16.03.2015 Views

"WINNER II Channel Models", ver 1.1, Sept

"WINNER II Channel Models", ver 1.1, Sept

"WINNER II Channel Models", ver 1.1, Sept

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>WINNER</strong> <strong>II</strong> D<strong>1.1</strong>.2 V<strong>1.1</strong><br />

H<br />

u,<br />

s,<br />

n<br />

( t)<br />

M<br />

= Pn<br />

∑<br />

m=<br />

1<br />

⎡<br />

⎢<br />

⎣<br />

⋅exp<br />

T<br />

vv<br />

vh<br />

Ftx<br />

, s,<br />

V<br />

( ϕn,<br />

m<br />

) ⎤ ⎡ exp( jΦ<br />

n,<br />

m<br />

) κ<br />

n,<br />

m<br />

exp( jΦ<br />

) ⎤<br />

n,<br />

m ⎡Frx<br />

,<br />

F ( )<br />

hv<br />

hh<br />

tx,<br />

s,<br />

H<br />

ϕ<br />

⎥ ⎢<br />

⎥⎢<br />

n,<br />

m ⎦ ⎢ ( j ) ( j ) F<br />

n,<br />

m<br />

n,<br />

m<br />

n,<br />

m<br />

rx,<br />

⎣<br />

κ exp Φ exp Φ ⎥<br />

⎦⎣<br />

−1<br />

−1<br />

( jd 2πλ<br />

sin( φ )) exp( jd 2πλ<br />

sin( ϕ<br />

) exp( j2πυ<br />

t)<br />

s<br />

0<br />

n,<br />

m<br />

u<br />

0<br />

n,<br />

m<br />

n,<br />

m<br />

u,<br />

V<br />

u,<br />

H<br />

( φn,<br />

m<br />

)<br />

( φ )<br />

n,<br />

m<br />

⎤<br />

⎥<br />

⎦<br />

(4.14)<br />

where F rx,u,V and F rx,u,H are the antenna element u field patterns for <strong>ver</strong>tical and horizontal polarisations<br />

respectively, d s and d u are the uniform distances [m] between transmitter elements and recei<strong>ver</strong><br />

elements respectively, and λ 0 is the wave length on carrier frequency. If polarisation is not<br />

exp Φ and only <strong>ver</strong>tically<br />

considered, 2x2 polarisation matrix can be replaced by scalar ( )<br />

polarised field patterns applied.<br />

j<br />

n,<br />

m<br />

With the fixed feeder link models (B5 scenarios) the Doppler frequency component ν n,m is tabulated<br />

for the first ray of each cluster. For the other rays ν n,m = 0. With all other models the Doppler<br />

frequency component is calculated from angle of arrival (downlink), MS speed v and direction of<br />

travel θ v<br />

υ<br />

v<br />

cos<br />

( ϕ −θ<br />

)<br />

n , m v<br />

n,<br />

m<br />

= , (4.15)<br />

λ0<br />

For the two strongest clusters, say n = 1 and 2, rays are spread in delay to three sub-clusters (per<br />

cluster), with fixed delay offset {0,5,10 ns} (see Table 4-2). Delays of sub-clusters are<br />

τ<br />

τ<br />

τ<br />

n,1<br />

n,2<br />

n,3<br />

= τ + 0ns<br />

n<br />

= τ + 5ns<br />

n<br />

= τ + 10ns<br />

n<br />

(4.16)<br />

Twenty rays of a cluster are mapped to sub-clusters like presented in Table 4-2 below. Corresponding<br />

offset angles are taken from Table 4-1 with mapping of Table 4-2.<br />

Table 4-2 Sub-cluster information for intra cluster delay spread clusters.<br />

sub-cluster # mapping to rays power delay offset<br />

1 1,2,3,4,5,6,7,8,19,20 10/20 0 ns<br />

2 9,10,11,12,17,18 6/20 5 ns<br />

3 13,14,15,16 4/20 10 ns<br />

In the LOS case define<br />

u , s,<br />

n u,<br />

s,<br />

n<br />

H ' = H and determine the channel coefficients by adding single lineof-sight<br />

ray and scaling down the other channel coefficient generated by (4.14). The channel<br />

coefficients are given by:<br />

H<br />

u,<br />

s,<br />

n<br />

1<br />

K + 1<br />

( t) = H'<br />

( t)<br />

+ δ<br />

R<br />

⋅exp<br />

T<br />

vv<br />

1 ⎡Ftx<br />

, s,<br />

V<br />

( ϕLOS<br />

) ⎤ ⎡exp( jΦ<br />

)<br />

F<br />

LOS<br />

0 ⎤⎡<br />

⎢<br />

hh<br />

K Ftx<br />

s H<br />

( ϕLOS<br />

)<br />

⎥ ⎢<br />

⎥⎢<br />

( j ) F<br />

R<br />

+ 1⎣<br />

, , ⎦ ⎣ 0 exp Φ<br />

LOS ⎦⎣<br />

−1<br />

−1<br />

( jd 2πλ<br />

sin( φ )) exp( jd 2πλ<br />

sin( ϕ )) exp( j2πυ<br />

t)<br />

( n −1)<br />

s<br />

u,<br />

s,<br />

n<br />

0<br />

LOS<br />

u<br />

0<br />

LOS<br />

LOS<br />

rx,<br />

u,<br />

V<br />

rx,<br />

u,<br />

H<br />

( φLOS<br />

)<br />

( φ )<br />

LOS<br />

⎤<br />

⎥<br />

⎦<br />

(4.17)<br />

where δ( . ) is the Dirac’s delta function and K R is the Ricean K-factor defined in Table 4-5 con<strong>ver</strong>ted to<br />

linear scale.<br />

If non-ULA arrays are used the equations must be modified. For arbitrary array configurations on<br />

horizontal plane, see Figure 4-2, the distance term d u in equations (4.14) and (4.17) is replaced by<br />

Page 41 (82)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!