by requiring at least a discharge <strong>of</strong> 0 m³/s and to<br />

look <strong>for</strong> ano<strong>the</strong>r manner to implement <strong>the</strong> infiltration process. In this study, <strong>the</strong> model is<br />

executed with Equation 4.15, which means that negative discharges are possible, although this<br />

is physically wrong.<br />

55


HYDROLOGICAL MODEL DESCRIPTION<br />

Observed discharge<br />

4,500<br />

4,000<br />

3,500<br />

3,000<br />

2,500<br />

2,000<br />

1,500<br />

1,000<br />

500<br />

0<br />

jan-79<br />

jan-80<br />

jan-81<br />

jan-82<br />

jan-83<br />

jan-84<br />

jan-85<br />

Discharge [m³/s]<br />

jan-86<br />

jan-87<br />

jan-88<br />

jan-89<br />

jan-90<br />

jan-91<br />

jan-92<br />

jan-93<br />

jan-94<br />

jan-95<br />

jan-96<br />

jan-97<br />

jan-98<br />

jan-99<br />

jan-00<br />

jan-01<br />

jan-02<br />

Date<br />

Lukulu<br />

Vicfalls<br />

Figure 4.14: Observed data <strong>of</strong> Lukulu and Victoria Falls.<br />

With <strong>the</strong> calculation <strong>of</strong> <strong>the</strong> three ground water components, it is possible to calculate <strong>the</strong> blue<br />

water with Equation 4.16<br />

Blue = Sa<strong>of</strong> + Qflo + Sflo<br />

Equation 4.16<br />

With:<br />

Sa<strong>of</strong><br />

Qflo<br />

Sflo<br />

= Saturation overland flow [m³/s]<br />

= Quick flow [m³/s]<br />

= Slow flow [m³/s]<br />

4.2.1.4 Land process: capillary rise<br />

From <strong>the</strong> ground water some water will go back to <strong>the</strong> unsaturated zone. This process <strong>of</strong> <strong>the</strong><br />

upward movement <strong>of</strong> water through narrow pores by cohesive <strong>for</strong>ces is called capillary rise.<br />

Capillary rise causes an increase in transpiration if <strong>the</strong> capillary zone (area just above <strong>the</strong><br />

ground water table) is in <strong>the</strong> root zone <strong>of</strong> <strong>the</strong> vegetation.<br />

Capillary rise takes place everywhere in <strong>the</strong> <strong>catchment</strong> if <strong>the</strong> ground water table is not to low.<br />

If <strong>the</strong> ground water table is 25 mm below <strong>the</strong> reference level, <strong>the</strong> capillary rise is set to 2<br />

mm/month, which is a very small amount. Assumed is <strong>the</strong>n that it is almost not possible to<br />

refill <strong>the</strong> unsaturated zone with water from <strong>the</strong> ground water in <strong>the</strong> root zone. When <strong>the</strong><br />

56


HYDROLOGICAL MODEL DESCRIPTION<br />

ground water level is higher <strong>the</strong>n –25 mm, <strong>the</strong>re will be more capillary rise. Especially in <strong>the</strong><br />

dambos and in <strong>the</strong> floodplains, where <strong>the</strong> ground water table is near <strong>the</strong> surface, <strong>the</strong> capillary<br />

rise is high. The capillary zone is <strong>the</strong>n in <strong>the</strong> root zone <strong>of</strong> <strong>the</strong> vegetation and this will cause<br />

more transpiration.<br />

4.2.1.5 Lake process: evaporation<br />

The only fluxes, which cause <strong>the</strong> water level fluctuations in <strong>the</strong> lakes, are <strong>the</strong> precipitation,<br />

<strong>the</strong> evaporation and <strong>the</strong> in- and outflow. The open water evaporation is set to <strong>the</strong> potential<br />

evaporation calculated with Thornwai<strong>the</strong>-<strong>for</strong>mula. The evaporation is subtracted from <strong>the</strong><br />

precipitation to obtain <strong>the</strong> net precipitation (pnet). The inflow and <strong>the</strong> outflow are not<br />

calculated in STREAM, but <strong>the</strong>y are calculated after routing in a spreadsheet. See paragraph<br />

4.2.2.<br />

4.2.2 Routing in spreadsheet<br />

After STREAM has carried out <strong>the</strong> calculation <strong>of</strong> <strong>the</strong> <strong>Zambezi</strong>-script, routing is executed <strong>for</strong><br />

<strong>the</strong> channel storage and <strong>the</strong> reservoir storage. This is important because <strong>of</strong> <strong>the</strong> large<br />

floodplains and <strong>the</strong> stabilization effect <strong>of</strong> <strong>the</strong> reservoirs. In <strong>the</strong> <strong>Zambezi</strong>-script only <strong>the</strong><br />

reservoirs: Kariba, Itezhitezhi, Cabora Bassa and Lake Nyasa are considered.<br />

4.2.2.1 Muskingum routing<br />

The storage in a channel is important, because it determines <strong>the</strong> smoothing <strong>of</strong> <strong>the</strong> flood wave.<br />

Un<strong>for</strong>tunately, it is not easy to determine <strong>the</strong> storage volume in a channel from <strong>for</strong> example<br />

topographic maps due to <strong>the</strong> crudeness and <strong>the</strong> lack <strong>of</strong> in<strong>for</strong>mation about <strong>the</strong> water levels.<br />

Ano<strong>the</strong>r way to calculate <strong>the</strong> storage is by using <strong>the</strong> simplified water balance <strong>for</strong>mula:<br />

S − S I + I Q + Q<br />

= −<br />

∆t 2 2<br />

t+ 1 t t t+ 1 t t+<br />

1<br />

Equation 4.17<br />

Where:<br />

S<br />

I<br />

Q<br />

= Storage [m³]<br />

= Inflow <strong>of</strong> channel [m³/s]<br />

= Outflow <strong>of</strong> channel [m³/s]<br />

57


HYDROLOGICAL MODEL DESCRIPTION<br />

When calculating <strong>the</strong> storage volume in a river channel it appears that storage is relatively<br />

higher during rising stages than during falling stages, which can be seen in Figure 4.15.<br />

Figure 4.15: Relation between storage volume and inflow and/or outflow (from Savenije 2000 (left) and<br />

New Mexico Tech (right)).<br />

In general it can be said that <strong>the</strong> storage volume is a weighted function <strong>of</strong> <strong>the</strong> inflow- and <strong>the</strong><br />

outflow storage (Equation 4.18).<br />

S= x⋅ S + (1−x) ⋅ S<br />

Equation 4.18<br />

I<br />

Q<br />

I= a⋅d<br />

I<br />

Q<br />

c<br />

Q= a⋅d<br />

S<br />

S<br />

c<br />

= b⋅d<br />

m<br />

= b⋅d<br />

m<br />

Equation 4.19<br />

Assuming power-law functions (Manning), with d = depth, <strong>for</strong> <strong>the</strong> inflow, outflow and<br />

storage, <strong>the</strong> following relation is found when substituting Equation 4.19 in Equation 4.18:<br />

m<br />

c<br />

⎛ I⎞ ⎛Q⎞<br />

S= x⋅b⋅ ⎜ ⎟ + ( 1−x)<br />

⋅b⋅⎜ ⎟<br />

⎝a⎠ ⎝ a ⎠<br />

m<br />

c<br />

Equation 4.20<br />

The value <strong>of</strong> m/c indicates linearity (m/c = 1) or non-linearity (m/c ≠ 1). It is also well seen<br />

that if x is low <strong>the</strong> channel acts like a linear reservoir (large floodplains and storage effects)<br />

58


HYDROLOGICAL MODEL DESCRIPTION<br />

and if x has a high value <strong>the</strong>re are low storage effects and <strong>the</strong> water is transmitted very<br />

quickly through <strong>the</strong> channel.<br />

For a linear response, thus m/c = 1, Equation 4.20 can be rewritten as:<br />

S= K[ x⋅ I + (1−x) ⋅ Q]<br />

Equation 4.21<br />

With K = b/a and unit time. K is called <strong>the</strong> storage constant and approximates <strong>the</strong> travel time<br />

<strong>of</strong> <strong>the</strong> wave through <strong>the</strong> reach. The storage constant can be determined by calculating <strong>the</strong><br />

gradient <strong>of</strong> <strong>the</strong> right hand graph in Figure 4.15. The values <strong>of</strong> x vary from 0 to 0.5.<br />

Combining Equation 4.17 and Equation 4.21 gives <strong>the</strong> Muskingum Routing equation.<br />

Q = c I + c I + c Q<br />

Equation 4.22<br />

t+ 1 0 t+<br />

1 1 t 2 t<br />

c<br />

0<br />

− 2x +∆t K<br />

=<br />

2(1 − x) +∆t K<br />

Equation 4.23<br />

2x +∆t K<br />

c1<br />

=<br />

2(1 − x) +∆t K<br />

Equation 4.24<br />

c<br />

2<br />

2(1 −x) −∆t K<br />

=<br />

2(1 − x) +∆t K<br />

Equation 4.25<br />

c0 + c1+ c2<br />

= 1<br />

Equation 4.26<br />

This equation considers that <strong>the</strong> inflow is entering <strong>the</strong> reach at <strong>the</strong> beginning and that <strong>the</strong><br />

insignificant inflow is running into <strong>the</strong> reach after <strong>the</strong> inflow point. In reality, <strong>the</strong>re is usually<br />

lateral inflow from tributaries. Very <strong>of</strong>ten this can be neglected, but in <strong>the</strong> case <strong>of</strong> <strong>the</strong><br />

<strong>Zambezi</strong> <strong>catchment</strong> lateral inflow must be taken into account. This can be done in five<br />

manners. First, <strong>the</strong> later inflow can be added to <strong>the</strong> inflow. Second, <strong>the</strong> lateral inflow can be<br />

added to <strong>the</strong> outflow. Third, divide <strong>the</strong> later inflow (weighted) over <strong>the</strong> inflow and outflow.<br />

Fourth, use <strong>the</strong> four-point Muskingum method from Ponce and Yevjevich (1978). Or last use<br />

<strong>the</strong> three parameter Muskingum method from O’Donnell (1985). Seyam has chosen <strong>for</strong> <strong>the</strong><br />

first option. This is an appropriate manner if <strong>the</strong> lateral inflow streams into <strong>the</strong> reach near <strong>the</strong><br />

59


HYDROLOGICAL MODEL DESCRIPTION<br />

inflow point. This is not everywhere case. Mostly <strong>the</strong>re are several tributaries along <strong>the</strong> entire<br />

reach, so <strong>the</strong> first option is maybe not a very good choice, which has to be investigated.<br />

Seyam has figured out by trial-and-error which reaches have to be routed and which not. In<br />

Figure 4.16 are depicted in blue <strong>the</strong> reaches which are routed. The routing has been carried<br />

out in <strong>the</strong> spreadsheet program MS Excel.<br />

Up Nduben<br />

Luangwa up1<br />

Kabompoo<br />

Nduben<br />

Up Lukulu<br />

Luangwa up2<br />

Kalabo Lukulu<br />

Luangwa bc Z.<br />

Up Cuando<br />

Inlet Itezi.<br />

Kafue bc Z.<br />

Gorge<br />

Outlet Cahora<br />

Vic1<br />

Outlet Itezi.<br />

Inlet Cahora<br />

Outlet Kariba Matundu Cais<br />

<strong>Zambezi</strong> bc Z.<br />

Vic2 Vic3<br />

Sanyati<br />

Inlet Kariba Umtuli<br />

<strong>Zambezi</strong> bc Z.<br />

Gwai-North<br />

Cuando bc Z.<br />

VicFalls Gwai-Sud<br />

Shangani<br />

Outlet Nyasa<br />

Liwonde<br />

Shire bc Z.<br />

Mouth<br />

bc Z. = be<strong>for</strong>e confluence <strong>Zambezi</strong><br />

Figure 4.16: The red dots are calculation points <strong>for</strong> STREAM. The blue lines are routed reaches with<br />

Muskingum-routing.<br />

60


HYDROLOGICAL MODEL DESCRIPTION<br />

4.2.2.2 Reservoir routing: Kariba<br />

Lake Kariba is an artifical lake, which was<br />

finished in 1959 with <strong>the</strong> building <strong>of</strong> <strong>the</strong> double<br />

curved concrete arch dam (Figure 4.17). The dam<br />

was mainly built <strong>for</strong> <strong>the</strong> generation <strong>of</strong><br />

hydropower. For <strong>the</strong> routing in <strong>the</strong> reservoir<br />

Seyam found <strong>the</strong> following equations.<br />

Figure 4.17: Kariba dam ( http://airzim.co.zw)<br />

Table 4.7: Reservoir characteristics <strong>of</strong> Kariba.<br />

Minimum storage (S min)<br />

[m³]<br />

Maximum storage (S max)<br />

[m³]<br />

Q const<br />

[m³/s]<br />

Kariba 1,0 x 10 10 4,0 x 10 10 870<br />

If S ≤ S min :<br />

( )<br />

I + di + P −900<br />

net<br />

= + Equation 4.27<br />

Q 550<br />

15<br />

If S > S max :<br />

( I di P )<br />

⎧ + +<br />

net<br />

⎫<br />

Qconst<br />

⋅ 0.8+<br />

⎪<br />

2 ⎪<br />

Q= max⎨ S S<br />

⎬<br />

⎪<br />

−<br />

max ⎪<br />

⎪⎩<br />

( 3600⋅24⋅30)<br />

⎪⎭<br />

Equation 4.28<br />

If S min < S < S max :<br />

Q<br />

( )<br />

I + di + P −1000<br />

net<br />

= Qconst<br />

+ Equation 4.29<br />

15<br />

Where:<br />

S<br />

Q<br />

I<br />

di<br />

P net<br />

= Storage [m³]<br />

= Outflow <strong>of</strong> <strong>the</strong> reservoir [m³/s]<br />

= Inflow into <strong>the</strong> reservoir [m³/s]<br />

= Lateral inflow into <strong>the</strong> reservoir [m³/s]<br />

= Net precipitation into <strong>the</strong> reservoir [m³/s]<br />

61


HYDROLOGICAL MODEL DESCRIPTION<br />

Q const<br />

= Constant outflow <strong>of</strong> <strong>the</strong> reservoir [m³/s]<br />

4.2.2.3 Reservoir routing: Itezhitezhi<br />

The Itezhitezhi reservoir is <strong>the</strong> smallest <strong>of</strong> <strong>the</strong><br />

considered reservoirs. The dam was made <strong>for</strong> <strong>the</strong><br />

generation <strong>of</strong> hydroelectric power and regulates <strong>the</strong><br />

flow <strong>of</strong> <strong>the</strong> Kafue River. For <strong>the</strong> reservoir routing <strong>of</strong><br />

<strong>the</strong> Itezhitezhi reservoir Seyam found <strong>the</strong> following<br />

relations.<br />

Figure 4.18: Itezhitezhi dam (WWF).<br />

Table 4.8: Reservoir characteristics <strong>of</strong> Itezhitezhi.<br />

Minimum storage (S min )<br />

[m³]<br />

Maximum storage (S max )<br />

[m³]<br />

Q const<br />

[m³/s]<br />

Itezhitezhi 5,2 x 10 9 7,0 x 10 9 300<br />

If S ≤ S min :<br />

( )<br />

⎧ I+ di+ P<br />

Q min<br />

net<br />

⎫<br />

= ⎨ ⎬<br />

⎩ 50 ⎭<br />

Equation 4.30<br />

If S > S max :<br />

( I di P )<br />

⎧ + +<br />

net<br />

⎫<br />

Qconst<br />

+<br />

⎪<br />

2 ⎪<br />

Q= max⎨ S S<br />

⎬<br />

⎪<br />

−<br />

max ⎪<br />

⎪⎩<br />

( 3600⋅24⋅30)<br />

⎪⎭<br />

Equation 4.31<br />

If S min < S < S max :<br />

Q= ( I+ di+ P net )<br />

Equation 4.32<br />

Where:<br />

S<br />

Q<br />

I<br />

= Storage [m³]<br />

= Outflow <strong>of</strong> <strong>the</strong> reservoir [m³/s]<br />

= Inflow into <strong>the</strong> reservoir [m³/s]<br />

62


HYDROLOGICAL MODEL DESCRIPTION<br />

di<br />

P net<br />

Q const<br />

= Lateral inflow into <strong>the</strong> reservoir [m³/s]<br />

= Net precipitation into <strong>the</strong> reservoir [m³/s]<br />

= Constant outflow <strong>of</strong> <strong>the</strong> reservoir [m³/s]<br />

4.2.2.4 Reservoir routing: Cabora Bassa<br />

The third large reservoir <strong>for</strong> hydroelectric power<br />

generation is Reservoir Cabora Bassa in Mozambique. In<br />

Figure 4.19 a picture <strong>of</strong> <strong>the</strong> double curve concrete arch<br />

dam is given. The outflow <strong>of</strong> <strong>the</strong> reservoir is described in<br />

Table 4.9 and in Equation 4.33 till Equation 4.35.<br />

Figure 4.19: Cabora Bassa dam<br />

(http://www.sweco.se).<br />

Table 4.9: Reservoir characteristics <strong>of</strong> Cabora Bassa.<br />

Minimum storage (S min )<br />

[m³]<br />

Maximum storage (S max )<br />

[m³]<br />

Q const<br />

[m³/s]<br />

Cabora Bassa 4,0 x 10 10 6,0 x 10 10 2300<br />

If S ≤ S min :<br />

Q = 1700<br />

Equation 4.33<br />

If S ≥ S max :<br />

Q= Q +<br />

const<br />

S−S<br />

max<br />

( 3600⋅24⋅30)<br />

Equation 4.34<br />

If S min < S < S max :<br />

Q= Q const<br />

Equation 4.35<br />

Where:<br />

S<br />

Q<br />

Q const<br />

= Storage [m³]<br />

= Outflow <strong>of</strong> <strong>the</strong> reservoir [m³/s]<br />

= Constant outflow <strong>of</strong> <strong>the</strong> reservoir [m³/s]<br />

63


HYDROLOGICAL MODEL DESCRIPTION<br />

4.2.2.5 Reservoir routing: Nyasa<br />

Lake Nyasa (or Malawi) is <strong>the</strong> only natural lake, which is considered in <strong>the</strong> <strong>Zambezi</strong> model.<br />

Its only outlet is <strong>the</strong> river Shire. The outflow is determined with <strong>the</strong> general spillway <strong>for</strong>mula<br />

in Equation 4.36.<br />

Q= K⋅B⋅( h− h ) c<br />

c<br />

Equation 4.36<br />

With:<br />

Q<br />

K<br />

B<br />

h<br />

h c<br />

c<br />

= Outflow [m³/s]<br />

= Spillway constant [m 2-c /s]<br />

= width <strong>of</strong> spillway [m]<br />

= water level [m]<br />

= crest level [m]<br />

= exponent<br />

Because it is a free overflow spillway c is equal to 3/2 and K is 1,5 m 0.5 /s.<br />

Successively, <strong>the</strong> outflow <strong>of</strong> <strong>the</strong> lake is calculated with <strong>the</strong> predictor-corrector procedure:<br />

( ) c<br />

Q= K⋅B⋅ h − h<br />

Predictor:<br />

t−1<br />

c<br />

( )( )<br />

*<br />

S = St−<br />

1+ di + Pnet−Q 3600⋅24⋅30<br />

h<br />

⎛S<br />

−S<br />

⎞<br />

= +⎜ ⎟<br />

⎝ A ⎠<br />

*<br />

* 0<br />

hc<br />

Corrector:<br />

*<br />

* t−1<br />

Q = K⋅B⋅ −hc<br />

( net )( )<br />

** *<br />

t−1<br />

**<br />

c<br />

**<br />

( S −S0<br />

)<br />

**<br />

** t−1<br />

Q = K⋅B −hc<br />

t−1<br />

⎛h<br />

⎜<br />

⎝<br />

+ h<br />

2<br />

S = S + di + P −Q 3600⋅24⋅30<br />

h<br />

= h +<br />

⎛h<br />

⎜<br />

⎝<br />

A<br />

+ h<br />

2<br />

**<br />

( )( )<br />

S = S + di + Pnet −Q 3600⋅24⋅30<br />

c<br />

⎞<br />

⎟<br />

⎠<br />

c<br />

⎞<br />

⎟<br />

⎠<br />

64


HYDROLOGICAL MODEL DESCRIPTION<br />

With<br />

di<br />

P net<br />

A<br />

= lateral inflow into <strong>the</strong> lake [m³/s]<br />

= net precipitation [m³/s]<br />

= surface area [m²]<br />

For <strong>the</strong> spillway at <strong>the</strong> end <strong>of</strong> Lake Nyasa, Seyam found B=140 m, h c =290 m and A=3,0x10 10<br />

m².<br />

65


HYDROLOGICAL MODEL DESCRIPTION<br />

66


ERROR- & SENSITIVITY ANALYSIS<br />

5 Error- & sensitivity analysis<br />

In this chapter <strong>the</strong> errors and <strong>the</strong> sensitivity <strong>of</strong> <strong>the</strong> <strong>Zambezi</strong>-model will be analyzed. First an<br />

overview <strong>of</strong> <strong>the</strong> existing errors will be given in Section 5.1. If possible, <strong>the</strong> errors are also<br />

quantified. Keep in mind that <strong>the</strong> term ‘error’ does not mean error due to e.g. model<br />

simplifications, but that <strong>the</strong> term ‘error’ is used <strong>for</strong> occurring deficiencies due to uncertainties.<br />

In Section 5.2 <strong>the</strong> model results will be presented. In Section 5.3 <strong>the</strong> GLUE-procedure<br />

(Generalised Likelihood Uncertainty Estimator), which will be used to give an indication <strong>of</strong><br />

<strong>the</strong> model uncertainties and sensitivity, will be explained. Next will be described how <strong>the</strong><br />

GLUE-procedure is implemented in <strong>the</strong> <strong>Zambezi</strong>-model in Section 5.4. In <strong>the</strong> last section <strong>the</strong><br />

GLUE-results are presented.<br />

5.1 Errors<br />

In Chapter 2 an overview <strong>of</strong> <strong>the</strong> existing errors is given, which is also depicted in Figure 5.1.<br />

On <strong>the</strong> left side <strong>of</strong> <strong>the</strong> figure <strong>the</strong> hydrological model process is depicted and on <strong>the</strong> right side<br />

<strong>the</strong> process <strong>of</strong> Geodesy/Aerospace. As can be seen, in almost every process step a new error is<br />

introduced. Starting at <strong>the</strong> left side <strong>the</strong> first error is introduced by measuring and calculating<br />

<strong>the</strong> river discharge. Usually, <strong>the</strong> discharge (Q) is calculated by measuring <strong>the</strong> water level (h)<br />

in <strong>the</strong> river and <strong>the</strong> discharge is derived by a Qh-relation. Errors in measuring <strong>the</strong> water level<br />

can occur due to wrong installation <strong>of</strong> <strong>the</strong> measuring device, due to a malfunctioned<br />

measuring instrument, due to inaccurate reading <strong>of</strong> <strong>the</strong> observer, etc. Also in <strong>the</strong> Qh-relation<br />

errors can exist, because <strong>the</strong> Qh-relation is usually found in an experimental way. The empiric<br />

relation can change in time due to a lot <strong>of</strong> possibilities, <strong>for</strong> example erosion, sediment deposit<br />

or obstacles. Overall it is difficult to quantify <strong>the</strong> magnitude <strong>of</strong> measuring and calculation<br />

errors, but it appears from practice that errors <strong>of</strong> 10 to 20% are not an exception. This should<br />

be reminded when using <strong>the</strong> observed data to calibrate <strong>the</strong> model output. It is an assumption<br />

that <strong>the</strong> observed data is <strong>the</strong> ‘real world’<br />

In <strong>the</strong> centre column again <strong>the</strong> measuring errors occur, but this time in relation with satellite<br />

measurements. Next to <strong>the</strong> errors, which have been described in <strong>the</strong> previous paragraph, a lot<br />

<strong>of</strong> extra errors arise. First, every received signal has to be corrected <strong>for</strong> causes like earth<br />

curvature, cloudiness, scatter, etc. This correction is just an estimate and because <strong>of</strong> that <strong>the</strong><br />

corrected signal could still contain some false in<strong>for</strong>mation. Second, <strong>the</strong> algorithm that<br />

translates <strong>the</strong> satellite signals into <strong>for</strong> example precipitation, temperature or NDVI maps<br />

67


ERROR- & SENSITIVITY ANALYSIS<br />

contain some errors due to <strong>the</strong> lack <strong>of</strong> knowledge about <strong>the</strong> system. For example, <strong>for</strong><br />

generating precipitation maps with <strong>the</strong> MIRA or FEWS algorithm an assumption is made<br />

about <strong>the</strong> relation between temperature and rain rate. However, <strong>the</strong> real relation between<br />

temperature and precipitation is not known yet.<br />

Error(measurement)<br />

Real world<br />

Error(measurement)<br />

Error(measurement)<br />

River measurements<br />

Satellite<br />

measurements<br />

GRACE<br />

measurements<br />

STREAM input maps<br />

Error(interpolation)<br />

Algorithm<br />

1<br />

Error(calculation)<br />

STREAMmodel<br />

dG measured<br />

map<br />

Error(algorithm1)<br />

comparison<br />

Error(model)<br />

Error(model)<br />

dG calculated<br />

map<br />

Calculated<br />

River<br />

discharge<br />

Modeled<br />

River<br />

discharge<br />

dS hydro map<br />

Algorithm<br />

2<br />

calibration<br />

Figure 5.1: Overview <strong>of</strong> errors. Hydrology: yellow left side. Geodesy/Aerospace: green right side.<br />

The second error that occurs in <strong>the</strong> centre column is <strong>the</strong> interpolation error. After obtaining<br />

<strong>the</strong> satellite maps <strong>of</strong> our interest it is sometimes necessary to interpolate <strong>the</strong> data to obtain<br />

continuous in<strong>for</strong>mation in time and space. For example in <strong>the</strong> MIRA-precipitation data some<br />

days had not a rain rate value <strong>for</strong> <strong>the</strong> complete <strong>catchment</strong>. To fill those gaps it is essential to<br />

make assumptions, which result in errors. Besides <strong>the</strong> temporal gaps, it is also possible to<br />

have spatial gaps like in <strong>the</strong> used temperature maps. By assuming a certain temperature value<br />

<strong>for</strong> <strong>the</strong> missing cells (e.g. <strong>the</strong> average <strong>of</strong> <strong>the</strong> surrounding cells) presumably an error is<br />

introduced.<br />

68


ERROR- & SENSITIVITY ANALYSIS<br />

To quantify <strong>the</strong> errors in <strong>the</strong> satellite input maps, <strong>the</strong> estimated satellite data is compared with<br />

<strong>the</strong> observed data. From <strong>the</strong> residual <strong>the</strong> 95% confidence level is calculated, assuming a<br />

normal distribution. Next, <strong>the</strong> uncertainty in <strong>the</strong> satellite data is estimated by dividing <strong>the</strong><br />

value <strong>of</strong> 2 times <strong>the</strong> standard deviation by <strong>the</strong> average value <strong>of</strong> <strong>the</strong> observed data. Although<br />

this is a quite rough way <strong>of</strong> uncertainty estimation, it can be used as a first estimate.<br />

It is important to know <strong>the</strong> uncertainty in <strong>the</strong> input maps, because <strong>the</strong> <strong>Zambezi</strong> model is a<br />

threshold model, which causes a non-linear model reaction. A small overestimation can result<br />

in very large discharge increase, because it could be that <strong>the</strong> threshold value is just exceeded.<br />

Uncertainties in precipitation data<br />

The uncertainty estimation <strong>for</strong> <strong>the</strong> precipitation satellite data is not carried out <strong>for</strong> <strong>the</strong><br />

complete time series from January 1978 until December 2003, because it makes only sense to<br />

do this <strong>for</strong> <strong>the</strong> FEWS RFE 2.0-algorithm. Namely, <strong>the</strong> two o<strong>the</strong>r algorithms are using <strong>the</strong><br />

observed data as input <strong>for</strong> <strong>the</strong> algorithm, which will result in an underestimation <strong>of</strong> <strong>the</strong><br />

uncertainty.<br />

Used precipitation algorithms<br />

180 96 36<br />

WAD<br />

MIRA_corrected<br />

FEWS RFE2.0<br />

0<br />

12<br />

24<br />

36<br />

48<br />

60<br />

72<br />

84<br />

96<br />

108<br />

120<br />

132<br />

144<br />

156<br />

168<br />

180<br />

192<br />

204<br />

216<br />

228<br />

240<br />

252<br />

264<br />

276<br />

288<br />

300<br />

312<br />

Time (1 = jan 78,...,312 = dec 03)<br />

Figure 5.2: Used precipitation algorithms 1978-2003. The value in <strong>the</strong> bar is amount <strong>of</strong> months that <strong>the</strong><br />

algorithm is used.<br />

For <strong>the</strong> period January 1978 until December 1992 <strong>the</strong> Weighted Average Distance (WAD)-<br />

algorithm (or Inverse Distance-method) is used. This algorithm interpolates <strong>the</strong> observed data<br />

over a certain area. A characteristic <strong>of</strong> this method is that <strong>the</strong> interpolated values at <strong>the</strong> same<br />

location as <strong>the</strong> observation stations are similar. This can be seen in Figure 5.3, where <strong>the</strong><br />

peaks and <strong>the</strong> depressions are <strong>the</strong> original observation stations. Comparing <strong>the</strong> rainfall<br />

estimates with <strong>the</strong> same observed data would result in a residual <strong>of</strong> zero, which is not<br />

reflecting <strong>the</strong> real error <strong>of</strong> <strong>the</strong> entire <strong>catchment</strong>. Hence <strong>the</strong> uncertainty in <strong>the</strong> precipitation is<br />

not based on this algorithm.<br />

69


ERROR- & SENSITIVITY ANALYSIS<br />

Weighted Average Distance:<br />

n<br />

0 ∑ i i and<br />

i=<br />

1<br />

( ) = λ × Z( x )<br />

Z' x<br />

λ =<br />

with:<br />

Z’(x 0 ) = estimate at x 0<br />

Z(x i ) = observation in point x i<br />

λ i = weight <strong>for</strong> observation Z(x i)<br />

d i = distance between x 0 and x i<br />

b = distance weighting power, mostly 2<br />

i<br />

1d<br />

n<br />

∑<br />

i=<br />

1<br />

b<br />

i<br />

1d<br />

b<br />

i<br />

Figure 5.3: Weighted Average Distance-method to interpolated rainfall data from rain gauges<br />

(Savenije et al., 2003).<br />

Also <strong>the</strong> MIRA corrected -algorithm is not used, because this algorithm is corrected to <strong>the</strong><br />

available observed data (see Section 3.1.3). Although <strong>the</strong> residual will not be equal to zero, it<br />

will be very small and will give a distorted picture <strong>of</strong> <strong>the</strong> uncertainty in <strong>the</strong> rainfall.<br />

Hence <strong>the</strong> only algorithm that is independent <strong>of</strong> <strong>the</strong> available observed data is <strong>the</strong> FEWS RFE<br />

2.0-algorithm. In Figure 5.4 <strong>the</strong> residual between FEWS and <strong>the</strong> observed data is plotted. As<br />

can be seen <strong>the</strong> standard deviation (SD) is equal to 19.14 mm/month. Dividing two times <strong>the</strong><br />

SD by <strong>the</strong> average value <strong>of</strong> <strong>the</strong> observed data (70.22 mm/month) gives an uncertainty<br />

estimation <strong>of</strong> 55% with 95% assurance.<br />

Residual Bias [mm/month]<br />

[mm]<br />

60.00<br />

40.00<br />

20.00<br />

0.00<br />

-20.00<br />

-40.00<br />

-60.00<br />

jan-01<br />

Residual Bias Precipitation<br />

( = FEWS RFE2.0 - Observed)<br />

overestimation<br />

apr-01<br />

jul-01<br />

okt-01<br />

jan-02<br />

apr-02<br />

jul-02<br />

okt-02<br />

jan-03<br />

underestimation<br />

Date<br />

SD = 19,14<br />

µ = 0,56<br />

apr-03<br />

jul-03<br />

Figure 5.4: Monthly residual between <strong>the</strong> FEWS RFE 2.0-algorithm and <strong>the</strong> observed<br />

data.<br />

70


ERROR- & SENSITIVITY ANALYSIS<br />

Uncertainties in temperature data<br />

The same procedure could be executed to estimate uncertainties <strong>for</strong> <strong>the</strong> temperature maps.<br />

However, <strong>for</strong> <strong>the</strong> period January 1978 until December 1992 again <strong>the</strong> Weighted Average<br />

Distance method is used, which makes comparison with observed data useless. Also <strong>for</strong> <strong>the</strong><br />

period from January 1993 until December 2003 no uncertainty calculation is carried out,<br />

because hardly any observed data was available.<br />

Looking back at Figure 5.1 <strong>the</strong> last errors in <strong>the</strong> centre column are <strong>the</strong> ‘model errors’. These<br />

errors occur due to wrong model concepts and/or wrong parameter estimation. In case <strong>of</strong> <strong>the</strong><br />

<strong>Zambezi</strong>-model a storage reservoir-model is applied. This kind <strong>of</strong> model assumes that <strong>the</strong><br />

zones in <strong>the</strong> soil can be schematized as a series <strong>of</strong> reservoirs. When a storage reservoir is full,<br />

<strong>the</strong> superfluous water will flow into a second reservoir. This means that when a storage<br />

reservoir is not full yet, totally no water will flow into ano<strong>the</strong>r reservoir. In reality this is not<br />

<strong>the</strong> case. For example, when <strong>the</strong> unsaturated zone is completely dry and it starts to rain, it<br />

takes some time be<strong>for</strong>e a first drop <strong>of</strong> water from <strong>the</strong> unsaturated zone will percolate into <strong>the</strong><br />

saturated zone. The start <strong>of</strong> <strong>the</strong> percolation process is modelled by <strong>the</strong> threshold value (= field<br />

capacity). Of course this is explainable, because first <strong>the</strong> pores <strong>of</strong> <strong>the</strong> unsaturated zone have to<br />

be filled up. However, <strong>the</strong> starting moment is not fixed and certainly not happening abruptly.<br />

Hence, <strong>the</strong> storage reservoir-model makes large assumptions, however it appears to work fine<br />

<strong>for</strong> <strong>modelling</strong> hydrological processes on a monthly time scale.<br />

The second possibility <strong>of</strong> <strong>the</strong> model errors are due to wrong parameter estimation. To<br />

determine <strong>the</strong> value <strong>of</strong> a parameter is difficult, because usually a range <strong>of</strong> possibilities is<br />

present. For example <strong>the</strong> parameter ‘soil porosity’ is very depending on <strong>the</strong> soil conditions:<br />

which soil type is present, what is <strong>the</strong> grain distribution, how dense is <strong>the</strong> soil packing, etc.<br />

Assigning one single value <strong>for</strong> <strong>the</strong> porosity is <strong>the</strong>n not easy. Especially when <strong>the</strong> parameters<br />

are calibration parameters it is very difficult to assign a proper parameter value, because <strong>the</strong>n<br />

also <strong>the</strong> relation with reality becomes vaguely or is totally disappeared. In <strong>the</strong> <strong>Zambezi</strong>-model<br />

almost all parameters are calibration parameters.<br />

To quantify <strong>the</strong> model errors <strong>the</strong> GLUE-procedure is used, which will be explained in Section<br />

5.3.<br />

71


ERROR- & SENSITIVITY ANALYSIS<br />

5.2 Model results<br />

As a first approach <strong>the</strong> <strong>Zambezi</strong>-model was<br />

only calibrated <strong>for</strong> <strong>the</strong> western part <strong>of</strong> <strong>the</strong><br />

<strong>catchment</strong>, because <strong>of</strong> <strong>the</strong> objective to do a<br />

WESTERN PART<br />

comparison with <strong>the</strong> gravity measurements<br />

<strong>of</strong> GRACE. For this comparison it is<br />

important to have as little noises as<br />

possible. The main noise, which is<br />

influencing <strong>the</strong> gravity measurements, is <strong>the</strong> Figure 5.5: Western part <strong>of</strong> <strong>the</strong> <strong>Zambezi</strong> <strong>catchment</strong>.<br />

tide. Because in <strong>the</strong> western part this noise<br />

is not present main focus is given on this part <strong>of</strong> <strong>the</strong> <strong>catchment</strong>. Ano<strong>the</strong>r advantage <strong>of</strong> <strong>the</strong><br />

western part <strong>of</strong> <strong>the</strong> <strong>catchment</strong> is <strong>the</strong> absence <strong>of</strong> reservoirs. Because <strong>of</strong> <strong>the</strong> lack <strong>of</strong> knowledge<br />

about <strong>the</strong> rule curves <strong>of</strong> <strong>the</strong> reservoirs, <strong>the</strong> capacity <strong>of</strong> <strong>the</strong> reservoirs, etc. it is better to keep<br />

this out <strong>of</strong> consideration in <strong>the</strong> first approach.<br />

For <strong>the</strong> calibration <strong>of</strong> <strong>the</strong> western part, <strong>the</strong> simulated discharges are compared with observed<br />

data. In Table 5.1 an overview <strong>of</strong> <strong>the</strong> available discharge data is given. If a cell is coloured<br />

grey, this means that <strong>for</strong> that specific year observed discharge data is available. However, it<br />

does not mean that <strong>the</strong> time series is complete. If in <strong>the</strong> last column is written ‘gaps’ <strong>the</strong>n <strong>the</strong><br />

time series is incomplete.<br />

Table 5.1: Available observation data.<br />

Observation<br />

Year<br />

River<br />

location<br />

78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04<br />

Gwai-north Gwai gaps<br />

Gwai-sud Gwai gaps<br />

Itezi<strong>the</strong>zi OUTLET Kafue<br />

Kabompo Kabompo gaps<br />

Kafue at gorge Kafue<br />

Kalabo Luanginga gaps<br />

Kariba INLET <strong>Zambezi</strong><br />

Kariba OUTLET <strong>Zambezi</strong><br />

Liwonde Shire<br />

Luangwa up2 Luangwa<br />

Lukulu<br />

<strong>Zambezi</strong><br />

Matundu Cais <strong>Zambezi</strong><br />

Nduben<br />

Kafue<br />

Nyasa OUTLET Shire<br />

Sanyati Sanyati gaps<br />

Shangani Shangani gaps<br />

Umtuli Umtuli gaps<br />

Vic. Falls <strong>Zambezi</strong><br />

For <strong>the</strong> calibration it is desirable to have a time series without gaps, o<strong>the</strong>rwise a comparison<br />

should be made between assumed observed data and simulated data. As mentioned be<strong>for</strong>e,<br />

focus is given on <strong>the</strong> western part <strong>of</strong> <strong>the</strong> <strong>catchment</strong> and parts without reservoirs. Remaining<br />

calibration locations are <strong>the</strong>n only Lukulu and Victoria Falls (VicFalls), also because a long<br />

subsequently time series is available.<br />

72


ERROR- & SENSITIVITY ANALYSIS<br />

Lukulu<br />

In Figure 5.6 to Figure 5.8 <strong>the</strong> model results <strong>of</strong> Lukulu are presented. In <strong>the</strong> hydrograph it can<br />

be seen that <strong>the</strong> <strong>Zambezi</strong> model simulates <strong>the</strong> discharge reasonably. The moment <strong>of</strong> occurring<br />

<strong>of</strong> <strong>the</strong> peak discharges are mostly similar to <strong>the</strong> observed discharges and <strong>the</strong> magnitude <strong>of</strong> <strong>the</strong><br />

peak discharges are usually in <strong>the</strong> same order <strong>of</strong> <strong>the</strong> measured discharges. The Root Mean<br />

Square Error (RMSE) is 269,81 m³/s and <strong>the</strong> Nash-Sutcliffe efficiency coefficient is 0,70.<br />

Hydrograph LUKULU<br />

3,500.00<br />

0<br />

3,000.00<br />

100<br />

Discharge [m³/s]<br />

2,500.00<br />

2,000.00<br />

1,500.00<br />

1,000.00<br />

500.00<br />

200<br />

300<br />

400<br />

500<br />

600<br />

700<br />

Precipitation [mm/month]<br />

0.00<br />

800<br />

jan-78<br />

jan-79<br />

jan-80<br />

jan-81<br />

jan-82<br />

jan-83<br />

jan-84<br />

jan-85<br />

jan-86<br />

jan-87<br />

jan-88<br />

jan-89<br />

jan-90<br />

jan-91<br />

jan-92<br />

jan-93<br />

jan-94<br />

jan-95<br />

jan-96<br />

jan-97<br />

jan-98<br />

jan-99<br />

jan-00<br />

jan-01<br />

jan-02<br />

jan-03<br />

jan-04<br />

Date<br />

Precipitation simulated observed<br />

Figure 5.6: Hydrograph <strong>of</strong> Lukulu.<br />

Double Mass Curve LUKULU<br />

(routed)<br />

200000.00<br />

180000.00<br />

160000.00<br />

140000.00<br />

MIRA corrected<br />

Q<br />

cum. simulated<br />

120000.00<br />

100000.00<br />

80000.00<br />

FEWS<br />

60000.00<br />

40000.00<br />

20000.00<br />

0.00<br />

0.00 20000.00 40000.00 60000.00 80000.00 100000.00 120000.00 140000.00 160000.00 180000.00 200000.00<br />

cum. observed<br />

Q<br />

Figure 5.7: Double mass curve <strong>of</strong> Lukulu. The pink line is <strong>the</strong> 45° line. are presented<br />

73


ERROR- & SENSITIVITY ANALYSIS<br />

Scatterplot LUKULU<br />

3000.00<br />

y = 0.9367x<br />

R 2 = 0.6963<br />

2500.00<br />

Simulated discharge [m³/s]<br />

2000.00<br />

1500.00<br />

1000.00<br />

500.00<br />

0.00<br />

0.00 500.00 1000.00 1500.00 2000.00 2500.00 3000.00<br />

Observed discharge [m³/s]<br />

Figure 5.8: Scatter plot <strong>of</strong> Lukulu with trend line.<br />

Although <strong>the</strong> hydrograph is reasonable and <strong>the</strong> sum <strong>of</strong> <strong>the</strong> simulated discharges is equal to <strong>the</strong><br />

observed discharges (see double mass curve in Figure 5.7), <strong>the</strong> model generally<br />

underestimates <strong>the</strong> discharge slightly. This can be concluded from <strong>the</strong> gradient <strong>of</strong> <strong>the</strong> trend<br />

line in <strong>the</strong> scatter plot in Figure 5.8, which is less than one.<br />

This overall underestimation is usually due to <strong>the</strong> underestimate <strong>of</strong> <strong>the</strong> peak discharges. In <strong>the</strong><br />

scatter plot it can be seen that <strong>the</strong> high discharges are more <strong>of</strong>ten simulated too low. This<br />

could be due to <strong>the</strong> temporal rainfall distribution. When precipitation falls in a short period<br />

<strong>the</strong> reaction on <strong>the</strong> discharge is higher. The model, in that case, will underestimate <strong>the</strong><br />

rainfall, because it assumes a uni<strong>for</strong>m temporal rainfall distribution.<br />

Ano<strong>the</strong>r remarkable fact is that in <strong>the</strong> period be<strong>for</strong>e January 1992 <strong>the</strong> low discharges in <strong>the</strong><br />

dry season are underestimated and after January 1992 <strong>the</strong> low discharges are overestimated.<br />

Fur<strong>the</strong>rmore, it can be said that <strong>the</strong> magnitude <strong>of</strong> <strong>the</strong> simulated discharge follows <strong>the</strong><br />

magnitude <strong>of</strong> <strong>the</strong> precipitation, except from <strong>the</strong> peak in 1989. Despite this relation is<br />

expectable, this is not <strong>the</strong> case <strong>for</strong> <strong>the</strong> observed discharge compared to <strong>the</strong> precipitation. This<br />

could be an indication that <strong>the</strong> used precipitation data is not correct. However, <strong>the</strong>re can be<br />

more reasons why <strong>the</strong> discharge did not follow <strong>the</strong> precipitation, like temporary storage<br />

somewhere in <strong>the</strong> <strong>catchment</strong>, which causes a time lag in <strong>the</strong> release <strong>of</strong> <strong>the</strong> water.<br />

74


ERROR- & SENSITIVITY ANALYSIS<br />

Victoria Falls<br />

The same graphs as showed <strong>for</strong> Lukulu are given in Figure 5.9 until Figure 5.11 <strong>for</strong> Victoria<br />

Falls. Again <strong>the</strong> model results are quite reasonable, but <strong>the</strong>y are worse than <strong>the</strong> results in<br />

Lukulu, because Victoria Falls is fur<strong>the</strong>r downstream in <strong>the</strong> <strong>catchment</strong> and thus <strong>the</strong> error<br />

accumulates. The RMSE <strong>of</strong> <strong>the</strong> discharge is 439,11 m³/s and <strong>the</strong> Nash-Sutcliffe efficiency<br />

coefficient is 0,68.<br />

Hydrograph VICTORIA FALLS<br />

Discharge [m³/s]<br />

4,500.00<br />

4,000.00<br />

3,500.00<br />

3,000.00<br />

2,500.00<br />

2,000.00<br />

1,500.00<br />

1,000.00<br />

500.00<br />

0.00<br />

0<br />

100<br />

200<br />

300<br />

400<br />

500<br />

600<br />

700<br />

800<br />

jan-78<br />

jan-79<br />

jan-80<br />

jan-81<br />

jan-82<br />

jan-83<br />

jan-84<br />

jan-85<br />

jan-86<br />

jan-87<br />

jan-88<br />

jan-89<br />

jan-90<br />

jan-91<br />

jan-92<br />

jan-93<br />

jan-94<br />

jan-95<br />

jan-96<br />

jan-97<br />

jan-98<br />

jan-99<br />

jan-00<br />

jan-01<br />

jan-02<br />

jan-03<br />

jan-04<br />

Precipitation [mm/month]<br />

Date<br />

Precipitation simulated observed<br />

Figure 5.9: Hydrograph <strong>of</strong> Victoria Falls.<br />

Double Mass Curve Victora Falls<br />

(routed)<br />

300000.00<br />

250000.00<br />

cum. simulated discharge<br />

200000.00<br />

150000.00<br />

100000.00<br />

MIRA corrected<br />

FEWS<br />

50000.00<br />

0.00<br />

0.00 50000.00 100000.00 150000.00 200000.00 250000.00 300000.00<br />

cum. observed discharge<br />

Figure 5.10: Double mass curve <strong>of</strong> Victoria Falls. The pink line is <strong>the</strong> 45° line.<br />

75


ERROR- & SENSITIVITY ANALYSIS<br />

Scatterplot VICTORIA FALLS<br />

4500.00<br />

4000.00<br />

y = 0.8565x<br />

R 2 = 0.5871<br />

3500.00<br />

Simulated discharge [m³/s]<br />

3000.00<br />

2500.00<br />

2000.00<br />

1500.00<br />

1000.00<br />

500.00<br />

0.00<br />

0.00 500.00 1000.00 1500.00 2000.00 2500.00 3000.00 3500.00 4000.00 4500.00<br />

Observed discharge [m³/s]<br />

Figure 5.11: Scatter plot <strong>of</strong> Victoria Falls with trend line.<br />

As can be seen <strong>the</strong> per<strong>for</strong>mance in Victoria Falls is worse than in Lukulu. First, <strong>the</strong><br />

underestimation is much higher and second, <strong>the</strong> total discharge volume is not exactly<br />

following <strong>the</strong> 45° line, which can be seen in <strong>the</strong> double mass curve in Figure 5.10. The double<br />

mass curve first constantly underestimates <strong>the</strong> discharge and <strong>the</strong>n it overestimates, like a S-<br />

curve around <strong>the</strong> 45° line. From <strong>the</strong> double mass curve and <strong>the</strong> scatter plot <strong>the</strong> seasonal<br />

variability can also be seen. Especially in Figure 5.10 <strong>the</strong> horizontal parts indicates <strong>the</strong><br />

underestimation <strong>of</strong> <strong>the</strong> discharge in <strong>the</strong> wet season.<br />

The third difference between <strong>the</strong> results <strong>of</strong> Lukulu and Victoria Falls is that <strong>the</strong> relation<br />

between <strong>the</strong> magnitude <strong>of</strong> <strong>the</strong> precipitation and <strong>the</strong> discharge (simulated as well as observed<br />

discharge) is less clear.<br />

Storage<br />

Besides <strong>the</strong> discharge in <strong>the</strong> <strong>Zambezi</strong> River also <strong>the</strong> storage stocks in <strong>the</strong> unsaturated zone<br />

(su) and saturated zone (gws) are <strong>of</strong> importance <strong>for</strong> <strong>the</strong> gravity measurements. These two<br />

stocks have a large influence on <strong>the</strong> mass distribution in <strong>the</strong> <strong>catchment</strong>. Figure 5.12 and<br />

Figure 5.14 are showing <strong>the</strong> change in storage <strong>of</strong> <strong>the</strong> unsaturated and saturated zone <strong>for</strong> <strong>the</strong><br />

76


ERROR- & SENSITIVITY ANALYSIS<br />

locations Lukulu and Victoria Falls. The sum <strong>of</strong> <strong>the</strong> SU and GWS are given in Figure 5.13<br />

and Figure 5.15. Finally, in Figure 5.16 and Figure 5.17 <strong>the</strong> distributions <strong>of</strong> storage stocks are<br />

depicted.<br />

Storage variation LUKULU<br />

100<br />

80<br />

60<br />

40<br />

ds/dt [mm/month]<br />

20<br />

0<br />

jan-78 sep-80 jun-83 mrt-86 dec-88 sep-91 jun-94 mrt-97 nov-99 aug-02<br />

-20<br />

-40<br />

-60<br />

-80<br />

-100<br />

Date<br />

dSU/dt<br />

dGWS/dt<br />

Figure 5.12: Storage variations in Lukulu.<br />

Total storage variation LUKULU<br />

100<br />

80<br />

60<br />

40<br />

ds/dt [mm/month]<br />

20<br />

0<br />

jan-78 sep-80 jun-83 mrt-86 dec-88 sep-91 jun-94 mrt-97 nov-99 aug-02<br />

-20<br />

-40<br />

-60<br />

-80<br />

-100<br />

dS/dt<br />

Date<br />

Figure 5.13: Total storage variations in Lukulu (= SU + GWS).<br />

77


ERROR- & SENSITIVITY ANALYSIS<br />

Storage variation VICTORIA FALLS<br />

150<br />

100<br />

ds/dt [mm/month]<br />

50<br />

0<br />

jan-78 sep-80 jun-83 mrt-86 dec-88 sep-91 jun-94 mrt-97 nov-99 aug-02<br />

-50<br />

-100<br />

Date<br />

dSU/dt<br />

dGWS/dt<br />

Figure 5.14: Storage variations in Victoria Falls.<br />

Total storage variation VICTORIA FALLS<br />

150<br />

100<br />

50<br />

ds/dt [mm/month]<br />

0<br />

jan-78 sep-80 jun-83 mrt-86 dec-88 sep-91 jun-94 mrt-97 nov-99 aug-02<br />

-50<br />

-100<br />

-150<br />

Date<br />

dS/dt<br />

Figure 5.15: Total storage variations in Victoria Falls (= SU + GWS).<br />

78


ERROR- & SENSITIVITY ANALYSIS<br />

January<br />

May<br />

September<br />

February<br />

June<br />

October<br />

March<br />

July<br />

November<br />

April<br />

August<br />

December<br />

Unit<br />

mm<br />

Figure 5.16: Water distribution in <strong>the</strong> unsaturated zone (SU) in 2003.<br />

January<br />

May<br />

September<br />

February<br />

June<br />

October<br />

March<br />

July<br />

November<br />

April<br />

August<br />

December<br />

Unit<br />

mm<br />

Figure 5.17: Water distribution in <strong>the</strong> ground water zone (GWS) in 2003.<br />

79


ERROR- & SENSITIVITY ANALYSIS<br />

As can be seen in all figures <strong>the</strong> variations in <strong>the</strong> nor<strong>the</strong>rn part <strong>of</strong> <strong>the</strong> <strong>catchment</strong> are much<br />

higher than in <strong>the</strong> sou<strong>the</strong>rn part. This is partly due to <strong>the</strong> higher rainfall intensity in <strong>the</strong><br />

nor<strong>the</strong>rn region. When more rainfall is available in <strong>the</strong> system it is logical that more water<br />

will be stored in <strong>the</strong> soil. Hence <strong>the</strong> red spot in <strong>the</strong> unsaturated zone just beneath Lake Nyasa<br />

in Figure 5.16 can be clarified by this factor.<br />

Looking at <strong>the</strong> saturated zone in Figure 5.17 it can be seen that also a large difference<br />

between <strong>the</strong> sub <strong>catchment</strong>s occurs. This is <strong>the</strong> second reason why in <strong>the</strong> nor<strong>the</strong>rn part larger<br />

variations in <strong>the</strong> ground water zone occur according to <strong>the</strong> model. Namely, most nor<strong>the</strong>rn sub<br />

<strong>catchment</strong>s have a large qc-value (see Table 4.6), which determines <strong>the</strong> threshold value<br />

GWS quick . A large threshold value means that less water will run<strong>of</strong>f and more water will be<br />

stored. The reason why <strong>the</strong> nor<strong>the</strong>rn sub <strong>catchment</strong> Barotse has not a high ground water stock<br />

variation is thus because <strong>the</strong> qc-value is small compared to <strong>the</strong> o<strong>the</strong>r sub <strong>catchment</strong>s.<br />

Colours <strong>of</strong> water<br />

Figure 5.18 and Figure 5.19 are showing <strong>the</strong> average resource <strong>of</strong> <strong>the</strong> <strong>Zambezi</strong> <strong>catchment</strong>. In<br />

Table 5.2 <strong>the</strong> average monthly and yearly percentages <strong>of</strong> <strong>the</strong> white, green and blue water are<br />

depicted. As can be seen <strong>the</strong> percentage <strong>of</strong> white water (evaporation through interception) can<br />

be up to 50% in <strong>the</strong> wet season. Average over <strong>the</strong> year 41% is white water. This is quite<br />

much, especially because <strong>the</strong> white water is calculated with <strong>the</strong> <strong>for</strong>mula <strong>of</strong> De Groen (see<br />

Equation 4.5), which only considers canopy, mulch and wet soil interception. De Groen<br />

calculates <strong>the</strong> monthly interception based on <strong>the</strong> Markov properties <strong>of</strong> <strong>the</strong> daily rainfall.<br />

Colours <strong>of</strong> water<br />

(average <strong>of</strong> <strong>the</strong> entire <strong>catchment</strong>)<br />

200<br />

180<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

jan-78<br />

jan-79<br />

jan-80<br />

jan-81<br />

jan-82<br />

Resource [mm/month]<br />

jan-83<br />

jan-84<br />

jan-85<br />

jan-86<br />

jan-87<br />

jan-88<br />

jan-89<br />

jan-90<br />

jan-91<br />

jan-92<br />

jan-93<br />

jan-94<br />

jan-95<br />

jan-96<br />

jan-97<br />

jan-98<br />

jan-99<br />

jan-00<br />

jan-01<br />

jan-02<br />

jan-03<br />

Date<br />

WHITE GREEN BLUE<br />

Figure 5.18: Average resources <strong>of</strong> <strong>the</strong> <strong>Zambezi</strong> <strong>catchment</strong> (absolute values).<br />

80


ERROR- & SENSITIVITY ANALYSIS<br />

Colours <strong>of</strong> water (%)<br />

(average <strong>of</strong> <strong>the</strong> entire <strong>catchment</strong>)<br />

100%<br />

80%<br />

Resource [mm/month]<br />

60%<br />

40%<br />

20%<br />

0%<br />

jan-78<br />

jan-79<br />

jan-80<br />

jan-81<br />

jan-82<br />

jan-83<br />

jan-84<br />

jan-85<br />

jan-86<br />

jan-87<br />

jan-88<br />

jan-89<br />

jan-90<br />

jan-91<br />

jan-92<br />

Figure 5.19: Average resources <strong>of</strong> <strong>the</strong> <strong>Zambezi</strong> <strong>catchment</strong> (relative values).<br />

Date<br />

WHITE GREEN BLUE<br />

jan-93<br />

jan-94<br />

jan-95<br />

jan-96<br />

jan-97<br />

jan-98<br />

jan-99<br />

jan-00<br />

jan-01<br />

jan-02<br />

jan-03<br />

Table 5.2: Yearly and monthly water resources.<br />

[mm/month]<br />

yearly<br />

%<br />

jan<br />

%<br />

feb<br />

%<br />

mar<br />

%<br />

apr<br />

%<br />

may<br />

%<br />

jun<br />

%<br />

jul<br />

%<br />

aug<br />

%<br />

sep<br />

%<br />

oct<br />

%<br />

nov<br />

%<br />

dec<br />

%<br />

Precipitation 870 204 178 133 39 6 2 1 1 5 33 92 175<br />

WHITE 351 41 70 48 65 46 53 39 22 29 4 13 1 8 1 7 1 6 4 20 20 49 44 53 65 52<br />

GREEN 437 51 64 44 60 43 67 50 47 62 27 76 15 80 12 84 15 89 16 78 21 50 37 46 55 44<br />

BLUE 64 8 12 8 15 11 15 11 7 9 4 11 2 12 1 9 1 5 1 3 0 1 1 1 5 4<br />

W + G + B 852 147 140 135 76 35 19 15 17 21 42 82 124<br />

In Appendix 4 o<strong>the</strong>r model results <strong>of</strong> <strong>the</strong> <strong>Zambezi</strong> <strong>catchment</strong> can be found. In this appendix<br />

are shown <strong>the</strong> hydrographs <strong>of</strong> o<strong>the</strong>r locations, <strong>the</strong> magnitude <strong>of</strong> each <strong>of</strong> <strong>the</strong> water balance<br />

terms and <strong>the</strong> amount <strong>of</strong> <strong>the</strong> water resources (colours <strong>of</strong> water).<br />

5.3 Generalised Likelihood Uncertainty Estimator (GLUE)<br />

In <strong>the</strong> Chapter 4 <strong>the</strong> <strong>Zambezi</strong>-model has been described. All <strong>the</strong> parameters are manually<br />

calibrated to obtain satisfactory model results. The <strong>Zambezi</strong>-model is fur<strong>the</strong>r calibrated to<br />

make statements <strong>of</strong> <strong>the</strong> uncertainty and sensitivity <strong>of</strong> <strong>the</strong> model. For <strong>the</strong> calibration <strong>the</strong><br />

automated model calibration procedure ‘Generalised Likelihood Uncertainty Estimator’<br />

(GLUE) by Beven (1989) is used. The procedure is fur<strong>the</strong>r described by Binley and Beven<br />

(1991) and Beven and Binley (1992).<br />

81


ERROR- & SENSITIVITY ANALYSIS<br />

The GLUE procedure is different from most calibration procedures because it assumes that it<br />

is not likely that one optimal parameter combination exist. Whereas common procedures are<br />

searching <strong>for</strong> <strong>the</strong> global optimum, GLUE realizes that because <strong>of</strong> <strong>the</strong> errors in <strong>the</strong> (complex)<br />

model structure and in <strong>the</strong> observed data, <strong>the</strong>re does not exist a global optimal parameter set.<br />

It is possible to find equally satisfactory simulation results with different parameter values.<br />

This is called ‘equifinality’.<br />

The idea <strong>of</strong> <strong>the</strong> GLUE-procedure is that it randomly generates a large number <strong>of</strong> runs by<br />

selecting parameter sets from specified parameter distributions. The output <strong>of</strong> <strong>the</strong> runs will be<br />

compared with <strong>the</strong> observed data and is assigned a likelihood. This likelihood is a measure <strong>for</strong><br />

how well <strong>the</strong> model con<strong>for</strong>ms to <strong>the</strong> observed behaviour <strong>of</strong> <strong>the</strong> system.<br />

The first step <strong>of</strong> <strong>the</strong> GLUE-procedure is to select parameters and to define suitable parameter<br />

ranges with a distribution function. Choosing <strong>the</strong> upper- and lower bound <strong>of</strong> <strong>the</strong> parameter<br />

range in an objective way is difficult (Rientjes, 2004). Field measurements and available<br />

maps can help to find appropriate boundaries. For <strong>the</strong> definition <strong>of</strong> <strong>the</strong> distribution function<br />

mostly a uni<strong>for</strong>m or Gaussian distribution function is chosen if less knowledge about <strong>the</strong><br />

appearance <strong>of</strong> <strong>the</strong> parameter is available. The chosen distribution function is called ‘prior<br />

likelihood distribution function’.<br />

After <strong>the</strong> parameter ranges and distribution functions are defined <strong>the</strong> GLUE-procedure<br />

generates by Monte Carlo sampling lots <strong>of</strong> parameter sets. The necessary amount <strong>of</strong> generated<br />

parameter sets is not easy to determine, because it depends on factors like number <strong>of</strong> degrees<br />

<strong>of</strong> freedom, number <strong>of</strong> parameters, parameter inter-relation, etc. (Werner, 2000). The<br />

generated parameter sets are successively put into <strong>the</strong> model and <strong>the</strong> output is compared to <strong>the</strong><br />

observed data. The per<strong>for</strong>mance <strong>of</strong> <strong>the</strong> parameter set is defined by <strong>the</strong> ‘likelihood measure’.<br />

There are many possibilities <strong>for</strong> defining <strong>the</strong> likelihood measure. The only restrictions are that<br />

<strong>the</strong> measure should approximate zero when <strong>the</strong> behaviour is not satisfactory and that <strong>the</strong><br />

likelihood should increase when <strong>the</strong> behaviour is increasing. However, <strong>the</strong> chosen likelihood<br />

measure is important <strong>for</strong> <strong>the</strong> results <strong>of</strong> <strong>the</strong> GLUE-procedure. Some examples <strong>of</strong> likelihood<br />

measures are:<br />

82


ERROR- & SENSITIVITY ANALYSIS<br />

N<br />

2<br />

⎛ σ ⎞<br />

e<br />

= ⎜1−<br />

2 ⎟<br />

(Franks et al., 1996) Equation 5.1<br />

⎝ σo<br />

⎠<br />

2<br />

−<br />

( ) N<br />

e<br />

= σ<br />

(Binley and Beven, 1991) Equation 5.2<br />

N<br />

2<br />

⎛ σ ⎞<br />

e<br />

= ⎜−w<br />

2 ⎟<br />

(Lamb et al., 1998) Equation 5.3<br />

⎝ σo<br />

⎠<br />

Where:<br />

<br />

σ<br />

e<br />

σ<br />

o<br />

= likelihood measure<br />

= variance <strong>of</strong> residuals<br />

= variance <strong>of</strong> observations<br />

N = likelihood shape factor (mostly set to 1)<br />

w<br />

= weight<br />

It is also possible to define a rejection threshold, which determines if <strong>the</strong> simulation is good<br />

enough to be fur<strong>the</strong>r analyzed. If <strong>the</strong> likelihood is below <strong>the</strong> threshold value <strong>the</strong> parameter set<br />

is termed ‘non-behavioural’ and is rejected. The value <strong>of</strong> <strong>the</strong> rejection threshold is important<br />

<strong>for</strong> <strong>the</strong> GLUE-analysis, but is difficult to define in an objective way. Regularly, only <strong>the</strong> best<br />

10% likelihoods are fur<strong>the</strong>r analyzed. However sometimes also threshold values <strong>of</strong> 50% are<br />

presented in literature (Rientjes, 2004). Hence it depends on <strong>the</strong> judgement <strong>of</strong> <strong>the</strong> modeller<br />

which threshold value is chosen.<br />

After <strong>the</strong> lowest likelihoods are rejected <strong>the</strong> remaining likelihoods are rescaled in such a way<br />

that <strong>the</strong> sum <strong>of</strong> <strong>the</strong> (behavioural) likelihoods will become equal to one. To obtain <strong>the</strong> marginal<br />

likelihood distribution function <strong>for</strong> each parameter, <strong>the</strong> likelihoods and <strong>the</strong> parameter values<br />

should be plotted in a diagram, like in Figure 5.20. The marginal distribution function tells<br />

something about <strong>the</strong> sensitivity <strong>of</strong> <strong>the</strong> model to parameter changes. If <strong>the</strong> distribution function<br />

is steep, it means a high sensitivity and <strong>the</strong> parameter can be well defined. Conversely, gentle<br />

slope implies a low sensitivity and a hardly identifiably parameter.<br />

83


ERROR- & SENSITIVITY ANALYSIS<br />

Figure 5.20: Marginal likelihood distribution functions (Rientjes, 2004).<br />

It is also possible to use <strong>the</strong> rescaled behavioural likelihood measures <strong>for</strong> uncertainty<br />

estimations <strong>of</strong> <strong>the</strong> model. By treating <strong>the</strong> distribution function <strong>of</strong> <strong>the</strong> likelihoods as a<br />

probabilistic weighting function <strong>for</strong> <strong>the</strong> simulated variables (e.g. discharge) an impression can<br />

be obtained about <strong>the</strong> uncertainty <strong>of</strong> <strong>the</strong> model due to non-uniqueness <strong>of</strong> parameter sets. For<br />

example in Figure 5.21 <strong>the</strong> simulated discharges, obtained by running <strong>the</strong> model with<br />

different parameter sets, are ranked on <strong>the</strong> x-axis with <strong>the</strong> accompanying likelihood value.<br />

From this graph statistical features can be derived, like <strong>the</strong> 5% and 95% bounds, <strong>the</strong> mean,<br />

etc. Also <strong>the</strong> uncertainty bound can be derived <strong>of</strong> hydrographs, which can be seen in Figure<br />

5.22.<br />

Figure 5.21: Distribution function <strong>of</strong> predicted discharges (Beven and Binley, 1992).<br />

84


ERROR- & SENSITIVITY ANALYSIS<br />

Figure 5.22: Hydrographs <strong>of</strong> different simulations. The upper figure is <strong>the</strong> output <strong>of</strong> <strong>the</strong> model and <strong>the</strong><br />

lower figure is showing <strong>the</strong> 5% , <strong>the</strong> 95% bounds and <strong>the</strong> mean (Beven and Binley, 1992).<br />

Updating likelihood measures<br />

When new observation data becomes available, it is possible to update <strong>the</strong> likelihood values<br />

by applying <strong>the</strong> probability <strong>the</strong>ory <strong>of</strong> Bayes (Equation 5.4).<br />

<br />

( i<br />

Y,M)<br />

Θ =<br />

N<br />

∑<br />

i<br />

<br />

( Y Θi,M ) ( Θi,M)<br />

<br />

( Y Θi,M ) ( Θi,M)<br />

Equation 5.4<br />

Where:<br />

M<br />

( Θ ,M i )<br />

= expression <strong>for</strong> <strong>the</strong> applied model concept<br />

= prior likelihood <strong>of</strong> parameter set i<br />

( Θ i<br />

Y,M)<br />

= posterior likelihood <strong>of</strong> parameter set i<br />

( Y Θi,M)<br />

= likelihood calculated by use <strong>of</strong> additional time series Y<br />

Remarks<br />

Although <strong>the</strong> GLUE-procedure is generally accepted as a calibration tool (Rientjes, 2004),<br />

some remarks about <strong>the</strong> method exist. First, GLUE examines <strong>the</strong> over-all uncertainty <strong>of</strong> <strong>the</strong><br />

model. Hence <strong>the</strong> likelihood values are determined by <strong>the</strong> sum <strong>of</strong> <strong>the</strong> errors in <strong>the</strong> model<br />

concept, <strong>the</strong> errors in <strong>the</strong> parameter estimation, <strong>the</strong> input- and boundary errors and <strong>the</strong> errors<br />

in <strong>the</strong> observed data. Second, <strong>the</strong> GLUE-procedure does not deal with <strong>the</strong> inter-relation<br />

between <strong>the</strong> parameters. GLUE just generates parameter sets by selecting random parameter<br />

values and treats <strong>the</strong> parameters as completely independent. The last criticism is about<br />

85


ERROR- & SENSITIVITY ANALYSIS<br />

choosing <strong>the</strong> rejection threshold, <strong>the</strong> appropriate likelihood measure and <strong>the</strong> prior distribution<br />

function. This is difficult to determine in an objective way as mentioned be<strong>for</strong>e.<br />

5.4 Implementation <strong>of</strong> GLUE <strong>for</strong> <strong>the</strong> <strong>Zambezi</strong>-script<br />

For executing <strong>the</strong> GLUE-procedure Werner developed in 2002 a MATLAB procedure. This<br />

program can be linked with different kinds <strong>of</strong> models, on <strong>the</strong> condition that <strong>the</strong> model can run<br />

via <strong>the</strong> batch-mode. In Figure 5.23 <strong>the</strong> flow chart <strong>of</strong> <strong>the</strong> procedure is given and in Appendix 5<br />

<strong>the</strong> Matlab code with <strong>the</strong> input parameters can be found.<br />

Main<br />

settings.txt<br />

Generate<br />

Parameter set<br />

1..n<br />

experimental<br />

parameter<br />

distributions<br />

Run model<br />

n-times<br />

Parameter<br />

set i (i=1,n)<br />

Parameter<br />

Template file<br />

Determine<br />

fitness<br />

run i (i=1,n)<br />

Results run i<br />

(i=1,n)<br />

Parameter file<br />

Model<br />

Executable<br />

Determine<br />

likelihoods<br />

Uncertainty<br />

bounds<br />

Parameter<br />

analyses<br />

distributions<br />

<strong>for</strong> variables<br />

(e.g. Qpeak)<br />

experimental<br />

parameter<br />

distributions<br />

Figure 5.23: Flow chart <strong>of</strong> MATLAB uncertainty estimation procedure (Werner, 2000).<br />

The first step (‘main’) <strong>of</strong> <strong>the</strong> procedure is to select an objective function and to define a prior<br />

distribution function. This prior distribution function can also be <strong>the</strong> results <strong>of</strong> previous runs<br />

(‘experimental parameter distribution’). In <strong>the</strong> second step <strong>the</strong> procedure generates parameter<br />

86


ERROR- & SENSITIVITY ANALYSIS<br />

sets by Monte Carlo sampling. It saves <strong>the</strong> generated values <strong>of</strong> <strong>the</strong> parameters in a ‘parameter<br />

file’. In <strong>the</strong> third step <strong>the</strong> model is run n-times. In Figure 5.23 <strong>the</strong> ‘Model Executable’-box is<br />

drawn as one single box. However, in our case consists <strong>the</strong> ‘Model Executable’-box <strong>of</strong> two<br />

sub-models. The first sub-model is <strong>the</strong> water balance calculation in STREAM and <strong>the</strong> second<br />

sub-model is <strong>the</strong> routing in MS EXCEL. Because <strong>the</strong> latter sub-model is not able to run in <strong>the</strong><br />

batch-mode, a program is written in <strong>the</strong> object oriented programming language JAVA to<br />

execute <strong>the</strong> routing (Appendix 6). Based on <strong>the</strong> output <strong>of</strong> <strong>the</strong> second sub-model <strong>the</strong> fitness is<br />

determined (step 4) by <strong>the</strong> Nash-Sutcliffe efficiency. Successively, <strong>the</strong> likelihoods are<br />

calculated in step 5. After this step several analysis- and plotting tools are provided to obtain<br />

insight into <strong>the</strong> GLUE-results.<br />

Approach<br />

The objective <strong>of</strong> <strong>the</strong> GLUE-procedure is in <strong>the</strong> <strong>Zambezi</strong> case to obtain knowledge about <strong>the</strong><br />

uncertainties in our model output due to uncertainties in <strong>the</strong> parameters and in <strong>the</strong> model<br />

concept. For <strong>the</strong> gravity measurements <strong>the</strong> storage stock is <strong>the</strong> most important output. Thus<br />

<strong>the</strong> GLUE-procedure should be carried out <strong>for</strong> <strong>the</strong> state variables SU (Storage Unsaturated<br />

zone) and GWS (Ground Water Storage). However, <strong>the</strong> GLUE-procedure requires measured<br />

data to determine <strong>the</strong> per<strong>for</strong>mance <strong>of</strong> <strong>the</strong> parameter set, which is not available <strong>for</strong> <strong>the</strong> state<br />

variables <strong>of</strong> interest. The only available observed data is discharge data. Hence, <strong>the</strong> approach<br />

is to calculate <strong>the</strong> likelihood <strong>of</strong> a parameter set, which is based on <strong>the</strong> goodness-<strong>of</strong>-fit <strong>of</strong> <strong>the</strong><br />

simulated discharge compared to <strong>the</strong> observed discharge and next assume that <strong>the</strong> goodness <strong>of</strong><br />

fit <strong>of</strong> <strong>the</strong> discharge is equal to <strong>the</strong> goodness <strong>of</strong> fit <strong>of</strong> <strong>the</strong> storage stocks. In Figure 5.24 this<br />

approach is schematically depicted.<br />

SU i<br />

<br />

i<br />

Input<br />

STREAM-model<br />

+<br />

ROUTINGmodel<br />

GWS i<br />

<br />

i<br />

Q i<br />

R i<br />

<br />

i<br />

Q obs,i<br />

Parameter set i, generated<br />

by Monte Carlo sampling<br />

Figure 5.24: Schematization <strong>of</strong> implementation <strong>of</strong> GLUE <strong>for</strong> run i. With SU (Storage Unsaturated<br />

zone), GWS (Ground Water Storage), Q (Discharge), Q obs (Measured discharge), R (Nash-Sutcliffe<br />

efficiency) and (likelihood).<br />

87


ERROR- & SENSITIVITY ANALYSIS<br />

5.4.1 Determination <strong>of</strong> dominant parameters<br />

One <strong>of</strong> <strong>the</strong> disadvantages <strong>of</strong> GLUE is <strong>the</strong> large calculation time. Especially when <strong>the</strong><br />

calculation time <strong>of</strong> one model run is long, when a lot <strong>of</strong> runs are executed or when many<br />

parameters exist, a lot <strong>of</strong> patience is needed to get good stable GLUE-results. One solution to<br />

reduce <strong>the</strong> calculation time is to make a calculation cluster, which processes <strong>the</strong> calculation<br />

parallel on several computers. Ano<strong>the</strong>r way to save calculation time is to reduce <strong>the</strong> amount<br />

<strong>of</strong> parameters. If less parameters exist in <strong>the</strong> model, less parameter sets are necessary to cover<br />

<strong>the</strong> complete range <strong>of</strong> parameter values. There<strong>for</strong>e a quick sensitivity analysis is carried out to<br />

determine which parameters will not be assessed by GLUE. If from <strong>the</strong> sensitivity analysis<br />

appears that a certain parameter has a low sensitivity this parameter will not be considered by<br />

GLUE. A parameter with a low sensitivity implies that <strong>the</strong> parameter does not contribute<br />

significantly to <strong>the</strong> uncertainty in <strong>the</strong> model output.<br />

The quick sensitivity analysis is carried out on <strong>the</strong> storage stock outputs SU (Storage<br />

Unsaturated zone) and GWS (Ground Water Storage), because those are <strong>the</strong> state variables <strong>of</strong><br />

interest. For each parameter four model runs are done with different parameter values. The<br />

default parameter value, which is determined by manual calibration, is decreased with -40%<br />

and -20% and increased with +20% and +40%. Next, <strong>the</strong> outcome <strong>of</strong> <strong>the</strong> model run is<br />

compared with <strong>the</strong> output from <strong>the</strong> default parameter value. Because <strong>the</strong> sensitivity analysis is<br />

carried out <strong>for</strong> two state variables (SU and GWS), two outputs need to be compared with <strong>the</strong><br />

default ones. Because <strong>the</strong> Nash-Sutcliffe-criterion gives scaled efficiencies, which makes <strong>the</strong><br />

comparison easier, this criterion is used to determine <strong>the</strong> sensitivity <strong>of</strong> <strong>the</strong> parameter.<br />

F − F F<br />

= = − Equation 5.5<br />

0<br />

Reff<br />

1<br />

F0 F0<br />

n<br />

F <br />

( )<br />

2<br />

0<br />

= ∑ SVi<br />

−SV<br />

Equation 5.6<br />

i=<br />

1<br />

n<br />

F= <br />

∑ ( SV )<br />

2<br />

i −SVi<br />

Equation 5.7<br />

i=<br />

1<br />

SV is <strong>the</strong> state variable, which is SU or GWS.<br />

With:<br />

R eff<br />

= coefficient <strong>of</strong> efficiency<br />

88


ERROR- & SENSITIVITY ANALYSIS<br />

SV i<br />

SV<br />

SV i<br />

= output <strong>of</strong> <strong>the</strong> state variable at time step i when using <strong>the</strong> default parameter<br />

value<br />

= average output <strong>of</strong> <strong>the</strong> state variable between time step i and n when using<br />

<strong>the</strong> default parameter value<br />

= output <strong>of</strong> <strong>the</strong> state variable at time i when using <strong>the</strong> modified parameter<br />

value<br />

If <strong>the</strong> efficiency approximates one this means that <strong>the</strong> difference between <strong>the</strong> output <strong>of</strong> <strong>the</strong><br />

default parameter values and <strong>the</strong> output <strong>of</strong> <strong>the</strong> modified parameter values is almost zero. If <strong>the</strong><br />

efficiency approximates zero or even becomes negative, <strong>the</strong> per<strong>for</strong>mance <strong>of</strong> that modified<br />

parameter value is not satisfactory.<br />

By plotting <strong>the</strong> efficiencies on <strong>the</strong> y-axis and<br />

<strong>the</strong> parameter modification factors on <strong>the</strong> x-<br />

axis, a good insight in <strong>the</strong> sensitivity <strong>of</strong><br />

parameters is given. When <strong>the</strong> angle nearby<br />

modification factor equals one is sharp, this<br />

means that <strong>the</strong> parameter is very sensitive and<br />

when <strong>the</strong> angle is less sharp <strong>the</strong> sensitivity is<br />

low (see Figure 5.25).<br />

NS-efficiency<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

Sensitivity <strong>of</strong> parameters<br />

Low sensitivity<br />

High sensitivity<br />

0.4 0.6 1 1.2 1.4<br />

Parameter modification factor<br />

Figure 5.25: Sensitivity <strong>of</strong> parameters.<br />

Results<br />

The <strong>Zambezi</strong>-script in STREAM contains twelve parameters (see Table 5.3), which are all<br />

assessed by a quick sensitivity analysis to select <strong>the</strong> four most sensitive parameters. The<br />

parameters <strong>of</strong> <strong>the</strong> Muskingum routing are not considered in this analysis.<br />

Table 5.3: Parameters in <strong>the</strong> <strong>Zambezi</strong>-script.<br />

Symbol Description Unit<br />

D Interception threshold [mm/month]<br />

cr Separation coefficient [%]<br />

qc Coefficient to determine threshold GWSquick; [GWSquick = qc * GWSmax] [%]<br />

k Recession constant overtop [month]<br />

Gws25 Multiplication factor to determine GWSmax; [GWSmax = gws25 * ln_gwsmax] [-]<br />

rtq Recession constant Qflo [month]<br />

Cap25 Level which below only 2 mm/month <strong>of</strong> capillary rise occurs [mm]<br />

rts Recession constant Sflo [month]<br />

smax Field capacity [mm]<br />

f Tree-top factor [%]<br />

cap Capillary rise [mm/month]<br />

Gwsmin Minimum level <strong>of</strong> slow groundwater flow; [sflo = max(gws, -15)/ rts] [mm]<br />

89


ERROR- & SENSITIVITY ANALYSIS<br />

The sensitivity analysis is carried out on <strong>the</strong> storage in <strong>the</strong> unsaturated zone (SU), on <strong>the</strong><br />

ground water storage level (GWS) and on <strong>the</strong> average <strong>of</strong> SU and GWS. Of course, it could be<br />

expected that some parameters are more sensitive <strong>for</strong> SU and o<strong>the</strong>r parameters more to GWS.<br />

This appears also from <strong>the</strong> results, which are shown in Figure 5.26 and Figure 5.27. For both<br />

storage stocks cr and D belong to <strong>the</strong> four most sensitive parameters (Figure 5.26), but<br />

parameter f and smax are only important <strong>for</strong> SU and gws25 and cap only <strong>for</strong> GWS.<br />

Because both storage stocks are <strong>of</strong> importance <strong>for</strong> <strong>the</strong> gravity measurements, only <strong>the</strong> four<br />

most sensitive parameters <strong>of</strong> <strong>the</strong> average analysis are selected. These are: D, cr, cap and<br />

gws25.<br />

Sensitivity parameters <strong>Zambezi</strong>-script on SU<br />

Sensitivity parameters <strong>Zambezi</strong>-script on GWS<br />

1.00<br />

1<br />

0.95<br />

0.9<br />

0.90<br />

0.8<br />

R Nash Sutcliffe)<br />

0.85<br />

R (Nash Sutcliffe)<br />

0.7<br />

0.80<br />

0.6<br />

0.75<br />

0.5<br />

0.4<br />

0.70<br />

0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30 1<br />

0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30 1.40<br />

Parameter multiplication factor<br />

Parameter multiplication factor<br />

D cr qc k gws25 rtq cap25 rts smax f cap gwsmin<br />

Figure 5.26: Sensitivity analysis results <strong>for</strong> <strong>the</strong> storage in <strong>the</strong> unsaturated zone, SU (left) and <strong>for</strong> <strong>the</strong><br />

ground water storage level, GWS (right).<br />

Sensitivity parameters <strong>Zambezi</strong>-script (average SU & GWS)<br />

1<br />

0.95<br />

0.9<br />

0.85<br />

R (Nash Sutcliffe)<br />

0.8<br />

0.75<br />

0.7<br />

0.65<br />

0.6<br />

0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30 1.40<br />

Parameter multiplication factor<br />

D cr qc k gws25 rtq cap25 rts smax f cap gwsmin<br />

Figure 5.27: Sensitivity analysis results <strong>for</strong> <strong>the</strong> average <strong>of</strong> SU and GWS.<br />

90


ERROR- & SENSITIVITY ANALYSIS<br />

5.4.2 Objective function and likelihood measure<br />

For <strong>the</strong> assessment <strong>of</strong> <strong>the</strong> model output an objective function has to be chosen. Some <strong>of</strong>ten<br />

used evaluation functions are <strong>the</strong> Root Mean Square Error (RMSE), <strong>the</strong> Nash-Sutcliffe<br />

efficiency, <strong>the</strong> coefficient <strong>of</strong> determination, <strong>the</strong> trans<strong>for</strong>med RMSE, etc. Because <strong>the</strong> Nash<br />

Sutcliffe-efficiency is widely applied and accepted this criterion has been chosen (Werner,<br />

2000).<br />

F − F F<br />

= = − Equation 5.8<br />

0<br />

Reff<br />

1<br />

F0 F0<br />

(<br />

ˆ<br />

)<br />

n 2<br />

F = ∑ Q −Q<br />

Equation 5.9<br />

0 i<br />

i=<br />

1<br />

(<br />

ˆ<br />

i i)<br />

n 2<br />

F= ∑ Q −Q<br />

Equation 5.10<br />

i=<br />

1<br />

With:<br />

R eff<br />

ˆQ<br />

i<br />

Q<br />

Q i<br />

= coefficient <strong>of</strong> efficiency<br />

= observed discharge at time step i<br />

= average <strong>of</strong> observed discharge between time i and n<br />

= calculated discharge at time i<br />

On basis <strong>of</strong> <strong>the</strong> Nash-Sutcliffe efficiency (R eff ), <strong>the</strong> likelihood measure is calculated. The<br />

chosen likelihood is just scaling <strong>the</strong> efficiencies between <strong>the</strong> minimum and maximum<br />

efficiency and weights <strong>the</strong> likelihood in such way that <strong>the</strong> sum is equal to one (Equation<br />

5.11).<br />

<br />

i<br />

=<br />

n<br />

∑<br />

j=<br />

1<br />

Reff ,i<br />

− min( Reff<br />

)<br />

( Reff , j<br />

− min( Reff<br />

))<br />

Equation 5.11<br />

5.5 GLUE results<br />

The GLUE procedure is carried out twice with no rejection threshold applied and with Latin<br />

Hypercube Sampling. First, 300 runs are executed to determine <strong>the</strong> sensitivity <strong>of</strong> <strong>the</strong> model on<br />

<strong>the</strong> parameters. These results are described in Section 5.5.1. A second GLUE-process was<br />

carried out <strong>for</strong> <strong>the</strong> determination <strong>of</strong> <strong>the</strong> sensitivity <strong>of</strong> <strong>the</strong> input data. The amount <strong>of</strong> runs is 40<br />

and <strong>the</strong> results are analyzed in Section 5.5.2.<br />

91


ERROR- & SENSITIVITY ANALYSIS<br />

5.5.1 GLUE <strong>for</strong> parameter uncertainty<br />

In Figure 5.28 and Figure 5.29 are shown <strong>the</strong> uncertainty bounds <strong>of</strong> <strong>the</strong> hydrographs <strong>of</strong><br />

Lukulu and Victoria Falls.<br />

Figure 5.28: Uncertainty bounds <strong>of</strong> <strong>the</strong> hydrographs <strong>of</strong> Lukulu (t = 1 is December 1978).<br />

Figure 5.29: Uncertainty bounds <strong>of</strong> <strong>the</strong> hydrographs <strong>of</strong> Victoria Falls (t = 1 is December<br />

1978).<br />

92


ERROR- & SENSITIVITY ANALYSIS<br />

A remarkable fact <strong>of</strong> <strong>the</strong> uncertainty bounds are <strong>the</strong> negative discharge values <strong>for</strong> Victoria<br />

Falls, which are not possible but ‘accepted’ <strong>for</strong> this research as mentioned in Section 4.2.1.3.<br />

Because this is not occurring in Lukulu, it can be said that this is caused by a high capillary<br />

rise value, maybe toge<strong>the</strong>r with a high interception threshold value. A high capillary risevalue<br />

means a high depletion <strong>of</strong> <strong>the</strong> ground water storage and a large D-value will cause that<br />

less water takes part <strong>of</strong> <strong>the</strong> discharge process. Both can cause negative values <strong>of</strong> <strong>the</strong> ground<br />

water storage level, which will result in negative discharge values.<br />

Sensitivity <strong>of</strong> <strong>the</strong> parameters<br />

In Figure 5.30 <strong>the</strong> cumulative density function <strong>for</strong> <strong>the</strong> four parameters are plotted. As can be<br />

seen only <strong>the</strong> parameters cr and D show some non linear reaction on <strong>the</strong> discharge.<br />

Apparently, <strong>the</strong> parameters cap and gws25 are chosen in such a way that <strong>the</strong>y do not have a<br />

large influence on <strong>the</strong> discharge. Each selected parameter value results in <strong>the</strong> same likelihood.<br />

As can be seen <strong>the</strong> discharge is sensitive <strong>for</strong> <strong>the</strong> value <strong>of</strong> cr and also a little <strong>for</strong> <strong>the</strong><br />

interception threshold D. Especially around <strong>the</strong> cr-value <strong>of</strong> 1, <strong>the</strong> model reaction is relatively<br />

high.<br />

Figure 5.30: Cumulative Density Functions <strong>of</strong> <strong>the</strong> assessed parameters.<br />

93


ERROR- & SENSITIVITY ANALYSIS<br />

Optimal parameter value<br />

The same picture as shown in Figure 5.30 is found in <strong>the</strong> dotty plots in Figure 5.31. It is not<br />

possible to define an optimal parameter value from <strong>the</strong> GLUE-procedure, hence <strong>the</strong><br />

parameters are not identifiably. Only <strong>for</strong> <strong>the</strong> separation parameter, cr an optimum around <strong>the</strong><br />

default value can be noticed.<br />

Figure 5.31: Dotty plots <strong>of</strong> <strong>the</strong> parameters D, cr, cap and gws25.<br />

From <strong>the</strong> parameter set with <strong>the</strong> highest likelihood value <strong>the</strong> hydrographs <strong>of</strong> Lukulu and<br />

Victoria Falls can be plotted. These hydrographs are depicted in Figure 5.32.<br />

94


ERROR- & SENSITIVITY ANALYSIS<br />

Figure 5.32: Optimal hydrographs <strong>for</strong> Lukulu (blue) and Victoria Falls (red). The crosses are <strong>the</strong><br />

observed data <strong>of</strong> Lukulu and Victoria Falls (t = 1 is December 1978).<br />

Sensitivity on soil moisture and ground water storage<br />

For gravity measurements it is important to know <strong>the</strong> uncertainty in <strong>the</strong> storage stocks.<br />

Because it would not make sense to know <strong>the</strong> uncertainty on <strong>the</strong> stock-level in Lukulu and<br />

Victoria Falls, <strong>the</strong> average stock value <strong>of</strong> <strong>the</strong> western part <strong>of</strong> <strong>the</strong> <strong>catchment</strong> is assessed.<br />

The storage stocks are divided in <strong>the</strong> soil moisture content (Figure 5.33), <strong>the</strong> ground water<br />

storage (Figure 5.34) and <strong>the</strong> sum <strong>of</strong> <strong>the</strong> soil moisture content and <strong>the</strong> ground water storage in<br />

Figure 5.35. As can be seen, <strong>the</strong> uncertainty in <strong>the</strong> total water storage stock due to<br />

uncertainties in <strong>the</strong> model parameters is average about 30 mm, according to 90% <strong>of</strong> <strong>the</strong> runs.<br />

95


ERROR- & SENSITIVITY ANALYSIS<br />

Figure 5.33: Uncertainty bounds <strong>for</strong> <strong>the</strong> soil moisture content (SU) (t = 1 is January1978).<br />

Figure 5.34: Uncertainty bounds <strong>for</strong> <strong>the</strong> ground water storage level (GWS) (t = 1 is January1978).<br />

96


ERROR- & SENSITIVITY ANALYSIS<br />

Figure 5.35: Uncertainty bounds <strong>for</strong> <strong>the</strong> total water storage stock, which consists <strong>of</strong> <strong>the</strong> soil moisture<br />

content and <strong>the</strong> ground water storage level (SU + GWS) (t = 1 is January1978).<br />

5.5.2 GLUE <strong>for</strong> input uncertainty<br />

In Section 5.1 is roughly estimated <strong>the</strong> uncertainty in <strong>the</strong> precipitation data. This uncertainty<br />

is about 55% with 95% confidence level. For <strong>the</strong> potential evaporation this estimation was not<br />

possible. Hence <strong>for</strong> <strong>the</strong> GLUE analysis is assumed that both input data have <strong>the</strong> same<br />

uncertainty. The uncertainty is applied on <strong>the</strong> input data, by multiplying <strong>the</strong> entire time series<br />

with a factor between 0.45 and 1.55.<br />

In Figure 5.36 and Figure 5.37 are shown <strong>the</strong> uncertainty bounds <strong>for</strong> Lukulu and Victoria<br />

Falls.<br />

97


ERROR- & SENSITIVITY ANALYSIS<br />

Figure 5.36: Uncertainty bounds <strong>of</strong> <strong>the</strong> hydrograph <strong>of</strong> Lukulu due to uncertainty in input data (t =<br />

1 is December 1978).<br />

Figure 5.37: Uncertainty bounds <strong>of</strong> <strong>the</strong> hydrographs <strong>of</strong> Victoria Falls due to uncertainty in <strong>the</strong><br />

input data (t = 1 is December 1978).<br />

98


ERROR- & SENSITIVITY ANALYSIS<br />

Sensitivity <strong>of</strong> <strong>the</strong> input data<br />

As can be seen by <strong>the</strong> steepness <strong>of</strong> <strong>the</strong> function in <strong>the</strong> right hand graph <strong>of</strong> Figure 5.38, <strong>the</strong><br />

precipitation is very sensitive on <strong>the</strong> discharge as expected. The potential evaporation on <strong>the</strong><br />

o<strong>the</strong>r hand is badly identifiable. This result proves that <strong>the</strong> effect <strong>of</strong> using temperature data<br />

from o<strong>the</strong>r years (see Section 3.2), is not that high. Hence it is acceptable to do this<br />

assumption as a first estimate.<br />

Figure 5.38: Cumulative Density Functions <strong>of</strong> <strong>the</strong> precipitation and potential evaporation.<br />

Optimal input data<br />

The dotty plots <strong>of</strong> <strong>the</strong> input data in Figure 5.39 show that a clearly optimal parameter exists<br />

<strong>for</strong> <strong>the</strong> precipitation data. Again it appears that <strong>the</strong> rainfall is overestimated in <strong>the</strong> <strong>Zambezi</strong><br />

model. This overestimation was also found in <strong>the</strong> comparison between <strong>the</strong> precipitation<br />

algorithm and <strong>the</strong> observed data from ground stations. From <strong>the</strong> dotty plot it appears that <strong>the</strong><br />

rainfall data should be lowered with about 5% to obtain better model results. For <strong>the</strong> potential<br />

evaporation data no optimal input multiplication factor can be found.<br />

Figure 5.39: Dotty plots <strong>of</strong> <strong>the</strong> input data: precipitation (prec) and potential evaporation (pe).<br />

99


ERROR- & SENSITIVITY ANALYSIS<br />

The optimal hydrographs <strong>for</strong> Lukulu and Victoria Falls, with <strong>the</strong> highest likelihood, are<br />

plotted in Figure 5.40.<br />

Figure 5.40: Optimal hydrographs <strong>for</strong> Lukulu (red) and Victoria Falls (blue). The crosses are <strong>the</strong><br />

observed data (t = 1 is December 1978).<br />

Sensitivity on soil moisture and ground water storage<br />

Because <strong>of</strong> <strong>the</strong> importance <strong>of</strong> <strong>the</strong> uncertainty in <strong>the</strong> storage <strong>for</strong> <strong>the</strong> gravity measurements, <strong>the</strong><br />

uncertainty bounds <strong>for</strong> <strong>the</strong> soil moisture content, <strong>the</strong> ground water storage and <strong>the</strong> sum <strong>of</strong> both<br />

components are given in Figure 5.41 to Figure 5.43.<br />

The deviation <strong>of</strong> <strong>the</strong> 5% bound in Figure 5.41 looks initially strange. However, this behaviour<br />

can be clarified by <strong>the</strong> fact that if <strong>the</strong> ground water storage level (gws) is between zero and -<br />

25 mm (compared to <strong>the</strong> reference level), <strong>the</strong>n <strong>the</strong> capillary rise has a large influence on <strong>the</strong><br />

ground water level. If this occurs simultaneously with a small or no net precipitation, <strong>the</strong><br />

ground water level is not able to recover soon. However, if <strong>the</strong> ground water level drops<br />

below -25 mm <strong>the</strong> influence <strong>of</strong> <strong>the</strong> capillary rise will decrease and <strong>the</strong> ground water level will<br />

stabilise.<br />

100


ERROR- & SENSITIVITY ANALYSIS<br />

Figure 5.41: Uncertainty bounds <strong>for</strong> <strong>the</strong> soil moisture content (SU) due to uncertainties in <strong>the</strong> input<br />

data (t = 1 is January 1978).<br />

Figure 5.42: Uncertainty bounds <strong>for</strong> <strong>the</strong> ground water storage level (GWS) due to uncertainties in <strong>the</strong><br />

input data (t = 1 is January 1978).<br />

101


ERROR- & SENSITIVITY ANALYSIS<br />

Figure 5.43: Uncertainty bounds <strong>for</strong> <strong>the</strong> total water storage stock, which consists <strong>of</strong> <strong>the</strong> soil moisture<br />

content and <strong>the</strong> ground water storage level (SU + GWS). These uncertainties are due to uncertainties<br />

in <strong>the</strong> input data (t = 1 is January 1978).<br />

As can be seen is <strong>the</strong> variance much higher <strong>for</strong> <strong>the</strong> uncertainty in <strong>the</strong> input data <strong>the</strong>n <strong>for</strong> <strong>the</strong><br />

uncertainty in <strong>the</strong> parameters. The difference between <strong>the</strong> 5% bound and <strong>the</strong> 95% bound is<br />

average about 310 mm. This is mainly caused by <strong>the</strong> spreading in <strong>the</strong> soil moisture.<br />

102


GRAVITY MEASUREMENTS AND HYDROLOGY<br />

6 Gravity measurements and hydrology<br />

6.1 Background<br />

As mentioned be<strong>for</strong>e it is important to know <strong>the</strong> water storage stock at a certain place and<br />

time, although it only constitutes about 3.5% <strong>of</strong> <strong>the</strong> total water in <strong>the</strong> hydrological cycle (see<br />

Figure 6.1 and Rodel and Famiglietti, 1999). The soil moisture stock is important <strong>for</strong> its<br />

relation with transpiration and <strong>the</strong> ground water stock has its importance <strong>for</strong> providing base<br />

flow to rivers and provides water to deep-rooted plants in periods <strong>of</strong> droughts. Both determine<br />

<strong>the</strong> availability <strong>of</strong> water <strong>for</strong> agriculture <strong>of</strong> domestic use and are important to predict floods<br />

and droughts.<br />

Figure 6.1: The global hydrological cycle, illustrating storages in 10 6 cubic kilometers (boxed) and<br />

fluxes in 10 6 cubic kilometers per year (Dickey, 1997).<br />

However, it is not that simple to monitor <strong>the</strong> water storage stock. By carrying out ground<br />

measurements it is possible to obtain in<strong>for</strong>mation, but this in<strong>for</strong>mation is labor intensive and<br />

provides only point in<strong>for</strong>mation. Microwave remote sensing techniques could help to<br />

determine <strong>the</strong> soil moisture content, but this technique is limited to <strong>the</strong> upper soil and is not<br />

measuring <strong>the</strong> deep soil moisture and <strong>the</strong> groundwater. A third option is <strong>modelling</strong>. However,<br />

<strong>the</strong> per<strong>for</strong>mance <strong>of</strong> <strong>the</strong> model results is constrained by <strong>the</strong> quantity and quality <strong>of</strong> <strong>the</strong> model<br />

input.<br />

103


GRAVITY MEASUREMENTS AND HYDROLOGY<br />

A new solution, which has arisen <strong>for</strong> determining <strong>the</strong> storage stock, are gravity measurements.<br />

The Earth’s gravity field varies in time and space and defines an irregular ellipsoid, <strong>the</strong> geoid<br />

(see Figure 6.2). This geoid, which primarily originates from mass distribution irregularities<br />

near <strong>the</strong> surface <strong>of</strong> <strong>the</strong> earth, consists <strong>of</strong> a static and a time variable part. The static part is<br />

mainly due to mass distributions that only vary on a geological timescale, like continents,<br />

mountains and depressions in <strong>the</strong> crust. The time variable part occurs due to processes like<br />

terrestrial storage water redistribution, ocean tides, atmospheric changes, post glacial rebound,<br />

etc. Hence <strong>the</strong> hydrological signal is included in <strong>the</strong> gravity signals.<br />

Figure 6.2: Earth's geoid <strong>of</strong> 2003 (from http://www.csr.utexas.edu).<br />

The first time researchers noticed that hydrology could be one <strong>of</strong> <strong>the</strong> causes <strong>for</strong> <strong>the</strong> temporal<br />

gravity variations, was with <strong>the</strong> LAGEOS satellite. Yoder et al. (1983) believed that <strong>the</strong><br />

changes in <strong>the</strong> orbit <strong>of</strong> <strong>the</strong> satellite were primary caused by redistribution <strong>of</strong> ground water and<br />

air mass and changes in sea level. Gutierrez and Wilson (1978) have tried to calculate <strong>the</strong><br />

disturbances in <strong>the</strong> satellite’s orbit due to seasonal redistribution <strong>of</strong> air mass and terrestrial<br />

water storage. They concluded that <strong>the</strong>y were able to roughly predict <strong>the</strong> perturbations <strong>of</strong> <strong>the</strong><br />

satellite orbit caused by seasonal variations in terrestrial water storage.<br />

After several o<strong>the</strong>r studies about <strong>the</strong> time variable component <strong>of</strong> <strong>the</strong> geoid Dickey et al.<br />

(1997) helped to accomplish <strong>the</strong> Gravity Recovery and Climate Experiment and mentioned<br />

<strong>the</strong> possibilities <strong>for</strong> <strong>the</strong> field <strong>of</strong> hydrology.<br />

104


GRAVITY MEASUREMENTS AND HYDROLOGY<br />

Finally, <strong>the</strong> twin satellite GRACE was launched <strong>for</strong> a mission period <strong>of</strong> 5 years on <strong>the</strong> 17 th <strong>of</strong><br />

March 2002. As shortly described in Section 2.1, <strong>the</strong> distance between <strong>the</strong> twin satellites will<br />

change due to mass variations. GRACE measures precisely this distance between <strong>the</strong> satellites<br />

with a microwave ranging system. An accelerometer will measure <strong>the</strong> non-gravitational<br />

accelerations (e.g. atmospheric drag) so that only <strong>the</strong> acceleration caused by gravity is<br />

considered. And GPS is used to determine <strong>the</strong> exact position <strong>of</strong> <strong>the</strong> satellites (NASA, 2003).<br />

6.2 Relation surface mass to gravity<br />

The shape <strong>of</strong> <strong>the</strong> geoid (i.e. <strong>the</strong> equipotential surface corresponding to mean sea level over <strong>the</strong><br />

oceans) describes Earth’s global gravity field. The shape <strong>of</strong> <strong>the</strong> geoid is commonly <strong>the</strong> sum <strong>of</strong><br />

spherical harmonics (Chao and Gross, 1987):<br />

∞<br />

l<br />

( θφ ) =<br />

lm ( θ) ( lm ( φ ) +<br />

lm ( φ)<br />

)<br />

∑∑ Equation 6.1<br />

N , a P cos C cos m S sin m<br />

l= 0 m=<br />

0<br />

Where:<br />

N<br />

a<br />

θ<br />

φ<br />

C lm , S lm<br />

= geoid shape<br />

= radius <strong>of</strong> <strong>the</strong> Earth<br />

= co-latitude<br />

= east longitude<br />

= dimensionless Stokes coefficient<br />

P lm<br />

= Legendre function (see Wahr et al., 1998 <strong>for</strong> equation)<br />

l<br />

m<br />

= degree<br />

= order<br />

The coefficients C lm and S lm are <strong>the</strong> variables, which will be provided by GRACE. For<br />

measuring time-dependent changes in <strong>the</strong> shape <strong>of</strong> geoid ( ∆ N ), Equation 6.1 can be<br />

expressed in terms <strong>of</strong> ∆ Clm<br />

and ∆ Slm<br />

. The changes in <strong>the</strong> spherical harmonic geoid<br />

coefficients are caused by surface density redistributions ( ∆σ ), which is defined as mass<br />

divided by area.<br />

The changes in <strong>the</strong> spherical harmonic geoid coefficients consist <strong>of</strong> two parts (Equation 6.2).<br />

The first part describes <strong>the</strong> contribution to <strong>the</strong> geoid from <strong>the</strong> direct gravitational attraction <strong>of</strong><br />

<strong>the</strong> surface mass. Because <strong>the</strong> surface mass also loads and elastically de<strong>for</strong>ms <strong>the</strong> underlying<br />

solid earth, a second part is added (Wahr et al, 1998). This results in Equation 6.3, which<br />

includes both contributions.<br />

105


GRAVITY MEASUREMENTS AND HYDROLOGY<br />

⎧∆Clm ⎫ ⎧∆Clm ⎫ ⎧∆Clm<br />

⎫<br />

⎨ ⎬= ⎨ ⎬ + ⎨ ⎬<br />

⎩∆S ⎭ ⎩∆S ⎭ ⎩∆S<br />

⎭<br />

lm lm surf. mass lm solid E.<br />

Equation 6.2<br />

( l )<br />

( )<br />

( φ)<br />

( φ)<br />

⎧∆ Clm<br />

⎫ 31+<br />

k<br />

⎪⎧cos m ⎪⎫<br />

⎨ ⎬= ∆σθφ× ( , ) P lm ( cosθ)<br />

⎨ ⎬sinθθφ<br />

d d<br />

∆Slm<br />

4πρ a sin m<br />

ave<br />

2l+ 1∫<br />

Equation 6.3<br />

⎩ ⎭ ⎪⎩ ⎪⎭<br />

Where:<br />

∆ C lm<br />

, Slm<br />

∆ = change in dimensionless coefficient<br />

k l<br />

= elastic love number <strong>of</strong> degree l<br />

ρ<br />

ave<br />

= average density <strong>of</strong> <strong>the</strong> earth (=5517 kg/m³)<br />

∆σ<br />

= change in surface density<br />

This <strong>for</strong>mula can be used to derive from <strong>the</strong> hydrological signal ‘syn<strong>the</strong>tic’ GRACE data.<br />

This procedure is called ‘inverse estimation <strong>of</strong> GRACE data’.<br />

Rewriting Equation 6.3, with<br />

∞ l<br />

aρ 2l + 1<br />

ρ<br />

w<br />

as <strong>the</strong> density <strong>of</strong> water, results into Equation 6.4:<br />

ave<br />

( , ) Plm ( cos ) ( Clm cos( m ) Slm<br />

( m ))<br />

∑∑ Equation 6.4<br />

∆σ θ φ = θ × ∆ φ + ∆ φ<br />

3 1+<br />

k<br />

l= 0 m=<br />

0<br />

l<br />

If ∆σ is divided by ρ<br />

w<br />

, <strong>the</strong> change in surface mass expressed in equivalent water thickness<br />

is obtained. This equation can be used to calculate <strong>the</strong> hydrological signal from <strong>the</strong> measured<br />

data <strong>of</strong> GRACE. This method is referred as ‘direct estimation <strong>of</strong> hydrology from GRACE<br />

data’.<br />

6.3 Error sources in GRACE data<br />

Besides <strong>the</strong> errors, which occur at <strong>the</strong> side <strong>of</strong> hydrology, error sources exist at <strong>the</strong> side <strong>of</strong><br />

GRACE. The first error source is <strong>the</strong> measurement error, which consist <strong>of</strong> uncertainties in <strong>the</strong><br />

orbital parameters and errors in <strong>the</strong> microwave ranging and accelerometer measurements. The<br />

measurement error decreases with an increasing <strong>catchment</strong> area and an increasing averaging<br />

period (see Figure 6.3). For <strong>the</strong> <strong>Zambezi</strong> model, with a basin area <strong>of</strong> 1.3*10 6 km² and a<br />

monthly time scale <strong>the</strong> uncertainty will be less than about 1 mm/month.<br />

106


GRAVITY MEASUREMENTS AND HYDROLOGY<br />

Figure 6.3: Measuring (instrument) errors (millimeters <strong>of</strong> water equivalent) versus area <strong>of</strong> <strong>the</strong><br />

region <strong>for</strong> monthly, seasonal and annual averaging periods (from: Rodell and Famiglietti, 1999).<br />

The measurement error will also increase with an increase in <strong>the</strong> degree as can be seen in<br />

Figure 6.4. At <strong>the</strong> stage <strong>of</strong> this research Figure 6.4 is quite optimistic, but in <strong>the</strong> future <strong>the</strong><br />

measuring errors will approximate more to <strong>the</strong> plotted function. Because GRACE provides<br />

spherical harmonic coefficient up to degree 70-100, filtering methods are required to reduce<br />

<strong>the</strong> impact <strong>of</strong> measuring errors.<br />

Figure 6.4: Estimates <strong>of</strong> <strong>the</strong> square root <strong>of</strong> <strong>the</strong> contribution to <strong>the</strong> variance <strong>of</strong> <strong>the</strong> inferred surface<br />

mass anomaly due to GRACE satellite measurement error, as a function <strong>of</strong> spherical harmonic degree<br />

(from: Swenson and Wahr, 2002).<br />

107


GRAVITY MEASUREMENTS AND HYDROLOGY<br />

The second error source <strong>of</strong> <strong>the</strong> GRACE data is <strong>the</strong> truncation and interpolation error. In<br />

<strong>the</strong>ory, <strong>the</strong> geoid can be described with an infinitely high degree, which will result in a perfect<br />

description <strong>of</strong> <strong>the</strong> Earth’s gravity field. However, in reality, <strong>the</strong> geoid coefficients will only be<br />

described by GRACE to a maximum degree <strong>of</strong> 70. This will cause a truncation error.<br />

The truncation induced by <strong>the</strong> fact that GRACE provides data to a maximum degree <strong>of</strong> 70<br />

will cause that <strong>the</strong> data needs to be interpolated. The spatial scale <strong>of</strong> <strong>the</strong> gravity data, λ , is<br />

approximated by <strong>the</strong> relation (Swenson and Wahr, 2002):<br />

20000 km<br />

λ= Equation 6.5<br />

l<br />

A degree <strong>of</strong> 70 will result in a spatial resolution <strong>of</strong> about 300 km. To make <strong>the</strong> data suitable<br />

<strong>for</strong> <strong>catchment</strong> scale, <strong>the</strong> data need to be interpolated.<br />

The third error source is <strong>the</strong> leakage error in regional calculations. Because <strong>the</strong> GRACE<br />

measurements are also influenced by mass changes outside <strong>the</strong> <strong>catchment</strong>, an error is occurs.<br />

Especially <strong>for</strong> small <strong>catchment</strong>s this error is significant (Wahr et al, 1998).<br />

Finally, <strong>the</strong> last error source arises from problems <strong>of</strong> removing <strong>the</strong> effects <strong>of</strong> atmospheric<br />

mass redistribution and postglacial rebound. Commonly, <strong>the</strong> atmospheric mass redistribution<br />

effect is removed by <strong>the</strong> use <strong>of</strong> modelled data <strong>of</strong> atmospheric surface pressure. For removing<br />

<strong>the</strong> effects <strong>of</strong> post glacial rebound also modelled data is used. The uncertainties in <strong>the</strong>se<br />

models are assumed to be uni<strong>for</strong>mly 20% (Rodell and Famiglietti, 1999). However, this effect<br />

<strong>of</strong> postglacial rebound can be neglected on monthly to yearly time scales in <strong>the</strong> <strong>Zambezi</strong><br />

<strong>catchment</strong>.<br />

6.4 Direct estimation <strong>of</strong> hydrology from GRACE data<br />

As a first approach Marcano Bakker has calculated in 2005 <strong>the</strong> hydrological signal from<br />

spherical harmonic coefficients by using Equation 6.4. The coefficients, which are provided<br />

by GRACE, are corrected <strong>for</strong> all known processes in such way that <strong>the</strong> coefficients should<br />

only consider <strong>the</strong> static and <strong>the</strong> hydrological component. To obtain anomalies, she subtracted<br />

from <strong>the</strong> monthly data a mean geoid, which is based on 14 months <strong>of</strong> GRACE data. This<br />

mean gravity field consists <strong>of</strong> all static components and an average hydrological signal.<br />

Marcano Bakker edited <strong>the</strong> GRACE-data with two methods. First, she calculated <strong>the</strong><br />

hydrological signal up to degree 15 and did not apply a filter. The same thing Marcano<br />

108


GRAVITY MEASUREMENTS AND HYDROLOGY<br />

Bakker did <strong>for</strong> <strong>the</strong> second method, but this time she executed <strong>the</strong> calculation up to degree 50.<br />

Because <strong>for</strong> this degree <strong>the</strong> measurement error is too high (see Figure 6.4), Marcano Bakker<br />

applied a Gaussian filter with a half radius <strong>of</strong> 600 km. For <strong>the</strong> application <strong>of</strong> a Gaussian filter,<br />

Equation 6.4 is adjusted to Equation 6.6. The results <strong>for</strong> <strong>the</strong> second method are depicted in<br />

Figure 6.5.<br />

∞ l<br />

aρ 2l + 1<br />

ave<br />

( , ) 2 WlPlm( cos ) ( Clmcos( m ) Slm( m ))<br />

∑∑ Equation 6.6<br />

∆σ θ φ = π θ × ∆ φ + ∆ φ<br />

3 1+<br />

k<br />

l= 0 m=<br />

0<br />

l<br />

Where:<br />

W l<br />

= Gaussian filter weights<br />

Figure 6.5: Equivalent water height difference (in cm) calculated with <strong>the</strong> difference between March<br />

2003 harmonic coefficients and 14-month mean coefficients, using maximum degree 50 and a Gaussian<br />

filter with half radius 600 km (from: Marcano Bakker, 2005).<br />

109


GRAVITY MEASUREMENTS AND HYDROLOGY<br />

If zoomed in on <strong>the</strong> <strong>Zambezi</strong> <strong>catchment</strong> Figure 6.6 is obtained. The results <strong>of</strong> <strong>the</strong> o<strong>the</strong>r<br />

months can be found in Appendix 7. In this appendix also <strong>the</strong> results <strong>of</strong> <strong>the</strong> first method,<br />

which does not apply a Gaussian filter, are shown.<br />

Figure 6.6: Equivalent water height difference (in cm) calculated with <strong>the</strong> difference between March<br />

2003 harmonic coefficients and 14-month mean coefficients, using maximum degree 50 and a Gaussian<br />

filter with half radius 600 km. Zoomed in to <strong>the</strong> <strong>Zambezi</strong> <strong>catchment</strong> (from: Marcano Bakker, 2005).<br />

Because at <strong>the</strong> moment <strong>of</strong> this research no spatial comparison has been made yet between <strong>the</strong><br />

GRACE data and <strong>the</strong> hydrological model output, only <strong>the</strong> average <strong>catchment</strong> values are<br />

compared.<br />

110


GRAVITY MEASUREMENTS AND HYDROLOGY<br />

Equivalent water height based on global GRACE data<br />

25<br />

20<br />

Equivalent water height difference [cm]<br />

15<br />

10<br />

5<br />

0<br />

-5<br />

apr-<br />

02<br />

mei-<br />

02<br />

jun-<br />

02<br />

jul-<br />

02<br />

aug-<br />

02<br />

sep-<br />

02<br />

okt-<br />

02<br />

nov-<br />

02<br />

dec-<br />

02<br />

jan-<br />

03<br />

feb-<br />

03<br />

mrt-<br />

03<br />

apr-<br />

03<br />

mei-<br />

03<br />

jun-<br />

03<br />

jul-<br />

03<br />

aug-<br />

03<br />

sep-<br />

03<br />

okt-<br />

03<br />

nov-<br />

03<br />

dec-<br />

03<br />

jan-<br />

04<br />

feb-<br />

04<br />

mrt-<br />

04<br />

apr-<br />

04<br />

mei-<br />

04<br />

jun-<br />

04<br />

jul-<br />

04<br />

-10<br />

Hydrology (monthly mean) [cm] GRACE (monthly mean l=50, GF=600) [cm] GRACE (monthly mean, l=15, GF=0) in [cm]<br />

Figure 6.7: Equivalent water heights <strong>of</strong> GRACE data (with and without filter) and hydrological<br />

modeled data. Both are <strong>the</strong> average values <strong>for</strong> <strong>the</strong> complete <strong>catchment</strong>.<br />

In Figure 6.7 <strong>the</strong> equivalent water height <strong>of</strong> <strong>the</strong> GRACE data and <strong>the</strong> hydrological data are<br />

plotted. Because both signals are relative to a certain datum (<strong>the</strong> 14-month mean geoid <strong>for</strong><br />

GRACE and <strong>the</strong> zero-ground water level <strong>for</strong> <strong>the</strong> hydrological signal) this graph is just<br />

showing in qualitative terms <strong>the</strong> relation between gravity measurements and hydrology. Better<br />

insight can be obtained by plotting <strong>the</strong> differences, like in Figure 6.8.<br />

111


GRAVITY MEASUREMENTS AND HYDROLOGY<br />

Equivalent water height changes based on global GRACE data<br />

10<br />

Equivalent water height changes [cm/month]<br />

5<br />

0<br />

-5<br />

-10<br />

apr-<br />

02<br />

mei-<br />

02<br />

jun-<br />

02<br />

jul-<br />

02<br />

aug- sep- okt-<br />

02 02 02<br />

nov- dec- jan- feb- mrt- apr- mei- jun-<br />

02 02 03 03 03 03 03 03<br />

jul-<br />

03<br />

aug- sep- okt-<br />

03 03 03<br />

nov- dec- jan- feb- mrt- apr- mei- jun-<br />

03 03 04 04 04 04 04 04<br />

jul-<br />

04<br />

-15<br />

Hydrology (monthly difference) in [cm] GRACE (monthly difference, l=50, GF=600) in [cm] GRACE (monthly difference, l=15, GF=0) in [cm]<br />

Figure 6.8: Equivalent water height changes <strong>of</strong> <strong>the</strong> average <strong>catchment</strong>.<br />

In general it can be said from Figure 6.8 that <strong>the</strong> modeled hydrological signal shows <strong>the</strong> same<br />

pattern as <strong>the</strong> calculated GRACE data. It only appears that <strong>the</strong> amplitude <strong>of</strong> <strong>the</strong> GRACE data<br />

is higher. One <strong>of</strong> <strong>the</strong> reasons <strong>for</strong> this effect could be that <strong>for</strong> this calculation global GRACE<br />

data is used. When zooming in from global data to a certain region also changes in mass<br />

outside <strong>the</strong> <strong>catchment</strong> are taken into account. This error is referred as ‘leakage error’.<br />

A second remarkable effect is <strong>the</strong> appeared time lag between <strong>the</strong> hydrological data and <strong>the</strong><br />

GRACE data. This time lag can be caused by <strong>the</strong> moment <strong>of</strong> measuring. The hydrological<br />

model calculates its output at <strong>the</strong> end <strong>of</strong> <strong>the</strong> month. However <strong>the</strong> GRACE measurements are<br />

averaged over a certain time period (up to a month).<br />

As mentioned in <strong>the</strong> previous paragraph, leakage errors are introduced when using global<br />

GRACE data. To compensate <strong>for</strong> this effect Swenson and Wahr (2002) investigated some<br />

averaging techniques to calculate regional variations in surface mass density based on<br />

variation in spherical harmonic coefficients. In general, three types can be distinguished:<br />

exact averaging, approximate averaging and optimal averaging kernel. The averaging kernel<br />

functions differ in <strong>the</strong> balance between measurement error and leakage error. Although <strong>the</strong><br />

regional, instead <strong>of</strong> global, calculation <strong>of</strong> <strong>the</strong> hydrological signal from GRACE data is more<br />

accurate, results can not be shown at <strong>the</strong> moment <strong>of</strong> this research. Also <strong>the</strong> results <strong>of</strong> <strong>the</strong><br />

‘inverse estimation <strong>of</strong> GRACE data’ were not available yet.<br />

112


CONCLUSIONS & RECOMMENDATIONS<br />

7 Conclusions & recommendations<br />

In this study research is carried out on a hydrological model <strong>of</strong> <strong>the</strong> <strong>Zambezi</strong> <strong>catchment</strong> in<br />

Sou<strong>the</strong>rn Africa. The model, which has been investigated, consists <strong>of</strong> two GIS-based sub<br />

models: a water balance model created in <strong>the</strong> model environment STREAM and a routing<br />

model, which first was executed in MS EXCEL and later has been trans<strong>for</strong>med to a JAVA<br />

program a more sophisticated model.<br />

Model input<br />

Because <strong>the</strong> main input <strong>of</strong> a hydrological model is <strong>the</strong> precipitation, special attention has been<br />

given to different kinds <strong>of</strong> precipitation algorithms. For <strong>the</strong> period 1978 until 1992 <strong>the</strong><br />

traditional Weighted Average Distance-method is used, because <strong>for</strong> this time span no accurate<br />

satellite data was available and <strong>the</strong>re<strong>for</strong>e interpolated rainfall values from ground stations is<br />

one <strong>of</strong> <strong>the</strong> best solutions to obtain spatial in<strong>for</strong>mation. For <strong>the</strong> period from 1993 several<br />

algorithms, although with different time spans, were available. In this study <strong>the</strong> MIRA, FEWS<br />

RFE 1.0 and FEWS RFE 2.0 algorithms were investigated. The estimates <strong>of</strong> <strong>the</strong> precipitation<br />

algorithms were compared to ten ground stations. The results are depicted in Table 7.1. From<br />

this comparison is concluded that <strong>for</strong> <strong>the</strong> period 1993-2000 <strong>the</strong> MIRA corrected -algorithm (MIRA<br />

algorithm multiplied by a correction factor) gives <strong>the</strong> best estimates with a correlation<br />

coefficient <strong>of</strong> 0.98 and a small cumulative overestimation <strong>of</strong> about 2%. For <strong>the</strong> period 2001<br />

until present <strong>the</strong> FEWS RFE 2.0 per<strong>for</strong>ms best with a correlation coefficient <strong>of</strong> 0.97 and a<br />

very small cumulative overestimation <strong>of</strong> about 1%.<br />

Table 7.1: Overview <strong>of</strong> <strong>the</strong> per<strong>for</strong>mance <strong>of</strong> <strong>the</strong> precipitation algorithms compared to ten ground<br />

stations.<br />

Algorithm<br />

Correlation<br />

coefficient<br />

Gradient <strong>of</strong> trendline<br />

R² trendline<br />

MIRA (ended)<br />

(jan 1993 - dec 2002)<br />

0.93 0.8693 0.9991<br />

FEWS RFE 1.0 (ended)<br />

(jul 1995 - dec 2000)<br />

0.85 0.9624 0.9504<br />

FEWS RFE 2.0 (operational)<br />

(jan 2001 – dec 2003)<br />

0.97 0.9893 0.9978<br />

MIRA corrected<br />

(jan 1993 – dec 2000)<br />

0.98 0.9819 0.9982<br />

113


CONCLUSIONS & RECOMMENDATIONS<br />

The second important input <strong>of</strong> <strong>the</strong> <strong>Zambezi</strong> model is <strong>the</strong> potential evaporation. The<br />

evaporation estimates were calculated with <strong>the</strong>, mainly temperature dependent, Thornwai<strong>the</strong><br />

equation, because its simplicity <strong>for</strong> Remote Sensing applications. For <strong>the</strong> period 1978-1992<br />

interpolated temperature values from ground stations were used <strong>for</strong> <strong>the</strong> Thornwai<strong>the</strong><br />

calculation. For <strong>the</strong> years 1993 until 1998 gridded satellite temperature data was found as<br />

input <strong>for</strong> <strong>the</strong> Thornwai<strong>the</strong> equation. Un<strong>for</strong>tunately, <strong>for</strong> <strong>the</strong> period after 1998 no temperature<br />

data was found. There<strong>for</strong>e <strong>the</strong> potential evaporation estimates <strong>for</strong> 1993-1998 were used to<br />

complete <strong>the</strong> time span. This is assumed because <strong>the</strong> temporal and spatial variation <strong>of</strong><br />

temperature is not high. Although <strong>the</strong> GLUE-procedure showed that <strong>the</strong> impact on <strong>the</strong> model<br />

results by <strong>the</strong> evaporation is less, it is still recommended to look <strong>for</strong> accurate satellite<br />

temperature data. For example <strong>the</strong> CRU TS 2.0 dataset [12], which provides monthly<br />

temperature data with a spatial resolution <strong>of</strong> 0.5° x 0.5°, could help to obtain better model<br />

results. Looking to o<strong>the</strong>r methods to calculate potential evaporation values (<strong>for</strong> example<br />

SEBAL) could also be useful.<br />

Model uncertainties<br />

The errors in <strong>the</strong> hydrological model mainly consist <strong>of</strong>:<br />

• Errors in <strong>the</strong> observed data (measuring and calculation), which is assumed as <strong>the</strong> ‘real<br />

world’. It appears from practice that errors <strong>of</strong> 10-20% are not an exception.<br />

• Errors in <strong>the</strong> model input data. These consist <strong>of</strong> measuring errors (instrumental, signal<br />

scatter, lack <strong>of</strong> knowledge, etc.) and interpolation errors (temporal and spatial gaps).<br />

This uncertainty is about 55% with 95% confidence level <strong>for</strong> <strong>the</strong> precipitation data.<br />

The error in <strong>the</strong> temperature data is not determined in this study, due to <strong>the</strong> lack <strong>of</strong><br />

observed data.<br />

• Model errors, which consist <strong>of</strong> errors due to wrong model assumptions and errors due<br />

to wrong parameterization.<br />

With <strong>the</strong> GLUE-procedure <strong>the</strong> impact <strong>of</strong> <strong>the</strong>se errors on <strong>the</strong> model results were analyzed.<br />

Model results<br />

The model results were only compared to <strong>the</strong> observed discharge data <strong>of</strong> <strong>the</strong> locations Lukulu<br />

and Victoria Falls in <strong>the</strong> western part <strong>of</strong> <strong>the</strong> <strong>Zambezi</strong> <strong>catchment</strong>. From <strong>the</strong> results appears that<br />

<strong>the</strong> <strong>Zambezi</strong> model per<strong>for</strong>ms quite reasonable, with a Nash-Suttcliffe coefficient <strong>of</strong> 0.70 and<br />

0.68 <strong>for</strong> Lukulu and Victoria Falls respectively. However <strong>for</strong> both locations <strong>the</strong> discharge is<br />

underestimated. Especially <strong>the</strong> high peaks are showing this reaction. One <strong>of</strong> <strong>the</strong> reasons <strong>for</strong><br />

this deviation could be <strong>the</strong> temporal rainfall distribution. In <strong>the</strong> existing model <strong>the</strong> monthly<br />

rainfall is considered to fall uni<strong>for</strong>mly in time. In reality it is possible that a large amount <strong>of</strong><br />

114


CONCLUSIONS & RECOMMENDATIONS<br />

<strong>the</strong> monthly rainfall falls in a short period. This will result in higher discharge values <strong>the</strong>n<br />

when <strong>the</strong> precipitation falls more gradually. It is recommended that this possible cause will be<br />

investigated in more detail.<br />

As also mentioned in Chapter 4 negative discharge values are allowed in <strong>the</strong> existing <strong>Zambezi</strong><br />

to simulate <strong>the</strong> feeding <strong>of</strong> <strong>the</strong> ground water from <strong>the</strong> river, despite it causes problems <strong>for</strong> <strong>the</strong><br />

routing procedure. Although <strong>the</strong> impact on <strong>the</strong> model results is less (maximal -15/12<br />

mm/month per cell), it is recommended to remove <strong>the</strong> concept <strong>of</strong> negative discharges from<br />

<strong>the</strong> <strong>Zambezi</strong> model and to look <strong>for</strong> ano<strong>the</strong>r manner to simulate <strong>the</strong> depletion <strong>of</strong> <strong>the</strong> river in<br />

times <strong>of</strong> drought.<br />

To overcome deficiencies due to wrong precipitation estimates in general, it is recommended<br />

to keep looking <strong>for</strong> accurate precipitation estimates on a high spatial resolution. One <strong>of</strong> <strong>the</strong><br />

algorithms, which appear to be very prospective, is <strong>the</strong> TRMM-algorithm [13]. TRMM is an<br />

abbreviation <strong>of</strong> Tropical Rainfall Measuring Mission and is not considered in detail <strong>for</strong> this<br />

study, because <strong>the</strong> spatial resolution <strong>of</strong> <strong>the</strong> data was to low (<strong>for</strong> 3B43: 1° x 1°) at <strong>the</strong> moment<br />

<strong>of</strong> this research.<br />

Ano<strong>the</strong>r recommendation can be made in relation to <strong>the</strong> seasonal variability. As can be<br />

noticed from <strong>the</strong> double mass curve <strong>of</strong> Victoria Falls (Figure 5.10) seasonal effects appear,<br />

especially in <strong>the</strong> last few months. In <strong>the</strong> wet season <strong>the</strong> discharges are underestimated and in<br />

<strong>the</strong> dry season <strong>the</strong> discharges are overestimated. It is advised to investigate this cause.<br />

Fur<strong>the</strong>rmore it is recommended to look closer to some parameters <strong>of</strong> <strong>the</strong> <strong>Zambezi</strong> model.<br />

Especially <strong>the</strong> qc-value (coefficient to determine <strong>the</strong> threshold GWSquick) needs some<br />

attention, because this parameter causes <strong>the</strong> abrupt borders in <strong>the</strong> storage stock changes, while<br />

a more graduate pattern would be expected in reality. Until now <strong>the</strong> value <strong>of</strong> qc is completely<br />

determined during <strong>the</strong> calibration process, however it is recommended to look <strong>for</strong> a more<br />

physical based relation (<strong>for</strong> example a relation with <strong>the</strong> soil conditions).<br />

In general it can be said about <strong>the</strong> hydrological model, that too much precipitation (rainfall is<br />

overestimated) goes into <strong>the</strong> system and too little water will drain into <strong>the</strong> river (discharge is<br />

underestimated). This means that ei<strong>the</strong>r <strong>the</strong> evaporation is too high or that <strong>the</strong> amount <strong>of</strong><br />

water that is stored in <strong>the</strong> system is too high. For <strong>the</strong> gravity measurements <strong>the</strong> last reason is<br />

most important. There<strong>for</strong>e it is advised to refine <strong>the</strong> hydrological model.<br />

115


CONCLUSIONS & RECOMMENDATIONS<br />

GLUE-results<br />

After a quick sensitivity analysis on <strong>the</strong> parameters <strong>of</strong> <strong>the</strong> water balance model it is<br />

determined that <strong>the</strong> most sensitive parameters on <strong>the</strong> total storage stock are <strong>the</strong> inception<br />

threshold D, <strong>the</strong> separation coefficient cr, <strong>the</strong> amount <strong>of</strong> capillary rise, cap and <strong>the</strong><br />

multiplication factor <strong>of</strong> <strong>the</strong> GWSmax, gws25. These four parameters are assessed by <strong>the</strong><br />

GLUE-procedure.<br />

As can be concluded from <strong>the</strong> results, it is not possible to determine a parameter set, which<br />

has a significant better per<strong>for</strong>mance on <strong>the</strong> discharge output. Only <strong>the</strong> separation parameter cr<br />

has a small optimum around <strong>the</strong> default value <strong>of</strong> one. To obtain better insight in <strong>the</strong> sensitivity<br />

<strong>of</strong> <strong>the</strong> parameters it is recommended to enlarge <strong>the</strong> parameter range <strong>for</strong> D, cap and gws25.<br />

This will cause that <strong>the</strong> amount <strong>of</strong> runs needs to be increased. Also <strong>the</strong> application <strong>of</strong> a<br />

rejection threshold will enlarge <strong>the</strong> differences between <strong>the</strong> outcomes <strong>of</strong> <strong>the</strong> parameter set.<br />

From <strong>the</strong> uncertainty bounds <strong>of</strong> <strong>the</strong> total water storage stocks it can be concluded that <strong>the</strong><br />

uncertainty in <strong>the</strong> storage stocks are about 30 mm due to uncertainties in <strong>the</strong> parameter values.<br />

For <strong>the</strong> uncertainties due to <strong>the</strong> input data this value is average about 310 mm. This large<br />

value is mainly caused by <strong>the</strong> spreading in <strong>the</strong> soil moisture content and <strong>the</strong> highly sensitive<br />

precipitation input. According to <strong>the</strong> GLUE analysis it can be concluded that <strong>the</strong> optimal<br />

precipitation is about 0.95 times <strong>the</strong> present precipitation value. For <strong>the</strong> potential evaporation<br />

data it is not possible to define such an optimum. Fur<strong>the</strong>rmore it can be concluded from <strong>the</strong><br />

GLUE results that it is, as expected, more important to research <strong>the</strong> input data <strong>the</strong>n refining<br />

<strong>the</strong> model concept.<br />

Gravity measurements and hydrology<br />

In general it can be concluded from <strong>the</strong> preliminary results <strong>of</strong> Marcano Bakker that <strong>the</strong> pattern<br />

<strong>of</strong> <strong>the</strong> hydrological signal is <strong>the</strong> same as <strong>the</strong> GRACE signal when using <strong>the</strong> method ‘direct<br />

estimation <strong>of</strong> hydrology from GRACE data’. However, <strong>the</strong> amplitude <strong>of</strong> <strong>the</strong> GRACE data is<br />

larger <strong>the</strong>n <strong>the</strong> amplitude <strong>of</strong> <strong>the</strong> hydrological data. Because this could be caused by leakage<br />

errors, it is recommended to calculate <strong>the</strong> hydrological signal again, but <strong>the</strong>n with <strong>the</strong> use <strong>of</strong><br />

an averaging kernel, which reduces <strong>the</strong> leakage error.<br />

Besides <strong>the</strong> magnitude <strong>of</strong> <strong>the</strong> amplitude also a time lag has occurred. One <strong>of</strong> <strong>the</strong> reasons <strong>for</strong><br />

this time lag can be found in <strong>the</strong> measuring moment. The <strong>Zambezi</strong> model calculates <strong>the</strong><br />

storage stocks at <strong>the</strong> end <strong>of</strong> <strong>the</strong> month. On <strong>the</strong> o<strong>the</strong>r hand, GRACE measurements are<br />

averaged over a certain time period (up to a month). To overcome this difference in <strong>the</strong> future<br />

it is recommended to synchronize <strong>the</strong> measuring moments <strong>of</strong> both signals.<br />

116


CONCLUSIONS & RECOMMENDATIONS<br />

General recommendations<br />

The existing <strong>Zambezi</strong> model is only calibrated <strong>for</strong> <strong>the</strong> western part <strong>of</strong> <strong>the</strong> <strong>catchment</strong>. This part<br />

is chosen, because in <strong>the</strong> western part less influence <strong>of</strong> ocean tides exist and because <strong>the</strong> nonexistence<br />

<strong>of</strong> reservoirs. As can be seen in Appendix 4 <strong>the</strong> model behaves badly downstream<br />

<strong>of</strong> reservoirs. There<strong>for</strong>e it is suggested that more realistic rule curves <strong>for</strong> <strong>the</strong> reservoirs are<br />

found.<br />

Mainly in <strong>the</strong> western part <strong>of</strong> <strong>the</strong> <strong>catchment</strong> routing is important, because <strong>of</strong> <strong>the</strong> existence <strong>of</strong><br />

large flood plains. Although <strong>the</strong> routing is implemented in <strong>the</strong> <strong>Zambezi</strong> model, it is advised to<br />

look closer to <strong>the</strong> used method in relation to <strong>the</strong> lateral inflow. In <strong>the</strong> existing model <strong>the</strong><br />

lateral inflow is added to <strong>the</strong> begin location <strong>of</strong> <strong>the</strong> reach. This is an appropriate assumption if<br />

most <strong>of</strong> <strong>the</strong> water will drain into <strong>the</strong> river close to <strong>the</strong> begin location. This is not always <strong>the</strong><br />

case <strong>for</strong> <strong>the</strong> <strong>Zambezi</strong> <strong>catchment</strong>. There<strong>for</strong>e it is recommended to add not all <strong>the</strong> lateral inflow<br />

to <strong>the</strong> begin location, but maybe divide it between <strong>the</strong> begin location and end location.<br />

Fur<strong>the</strong>rmore it is recommended to decrease <strong>the</strong> spatial resolution <strong>of</strong> <strong>the</strong> model and trans<strong>for</strong>m<br />

it to <strong>the</strong> latitude/longitude projection. Although <strong>the</strong> model resolution is already lowered from<br />

1 x 1 km to 3 x 3 km by Seyam in 2002, it is advised to decrease <strong>the</strong> resolution more to about<br />

0.1° x 0.1° (≈ 10 km). The model input with <strong>the</strong> highest resolution is namely <strong>the</strong> precipitation<br />

(except from <strong>the</strong> flow direction map) with a resolution on 0.1° x 0.1°. Modeling with on a<br />

higher resolution <strong>the</strong>n <strong>the</strong> input will not result in better results and is only increasing <strong>the</strong><br />

calculation time. The advantage <strong>of</strong> changing <strong>the</strong> latitude/longitude (latlong) projection to <strong>the</strong><br />

Lambert Oblique Azimuthal Equal Area (Lazea) projection is that almost every satellite data<br />

is stored in <strong>the</strong> latlong-projection. Changing <strong>the</strong> projection every time is unnecessary time<br />

consuming, although you should take into account that in <strong>the</strong> latlong projection not every grid<br />

cell will have <strong>the</strong> same surface area. However, keep in mind that changing <strong>the</strong> model<br />

resolution and projection will cause that <strong>the</strong> model has to be recalibrated.<br />

117


CONCLUSIONS & RECOMMENDATIONS<br />

118


REFERENCES<br />

References<br />

2.1 Literature<br />

Aerts, J. and Bouwer, L., 2003: STREAM manual. IVM, Institute <strong>for</strong> Environmental Studies,<br />

Vrije Universiteit, Amsterdam, The Ne<strong>the</strong>rlands.<br />

Arkin, P.A. and Meisner, B.N., 1987: The relationship between large-scale convective rainfall<br />

and cold cloud over <strong>the</strong> Western Hemispher during 1982-84. Monthly Wea<strong>the</strong>r Review, 115,<br />

51-74.<br />

Arkin, P.A., Joyce, R. and Janowiak, J.E., 1994: The estimation <strong>of</strong> global monthly mean<br />

rainfall using infrared satellite data: <strong>the</strong> GOES Precipitation Index (GPI). Remote Sensing<br />

Review, 11, 107-124.<br />

Atlas, D. and Bell, T.L., 1992: The relation <strong>of</strong> Radar to cloud area-time integrals and<br />

implications <strong>for</strong> rain measurements from space. Monthly Wea<strong>the</strong>r Review, 120, 1997-2008.<br />

Atlas, D., Rosenfeld, D.B. and Wolff, 1990: Climatologically tuned reflectivity-rain rate<br />

relations and links to area-time integrals. Journal <strong>of</strong> Applied Meteorology, 29, 1120-1135.<br />

Bastiaansen, C., 1990: Wetland types <strong>of</strong> Western Province and <strong>the</strong>ir suitability <strong>for</strong> rice<br />

cultivation. Land and Water Management Project, Department <strong>of</strong> Agriculture.<br />

Beven, K., 1989: Interflow. Morel-Seytoux, H.J.: Unsaturated flow in hydrological modeling.<br />

D. Reidel, Dordrecht.<br />

Beven, K. and Binley, A, 1992: The future <strong>of</strong> distributed models: model calibration and<br />

uncertainty prediction. <strong>Hydrological</strong> Processes, 6, 279-298.<br />

Binley, A and Beven, K., 1991: Physically-based modeling <strong>of</strong> <strong>catchment</strong> hydrology: a<br />

likelihood approach to reducing predictive uncertainty. Farmer, D.G. and Rycr<strong>of</strong>t, M.J.<br />

Computer Modelling in <strong>the</strong> Environmental Science, 75-88.<br />

Chao, Y. and Gross, R.S., 1987: Changes in <strong>the</strong> Earth’s rotation and low-degree gravitational<br />

field induced by earthquakes. Geophys. J. R. Astron. Soc, 91, 569-596.<br />

119


REFERENCES<br />

Chapagain, A.K., 2000: Exploring methods to assess <strong>the</strong> value <strong>of</strong> water. A case study on <strong>the</strong><br />

<strong>Zambezi</strong> Basin. IHE <strong>Delft</strong>, <strong>Delft</strong>, The Ne<strong>the</strong>rlands.<br />

Davis, A., consulted at March 2004: GRACE, Gravity Recovery and Climate Experiment.<br />

Goddard Space Flight Center, Greenbelt, Maryland.<br />

http://www.csr.utexas.edu/grace/publications/brochure/<br />

Dickey, J.O., et al., 1997: Satellite gravity and <strong>the</strong> geosphere. National Research Council<br />

Report, Natl. Acad. Press, Washington D.C.<br />

Doneaud, A.A., Niscov, S.I., Priegnitz, D.L. and Smith, P.L., 1984: The Area-Time-Integral<br />

as an indicator <strong>for</strong> convective rain volumes. J. Clim. Appl. Met., 23, 555-561.<br />

Ficara, A, 2004: <strong>Zambezi</strong> model description. MSc-<strong>the</strong>sis, unpublished, <strong>TU</strong> <strong>Delft</strong>, The<br />

Ne<strong>the</strong>rlands.<br />

Flechtner, F., 2002: Science objectives and applications. GFZ Potsdam<br />

http://op.gfz-potsdam.de/grace/<br />

Franks, S., Gineste, P., Beven, K., and Merot, P., 1996: On constraining <strong>the</strong> predictions <strong>of</strong><br />

distributed models: <strong>the</strong> incorporation <strong>of</strong> fuzzy estimates <strong>of</strong> saturated areas into <strong>the</strong> calibration<br />

process. Water Resources Research, 5(1), 153-171.<br />

De Groen, M.M., 2002: Modelling interception and transpiration at monthly time steps;<br />

introducing daily variability through Markov chains. PhD <strong>the</strong>sis, IHE-<strong>Delft</strong>, Swets &<br />

Zeitlinger, Lisse, The Ne<strong>the</strong>rlands.<br />

Gutierrez, R. and Wilson, C.R., 1987: Seasonal air and water mass redistribution effects on<br />

LAGEOS and Starlette. Geophys. Res. Lett., 14(9), 929-932.<br />

Herman, A., Kumar, V.B., Arkin, P.A. and Kousky, J.V., 1997: Objectively determined 10<br />

day African rainfall estimates created <strong>for</strong> Famine Early Warning Systems. Int. J. Remote<br />

Sensing, 18, 2147-2159.<br />

Index <strong>of</strong> World Lakes<br />

http://www.ilec.or.jp/database/index/idx-lakes.html#k<br />

120


REFERENCES<br />

Lamb, T., Beven, K. and Myrabo, S., 1998: Use <strong>of</strong> spatially distributed water table<br />

observations to constrain uncertainty in a rainfall-run<strong>of</strong>f model. Adv. In Water Resources,<br />

22(4), 305-317.<br />

Lorente, J.M., 1961: Meteorologica, 4 th edition. Edit. Labor, S.A., Barcelona.<br />

Love, T.B., Kumar, V.B., Xie, P. and Thiaw, W., 2004: A 20-year Africa precipitation<br />

Climatology using satellite and gauge data. AMS Conference on Applied Climatology, P5.4.<br />

Marcano Bakker, H., 2005: Gravity measurements <strong>for</strong> hydrological applications - Using<br />

GRACE to improve <strong>the</strong> <strong>Zambezi</strong> water balance. MSc Thesis in preparation. <strong>TU</strong> <strong>Delft</strong>, The<br />

Ne<strong>the</strong>rlands.<br />

Magdelyns, F., consulted at July 2004: Inter-Tropische Convergentie Zone, Vereniging voor<br />

Weerkunde en Climatologie.<br />

http://www.vwkweb.nl/index.html?http://www.vwkweb.nl/weerinfo/weerinfo_itcz.html<br />

Morrissey, M.L. and co-authors, 1994: Surface data sets used in WetNet’s PIP-1 from <strong>the</strong><br />

Comprehensive Pacific Rainfall Data Base and Global Precipitation Climatology Centre.<br />

Remote Sensing Review, 11(1-4), 61-92.<br />

NASA, 2003: Studying <strong>the</strong> Earth’s Gravity from Space: The Gravity Recovery and Climate<br />

Experiment (GRACE). URL:<br />

http://www.csr.utexas.edu/grace/publications/fact_sheet/index.html<br />

New Mexico Tech, Department <strong>of</strong> Earth & Environmental Science: Lecture<br />

24.URL:http://www.ees.nmt.edu/vivoni/surface/lectures/Lecture24.pdf<br />

NOAA Climate Prediction Center: African Rainfall Estimation Algorithm Version 2.0. URL:<br />

http://www.cpc.ncep.noaa.gov/products/fews/RFE2.0_tech.pdf<br />

O’Donnell, T. 1985: A direct three-parameter Muskingum procedure incorporating lateral<br />

inflow. Journal <strong>of</strong> <strong>Hydrological</strong> Science, 30, 479-496.<br />

Ponce, V. M. and V. Yevjevich, 1978: Muskingum-Cunge method with variable parameters.<br />

Journal <strong>of</strong> <strong>the</strong> Hydraulics Division, ASCE, 104(HY12), 1663-1667.<br />

121


REFERENCES<br />

Rientjes, T.H.M., 2004: Inverse <strong>modelling</strong> <strong>of</strong> <strong>the</strong> rainfall-run<strong>of</strong>f relation, A multi objective<br />

model calibration approach. PhD-<strong>the</strong>sis, <strong>Delft</strong> University Press, <strong>Delft</strong>, The Ne<strong>the</strong>rlands.<br />

Rijtema, P. E. and Aboukhaled, A., 1975: Crop water use. In: Abokhaled et al. (eds).<br />

Research on crop water use, salt affected soils and drainage in <strong>the</strong> Arab Republic <strong>of</strong> Egypt.<br />

FAO, Near East Regional Office, Cairo, pp 5-61.<br />

Rodel, M. and Famiglietti, J.S., 1999: Detectability <strong>of</strong> variations in continental water storage<br />

from satellite observations <strong>of</strong> <strong>the</strong> time dependent gravity field. Water Resources Research,<br />

35(9), 2705-2723.<br />

Savenije, H.H.G., 1997: Determination <strong>of</strong> evaporation from a <strong>catchment</strong> water balance at a<br />

monthly time scale. Hydrology and Earth System Sciences, 1, 93-100.<br />

Savenije, H.H.G., 2000: Hydrology <strong>of</strong> Catchments, Rivers and Deltas. Lecture notes, <strong>Delft</strong><br />

University <strong>of</strong> Technology, <strong>Delft</strong>, The Ne<strong>the</strong>rlands.<br />

Savenije, H.H.G., Luxemburg, W.M.J. and Van Mazijk, A.: <strong>Hydrological</strong> measurements.<br />

Lecture notes, <strong>Delft</strong> University <strong>of</strong> Technology, <strong>Delft</strong>, The Ne<strong>the</strong>rlands.<br />

Seyam, 2002: STREAM report. Internal document, unpublished, IHE, <strong>Delft</strong>, The Ne<strong>the</strong>rlands.<br />

Shahin, M., 2002: Hydrology and water resources <strong>of</strong> Africa. Kluwer Academic Publishers,<br />

Dordrecht, The Ne<strong>the</strong>rlands.<br />

Swenson, S. and Wahr, J., 2002: Methods <strong>for</strong> inferring regional surface-mass anomalies <strong>for</strong>m<br />

Gravity Recovery and Climate Experiment (GRACE) measurements <strong>of</strong> time-variable gravity.<br />

Journal <strong>of</strong> Geophysical Research, 107(B9), 2193.<br />

Thornthwaite, C.W., 1948: An approach toward a rational classification <strong>of</strong> climate.<br />

The Geogr. Rev., 38, 55-94.<br />

Todd, M.C., Kidd, C., Kniveton, D., Bellerby, T.J., 2001: A combined satellite infrared and<br />

passive microwave technique <strong>for</strong> estimation <strong>of</strong> small scale rainfall. Journal <strong>of</strong> Atmospheric<br />

and Oceanic Technology, 18, 742-755.<br />

USGS-glossary. http://toxics.usgs.gov/definitions/transpiration.html<br />

122


REFERENCES<br />

Wahr, J., Molenaar, M. and Bryan, F., 1998: Time-variability <strong>of</strong> <strong>the</strong> Earth’s gravity field:<br />

<strong>Hydrological</strong> and oceanic effects and <strong>the</strong>ir possible detection using GRACE. Journal <strong>of</strong><br />

Geophysical. Research, 103(B12), 30,205-30,230.<br />

Werner, M., 2000: Model Uncertainties. Internal document, WL | <strong>Delft</strong> Hydraulics, <strong>Delft</strong>, The<br />

Ne<strong>the</strong>rlands.<br />

Xie, P. and Arkin, P.A., 1996: Analysis <strong>of</strong> global monthly precipitation using gauge<br />

observations, satellite estimates, and numerical model prediction. Journal Climate, 9, 840-<br />

858.<br />

Xie, P. and Arkin, P.A., 1997: Global precipitation: A 17-year monthly analysis based on<br />

gauge observations, satellite estimates, and numerical model outputs. Bulletin <strong>of</strong> <strong>the</strong> American<br />

Meteorological Society, 78(11), 2539-2558.<br />

Yoder, C.F., Williams, J.G., Dickey, J.O., Schutz, B.E., Eanes, R.J. and Tapley, B.D., 1983:<br />

Secular variation <strong>of</strong> <strong>the</strong> Earth’s gravitational harmonic J 2 coefficient from LAGEOS and<br />

nontidal acceleration <strong>of</strong> Earth rotation. Nature, 303, 757-762.<br />

2.2 Data<br />

[1] DEM<br />

HYDRO 1K – Africa; USGS – NASA Distributed Active Archive Center<br />

http://lpdaac.usgs.gov/gtopo30/hydro/africa.asp<br />

[2] Soil map<br />

FAO/UNESCO. 1992. UNEP Gridded FAO/UNESCO Soil Units. Digital Raster Data on a 2-<br />

minute Cartesian Orthonormal Geodetic (lat/long) 10800x5400 grid. In: Global Ecosystems<br />

Database Version 2.0. Boulder, CO: NOAA National Geophysical Data Center. 1 singleattribute<br />

spatial layer. 58,343,747 bytes in 6 files. [first published in 1984]<br />

http://www.ngdc.noaa.gov/seg/cdroms/ged_iia/datasets/a16/fao.htm<br />

[3] Climate-Köppen<br />

Leemans, R. and Cramer, W., 1991: The IIASA database <strong>for</strong> mean monthly values <strong>of</strong><br />

temperature, precipitation and cloudiness on a global terrestrial grid. IIASA, Laxenburg,<br />

Austria, RR-91-18, pp. 61.<br />

http://www.fao.org/sd/eidirect/climate/eisp0002.htm<br />

123


REFERENCES<br />

[4] Climate-Temperature (long term)<br />

Leemans, R. and Cramer, W., 1991: The IIASA Database <strong>for</strong> mean monthly values <strong>of</strong><br />

temperature, precipitation and cloudiness on a Global Terrestrial Grid. IIASA, Laxenburg,<br />

Austria, RR-91-18, pp 62.<br />

http://www.grid.unep.ch/data/grid/gnv15.php<br />

[5] Climate-Temperature (1993-1998)<br />

New, M., M. Hulme, and P. D. Jones. 2002. SAFARI 2000 Monthly Climatology <strong>for</strong> <strong>the</strong> 20th<br />

Century (New et al.). Data set. Available on-line [http://www.daac.ornl.gov] from Oak Ridge<br />

National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, U.S.A.<br />

[6] Land cover<br />

Africa Land Cover Characteristics database. Version 2 (GLCC v2). These data are distributed<br />

by <strong>the</strong> Land Processes Distributed Active Archive Center (LP DAAC), located at <strong>the</strong> U.S.<br />

Geological Survey's EROS Data Center http://LPDAAC.usgs.gov.<br />

http://edcdaac.usgs.gov/glcc/af_int.asp<br />

[7] Rain station data 1993-2001 (monthly)<br />

SAFARI 2000 Global Historical Climatology Network, V. 2, 1990-2001. National Climatic<br />

Data Center Documentation <strong>for</strong> GHCN Version 2 Precipitation<br />

http://lwf.ncdc.noaa.gov/oa/pub/data/ghcn/v2/ghcnftp.html<br />

[8] Rain station data 1978-1993 (monthly)<br />

Vose, R.S., R.L. Schmoyer, P.M. Steurer, T.C. Peterson, R. Heim, T.R. Karl, and J.K.<br />

Eischeid. 1992. The Global Historical Climatology Network; Long-Term Monthly<br />

Temperature, Precipitation, Sea Level Pressure, and Station Pressure Data (ORNL/CDIAC-<br />

53, CDIAC NDP-041). Available online at [http://www-eosdis.ornl.gov/] from <strong>the</strong> ORNL<br />

Distributed Active Archive Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee,<br />

U.S.A<br />

[9] Run<strong>of</strong>f data<br />

Luxemburg, W., 1999: WRS Surface Water Run<strong>of</strong>f Database System. Ministery <strong>of</strong> Rural<br />

Resources & Water Development, Department <strong>of</strong> Water Development, <strong>Hydrological</strong> Branch.<br />

[10] MIRA<br />

Layberry, R., Kniveton, D., Todd, M., 2001: MIRA daily rainfall estimates <strong>for</strong> Sou<strong>the</strong>rn<br />

Africa (1993-2001). University <strong>of</strong> Sussex, UK.<br />

124


REFERENCES<br />

http://ltpwww.gsfc.nasa.gov/s2k/html_pages/groups/precip/daily_rainfall_mira. html<br />

[11] FEWS<br />

Herman, A., Kumar, V.B., Arkin, P.A., Kousky, J.V.: CPC/Famine Early Warning System<br />

Dekadal Estimates. http://edcw2ks21.cr.usgs.gov/adds/<br />

[12] CRU TS 2.0<br />

Mitchell, T.D., Carter, T.R., Jones, P.D., Hulme, M., New, M., 2003: A comprehensive set <strong>of</strong><br />

high-resolution grids <strong>of</strong> monthly climate <strong>for</strong> Europe and <strong>the</strong> globe: <strong>the</strong> observed record (1901-<br />

2000) and 16 scenarios (2001-2100). Journal <strong>of</strong> Climate: submitted.<br />

http://www.cru.uea.ac.uk/~timm/grid/CRU_TS_2_0.html.<br />

[13] TRMM: 3B-43<br />

Huffman, G. J. and D. Bolvin. 2004. SAFARI 2000 TRMM 3B-43 Monthly<br />

Precipitation, 1-Deg, 1999-2001. Data set. Available on-line [http://www.daac.ornl.gov]<br />

from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge,<br />

Tennessee, U.S.A.<br />

125


REFERENCES<br />

126


APPENDIX 1: DATA TRANSFORMATIONS IN IDRISI<br />

Appendix 1<br />

Data trans<strong>for</strong>mations in Idrisi<br />

1.1 General trans<strong>for</strong>mations.......................................................................................... 129<br />

1.1.1 Dimensions and projection <strong>of</strong> <strong>the</strong> maps used in STREAM ............................. 129<br />

1.1.2 Masking ........................................................................................................... 130<br />

1.1.3 ASCII-raster -> Idrisi....................................................................................... 131<br />

1.1.4 *.BIL-files -> Idrisi.......................................................................................... 131<br />

1.2 Data trans<strong>for</strong>mation <strong>of</strong> used maps .......................................................................... 132<br />

1.2.1 DEM [1]........................................................................................................... 132<br />

1.2.2 Soil map [2] ..................................................................................................... 132<br />

1.2.3 Climate-Köppen [3] ......................................................................................... 133<br />

1.2.4 Climate-Temperature (long term) [4] .............................................................. 133<br />

1.2.5 MIRA-precipitation [10].................................................................................. 134<br />

1.2.6 FEWS-precipitation [11] ................................................................................. 150<br />

1.2.7 MIRA-corrected............................................................................................... 151<br />

1.2.8 Resize GIS-maps 1978-1993 ........................................................................... 151<br />

127


APPENDIX 1: DATA TRANSFORMATIONS IN IDRISI<br />

Data trans<strong>for</strong>mations in Idrisi<br />

On <strong>the</strong> Internet a lot <strong>of</strong> Geographic In<strong>for</strong>mation System (GIS) maps can be found.<br />

Un<strong>for</strong>tunately, <strong>the</strong>y are stored and compressed in very different ways. Because STREAM can<br />

only read IDRISI-files, conversion needs to take place. In this appendix <strong>the</strong>se conversion<br />

steps will be described. The conversions to obtain Idrisi-raster maps are made with different<br />

programs:<br />

• Idrisi Kilimanjaro or Idrisi32 R2 [http://www.clarklabs.org]; GIS package, to display<br />

raster maps and vector files, to do <strong>for</strong>mat conversions (real -> integer -> byte vs (see<br />

Table 1)), to do projection trans<strong>for</strong>mations and o<strong>the</strong>r (batch) data processing<br />

trans<strong>for</strong>mations. The Idrisi-maps are <strong>the</strong> only maps, which can be read by <strong>the</strong><br />

program STREAM.<br />

Table 1: Data ranges.<br />

Data <strong>for</strong>mat From Till<br />

Byte 0 255<br />

Integer -32768 32767<br />

Real 1E-38 1E38<br />

• ArcView 3.1 [http://www.esri.com]; GIS package, to display raster maps and vector<br />

files, to do projection trans<strong>for</strong>mations and o<strong>the</strong>r data processing trans<strong>for</strong>mations.<br />

Only used <strong>for</strong> conversion purposes.<br />

• IDL (Interactive Data Language) [http://www.rsinc.com]; Data analyzing and<br />

visualization program. With a scripting language many different file <strong>for</strong>mats can be<br />

read and converted to <strong>the</strong> desired <strong>for</strong>mat.<br />

• WinDisp 5.1 [http://www.fao.org/giews/english/windisp/windisp.htm]; Simple GIS<br />

package to display satellite images.<br />

• DivaGIS 4.1 [http://www.diva-gis.org]; Simple GIS package to display certain<br />

satellite images.<br />

Next to <strong>the</strong> conversion steps, <strong>the</strong>re is also described which o<strong>the</strong>r steps are carried out, like gap<br />

filling, scaling, multiplications, etc.<br />

128


APPENDIX 1: DATA TRANSFORMATIONS IN IDRISI<br />

1.1 General trans<strong>for</strong>mations<br />

1.1.1 Dimensions and projection <strong>of</strong> <strong>the</strong> maps used in STREAM<br />

Most GIS maps downloaded from <strong>the</strong> Internet are stored in an un-projected latitude/longitude<br />

grid. The specification <strong>of</strong> <strong>the</strong> appropriate reference-file in Idrisi is given in Figure 1.<br />

C:\Idrisi\Georef\LatLong.ref<br />

ref. system : Geodetic Coordinates (Latitude/Longitude)<br />

projection : none<br />

datum : WGS 1984<br />

delta WGS84 : 0 0 0<br />

ellipsoid : WGS84<br />

major s-ax : 6378137.000<br />

minor s-ax : 6356752.314<br />

origin long : 0<br />

origin lat : 0<br />

origin X : 0<br />

origin Y : 0<br />

scale fac : 1.0<br />

units : deg<br />

parameters : 0<br />

Figure 1:Reference file <strong>of</strong> latitude/longitude.<br />

The maps used in STREAM are in <strong>the</strong> Lambert Oblique Azimuthal Equal Area projection<br />

(Lazea), with <strong>the</strong> following specifications:<br />

C:\Idrisi\Georef\Lazea.ref<br />

ref. system : USGS Lambert Azimuthal Equal Area<br />

projection : Lambert Oblique Azimuthal Equal Area<br />

datum : NAD27<br />

delta WGS84 : -8 160 176<br />

ellipsoid : Clarke 1866<br />

major s-ax : 6378206.40<br />

minor s-ax : 6356583.80<br />

origin long : 20<br />

origin lat : 5<br />

origin X : 0<br />

origin Y : 0<br />

scale fac : na<br />

units : m<br />

parameters : 0<br />

Figure 2: Reference file <strong>of</strong> Lazea.<br />

In Idrisi <strong>the</strong> user is able to change <strong>the</strong> projection:<br />

• REFORMAT -> PROJECT<br />

• Fill in <strong>the</strong> appropriate file name and projection (lat/long) <strong>of</strong> <strong>the</strong> old map and fill in file<br />

name <strong>for</strong> <strong>the</strong> new map with <strong>the</strong> desired projection (lazea).<br />

129


APPENDIX 1: DATA TRANSFORMATIONS IN IDRISI<br />

• Fill in <strong>the</strong> following settings to obtain <strong>the</strong> right size <strong>of</strong> your maps. Remark: <strong>for</strong> <strong>the</strong><br />

period 1978-1993 <strong>the</strong> settings are written in <strong>the</strong> left box and <strong>for</strong> <strong>the</strong> period from 1993<br />

fill in <strong>the</strong> right box. This is because <strong>the</strong> maps <strong>of</strong> <strong>the</strong> run 1978-1993 are not completely<br />

cover <strong>the</strong> entire <strong>catchment</strong>. Some parts <strong>of</strong> <strong>the</strong> west and south side are missing. In<br />

2004 Gerrits repaired <strong>the</strong> old and wrong GIS-maps to <strong>the</strong> correct size, which are<br />

written down in <strong>the</strong> right box. See <strong>for</strong> this trans<strong>for</strong>mation paragraph 1.2.9.<br />

Period: 1978-1993<br />

Period: 1993-present<br />

Figure 3: Size settings <strong>of</strong> <strong>the</strong> maps used in STREAM.<br />

1.1.2 Masking<br />

To save calculation time <strong>for</strong> STREAM it is possible to calculate only those cells, which are<br />

inside <strong>the</strong> <strong>catchment</strong>. To achieve this all <strong>the</strong> cells, which are outside <strong>the</strong> <strong>catchment</strong> should<br />

have a value <strong>of</strong> –9999. This is called masking.<br />

For masking you need two maps:<br />

• Mask_bool: cells inside <strong>the</strong> <strong>catchment</strong> have a value 1 and cells outside <strong>the</strong> <strong>catchment</strong><br />

have a value <strong>of</strong> 0.<br />

0 0 0 0<br />

0 1 1 0<br />

0 1 1 0<br />

0 0 1 1<br />

• Mask_9999: cells inside <strong>the</strong> <strong>catchment</strong> have a value 0 and cells outside <strong>the</strong> <strong>catchment</strong><br />

have a value <strong>of</strong> –9999.<br />

-9999 -9999 -9999 -9999<br />

-9999 0 0 -9999<br />

-9999 0 0 -9999<br />

-9999 -9999 0 0<br />

130


APPENDIX 1: DATA TRANSFORMATIONS IN IDRISI<br />

To obtain a masked map use <strong>the</strong> IMAGE CALCULATOR or <strong>the</strong> OVERLAY function and<br />

execute <strong>the</strong> following <strong>for</strong>mula:<br />

[Masked_map] = ([map] * [mask_bool]) + [mask_9999]<br />

-9999 -9999 -9999 -9999 v v v v 0 0 0 0 -9999 -9999 -9999 -9999<br />

-9999 v v -9999 v v v v 0 1 1 0 -9999 0 0 -9999<br />

= (<br />

*<br />

) +<br />

-9999 v v -9999<br />

v v v v 0 1 1 0<br />

-9999 0 0 -9999<br />

-9999 -9999 v v v v v v 0 0 1 1 -9999 -9999 0 0<br />

1.1.3 ASCII-raster -> Idrisi<br />

Some GIS-data is stored in a simple ASCII-raster file. They can be read in IDRISI by using<br />

<strong>the</strong> GRASS-import function:<br />

• Add <strong>the</strong> GRASS header (or change <strong>the</strong> existing header) to <strong>the</strong> ASCII-file in <strong>the</strong> first<br />

lines by typing in a text-editor:<br />

Proj: 3<br />

Zone: 0<br />

North: 40N<br />

South: 40S<br />

East: 180E<br />

West: 180W<br />

Cols: 360<br />

Rows: 80<br />

Depends on <strong>the</strong> size <strong>of</strong> <strong>the</strong> original map.<br />

Projection 3 in <strong>the</strong> GRASS header means lat/long in degrees. O<strong>the</strong>r settings:<br />

0=unreferenced; 1=UTM; 2=state plane.<br />

Most common text-editors do have difficulties with large files. Text-editors like<br />

UltraEdit and Context are capable to deal with large files.<br />

• Save <strong>the</strong> ASCII file with <strong>the</strong> extension *.asc.<br />

• FILE -> IMPORT -> SOFTWARE SPECIFIC FORMATS -> GRASSIDR and select<br />

‘real’ under ‘output image data type’.<br />

1.1.4 *.BIL-files -> Idrisi<br />

Although Idrisi has some import functions to import BIL-files (Band Interleaved by Lines),<br />

<strong>the</strong>y do not always work. Ano<strong>the</strong>r way to import <strong>the</strong>m is by using ArcView:<br />

• Be sure that <strong>the</strong> Spatial Analyst Package is switched on:<br />

FILE -> EXTENTIONS -> tick Spatial Analyst.<br />

• Open <strong>the</strong> *.bil file in <strong>the</strong> View-window by clicking on <strong>the</strong> [Add Theme] button.<br />

Select under ‘Data Source Types’ <strong>the</strong> type ‘Image Data Source’ and select <strong>the</strong><br />

appropriate *.bil file.<br />

• Select THEME -> CONVERT TO GRID and choose a grid name (e.g. NwGrd1).<br />

• Select THEME -> SAVE DATA SET and select as calculation <strong>for</strong> example Calc1.<br />

131


APPENDIX 1: DATA TRANSFORMATIONS IN IDRISI<br />

• Select ANALYSIS -> PROPERTIES and click under ‘Analysis Extent’: ‘Same As<br />

Zambas.shp’. This Zambas.shp-file is a shapefile with <strong>the</strong> appropriate map<br />

dimensions (length x height) <strong>of</strong> <strong>the</strong> <strong>catchment</strong>.<br />

• To export <strong>the</strong> map select FILE -> EXPORT DATA SOURCE and select ‘ASCII<br />

Raster’ and click OK. Select <strong>the</strong> appropriate calculation file (e.g. Calc1) and choose a<br />

name <strong>for</strong> <strong>the</strong> ASCII-grid.<br />

• Change <strong>the</strong> ArcView header to <strong>the</strong> GRASS header and import <strong>the</strong> ascii-file in Idrisi<br />

as described in paragraph 1.1.3.<br />

1.2 Data trans<strong>for</strong>mation <strong>of</strong> used maps<br />

1.2.1 DEM [1]<br />

Spatial: 1km * 1km<br />

Temporal: -<br />

Unit: m<br />

Extension: *.bil<br />

• Import <strong>the</strong> BIL file in ArcView as described in paragraph 1.1.4. Only add one step<br />

after you have converted <strong>the</strong> map to a grid (step 3):<br />

• Select ANALYSIS -> MAP CALCULATOR and type <strong>the</strong> following <strong>for</strong>mula:<br />

([NwGrd1] >= 32768).Con ([NwGrd1] – 65536.AsGrid, [NwGrd1])<br />

This is because <strong>the</strong> downloaded maps are word-maps (0 till 65535) and Idrisi can<br />

only read integer-maps (-32768 till +32767).<br />

• After you have converted <strong>the</strong> file into Idrisi execute a pit removal, because <strong>the</strong> DEM<br />

contains small gaps: GIS ANALYSIS -> SURFACE ANALYSIS -> FEA<strong>TU</strong>RE<br />

EXTRACTION -> PIT REMOVAL<br />

• Change <strong>the</strong> spatial resolution to 3 km * 3 km: REFORMAT -> CONTRACT and<br />

choose ‘Aggregate’ x=3 and y=3.<br />

• Mask <strong>the</strong> map<br />

1.2.2 Soil map [2]<br />

Spatial: 2 minutes grid<br />

Temporal: -<br />

Unit: -<br />

Extension: *.img & *.doc<br />

• Convert Idrisi16 files to Idrisi32 files by FILE -> CONVERT.<br />

132


APPENDIX 1: DATA TRANSFORMATIONS IN IDRISI<br />

• Change projection <strong>of</strong> <strong>the</strong> map from lat/long to lazea by REFORMAT -> PROJECT.<br />

• Reclass <strong>the</strong> soil classification as desired.<br />

1.2.3 Climate-Köppen [3]<br />

Spatial: 0.5° x 0.5°<br />

Temporal: -<br />

Unit: -<br />

Extension: *.ida<br />

• Use WinDisp to convert <strong>the</strong> files to Idrisi.<br />

• Change <strong>the</strong> projection from lat/long to lazea.<br />

1.2.4 Climate-Temperature (long term) [4]<br />

Spatial: 0.5° x 0.5°<br />

Temporal: monthly<br />

Unit: centigrade degrees<br />

Extension: *.bil<br />

• Use DivaGIS to convert <strong>the</strong> files to Idrisi.<br />

• Change <strong>the</strong> projection from lat/long to lazea.<br />

• Divide map by ten to obtain °C with <strong>the</strong> SCALAR function<br />

• Fill <strong>the</strong> gaps with <strong>the</strong> RECLASS function. Change all values from 0 to 1 to:<br />

January => 24.0 July => 18.5<br />

February => 24.0 August => 19.0<br />

March => 23.5 September => 23.0<br />

April => 23.5 October => 24.0<br />

May => 21.0 November => 25.0<br />

June => 19.5 December => 25.0<br />

{<strong>the</strong>se values are <strong>the</strong> average value <strong>of</strong> <strong>the</strong> cells around <strong>the</strong> gap}<br />

1.2.5 Climate-Temperature (1993-1998) [5]<br />

Spatial: 0.5° x 0.5°<br />

Temporal: monthly<br />

Unit: centigrade degrees<br />

Extension: none (ascii-files, zipped with *.gz)<br />

• Unzip files<br />

• Convert ArcInfo raster ascii to Idrisi with <strong>the</strong> import function in Idrisi.<br />

• Change <strong>the</strong> projection from lat/long to lazea.<br />

133


APPENDIX 1: DATA TRANSFORMATIONS IN IDRISI<br />

• Mask <strong>the</strong> maps with mask_bo in such way that <strong>the</strong> areas outside <strong>the</strong> <strong>catchment</strong> get <strong>the</strong><br />

value zero.<br />

• Reclass all <strong>the</strong> values between -9999 and 0 to zero (gap repair).<br />

• Divide map by ten to obtain °C with <strong>the</strong> SCALAR function<br />

• Mask <strong>the</strong> map with Mask_9999.rst<br />

1.2.6 MIRA-precipitation [10]<br />

Spatial: 0.1° x 0.1°<br />

Temporal: daily<br />

Unit: mm/hour<br />

Extension: ascii<br />

For reading <strong>the</strong> MIRA precipitation data you will need <strong>the</strong> program IDL (Interactive Data<br />

Language). The precipitation data is in average daily mm/hour, so <strong>for</strong> our hydrological model,<br />

we have to sum <strong>the</strong> daily values to monthly values. Secondly, <strong>the</strong> IDL-program has to export<br />

<strong>the</strong> data into ASCII-files with a GRASS-header. But first a gap repair on <strong>the</strong> data has to be<br />

carried out.<br />

To repair <strong>the</strong> data one <strong>of</strong> <strong>the</strong> following actions is executed:<br />

1. If <strong>the</strong> missing day(s) are in <strong>the</strong> dry season (May-October) <strong>the</strong>re is no precipitation<br />

added to <strong>the</strong> month value. It is assumed that <strong>the</strong> precipitation in those days is zero.<br />

The month sum is easily obtained by summing all <strong>the</strong> daily values.<br />

2. If one or two days successive are lacking data, <strong>the</strong> value <strong>of</strong> <strong>the</strong> day be<strong>for</strong>e and/or <strong>the</strong><br />

day after, is filled in. Assumed is a high correlation between two successive days.<br />

Again is <strong>the</strong> month sum easily obtained by simply summing up all <strong>the</strong> daily values<br />

inclusive <strong>the</strong> new values.<br />

3. If more <strong>the</strong>n two days are missing and at least one rain station is available with a<br />

complete daily range <strong>of</strong> rainfall data, <strong>the</strong> percentage (p) <strong>of</strong> <strong>the</strong> amount <strong>of</strong> rainfall <strong>of</strong><br />

<strong>the</strong> missing days is calculated from <strong>the</strong> rain station. The month sum is <strong>the</strong>n divided<br />

by (1-p) to obtain a repaired new month value.<br />

4. If more than two days are missing data and <strong>the</strong>re are no rain stations available, <strong>the</strong><br />

average percentage (p) <strong>of</strong> <strong>the</strong> amount <strong>of</strong> rainfall <strong>of</strong> <strong>the</strong> missing days is computed<br />

from o<strong>the</strong>r years <strong>of</strong> that month. The month sum is <strong>the</strong>n divided by (1-p) to obtain a<br />

repaired new month value.<br />

5. If a complete month is missing, a highly correlated year is looked <strong>for</strong>. The missing<br />

month is filled in with <strong>the</strong> same month <strong>of</strong> <strong>the</strong> found correlated year.<br />

134


APPENDIX 1: DATA TRANSFORMATIONS IN IDRISI<br />

In <strong>the</strong> following table <strong>the</strong> final percentage <strong>of</strong> <strong>the</strong> missing days are written down. If <strong>the</strong><br />

percentages <strong>of</strong> one month are summed up and subtracted from 100% and next divided 100%<br />

by <strong>the</strong> result, you will get <strong>the</strong> multiplication factor <strong>of</strong> that specific month (option 3, 4 and 5).<br />

If a date is written, <strong>the</strong> rainfall value <strong>of</strong> <strong>the</strong> day <strong>the</strong>n is written in that box used to fill in <strong>the</strong><br />

gap <strong>of</strong> <strong>the</strong> missing day (option 2). If <strong>the</strong>re is written ‘dry=0’ in a cell <strong>the</strong>n <strong>the</strong>re is nothing<br />

added, because it is <strong>the</strong> dry season. If <strong>the</strong>re is written ‘SE=0’, it means that <strong>the</strong>re is very less<br />

precipitation so assumed is that also in <strong>the</strong> missing days, <strong>the</strong> missing rainfall amounts are<br />

small (option 1).<br />

135


APPENDIX 1: DATA TRANSFORMATIONS IN IDRISI<br />

Table 2: Overview <strong>of</strong> final multiplication factors <strong>of</strong> <strong>the</strong> gap repair.<br />

Date 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002<br />

01-jan<br />

02-jan<br />

03-jan<br />

02-jan<br />

04-jan<br />

05-jan<br />

14.18%<br />

06-jan<br />

07-jan<br />

08-jan<br />

07-jan<br />

09-jan<br />

10-jan<br />

11-jan<br />

12-jan<br />

13-jan<br />

14-jan<br />

15-jan<br />

16-jan<br />

17-jan<br />

18-jan 17-jan 17-jan<br />

19-jan 2.82% 18-jan 20-jan<br />

20-jan 21-jan 21-jan<br />

21-jan<br />

20-jan<br />

22-jan<br />

23-jan<br />

24-jan<br />

25-jan<br />

26-jan<br />

27-jan<br />

28-jan<br />

24.49%<br />

29-jan<br />

30-jan<br />

31-jan<br />

01-feb<br />

02-feb<br />

03-feb<br />

02-feb<br />

04-feb<br />

05-feb<br />

06-feb<br />

07-feb<br />

08-feb<br />

09-feb<br />

10-feb<br />

11-feb<br />

12-feb<br />

13-feb<br />

14-feb<br />

15-feb<br />

14-feb<br />

16-feb<br />

17-feb 16-feb 16-feb<br />

18-feb<br />

19-feb<br />

19-feb<br />

20-feb<br />

21-feb<br />

22-feb<br />

23-feb<br />

24-feb<br />

25-feb<br />

26-feb<br />

27-feb<br />

28-feb<br />

29-feb - - -<br />

14.95%<br />

28-feb - - - -<br />

136


APPENDIX 1: DATA TRANSFORMATIONS IN IDRISI<br />

Date 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002<br />

01-mrt<br />

02-mrt<br />

03-mrt<br />

04-mrt<br />

05-mrt<br />

06-mrt<br />

07-mrt<br />

08-mrt<br />

09-mrt<br />

10-mrt<br />

11-mrt<br />

12-mrt<br />

13-mrt<br />

14-mrt<br />

15-mrt<br />

16-mrt<br />

17-mrt<br />

18-mrt<br />

19-mrt<br />

20-mrt<br />

21-mrt<br />

22-mrt<br />

23-mrt<br />

24-mrt<br />

25-mrt<br />

26-mrt<br />

27-mrt<br />

28-mrt<br />

29-mrt<br />

30-mrt<br />

31-mrt<br />

01-apr<br />

02-apr<br />

03-apr<br />

04-apr<br />

05-apr<br />

06-apr<br />

07-apr<br />

08-apr<br />

09-apr<br />

10-apr<br />

11-apr<br />

12-apr<br />

13-apr<br />

14-apr<br />

15-apr<br />

16-apr<br />

17-apr<br />

18-apr<br />

19-apr<br />

20-apr<br />

21-apr<br />

22-apr<br />

23-apr<br />

24-apr<br />

25-apr<br />

26-apr<br />

27-apr<br />

28-apr<br />

29-apr<br />

30-apr<br />

02-mrt<br />

SE = 0<br />

03-mrt<br />

06-apr<br />

13-apr<br />

16-apr<br />

SE = 0<br />

07-apr<br />

09-apr<br />

10-mrt<br />

137


APPENDIX 1: DATA TRANSFORMATIONS IN IDRISI<br />

Date 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002<br />

01-mei<br />

02-mei<br />

03-mei<br />

04-mei<br />

05-mei dry = 0<br />

06-mei dry = 0<br />

07-mei dry = 0<br />

08-mei<br />

09-mei<br />

10-mei<br />

11-mei<br />

12-mei<br />

13-mei<br />

14-mei<br />

15-mei dry = 0<br />

16-mei dry = 0<br />

17-mei<br />

18-mei<br />

19-mei<br />

20-mei<br />

21-mei<br />

22-mei<br />

23-mei dry = 0<br />

24-mei dry = 0<br />

25-mei dry = 0<br />

26-mei dry = 0<br />

27-mei dry = 0<br />

28-mei dry = 0<br />

29-mei dry = 0<br />

30-mei dry = 0<br />

31-mei dry = 0<br />

01-jun<br />

02-jun<br />

03-jun<br />

04-jun dry = 0<br />

05-jun<br />

06-jun<br />

07-jun dry = 0<br />

08-jun dry = 0<br />

09-jun dry = 0<br />

10-jun dry = 0<br />

11-jun<br />

12-jun<br />

13-jun<br />

14-jun<br />

15-jun<br />

16-jun<br />

17-jun<br />

18-jun<br />

19-jun dry = 0<br />

20-jun dry = 0<br />

21-jun dry = 0<br />

22-jun<br />

23-jun<br />

24-jun<br />

25-jun dry = 0<br />

26-jun<br />

27-jun<br />

28-jun<br />

29-jun<br />

30-jun<br />

138


APPENDIX 1: DATA TRANSFORMATIONS IN IDRISI<br />

Date 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002<br />

01-jul dry = 0<br />

02-jul dry = 0<br />

03-jul dry = 0<br />

04-jul dry = 0<br />

05-jul dry = 0<br />

06-jul dry = 0<br />

07-jul dry = 0<br />

08-jul dry = 0<br />

09-jul dry = 0 dry = 0<br />

10-jul dry = 0<br />

11-jul dry = 0<br />

12-jul dry = 0<br />

13-jul dry = 0<br />

14-jul dry = 0<br />

15-jul dry = 0<br />

16-jul dry = 0<br />

17-jul dry = 0<br />

18-jul dry = 0<br />

19-jul dry = 0<br />

20-jul dry = 0<br />

21-jul dry = 0 dry = 0<br />

22-jul dry = 0 dry = 0<br />

23-jul dry = 0 dry = 0<br />

24-jul dry = 0 dry = 0<br />

25-jul dry = 0 dry = 0<br />

26-jul dry = 0 dry = 0<br />

27-jul dry = 0 dry = 0<br />

28-jul dry = 0 dry = 0<br />

29-jul dry = 0 dry = 0<br />

30-jul dry = 0 dry = 0<br />

31-jul dry = 0<br />

01-aug dry = 0<br />

02-aug dry = 0<br />

03-aug dry = 0<br />

04-aug dry = 0<br />

05-aug dry = 0<br />

06-aug dry = 0<br />

07-aug dry = 0<br />

08-aug dry = 0<br />

09-aug dry = 0<br />

10-aug dry = 0<br />

11-aug<br />

12-aug<br />

13-aug<br />

14-aug<br />

15-aug<br />

16-aug<br />

17-aug<br />

18-aug<br />

19-aug<br />

20-aug<br />

21-aug<br />

22-aug<br />

23-aug<br />

24-aug<br />

25-aug<br />

26-aug<br />

27-aug<br />

28-aug<br />

29-aug<br />

30-aug<br />

31-aug<br />

dry = 0<br />

139


APPENDIX 1: DATA TRANSFORMATIONS IN IDRISI<br />

Date 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002<br />

01-sep<br />

02-sep<br />

03-sep<br />

04-sep<br />

05-sep<br />

06-sep<br />

07-sep<br />

08-sep<br />

09-sep<br />

10-sep<br />

11-sep<br />

12-sep<br />

13-sep<br />

14-sep<br />

15-sep<br />

16-sep<br />

17-sep<br />

18-sep<br />

19-sep<br />

20-sep<br />

21-sep<br />

22-sep<br />

23-sep<br />

24-sep<br />

25-sep<br />

26-sep<br />

27-sep<br />

28-sep<br />

29-sep<br />

30-sep<br />

01-okt<br />

02-okt<br />

03-okt<br />

04-okt<br />

05-okt<br />

06-okt<br />

07-okt<br />

08-okt<br />

09-okt<br />

10-okt<br />

11-okt<br />

12-okt<br />

13-okt<br />

14-okt<br />

15-okt<br />

16-okt<br />

17-okt<br />

18-okt<br />

19-okt<br />

20-okt<br />

21-okt<br />

22-okt<br />

23-okt<br />

24-okt<br />

25-okt<br />

26-okt<br />

27-okt<br />

28-okt<br />

29-okt<br />

30-okt<br />

31-okt<br />

dry = 0<br />

140


APPENDIX 1: DATA TRANSFORMATIONS IN IDRISI<br />

Date 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002<br />

01-nov<br />

02-nov<br />

03-nov<br />

04-nov<br />

05-nov<br />

06-nov<br />

07-nov<br />

08-nov<br />

09-nov<br />

10-nov<br />

11-nov<br />

12-nov<br />

13-nov<br />

14-nov<br />

15-nov<br />

16-nov<br />

17-nov<br />

18-nov<br />

19-nov<br />

20-nov<br />

21-nov<br />

22-nov<br />

23-nov<br />

24-nov<br />

25-nov<br />

26-nov<br />

27-nov<br />

28-nov<br />

29-nov<br />

30-nov<br />

01-dec<br />

02-dec<br />

03-dec<br />

04-dec<br />

05-dec<br />

06-dec<br />

07-dec<br />

08-dec<br />

09-dec<br />

10-dec<br />

11-dec<br />

12-dec<br />

13-dec<br />

14-dec<br />

15-dec<br />

16-dec<br />

17-dec<br />

18-dec<br />

19-dec<br />

20-dec<br />

21-dec<br />

22-dec<br />

23-dec<br />

24-dec<br />

25-dec<br />

26-dec<br />

27-dec<br />

28-dec<br />

29-dec<br />

30-dec<br />

31-dec<br />

02-nov<br />

03-nov<br />

0.00%<br />

0.00%<br />

08-nov<br />

0.00%<br />

28-nov<br />

13.68%<br />

13.70%<br />

10.20%<br />

25-dec<br />

10.21%<br />

2.49%<br />

15-dec<br />

1.91%<br />

30-dec<br />

25.31%<br />

29-nov<br />

141


APPENDIX 1: DATA TRANSFORMATIONS IN IDRISI<br />

Table 3: Option 3.<br />

STATION 676330 677530 677430 676410 675510 675310 676650 AVERAGE<br />

Place Mongu Choma Livingstone Kaoma Solwezi <strong>Zambezi</strong> Lusaka<br />

long 23.16 27.06 25.81 24.8 26.38 23.11 28.45<br />

lat -15.25 -16.85 -17.81 -14.8 -12.18 -13.53 -15.32<br />

01-nov-95 0 0.00% 2 3.24% 0 0.00% 10.9 7.70% 0 0.00%<br />

02-nov-95 0 0.00%<br />

03-nov-95<br />

04-nov-95<br />

05-nov-95 0 0.00% 0.00%<br />

06-nov-95 0 0.00% 0.00%<br />

07-nov-95 0 0.00% 0 0.00% 0 0.00% 0.00%<br />

08-nov-95 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00%<br />

09-nov-95 0 0.00%<br />

10-nov-95 0 0.00% 1 0.71% 0 0.00%<br />

11-nov-95 0 0.00%<br />

12-nov-95 7.1 5.01% 0 0.00%<br />

13-nov-95 0 0.00%<br />

14-nov-95 3 7.14%<br />

15-nov-95<br />

16-nov-95 0 0.00% 0 0.00% 0 0.00%<br />

17-nov-95 0 0.00% 0 0.00% 1 0.71% 0 0.00%<br />

18-nov-95 0 0.00%<br />

19-nov-95<br />

20-nov-95 15 35.71%<br />

21-nov-95 0 0.00%<br />

22-nov-95 10.9 25.95%<br />

23-nov-95 0.5 1.19%<br />

24-nov-95 0 0.00% 0 0.00% 0.00%<br />

25-nov-95 0 0.00% 0.00%<br />

26-nov-95 0 0.00% 0.00%<br />

27-nov-95<br />

28-nov-95 2 4.76%<br />

29-nov-95 7.1 15.40% 0 0.00% 0.5 0.81% 27.9 66.43%<br />

30-nov-95<br />

55.3 46.1 77.9 61.8 212.1 141.6 42 0.00%<br />

01-feb-96 0 0.00% 1 0.66%<br />

02-feb-96 3 1.55% 3 1.63% 7.1 4.69%<br />

03-feb-96<br />

04-feb-96<br />

05-feb-96<br />

06-feb-96 0 0.00%<br />

07-feb-96 0 0.00% 17 6.36% 0 0.00%<br />

08-feb-96<br />

09-feb-96 7 4.54% 81 53.50%<br />

10-feb-96 7.1 4.69%<br />

11-feb-96<br />

12-feb-96 19 9.08% 11.9 6.15% 3 1.95% 6.1 2.28% 5.1 3.37%<br />

13-feb-96 0.5 0.27%<br />

14-feb-96 5.1 3.37%<br />

15-feb-96 7.9 5.22%<br />

16-feb-96 5.1 3.37%<br />

17-feb-96<br />

18-feb-96 13 7.05% 0 0.00% 3.52%<br />

19-feb-96 1 0.54% 0 0.00% 0.27%<br />

20-feb-96 0 0.00% 0.00%<br />

21-feb-96 0 0.00% 0 0.00% 0.00%<br />

22-feb-96 41.9 21.64% 0 0.00% 10.82%<br />

23-feb-96 0 0.00% 0.00%<br />

24-feb-96 0.5 0.33% 0.33%<br />

25-feb-96 6.1 3.96%<br />

26-feb-96<br />

27-feb-96<br />

28-feb-96 0 0.00%<br />

29-feb-96<br />

209.2 193.6 154.2 267.2 202.4 184.5 151.4 14.95%<br />

03-nov<br />

28-nov<br />

16-feb<br />

142


APPENDIX 1: DATA TRANSFORMATIONS IN IDRISI<br />

STATION 676330 677530 677430 676410 675510 675310 676650 AVERAGE<br />

Place Mongu Choma Livingstone Kaoma Solwezi <strong>Zambezi</strong> Lusaka<br />

long 23.16 27.06 25.81 24.8 26.38 23.11 28.45<br />

lat -15.25 -16.85 -17.81 -14.8 -12.18 -13.53 -15.32<br />

01-nov-96 0 0.00%<br />

02-nov-96<br />

03-nov-96<br />

04-nov-96 0 0.00%<br />

05-nov-96 0 0.00% 0.00%<br />

06-nov-96 0 0.00% 0.00%<br />

07-nov-96<br />

08-nov<br />

08-nov-96 0 0.00%<br />

09-nov-96 0 0.00% 0 0.00% 0 0.00%<br />

10-nov-96<br />

11-nov-96<br />

12-nov-96 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00%<br />

13-nov-96 0 0.00% 0 0.00% 0 0.00%<br />

14-nov-96 0 0.00% 0 0.00% 0 0.00%<br />

15-nov-96<br />

16-nov-96<br />

17-nov-96<br />

18-nov-96<br />

19-nov-96 6.1 4.99% 2 1.46% 4.1 9.76%<br />

20-nov-96 0 0.00%<br />

21-nov-96<br />

22-nov-96 0 0.00% 0 0.00%<br />

23-nov-96 0 0.00%<br />

24-nov-96<br />

25-nov-96<br />

26-nov-96<br />

27-nov-96 18 26.16% 0 0.00% 0 0.00% 0 0.00% 14 33.33%<br />

28-nov-96 7.1 5.81%<br />

29-nov-96 0 0.00% 0 0.00% 10.9 7.42% 10.9 7.97% 7.9 18.81% 6.84%<br />

30-nov-96 6.84% 29-nov<br />

68.8 122.2 146.9 136.8 68.5 179.1 42 13.68%<br />

01-dec-96<br />

02-dec-96<br />

03-dec-96<br />

04-dec-96<br />

05-dec-96<br />

06-dec-96 0 0.00% 0 0.00%<br />

07-dec-96<br />

08-dec-96<br />

09-dec-96<br />

10-dec-96 0 0.00%<br />

11-dec-96<br />

12-dec-96<br />

13-dec-96<br />

14-dec-96<br />

15-dec-96<br />

16-dec-96<br />

17-dec-96<br />

18-dec-96 0 0.00%<br />

19-dec-96 0 0.00% 0.00%<br />

20-dec-96<br />

21-dec-96<br />

22-dec-96<br />

23-dec-96 27.9 18.85%<br />

24-dec-96<br />

25-dec-96<br />

26-dec-96<br />

27-dec-96 306.1 206.82%<br />

28-dec-96 2 1.35%<br />

29-dec-96 0 0.00%<br />

30-dec-96<br />

31-dec-96<br />

107.2 137 5.6 190.2 308.8 133.2 148<br />

143


APPENDIX 1: DATA TRANSFORMATIONS IN IDRISI<br />

STATION 676330 677530 677430 676410 675510 675310 676650 AVERAGE<br />

Place Mongu Choma Livingstone Kaoma Solwezi <strong>Zambezi</strong> Lusaka<br />

long 23.16 27.06 25.81 24.8 26.38 23.11 28.45<br />

lat -15.25 -16.85 -17.81 -14.8 -12.18 -13.53 -15.32<br />

01-jan-97 0 #DIV/0!<br />

02-jan-97 0 0.00% 0 0.00% 0 0.00% 0 #DIV/0!<br />

03-jan-97 4.1 1.75% 1 0.41% 1 0.49% 20.1 #DIV/0!<br />

04-jan-97 3 #DIV/0!<br />

05-jan-97<br />

06-jan-97 0.5 0.20% 1 0.49% 5.1 #DIV/0!<br />

07-jan-97 1 0.36% 0.3 0.12% 1 #DIV/0!<br />

08-jan-97 0 #DIV/0!<br />

09-jan-97 0 #DIV/0!<br />

10-jan-97 1 #DIV/0!<br />

11-jan-97<br />

12-jan-97 26.9 #DIV/0!<br />

13-jan-97<br />

14-jan-97 0 #DIV/0!<br />

15-jan-97 1 #DIV/0!<br />

16-jan-97<br />

17-jan-97 4.1 #DIV/0!<br />

18-jan-97 24.9 #DIV/0! 17-jan<br />

19-jan-97 7.9 2.82% 5.1 #DIV/0! 2.82%<br />

20-jan-97 0 #DIV/0! 21-jan<br />

21-jan-97<br />

22-jan-97 23.1 #DIV/0!<br />

23-jan-97 0 0.00% 1 #DIV/0!<br />

24-jan-97 9.9 #DIV/0!<br />

25-jan-97 7.9 #DIV/0!<br />

26-jan-97 4.1 1.68% 4.1 #DIV/0!<br />

27-jan-97 0 #DIV/0!<br />

28-jan-97 0 #DIV/0!<br />

29-jan-97 9.9 #DIV/0!<br />

30-jan-97<br />

31-jan-97<br />

233.8 280 250.3 243.6 205.8 257.6 2.82%<br />

01-dec-99 1.7 1.08%<br />

02-dec-99 0 0.00%<br />

03-dec-99 2.2 1.40%<br />

04-dec-99 0.5 0.32% 0.32%<br />

05-dec-99 0 0.00% 0.00%<br />

06-dec-99 0 0.00% 0.00%<br />

07-dec-99 1.8 1.15% 1.15%<br />

08-dec-99 1.6 1.02% 1.02%<br />

09-dec-99 0 0.00% 0.00%<br />

10-dec-99 0 0.00%<br />

11-dec-99 54.6 34.84%<br />

12-dec-99 0.2 0.13%<br />

13-dec-99 0 0.00%<br />

14-dec-99 4.5 2.87%<br />

15-dec-99 26.3 16.78%<br />

16-dec-99 4.1 2.62%<br />

17-dec-99 1.1 0.70%<br />

18-dec-99 0 0.00%<br />

19-dec-99 0.2 0.13%<br />

20-dec-99 31 19.78%<br />

21-dec-99 9.7 6.19%<br />

22-dec-99 0 0.00%<br />

23-dec-99 0 0.00%<br />

24-dec-99 4.6 2.94%<br />

25-dec-99 3 1.91% 1.91%<br />

26-dec-99 0 0.00% 0.00%<br />

27-dec-99 0 0.00% 0.00%<br />

28-dec-99 0 0.00% 0.00%<br />

29-dec-99 9.6 6.13%<br />

30-dec-99 0 0.00%<br />

31-dec-99 0 0.00%<br />

156.7 78.6 77.2 108.8 - 151.3 33.3 4.40%<br />

144


APPENDIX 1: DATA TRANSFORMATIONS IN IDRISI<br />

STATION 676330 677530 677430 676410 675510 675310 676650 AVERAGE<br />

Place Mongu Choma Livingstone Kaoma Solwezi <strong>Zambezi</strong> Lusaka<br />

long 23.16 27.06 25.81 24.8 26.38 23.11 28.45<br />

lat -15.25 -16.85 -17.81 -14.8 -12.18 -13.53 -15.32<br />

01-jan-01 10.4 6.17% 6.17%<br />

02-jan-01 0 0.00% 0.00%<br />

03-jan-01 0 0.00% 0.00%<br />

04-jan-01 4.6 2.73% 2.73%<br />

05-jan-01 5.2 3.09% 3.09%<br />

06-jan-01 3.7 2.20% 2.20%<br />

07-jan-01 0 0.00% 0.00%<br />

08-jan-01 0 0.00% 0.00%<br />

09-jan-01 0 0.00% 0.00%<br />

10-jan-01 0 0.00% 0.00%<br />

11-jan-01 1.3 0.77%<br />

12-jan-01 0 0.00%<br />

13-jan-01 0.4 0.24%<br />

14-jan-01 0 0.00%<br />

15-jan-01 0 0.00%<br />

16-jan-01 19.2 11.39%<br />

17-jan-01 6.6 3.92%<br />

18-jan-01 15 8.90%<br />

19-jan-01 13.5 8.01%<br />

20-jan-01 16.1 9.55%<br />

21-jan-01 3.4 2.02%<br />

22-jan-01 0.2 0.12%<br />

23-jan-01 0 0.00%<br />

24-jan-01 0 0.00%<br />

25-jan-01 4 2.37%<br />

26-jan-01 16.2 9.61%<br />

27-jan-01 10.2 6.05%<br />

28-jan-01 16.5 9.79%<br />

29-jan-01 0.2 0.12%<br />

30-jan-01 21.8 12.94%<br />

31-jan-01 0 0.00%<br />

168.5 174.2 28.4 - 408.6 - 167.5 14.18%<br />

01-nov-02 0 0.00%<br />

02-nov-02 0 0.00%<br />

03-nov-02 0 0.00%<br />

04-nov-02 1.6 1.25%<br />

05-nov-02 2.4 1.88%<br />

06-nov-02 12.3 9.61%<br />

07-nov-02 20.7 16.17%<br />

08-nov-02 0 0.00%<br />

09-nov-02 0 0.00%<br />

10-nov-02 10.1 7.89%<br />

11-nov-02 0 0.00%<br />

12-nov-02 28.6 22.34% 22.34%<br />

13-nov-02 0 0.00% 0.00%<br />

14-nov-02 2.7 2.11% 2.11%<br />

15-nov-02 0 0.00% 0.00%<br />

16-nov-02 1.1 0.86% 0.86%<br />

17-nov-02 0 0.00% 0.00%<br />

18-nov-02 0 0.00% 0.00%<br />

19-nov-02 0 0.00% 0.00%<br />

20-nov-02 0 0.00% 0.00%<br />

21-nov-02 0 0.00% 0.00%<br />

22-nov-02 0 0.00%<br />

23-nov-02 11 8.59%<br />

24-nov-02 0 0.00%<br />

25-nov-02 23 17.97%<br />

26-nov-02 14.5 11.33%<br />

27-nov-02 0 0.00%<br />

28-nov-02 0 0.00%<br />

29-nov-02 0 0.00%<br />

30-nov-02 0 0.00%<br />

128 25.31%<br />

145


APPENDIX 1: DATA TRANSFORMATIONS IN IDRISI<br />

Table 4: Option 4.<br />

1993 1994 1995 1997 1998 2000 2001 2002 average<br />

1 25-31 Jan 1999 49.32 64.60 33.04 84.12<br />

259.03 0.19 234.78 0.28 165.71 0.20 267.41 0.31 0.24<br />

2 1-5 dec 1996 19.95 30.85 11.46 25.04 44.71 9.04<br />

234.78 0.08 181.42 0.17 167.68 0.07 165.03 0.15 289.08 0.15 47.07 0.19 0.14<br />

3 7-10 dec 1998 31.31 10.53 19.57 19.40 28.98 4.08<br />

234.78 0.13 181.42 0.06 167.68 0.12 165.03 0.12 289.08 0.10 47.07 0.09 0.10<br />

4 19-21 dec 1996 28.03 6.21 24.68 13.10 42.51 3.99<br />

234.78 0.12 181.42 0.03 167.68 0.15 165.03 0.08 289.08 0.15 47.07 0.08 0.10<br />

5 1-31 dec 2002<br />

Table 5: Option 5.<br />

2002 1993 1994 1995 1996 1997 1998 1999 2000 2001<br />

jan 146.80 149.44 7.00 121.65 632.22 120.64 684.29 147.93 1.28 143.19 12.98 167.16 414.81 149.22 5.85 135.82 120.58 123.18 557.86<br />

feb 124.43 123.53 0.80 105.24 368.14 109.80 213.95 133.47 81.78 111.60 164.48 130.76 40.13 140.69 264.62 138.70 203.69 137.51 171.27<br />

mrt 131.34 125.70 31.79 109.17 491.60 106.37 623.60 129.60 3.01 116.57 218.15 130.13 1.45 117.66 187.03 134.38 9.23 154.20 522.81<br />

apr 96.32 77.88 340.07 77.67 347.68 52.95 1881.17 56.89 1554.76 88.70 58.04 84.76 133.64 82.13 201.35 82.33 195.64 98.20 3.52<br />

mei 38.00 42.76 22.61 31.24 45.74 45.67 58.74 49.64 135.37 49.00 120.93 50.96 167.98 34.38 13.11 56.70 349.70 33.74 18.16<br />

jun 22.88 19.59 10.81 17.93 24.55 3.97 357.72 9.36 182.69 34.52 135.38 16.76 37.44 18.96 15.35 19.26 13.13 21.33 2.42<br />

jul 15.81 11.77 16.36 19.16 11.21 0.00 249.98 11.63 17.51 17.50 2.85 13.46 5.53 14.42 1.93 17.69 3.53 21.75 35.30<br />

aug 12.11 21.71 92.22 24.13 144.55 18.96 47.00 17.72 31.53 22.81 114.59 22.88 116.16 29.61 306.45 20.49 70.24 21.83 94.64<br />

sep 53.40 27.77 657.26 29.15 588.23 30.29 534.07 30.59 520.39 34.36 362.49 43.70 94.20 41.22 148.45 37.59 250.19 39.91 182.05<br />

okt 22.75 60.63 1435.42 69.58 2193.08 65.35 1815.36 53.81 965.11 77.67 3016.93 54.26 992.97 59.66 1362.92 69.41 2177.15 70.00 2232.50<br />

nov 86.26 91.41 26.54 84.81 2.11 59.14 735.67 84.40 3.47 85.83 0.18 81.09 26.74 100.46 201.62 110.28 576.97 101.48 231.63<br />

dec 106.18 123.17 111.05 96.70 89.91 124.27 84.47 127.22 138.16<br />

RMSE 14.83 20.10 24.50 17.07 18.72 13.01 15.02 18.19 18.38<br />

min 14.83 1993<br />

For <strong>the</strong> gap repair <strong>the</strong> following IDL-code was written.<br />

pro gap_repair<br />

;Author: A.M.J. Gerrits, <strong>Delft</strong> University <strong>of</strong> Technology<br />

workpath = 'd:\temp'<br />

a=fltarr(401,341)<br />

save_be<strong>for</strong>e=0<br />

save_after=0<br />

b=fltarr(3)<br />

d=fltarr(3)<br />

numb=0<br />

<strong>for</strong> year=1993,2002 do begin &$<br />

ye=strcompress(string(year),/remove_all)<br />

openr,1,'original/'+ye+'_rain_norm.gz',/compress<br />

openr,2,'original/'+ye+'_in<strong>for</strong>mation_err'<br />

openw,3,'repaired/'+ye+'_rain_norm_repair.gz',/compress<br />

openw,4,'repaired/'+ye+'_in<strong>for</strong>mation_err_repair'<br />

readf,2,b<br />

<strong>for</strong> month=1,12 do begin<br />

mo=strcompress(string(month),/remove_all)<br />

<strong>for</strong> day=1,31 do begin<br />

da=strcompress(string(day),/remove_all)<br />

if(b(0) eq year and b(1) eq month and b(2) eq day) <strong>the</strong>n begin<br />

readu,1,a &$<br />

print,year, month, day<br />

;Gaps_day be<strong>for</strong>e: e.g. 3 March is missing, 2 March has to be counted double<br />

if(b(0) eq 1993 and b(1) eq 3 and b(2) eq 2) <strong>the</strong>n begin<br />

146


APPENDIX 1: DATA TRANSFORMATIONS IN IDRISI<br />

save_be<strong>for</strong>e=1<br />

endif<br />

.<br />

.<br />

.<br />

;Gaps_day after: e.g. 27 November is missing, 28 March has to be counted double<br />

if (b(0) eq 1995 and b(1) eq 11 and b(2) eq 28) <strong>the</strong>n begin<br />

save_after=1<br />

endif<br />

.<br />

.<br />

.<br />

;Block_gaps<br />

if (b(0) eq 1996 and b(1) eq 2) <strong>the</strong>n begin<br />

a = swap_endian(a)<br />

tmp=fltarr(401,341)<br />

blas_axpy,tmp,1.1757,a<br />

a = swap_endian(tmp)<br />

endif<br />

.<br />

.<br />

.<br />

;Save_after<br />

if (save_after eq 1) <strong>the</strong>n begin<br />

printf,4,year, month, (day-1)<br />

writeu,3,a<br />

save_after=0<br />

endif<br />

printf,4,year, month, day<br />

writeu,3,a<br />

;Save_be<strong>for</strong>e<br />

if(save_be<strong>for</strong>e eq 1) <strong>the</strong>n begin<br />

printf,4,year, month, (day+1)<br />

writeu,3,a<br />

save_be<strong>for</strong>e=0<br />

endif<br />

if (not e<strong>of</strong>(2)) <strong>the</strong>n begin<br />

readf,2,b<br />

endif<br />

endif<br />

end<strong>for</strong><br />

end<strong>for</strong><br />

close,1<br />

close,2<br />

close,3<br />

close,4<br />

end<strong>for</strong><br />

print,'End <strong>of</strong> gap repair'<br />

end<br />

In <strong>the</strong> following IDL-code <strong>the</strong> daily repaired MIRA-files are summed up to monthly values.<br />

Also <strong>the</strong> data is converted to an ASCII-raster file, which is easy to open in Idrisi.<br />

147


APPENDIX 1: DATA TRANSFORMATIONS IN IDRISI<br />

pro MIRA_read<br />

;Procedure is based on <strong>the</strong> script obtained from <strong>the</strong> University <strong>of</strong> Sussex, UK<br />

;Author: A.M.J. Gerrits, <strong>Delft</strong> University <strong>of</strong> Technology<br />

workpath = 'd:\temp'<br />

a=fltarr(401,341)<br />

year_begin = 1993<br />

year_end = 2002<br />

byear=strcompress(string(year_begin),/remove_all)<br />

eyear=strcompress(string(year_end),/remove_all)<br />

month_begin = 1<br />

month_end = 12<br />

day_begin = 1<br />

day_end = 31<br />

day_aantal = (day_end-day_begin+1)<br />

month_aantal = (month_end-month_begin+1)<br />

year_aantal = (year_end-year_begin+1)<br />

c =fltarr((day_aantal*month_aantal*year_aantal)+1)<br />

;0.1 degree<br />

;lonmin=10<br />

;lonmax=50<br />

;latmin=-34<br />

;latmax=-0<br />

b=fltarr(3)<br />

numb=0<br />

window,1,retain=2<br />

window,2,retain=2<br />

window,3,retain=2<br />

window,4,retain=2<br />

openw,5,'daily/GRASSIDR_daily.iml'<br />

openw,6,'monthly/GRASSIDR_monthly.iml'<br />

openw,7,'locations/'+byear+'_'+eyear+'_Choma.txt'<br />

openw,8,'locations/'+byear+'_'+eyear+'_Kabombo.txt'<br />

openw,9,'locations/'+byear+'_'+eyear+'_Kafue.txt'<br />

openw,10,'locations/'+byear+'_'+eyear+'_Kalabo.txt'<br />

openw,11,'locations/'+byear+'_'+eyear+'_Kaoma.txt'<br />

openw,12,'locations/'+byear+'_'+eyear+'_Livingstone.txt'<br />

openw,13,'locations/'+byear+'_'+eyear+'_Mongu.txt'<br />

openw,14,'locations/'+byear+'_'+eyear+'_Magoye.txt'<br />

openw,15,'locations/'+byear+'_'+eyear+'_Solwezi.txt'<br />

openw,16,'locations/'+byear+'_'+eyear+'_<strong>Zambezi</strong>.txt'<br />

<strong>for</strong> year=year_begin,year_end do begin &$<br />

ye=strcompress(string(year),/remove_all)<br />

openr,1,'repaired/'+ye+'_rain_norm_repair.gz',/compress<br />

openr,2,'repaired/'+ye+'_in<strong>for</strong>mation_err_repair'<br />

readf,2,b<br />

<strong>for</strong> month=month_begin,month_end do begin<br />

mo=strcompress(string(month),/remove_all)<br />

if (strlen(mo) eq 1) <strong>the</strong>n begin<br />

mo='0'+mo<br />

endif<br />

month_sum = fltarr(401,341)<br />

<strong>for</strong> day=day_begin,day_end do begin<br />

148


APPENDIX 1: DATA TRANSFORMATIONS IN IDRISI<br />

if (b(0) eq year and b(1) eq month and b(2) eq day) <strong>the</strong>n begin<br />

da=strcompress(string(day),/remove_all)<br />

if (strlen(da) eq 1) <strong>the</strong>n begin<br />

da='0'+da<br />

endif<br />

readu,1,a &$<br />

a = swap_endian(a)<br />

maxa = max(a)<br />

c((day-day_begin)+((month-month_begin)*day_aantal)+((year-year_begin)*month_aantal*day_aantal))=maxa<br />

blas_axpy,month_sum,24,a<br />

print,year,month,day<br />

openw,3,'daily/'+ye+'_'+mo+'_'+da+'_rain_output_daily'<br />

printf,3,'proj: 3'<br />

printf,3,'zone: 0'<br />

printf,3,'north: 0S'<br />

printf,3,'south: 34S'<br />

printf,3,'east: 50E'<br />

printf,3,'west: 10E'<br />

printf,3,'cols: 401'<br />

printf,3,'rows: 341<br />

printf,3,a<br />

close,3<br />

printf,5,'GRASSIDR x<br />

1*1*'+workpath+'\daily\'+ye+'_'+mo+'_'+da+'_rain_output_daily*'+workpath+'\daily\prec_daily_'+ye+'_'+mo+'_'+da+'.rst*3*N*<br />

classes'<br />

wset,1 & tv,bytscl(a,0,2)<br />

wset,2 & plot,a<br />

wset,3 & plot,c<br />

WRITE_JPEG,'daily/images/'+ye+'_'+mo+'_'+da+'_rain_output_daily.jpg',bytscl(a,0,2)<br />

if (not e<strong>of</strong>(2)) <strong>the</strong>n readf,2,b<br />

endif<br />

end<strong>for</strong><br />

openw,4,'monthly/'+ye+'_'+mo+'_rain_output_monthly'<br />

printf,4,'proj: 3'<br />

printf,4,'zone: 0'<br />

printf,4,'north: 0S'<br />

printf,4,'south: 34S'<br />

printf,4,'east: 50E'<br />

printf,4,'west: 10E'<br />

printf,4,'cols: 401'<br />

printf,4,'rows: 341'<br />

printf,4,month_sum<br />

wset,4 & tv,bytscl(month_sum,0,48)<br />

close,4<br />

WRITE_JPEG,'monthly/images/'+ye+'_'+mo+'_rain_output_monthly.jpg',bytscl(month_sum,0,48)<br />

printf,6,'GRASSIDR x<br />

1*1*'+workpath+'\monthly\'+ye+'_'+mo+'_rain_output_monthly*'+workpath+'\monthly\prec_monthly_'+ye+'_'+mo+'.rst*3*N*cl<br />

asses'<br />

printf,7,month_sum(171,172)<br />

printf,8,month_sum(143,204)<br />

printf,9,month_sum(180,182)<br />

printf,10,month_sum(128,191)<br />

printf,11,month_sum(149,192)<br />

printf,12,month_sum(159,162)<br />

printf,13,month_sum(132,188)<br />

printf,14,month_sum(177,179)<br />

printf,15,month_sum(164,218)<br />

printf,16,month_sum(132,205)<br />

end<strong>for</strong><br />

close,1<br />

close,2<br />

end<strong>for</strong><br />

149


APPENDIX 1: DATA TRANSFORMATIONS IN IDRISI<br />

close,5<br />

close,6<br />

close,7<br />

close,8<br />

close,9<br />

close,10<br />

close,11<br />

close,12<br />

close,13<br />

close,14<br />

close,15<br />

close,16<br />

wshow,1,0<br />

wshow,2,0<br />

wshow,3,0<br />

wshow,4,0<br />

print,'end <strong>of</strong> program'<br />

end<br />

• Import <strong>the</strong> ascii-files with GRASSIDR in Idrisi<br />

• Transpose <strong>the</strong> maps, because IDL stores <strong>the</strong> data in a different way, <strong>the</strong>n Idrisi reads <strong>the</strong><br />

data:<br />

Idrisi way<br />

IDL way<br />

1 2 3 4 13 14 15 16<br />

5 6 7 8 9 10 11 12<br />

9 10 11 12 5 6 7 8<br />

13 14 15 16 1 2 3 4<br />

• REFORMAT -> TRANSPOSE -> ‘reverse order <strong>of</strong> rows’<br />

• Change <strong>the</strong> projection from lat/long to lazea.<br />

1.2.7 FEWS-precipitation [11]<br />

Spatial: 0.1° x 0.1°<br />

Temporal: decadal<br />

Unit: mm/decade<br />

Extension: *.img<br />

• Open WinDisp and run <strong>the</strong> following script to convert <strong>the</strong> data to Idrisi16 <strong>for</strong>mat. Write<br />

following code in a text-editor and save it with <strong>the</strong> extension *.cmd.<br />

Batch Variable Prompt, "Year, Enter year desired, 95"<br />

Batch If Begin, "((%Year%>=01) & (%Year%


APPENDIX 1: DATA TRANSFORMATIONS IN IDRISI<br />

Process Export IDRISI Image, "D:\MIRIAM\FEWS\rfe%Year%\sa%Year%%MonthOK%%Dekad%.IMG,<br />

D:\MIRIAM\FEWS\idrisi\sa%Year%%MonthOK%%Dekad%.IMG"<br />

File Close, ""<br />

Batch For End<br />

Batch For End<br />

Batch If Else<br />

Batch For Begin, "Month, 1, 12, 1"<br />

Batch For Begin, "Dekad, 1, 3, 1"<br />

Batch If Begin, "%Month%


APPENDIX 1: DATA TRANSFORMATIONS IN IDRISI<br />

maps twice, which saves disc space. The maps, which are corrected, are <strong>the</strong> precipitation<br />

maps and <strong>the</strong> potential evaporation maps.<br />

• Delete <strong>the</strong> legend <strong>of</strong> <strong>the</strong> old maps<br />

• Change in <strong>the</strong> documentation file <strong>the</strong> reference system from ‘unspecified’ to ‘plane’.<br />

• Convert <strong>the</strong> maps from integer to real. REFORMAT -> CONVERT<br />

• Make an Idrisi-map with <strong>the</strong> correct size (649x422), which only contains zeros. DATA<br />

ENTRY -> INITIAL<br />

• Concatenate <strong>the</strong> old maps to <strong>the</strong> ‘zero-map’. REFORMAT -> CONCAT<br />

Use <strong>the</strong> following settings:<br />

Figure 4: Concatenation settings.<br />

The first image must be <strong>the</strong> old map and <strong>the</strong> second image is <strong>the</strong> ‘zero-map’.<br />

• Change with a text-editor <strong>the</strong> min- and max-size <strong>of</strong> <strong>the</strong> map to:<br />

Xmin: -178500<br />

Xmax: 1768500<br />

Ymin: -2812500<br />

Ymax: -1545500<br />

• Mask <strong>the</strong> maps.<br />

152


APPENDIX 2: FAO SOIL UNITS DESCRIPTION<br />

Appendix 2<br />

FAO Soil Units Description<br />

From: http://ag.arizona.edu/OALS/IALC/soils/fao.html<br />

153


APPENDIX 2: FAO SOIL UNITS DESCRIPTION<br />

Acrisols: Acidic soils with a layer <strong>of</strong> clay accumulation. Under <strong>the</strong> modified legend this class<br />

consists only <strong>of</strong> clays with low cation exchange capacity.<br />

Alisols: A new soil class <strong>of</strong> <strong>for</strong>merly Acrisols with clays with high cation exchange capacity.<br />

Andosols: Dark soils <strong>for</strong>med from volcanic materials with little horizon development.<br />

Anthrosols: New class <strong>of</strong> soils <strong>for</strong>med by human activities.<br />

Arenosols: Sandy soils with little pr<strong>of</strong>ile development.<br />

Calcisols: New class <strong>of</strong> soils with accumulation <strong>of</strong> calcium carbonate.<br />

Cambisols: Soil with slight pr<strong>of</strong>ile development that is not dark in color.<br />

Chernozems: Dark soils rich in organic matter.<br />

Ferralsols: Highly wea<strong>the</strong>red soils rich in sesquioxide clays and with low cation exchange<br />

capacities.<br />

Fluvisols: Alluvial and floodplain soils with little pr<strong>of</strong>ile development.<br />

Gleysols: Water saturated soils that are not salty.<br />

Greyzems: Dark soils rich in organic matter.<br />

Gypsisols: New class <strong>of</strong> soils with an accumulation <strong>of</strong> calcium sulfate (gypsum).<br />

Histosols: Soils very rich in organic matter (>14%).<br />

Kastanozems: Dark soils rich in organic matter.<br />

Leptosols: New class <strong>of</strong> soils that are shallow in depth and with weak pr<strong>of</strong>ile development.<br />

Lithosols: Thin soils over rock. Removed from <strong>the</strong> revised legend.<br />

Lixisols: New soil class, <strong>for</strong>merly Luvisols, with clays with low cation exchange capacity.<br />

154


APPENDIX 2: FAO SOIL UNITS DESCRIPTION<br />

Luvisols: Soils with strong accumulation <strong>of</strong> clay in <strong>the</strong> B-horizon and not dark in color.<br />

Under <strong>the</strong> revised legend <strong>the</strong>se soils have clays with high cation exchange capacity.<br />

Nitisols: New class <strong>of</strong> soils with shiny surfaces on structural faces (peds) <strong>of</strong> <strong>the</strong> soil.<br />

Nitosols: Acid soils with a very thick layer <strong>of</strong> clay accumulation. Removed from <strong>the</strong> revised<br />

legend.<br />

Phaeozems: Dark soils rich in organic matter.<br />

Planosols: Soils with a light colored layer over a soil layer that restricts water drainage.<br />

Plinthosols: New class <strong>of</strong> mottled, clayey soils that irreversibly harden after repeated drying.<br />

Podzols: Soils with a strongly bleached layer and a layer <strong>of</strong> iron or aluminum cemented<br />

organic matter.<br />

Podzoluvisols: Soils similar to both Podzols and Luvisols.<br />

Rankers: Shallow, dark soils rich in organic matter and <strong>for</strong>med from siliceous material.<br />

Removed from <strong>the</strong> revised legend.<br />

Regosols: Surface layer <strong>of</strong> rocky material. Coarse texture Regosols have been incorporated in<br />

<strong>the</strong> Arenosols under <strong>the</strong> revised system.<br />

Rendzinas: Dark soils rich in organic matter over calcareous material. Removed from <strong>the</strong><br />

revised legend.<br />

Solonchaks: Salty soil with little horizon development.<br />

Solonetz: Salty soil with a high concentration <strong>of</strong> sodium.<br />

Vertisols: Clayey soils that <strong>for</strong>m deep (>50 cm), wide (>1 cm) cracks when dry.<br />

Xerosols: aridic soils. Removed from <strong>the</strong> revised system.<br />

Yermosols: aridic soils. Removed from <strong>the</strong> revised system. Yermic has been added to <strong>the</strong><br />

management phases.<br />

155


APPENDIX 2: FAO SOIL UNITS DESCRIPTION<br />

156


APPENDIX 3: ZAMBEZI SCRIPT<br />

Appendix 3<br />

<strong>Zambezi</strong> script<br />

157


APPENDIX 3: ZAMBEZI SCRIPT<br />

Seyam, Ficara and<br />

Gerrits1, prec - pe, prec - int)<br />

# Calculating soil moisture, transpiration and overtop (deep soil)<br />

#*************************************************************************<br />

# PARAMETERS CR and QC<br />

cr= mif (subsub==10 , 0.26 , 0.25)<br />

cr= mif (subsub==11 , 0.22 , cr)<br />

cr= mif (subsub==12 , 0.15 , cr)<br />

cr= mif (subsub==13 , 0.28 , cr)<br />

cr= mif (subsub==14 , 0.33 , cr)<br />

cr= mif (subsub==8 , 0.13 , cr)<br />

cr= mif (wetland==1, 0.636,cr)<br />

cr=1.1*cr<br />

qc= mif (subsub==10 , 0.50 , 0.30)<br />

qc= mif (subsub==11 , 0.30 , qc)<br />

qc= mif (subsub==12 , 0.70 , qc)<br />

qc= mif (subsub==13 , 0.50 , qc)<br />

qc= mif (subsub==14 , 0.30 , qc)<br />

Su = mif(water>1, 0 , (Su + (1 - cr) * pnet))<br />

k=3<br />

overtop = max(0, ((Su - Smax)/k))<br />

Su = Su - overtop<br />

tp = mif(water>1, 0, pe - (1 - (f/ 100)) * int)<br />

tp = max(0, tp)<br />

tra = mif(water>1, 0, (tp* min(1,((2/smax) *Su))))<br />

tra=min(tra,su)<br />

Green=tra+(int-intmar)<br />

White=intmar<br />

destroy(tp)<br />

su = su - tra<br />

destroy(tra)<br />

# monthly balance <strong>of</strong> water bodies in mm/month<br />

#*************************************************************************<br />

dsw = mif(water>1, pnet, 0)<br />

dsw = zonalsum(dsw, water)<br />

dsw = dsw * 0.003471391<br />

158


APPENDIX 3: ZAMBEZI SCRIPT<br />

# Calculation <strong>of</strong> saturation overland flow, quick flow and slow flow in mm/month.<br />

#*************************************************************************<br />

gwsmax=25*ln_gwsmax<br />

gws = mif (water>1,0, gws + (cr * pnet) + overtop)<br />

sa<strong>of</strong> = mif (water>1,0, mif(gws>gwsmax, gws-gwsmax, 0))<br />

gws = gws-sa<strong>of</strong><br />

destroy(pnet)<br />

destroy(cr)<br />

destroy(overtop)<br />

gwsquick = gwsmax * qc<br />

destroy(qc)<br />

rtq=4<br />

qflo = mif(water>1, 0, max((gws-gwsquick),0) / rtq)<br />

gws = gws - qflo<br />

cap1=mif(gws1,0,cap1)<br />

gws = gws - caprise<br />

su = su + caprise<br />

#TSummary(su, %OutputDirectory)<br />

#exporttimer(su,%outputdirectory,'input\pallettes\pre.pal')<br />

timeout(su, %DischargePoints, %OutputDirectory)<br />

rts=12<br />

sflo = mif(water>1, 0, max(gws, -15) / rts)<br />

gws = gws - sflo<br />

#TSummary(gws, %OutputDirectory)<br />

#exporttimer(gws, %outputdirectory, 'input\palettes\gw.pal')<br />

timeout(gws, %DischargePoints, %OutputDirectory)<br />

run<strong>of</strong>f2 = sa<strong>of</strong> + qflo + sflo<br />

blue=run<strong>of</strong>f2<br />

destroy(sflo)<br />

destroy(kflo)<br />

destroy(sa<strong>of</strong>)<br />

destroy(rtq)<br />

#TSummary(run<strong>of</strong>f2, %OutputDirectory)<br />

# Accumulating discharge from above lying cells in mm/month.<br />

#*************************************************************************<br />

qout = accu(fd, run<strong>of</strong>f2,'Input\')<br />

QOUT = QOUT * 0.003471391<br />

#export(qout, %OutputDirectory)<br />

timeout(QOUT, %DischargePoints, %OutputDirectory)<br />

Destroy(QOUT)<br />

]]><br />

159


APPENDIX 3: ZAMBEZI SCRIPT<br />

160


APPENDIX 4: MODEL RESULTS<br />

Appendix 4<br />

Model results<br />

1.1 Results <strong>of</strong> Lukulu.....................................................................................................162<br />

1.2 Results <strong>of</strong> Victoria Falls...........................................................................................163<br />

1.3 Hydrographs <strong>of</strong> o<strong>the</strong>r locations................................................................................164<br />

161


APPENDIX 4: MODEL RESULTS<br />

1.1 Results <strong>of</strong> Lukulu<br />

In- and outgoing fluxes LUKULU<br />

30000<br />

25000<br />

Accumulated flux upstream <strong>of</strong> Lukulu [m³/s]<br />

20000<br />

15000<br />

10000<br />

5000<br />

0<br />

jan-78<br />

jan-79<br />

jan-80<br />

jan-81<br />

jan-82<br />

jan-83<br />

jan-84<br />

jan-85<br />

jan-86<br />

jan-87<br />

jan-88<br />

jan-89<br />

jan-90<br />

jan-91<br />

jan-92<br />

jan-93<br />

jan-94<br />

jan-95<br />

jan-96<br />

jan-97<br />

jan-98<br />

jan-99<br />

jan-00<br />

jan-01<br />

jan-02<br />

jan-03<br />

IN Prec OUT Int OUT Tra OUT Run<strong>of</strong>f<br />

Figure 1: Water balance terms <strong>of</strong> Lukulu.<br />

Run<strong>of</strong>f LUKULU<br />

4,000.00<br />

3,500.00<br />

3,000.00<br />

2,500.00<br />

Run<strong>of</strong>f [m³/s]<br />

2,000.00<br />

1,500.00<br />

1,000.00<br />

500.00<br />

0.00<br />

jan-78<br />

jan-79<br />

jan-80<br />

jan-81<br />

jan-82<br />

jan-83<br />

jan-84<br />

jan-85<br />

jan-86<br />

jan-87<br />

jan-88<br />

jan-89<br />

jan-90<br />

jan-91<br />

jan-92<br />

jan-93<br />

jan-94<br />

jan-95<br />

jan-96<br />

jan-97<br />

jan-98<br />

jan-99<br />

jan-00<br />

jan-01<br />

jan-02<br />

jan-03<br />

Date<br />

OUT Run<strong>of</strong>f OUT Sa<strong>of</strong> OUT Qflo OUT Sflo<br />

Figure 2: Run<strong>of</strong>f <strong>of</strong> Lukulu.<br />

162


APPENDIX 4: MODEL RESULTS<br />

1.2 Results <strong>of</strong> Victoria Falls<br />

In- and outgoing fluxes VICTORIA FALLS<br />

60000<br />

50000<br />

Accumulated flux upstream <strong>of</strong> Victoria Falls [m³/s]<br />

40000<br />

30000<br />

20000<br />

10000<br />

0<br />

jan-78<br />

jan-79<br />

jan-80<br />

jan-81<br />

jan-82<br />

jan-83<br />

jan-84<br />

jan-85<br />

jan-86<br />

jan-87<br />

jan-88<br />

jan-89<br />

jan-90<br />

jan-91<br />

jan-92<br />

jan-93<br />

jan-94<br />

jan-95<br />

jan-96<br />

jan-97<br />

jan-98<br />

jan-99<br />

jan-00<br />

jan-01<br />

jan-02<br />

jan-03<br />

Figure 3: Water balance terms <strong>of</strong> Victoria Falls.<br />

IN Prec OUT Int OUT Tra OUT Run<strong>of</strong>f<br />

Run<strong>of</strong>f VICTORIA FALLS<br />

6,000.00<br />

5,000.00<br />

4,000.00<br />

Run<strong>of</strong>f [m³/s]<br />

3,000.00<br />

2,000.00<br />

1,000.00<br />

0.00<br />

jan-78<br />

jan-79<br />

jan-80<br />

jan-81<br />

jan-82<br />

jan-83<br />

jan-84<br />

jan-85<br />

jan-86<br />

jan-87<br />

jan-88<br />

jan-89<br />

jan-90<br />

jan-91<br />

jan-92<br />

jan-93<br />

jan-94<br />

jan-95<br />

jan-96<br />

jan-97<br />

jan-98<br />

jan-99<br />

jan-00<br />

jan-01<br />

jan-02<br />

jan-03<br />

Date<br />

OUT Run<strong>of</strong>f OUT Sa<strong>of</strong> OUT Qflo OUT Sflo<br />

Figure 4: Run<strong>of</strong>f <strong>of</strong> Victoria Falls.<br />

163


APPENDIX 4: MODEL RESULTS<br />

1.3 Hydrographs <strong>of</strong> o<strong>the</strong>r locations<br />

NDUBEN<br />

600.00<br />

500.00<br />

400.00<br />

Discharge [m³/s]<br />

300.00<br />

200.00<br />

100.00<br />

0.00<br />

jan-78<br />

jan-79<br />

jan-80<br />

jan-81<br />

jan-82<br />

jan-83<br />

jan-84<br />

jan-85<br />

jan-86<br />

jan-87<br />

jan-88<br />

jan-89<br />

jan-90<br />

jan-91<br />

jan-92<br />

jan-93<br />

jan-94<br />

jan-95<br />

jan-96<br />

jan-97<br />

jan-98<br />

jan-99<br />

jan-00<br />

jan-01<br />

jan-02<br />

jan-03<br />

Date<br />

simulated<br />

observed<br />

Figure 5: Hydrograph <strong>of</strong> Nduben.<br />

Itezhitezhi outlet<br />

2500.00<br />

2000.00<br />

Discharge [m³/s]<br />

1500.00<br />

1000.00<br />

500.00<br />

0.00<br />

jan-78<br />

jan-79<br />

jan-80<br />

jan-81<br />

jan-82<br />

jan-83<br />

jan-84<br />

jan-85<br />

jan-86<br />

jan-87<br />

jan-88<br />

jan-89<br />

jan-90<br />

jan-91<br />

jan-92<br />

jan-93<br />

jan-94<br />

jan-95<br />

jan-96<br />

jan-97<br />

jan-98<br />

jan-99<br />

jan-00<br />

jan-01<br />

jan-02<br />

jan-03<br />

Date<br />

Figure 6: Hydrograph <strong>of</strong> Itezhitezhi outlet.<br />

simulated<br />

observed<br />

164


APPENDIX 4: MODEL RESULTS<br />

confl. Luangua to <strong>Zambezi</strong><br />

4500.00<br />

4000.00<br />

3500.00<br />

3000.00<br />

Discharge [m³/s]<br />

2500.00<br />

2000.00<br />

1500.00<br />

1000.00<br />

500.00<br />

0.00<br />

jan-78<br />

jan-79<br />

jan-80<br />

jan-81<br />

jan-82<br />

jan-83<br />

jan-84<br />

jan-85<br />

jan-86<br />

jan-87<br />

jan-88<br />

jan-89<br />

jan-90<br />

jan-91<br />

jan-92<br />

jan-93<br />

jan-94<br />

jan-95<br />

jan-96<br />

jan-97<br />

jan-98<br />

jan-99<br />

jan-00<br />

jan-01<br />

jan-02<br />

jan-03<br />

Date<br />

simulated<br />

observed<br />

Figure 7: Hydrograph <strong>of</strong> confluence Luangua to <strong>Zambezi</strong> River.<br />

Lake Nyasa<br />

1,200.00<br />

1,000.00<br />

800.00<br />

Discharge [m³/s]<br />

600.00<br />

400.00<br />

200.00<br />

0.00<br />

jan-78<br />

jan-79<br />

jan-80<br />

jan-81<br />

jan-82<br />

jan-83<br />

jan-84<br />

jan-85<br />

jan-86<br />

jan-87<br />

jan-88<br />

jan-89<br />

jan-90<br />

jan-91<br />

jan-92<br />

jan-93<br />

jan-94<br />

jan-95<br />

jan-96<br />

jan-97<br />

jan-98<br />

jan-99<br />

jan-00<br />

jan-01<br />

jan-02<br />

jan-03<br />

-200.00<br />

Date<br />

simulated<br />

observed<br />

Figure 8: Hydrograph <strong>of</strong> Lake Nyasa outlet.<br />

165


APPENDIX 4: MODEL RESULTS<br />

Liwonde<br />

1200.00<br />

1000.00<br />

800.00<br />

Discharge [m³/s]<br />

600.00<br />

400.00<br />

200.00<br />

0.00<br />

jan-78<br />

jan-79<br />

jan-80<br />

jan-81<br />

jan-82<br />

jan-83<br />

jan-84<br />

jan-85<br />

jan-86<br />

jan-87<br />

jan-88<br />

jan-89<br />

jan-90<br />

jan-91<br />

jan-92<br />

jan-93<br />

jan-94<br />

jan-95<br />

jan-96<br />

jan-97<br />

jan-98<br />

jan-99<br />

jan-00<br />

jan-01<br />

jan-02<br />

jan-03<br />

-200.00<br />

Date<br />

simulated<br />

observed<br />

Figure 9: Hydrograph <strong>of</strong> Liwonde.<br />

Lake Kariba<br />

4500,00<br />

4000,00<br />

3500,00<br />

3000,00<br />

Discharge [m³/s]<br />

2500,00<br />

2000,00<br />

1500,00<br />

1000,00<br />

500,00<br />

0,00<br />

jan-78<br />

jan-79<br />

jan-80<br />

jan-81<br />

jan-82<br />

jan-83<br />

jan-84<br />

jan-85<br />

jan-86<br />

jan-87<br />

jan-88<br />

jan-89<br />

jan-90<br />

Figure 10: Hydrograph <strong>of</strong> Outlet Kariba.<br />

jan-91<br />

simulated<br />

Date<br />

jan-92<br />

jan-93<br />

jan-94<br />

jan-95<br />

observed<br />

jan-96<br />

jan-97<br />

jan-98<br />

jan-99<br />

jan-00<br />

jan-01<br />

jan-02<br />

jan-03<br />

166


APPENDIX 5: GLUE SCRIPT<br />

Appendix 5<br />

GLUE script<br />

167


APPENDIX 5: GLUE SCRIPT<br />

% This m-file is <strong>the</strong> application interface between <strong>the</strong> GLUE environment and a specific application<br />

% this is <strong>the</strong> only MATLAB-file where amendments are required<br />

%<br />

% Micha Werner<br />

% Last Update: 12-August-2002<br />

% Reason: Comments line added as documentation<br />

%<br />

%<br />

% clear all open figures and variable from workspace<br />

clear all;<br />

close all;<br />

% START INPUT SECTION<br />

% Input1<br />

% cell arrays <strong>of</strong> parameters - one line <strong>for</strong> each parameter considered<br />

% note <strong>the</strong> use <strong>of</strong> braces ra<strong>the</strong>r than brackets!!<br />

%<br />

% Syntax Par{#} = {'Name <strong>of</strong> parameter', }<br />

Par{1} = {'D' , 70 , 80, 100};<br />

Par{2} = {'cr' , 0.5 , 1, 1.5};<br />

Par{3} = {'cap' , 0.5 , 1, 1.5};<br />

Par{4} = {'gws25' , 20 , 25, 30};<br />

%Par{5} = {'\alpha_2' , 0.50 , 1.50, 4.00};<br />

%Par{6} = {'\beta_2' , 0.50 , 1.00, 4.00};<br />

%Par{7} = {'fc_2' , 100 , 193, 400};<br />

%Par{8} = {'maxbas_2' , 1 , 1.04167, 2.00};<br />

%Par{9} = {'\alpha_3' , 0.50 , 2.00, 3.20};<br />

%Par{10} = {'\beta_3' , 0.50 , 2.00, 4.00};<br />

%Par{11} = {'fc_3' , 100 , 153, 400};<br />

%Par{12} = {'maxbas_3' , 1 , 1.54167, 2};<br />

% Input 2<br />

% Number <strong>of</strong> runs<br />

% Number <strong>of</strong> runs to carry out<br />

% Note: in case <strong>of</strong> interval sampling, <strong>the</strong> nPar root is used along each axis!<br />

nRun = 300;<br />

% Dimensions <strong>of</strong> outputs and measured value array<br />

nStep = 286; % Number <strong>of</strong> steps in each run<br />

nLoc = 2; % Number <strong>of</strong> locations considered in analysis<br />

% ASCII file with observations<br />

% This MUST include at least nStep rows <strong>of</strong> values and nLoc columns <strong>of</strong> values<br />

ObservedFile = 'observed.txt'; % file name and location<br />

ObsStartRow = 1; % Row to start reading values from<br />

ObsStartCol = 1; % Column to start reading values from<br />

% (Note: This is <strong>the</strong> position in <strong>the</strong> string - not <strong>the</strong> data column!)<br />

% Settings used <strong>for</strong> communication with model through ModelMex.dll<br />

SettingsFile = '.\settings.txt'; % name <strong>of</strong> file <strong>for</strong> settings (do not change)<br />

CommandLine = 'run_stream'; % command line to run model<br />

AddRunID = 1; % Option to add run ID as argument to command line (0=No, 1=Yes)<br />

% Template file <strong>for</strong> parameters (delimited by semicolon <strong>for</strong> multiple files)<br />

ParameterTemplate = 'final.tpl';<br />

% Parameter file (delimited by semicolon <strong>for</strong> multiple files)<br />

ParameterFile = '.\input\scripts\final.mxl'; % Model file <strong>for</strong> parameters<br />

TemplateDelimitor = '$'; % Delimiter used <strong>for</strong> identifying parameters<br />

OutputFile = 'routing_out.txt'; % Name <strong>of</strong> ASCII output file from model<br />

OutStartRow = 12; % Row to start reading values from<br />

OutStartCol = 0; % Column to start reading values from<br />

% (Note: This is <strong>the</strong> position in <strong>the</strong> string - not <strong>the</strong> data column!)<br />

OutputBinary = 'calcval.bin'; % name <strong>of</strong> binary interchange filw with results (do not change)<br />

MexType = 0; % Option whe<strong>the</strong>r to run EXE or DLL (0=Use ModelEXE (default) 1 = Use ModelMex (<strong>for</strong><br />

Matlab function evaluations))<br />

WorkDir = '.\'; % Working directory <strong>for</strong> running model<br />

168


APPENDIX 5: GLUE SCRIPT<br />

%<br />

FitnessFunction = [1 1]; % Array <strong>of</strong> fitness funtions - should be same size as nLoc<br />

FitWeight = [1 1]; % weigth <strong>of</strong> fitness funtions - should be same size as nLoc<br />

SampleType = 2; % Interval= 0; Uni<strong>for</strong>m samplin = 1; LHS = 2; MLHS = 3<br />

%u_interval = [0.01 0.025 0.05 0.10 0.25 0.50 0.75 0.90 0.95 0.975 0.99]; % Uncertainty intervals<br />

u_interval = [0.05 0.50 0.95 ]; % Uncertainty intervals<br />

cut<strong>of</strong>f = [] ; % cutt<strong>of</strong> (depends on fitness function<br />

FitOpt = ['[1]'] ; % options <strong>for</strong> fitness function - see specific function <strong>for</strong> definition - should be a string!!!<br />

cutopt = 0 ; % use cut<strong>of</strong>f or not - if 0 <strong>the</strong>n not, if 1 <strong>the</strong>n use<br />

batch_run = 1 ; % if batch_run is set to 0, <strong>the</strong>n run goes automatically<br />

run_type = 0 ; % run_type used in combination with batch run)<br />

% 0=Generate New random parameter set from uni<strong>for</strong>m prior<br />

% 1=Run only from run_index (loads parameter vector)<br />

% 2=Run once with given parameters (set in Par Cell array defined here!)<br />

% 3=Load results <strong>for</strong> analysis<br />

% 4=Run new MC Analysis using loaded parameter distributions<br />

% 5=Run using previously determined parameter set likelihoods<br />

pardistfile = '.\'; % directory where to obtain priors!<br />

% Options <strong>for</strong> running on mutlipe machines<br />

% settings with (Windows) or (Linux) in brackets are <strong>for</strong> each system<br />

UseParallel = 0 ; % execute run on multiple processors (0=no (default), 1=Yes)<br />

ParallelType = 1 ; % Type <strong>of</strong> parallelrun - 0 is <strong>TU</strong> Windows Cluser; 1 is PVM on Linux cluster<br />

ParallelDir = 'D:\ParallelTasks\';<br />

ParallelPut_File = 'put_LisfloodOur<strong>the</strong>.txt';<br />

ParallelGet_File = 'get_LisfloodOur<strong>the</strong>.txt';<br />

ParallelDir_File = 'D:\network.txt';<br />

ParallelDir_Local = '.\';<br />

ParallelClearOpt = 1;<br />

ParallelBlock = 1;<br />

ParallelCommand = 'D:\pcraster\apps\pcrcalc -f lf_light30012002g.mod D:\Our<strong>the</strong> $1$ $2$ $3$ $4$ $qsim####.###$ thsim.tss<br />

uzsim.tss lzsim.tss';<br />

ParallelCopyTo = cell(0); % empty cell - ie no file to copy from<br />

ParallelCopyFrom{1} = 'qsim####.###';<br />

ParallelRemoteDir = []; % empty cell - ie no file to copy from<br />

ParallelLocalDir = '\\cti025\D\ParallelTasks\'; % location on local computer to copy results files to<br />

ParallelResults = 'qsim####.###';<br />

% Options <strong>for</strong> running with input ensembles<br />

UseEnsemble = 0 ; % (0=No,1=Yes)<br />

EnsembleOption = 0;<br />

% Option in running ensembles<br />

% 0 = Run each ensemble member with all behavioural parameter sets<br />

% 1 = Randomly sample ensemble member to run (not yet operational)<br />

EnsembleNumber = 8;<br />

EnsembleType = 0 ;<br />

% Ensemble is ei<strong>the</strong>r a file or a directory - Type 0 is file, Type 1 is directory<br />

EnsembleOrigin = '..\Ensemble\BenchQ.###' ; % name <strong>of</strong> file or dir to copy files from<br />

% # is replaced with ensemble number - <strong>the</strong> number <strong>of</strong> # determines<br />

% width <strong>of</strong> string to be searched <strong>for</strong><br />

EnsembleDestin = '.\BenchQ.txt'; % name <strong>of</strong> file or dir to copy files to<br />

EnsembleWeight = 0;<br />

% Feature to be added (perhaps)- determines weight <strong>of</strong> each ensemble member<br />

% when set to 0, wheight is uni<strong>for</strong>m<br />

UseTSS = 0;<br />

Tss_Cell = cell(2,5);<br />

% GA_Options<br />

UseGA = 0; % use GA as a sample preselector<br />

GApop = 24; % number <strong>of</strong> GA individuals in population<br />

GAgen = 10 ; % number <strong>of</strong> GA generations<br />

GAcross = 0.8; % cross-over rate<br />

GAmute = 0.1; % mutation rate<br />

GAnicherad = 0.05; % Niching radius<br />

GAnicheopt = 1 ; % Options <strong>for</strong> Niching<br />

NBits = 8 ; % number <strong>of</strong> bits per parameter<br />

SplitPerc = 0.8; % Split sample percentage<br />

SkipGARun = 1; % 0 to run all - 1 to skip GA but import files; 2 to run until files are to be imported - <strong>the</strong>n abort!<br />

UseSTD = 1; ; % 0 to not use 1 to use std<br />

% Sample selector options<br />

169


APPENDIX 5: GLUE SCRIPT<br />

SampleSel<br />

SampleFile<br />

= 0 ; % 0=no sample selector (default), 1=Load samples to run from file;<br />

= 'nn_output.txt'; % file name<br />

% END OF INPUT SECTION<br />

% DO NOT MAKE ANY CHANGES AFTER HERE!<br />

if (UseTSS == 0)<br />

tsscell = [];<br />

end<br />

% settings cell<br />

Settings_Cell{1} = SettingsFile ;<br />

Settings_Cell{2} = CommandLine ;<br />

Settings_Cell{3} = AddRunID ;<br />

Settings_Cell{4} = ParameterTemplate ;<br />

Settings_Cell{5} = ParameterFile ;<br />

Settings_Cell{6} = OutputFile ;<br />

Settings_Cell{7} = OutStartRow ;<br />

Settings_Cell{8} = OutStartCol ;<br />

Settings_Cell{9} = OutputBinary ;<br />

Settings_Cell{10} = TemplateDelimitor ;<br />

% ensemble cell definition<br />

Ensemble_Cell{1} = EnsembleOption;<br />

Ensemble_Cell{2} = EnsembleNumber;<br />

Ensemble_Cell{3} = EnsembleType;<br />

Ensemble_Cell{4} = EnsembleOrigin;<br />

Ensemble_Cell{5} = EnsembleDestin;<br />

Ensemble_Cell{6} = EnsembleWeight;<br />

% Parrallel Cell<br />

Parallel_Cell{1} = ParallelPut_File;<br />

Parallel_Cell{2} = ParallelGet_File;<br />

Parallel_Cell{3} = ParallelDir_File;<br />

Parallel_Cell{4} = ParallelDir_Local;<br />

Parallel_Cell{5} = ParallelClearOpt;<br />

Parallel_Cell{6} = ParallelBlock;<br />

Parallel_Cell{7} = ParallelDir;<br />

Parallel_Cell{8} = ParallelType;<br />

Parallel_Cell{9} = ParallelCommand;<br />

Parallel_Cell{10} = ParallelCopyTo;<br />

Parallel_Cell{11} = ParallelCopyFrom;<br />

Parallel_Cell{12} = ParallelResults;<br />

Parallel_Cell{13} = ParallelLocalDir;<br />

Parallel_Cell{14} = ParallelRemoteDir;<br />

% GA Cell<br />

ga_cell{1} = UseGA;<br />

ga_cell{2} = GApop;<br />

ga_cell{3} = GAgen;<br />

ga_cell{4} = GAcross;<br />

ga_cell{5} = GAmute;<br />

ga_cell{6} = GAnicherad;<br />

ga_cell{7} = GAnicheopt;<br />

ga_cell{8} = SampleSel;<br />

ga_cell{9} = SampleFile;<br />

ga_cell{10} = NBits;<br />

ga_cell{11} = SplitPerc;<br />

ga_cell{12} = SkipGARun;<br />

ga_cell{13} = UseSTD;<br />

% construct <strong>the</strong> run options array<br />

run_options{1} = FitnessFunction;<br />

run_options{2} = SampleType;<br />

run_options{3} = u_interval;<br />

run_options{4} = cut<strong>of</strong>f;<br />

run_options{5} = FitOpt;<br />

run_options{6} = cutopt;<br />

run_options{7} = batch_run;<br />

run_options{8} = run_type;<br />

run_options{9} = pardistfile;<br />

170


APPENDIX 5: GLUE SCRIPT<br />

run_options{10} = WorkDir;<br />

run_options{11} = FitWeight;<br />

run_options{12} = MexType;<br />

run_options{13} = Settings_Cell;<br />

run_options{14} = UseEnsemble;<br />

run_options{15} = Ensemble_Cell;<br />

run_options{16} = UseParallel;<br />

run_options{17} = Parallel_Cell;<br />

run_options{18} = UseTSS;<br />

run_options{19} = Tss_Cell;<br />

run_options{20} = UseGA;<br />

run_options{21} = ga_cell;<br />

obs_options{1} = ObservedFile;<br />

obs_options{2} = ObsStartRow;<br />

obs_options{3} = ObsStartCol;<br />

% clear variables<br />

clear FitnessFunction SampleType u_interval cut<strong>of</strong>f maxfit cutopt batch_run run_type pardistfile ParallelRun;<br />

% call <strong>the</strong> run!<br />

if mc_gluerun(nRun, nStep, nLoc, Par, SettingsFile, obs_options, run_options) ~= 0<br />

disp('Run failed or exited by user')<br />

else<br />

disp('run was succesful');<br />

end<br />

% end <strong>of</strong> run-file<br />

171


APPENDIX 5: GLUE SCRIPT<br />

172


APPENDIX 6: ROUTING MODEL<br />

Appendix 6<br />

Routing model<br />

173


APPENDIX 6: ROUTING MODEL<br />

The routing model, which is programmed in <strong>the</strong> object orientated language JAVA, will be<br />

explained by <strong>the</strong> use <strong>of</strong> UML-diagrams (Unified Modeling Language).<br />

Meta model (Figure 1)<br />

The routing model is divided into three sub models: Input/Output, River system and Data. By<br />

<strong>the</strong> use <strong>of</strong> a User Interface <strong>the</strong> program is operated. In <strong>the</strong> User Interface is asked <strong>for</strong> loading<br />

<strong>the</strong> input file <strong>of</strong> STREAM, calculating <strong>the</strong> routed discharge <strong>of</strong> <strong>the</strong> river system and last save<br />

<strong>the</strong> output (= routed discharge <strong>for</strong> certain locations) in a text file.<br />

Interval<br />

Tributary<br />

River<br />

Reach<br />

InterReach<br />

SourceReach<br />

Location<br />

DataSet<br />

QDataSet<br />

QponceDataSet<br />

DiDataSet<br />

DataPoint<br />

QponceDataPoint<br />

DiDataPoint<br />

QDataPoint<br />

Timeframe<br />

InputFile<br />

InputLine<br />

OutputFile<br />

OutputLine<br />

Figure 1: Sub models <strong>of</strong> <strong>the</strong> routing model and <strong>the</strong>ir relations..<br />

Sub model ‘Input/Output’ (Figure 2)<br />

The input file, which is <strong>the</strong> output file <strong>of</strong> STREAM, consists <strong>of</strong> several lines and columns.<br />

The columns are <strong>the</strong> not routed discharge values <strong>for</strong> different locations in <strong>the</strong> <strong>Zambezi</strong><br />

<strong>catchment</strong>. The same composition exists <strong>for</strong> <strong>the</strong> output file. Each line is a time step and each<br />

column a location. In this case only <strong>the</strong> locations Lukulu and Victoria Falls are saved in a text<br />

file.<br />

Figure 2: Sub model 'Input/Output'.<br />

174


APPENDIX 6: ROUTING MODEL<br />

Sub model ‘River System’ (Figure 3)<br />

The sub model ‘River System’ describes, in this case, <strong>the</strong> river system <strong>of</strong> <strong>the</strong> <strong>Zambezi</strong> River.<br />

However, it will be <strong>the</strong> same <strong>for</strong> each o<strong>the</strong>r river system in <strong>the</strong> world. The river system is<br />

schematized as a tree structure. It consists <strong>of</strong> a River with Tributaries and is segmented into<br />

Reaches. A Reach can be a InterReach or a SourceReach. A InterReach has only a end<br />

location and obtains <strong>the</strong> begin location(s) from its upstream reach(es). On <strong>the</strong> o<strong>the</strong>r hand, a<br />

SourceReach is <strong>the</strong> most upstream reach <strong>of</strong> River or Tributary and is not possible to get a<br />

begin location from an upstream reach. There<strong>for</strong>e a SourceReach has a begin location and a<br />

end location. As well as a River, a Tributary and a Reach are an Interval. In <strong>the</strong> class Interval<br />

is calculated <strong>the</strong> lateral inflow (di), which is necessary to calculate Qponce with Muskingum<br />

routing. After calculating di, all <strong>the</strong> required in<strong>for</strong>mation is available and Qponce can be<br />

calculated. All <strong>the</strong> calculated values are stored in dataset. In <strong>the</strong> QDataSet are stored <strong>the</strong><br />

output values <strong>of</strong> STREAM and in <strong>the</strong> QponceDataSet are stored <strong>the</strong> routed discharge values.<br />

Both are linked to a location in <strong>the</strong> river system. The lateral inflow is stored in <strong>the</strong> DiDataSet<br />

and because <strong>the</strong> lateral inflow is calculated between one end location and at least one begin<br />

location this dataset is linked to a Reach.<br />

Figure 3: Sub model 'River System'.<br />

175


APPENDIX 6: ROUTING MODEL<br />

Sub model ‘Data’ (Figure 4)<br />

As mentioned in <strong>the</strong> last paragraph some data values are stored in a DataSet. In <strong>the</strong> routing<br />

model three dataset are implemented: a QDataSet <strong>for</strong> storing <strong>the</strong> discharge values <strong>of</strong><br />

STREAM, a QponceDataSet <strong>for</strong> storing <strong>the</strong> routed discharges and a DiDataSet <strong>for</strong> storing <strong>the</strong><br />

lateral inflow value. The first datasets are linked to a Location and <strong>the</strong> last dataset is linked to<br />

a Reach.<br />

A DataSet consists <strong>of</strong> one or more DataPoints, which have a time value and a discharge or<br />

lateral inflow value. In <strong>the</strong> routing model three types <strong>of</strong> DataPoints exists: QponceDataPoints,<br />

DiDataPoints and QDataPoints.<br />

Figure 4: Sub model 'Data'.<br />

176


APPENDIX 7: GRACE RESULTS<br />

Appendix 7<br />

GRACE results<br />

177


APPENDIX 7: GRACE RESULTS<br />

Remark: <strong>the</strong> legends do not have <strong>the</strong> same upper and lower values.<br />

YEAR: 2002<br />

Month Global, l = 50; GF = 600 Global, l = 15; GF = 0<br />

Jan<br />

Feb<br />

Mar<br />

Apr<br />

May<br />

Jun<br />

Jul<br />

Aug<br />

Sep<br />

178


APPENDIX 7: GRACE RESULTS<br />

Oct<br />

Nov<br />

Dec<br />

YEAR: 2003<br />

Month Global, l = 50; GF = 600 Global, l = 15; GF = 0<br />

Jan<br />

Feb<br />

Mar<br />

179


APPENDIX 7: GRACE RESULTS<br />

Apr<br />

May<br />

Jun<br />

Jul<br />

Aug<br />

Sep<br />

180


APPENDIX 7: GRACE RESULTS<br />

Oct<br />

Nov<br />

Dec<br />

YEAR: 2004<br />

Month Global, l = 50; GF = 600 Global, l = 15; GF = 0<br />

Jan<br />

181


APPENDIX 7: GRACE RESULTS<br />

Feb<br />

Mar<br />

Apr<br />

May<br />

Jun<br />

182


APPENDIX 7: GRACE RESULTS<br />

Jul<br />

Aug<br />

Sep<br />

Oct<br />

Nov<br />

Dec<br />

183

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!