30.03.2015 Views

Thermodynamics - Aqueous and Environmental Geochemistry

Thermodynamics - Aqueous and Environmental Geochemistry

Thermodynamics - Aqueous and Environmental Geochemistry

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Geochemistry</strong><br />

DM Sherman, University of Bristol<br />

2009/2010<br />

<strong>Thermodynamics</strong><br />

Part 3: Multicomponent Systems <strong>and</strong><br />

Chemical Equilibria<br />

<strong>Geochemistry</strong><br />

D.M. Sherman, University of Bristol<br />

The story so far..<br />

€<br />

€<br />

We’ve invented a new state-function G (Gibbs free<br />

energy):<br />

For a spontaneous process,<br />

dG < 0<br />

At equilibrium,<br />

dG = 0<br />

ΔG is the non-PV work a system can do on the<br />

surroundings at constant T <strong>and</strong> P.


<strong>Geochemistry</strong><br />

DM Sherman, University of Bristol<br />

2009/2010<br />

Free Energy of a Gas<br />

Let’s determine G of a gas as a function of pressure<br />

At constant T,<br />

dG = −SdT +VdP<br />

€<br />

€<br />

dG = VdP<br />

which we can integrate to get<br />

G(P) − G(P 0 ) =<br />

P<br />

∫VdP<br />

P 0<br />

€<br />

For an ideal gas,<br />

Free Energy of a Gas (cont.)<br />

PV = nRT or V = nRT<br />

P<br />

So the integral becomes<br />

€<br />

G(P) − G(P 0 ) =<br />

P<br />

∫ VdP = nRT ∫<br />

1 P dP<br />

P 0<br />

P<br />

P 0<br />

€<br />

⎛<br />

G(P) = G(P 0 ) + nRT ln P ⎞<br />

⎜ ⎟<br />

⎝ P 0 ⎠<br />


<strong>Geochemistry</strong><br />

DM Sherman, University of Bristol<br />

2009/2010<br />

Free Energy of Mixtures<br />

Define the chemical potential of component i as<br />

€<br />

⎛<br />

µ i = ∂G ⎞<br />

⎜ ⎟<br />

⎝ ∂n i ⎠<br />

T,P,n j≠i<br />

Using the chemical potential, we can define the free<br />

energy of a mixture:<br />

G = G(P,T,n 1 ,…,n i )<br />

(n i is the number of moles of i)<br />

dG = VdP − SdT + ∑<br />

i<br />

µ i<br />

dn i<br />

€<br />

Free Energy of Mixtures (cont.)<br />

In a gas which consists of a mixture, we can define the<br />

partial pressure p i of each component. For an ideal gas,<br />

we have<br />

p i V = n i RT<br />

∑<br />

i<br />

p i<br />

= P tot<br />

€<br />

A useful result for an ideal gas is that partial pressure<br />

relates to mole fraction:<br />

p i<br />

P tot<br />

= X i<br />


<strong>Geochemistry</strong><br />

DM Sherman, University of Bristol<br />

2009/2010<br />

Free Energy of Mixtures (cont.)<br />

By analogy with the G(P) equation we derived, the<br />

chemical potential of a component in a gas will depend<br />

on its partial pressure p:<br />

⎛<br />

µ i (p) = µ(p 0 ) + RT ln p ⎞<br />

⎜ ⎟<br />

⎝ p 0 ⎠<br />

From now on, we’ll let p 0 be 1 bar <strong>and</strong> write<br />

€<br />

µ i = µ 0 + RT ln(p / bar)<br />

€<br />

Free Energy of Mixtures (cont.)<br />

Now, let’s calculate the change in free energy when we<br />

mix two gases at constant total pressure:<br />

G start = n A µ A + n B µ B<br />

= n A (µ A0 + RT ln(p)) + n B (µ B0 + RT ln(p))<br />

After mixing we have<br />

€<br />

G final = n A µ A + n B µ B<br />

= n A (µ A0 + RT lnp A ) + n B (µ B0 + RT lnp B )<br />


<strong>Geochemistry</strong><br />

DM Sherman, University of Bristol<br />

2009/2010<br />

Free Energy of Mixtures (cont.)<br />

Since,<br />

P = p A + p B <strong>and</strong> X A = p A<br />

P ,<br />

X B = p B<br />

P<br />

we get<br />

€<br />

⎛<br />

ΔG = n A RT ln p ⎞ ⎛<br />

A<br />

⎜ ⎟ + n<br />

⎝ P B RT ln p ⎞<br />

B<br />

⎜ ⎟<br />

⎠ ⎝ P ⎠<br />

= nRT( X A lnX A + X B lnX B ) < 0<br />

€<br />

Entropy of Mixing<br />

Since,<br />

ΔG = ΔH − TΔS<br />

It follows that,<br />

€<br />

ΔS = −nR( X A lnX A + X B lnX B )<br />

€<br />

ΔS is the entropy of mixing the two gases. The gases<br />

will mix spontaneously because of the positive entropy of<br />

mixing.


<strong>Geochemistry</strong><br />

DM Sherman, University of Bristol<br />

2009/2010<br />

Activities <strong>and</strong> St<strong>and</strong>ard State<br />

We’d like to generalize the concept of chemical potential<br />

beyond the ideal gas. To do this, we introduce the<br />

concept of activity:<br />

€<br />

µ i = µ 0 + RT ln(a i )<br />

The activity must be defined relative to some st<strong>and</strong>ard<br />

state where a i = 1.<br />

Examples of St<strong>and</strong>ard States<br />

• For solid solutions, we can define a st<strong>and</strong>ard state of<br />

a component as being the solid phase made of the pure<br />

component.<br />

• For ions in aqueous solution, we usually define the<br />

st<strong>and</strong>ard state as being a 1 m solution with the<br />

properties of infinite dilution (!). The activity of an ion in a<br />

dilute aqueous solution will be its molal concentration.<br />

• For a component in a gas, the activity will be its partial<br />

pressure divided by 1 bar.


<strong>Geochemistry</strong><br />

DM Sherman, University of Bristol<br />

2009/2010<br />

Law of Mass Action: Chemical Equilibria<br />

Consider the chemical reaction where A <strong>and</strong> B reversibly<br />

transform to C <strong>and</strong> D:<br />

αA + βB = γC + δD<br />

If the reaction occurs at constant T <strong>and</strong> P, then<br />

€<br />

dG = VdP − SdT + ∑ µ i dn i = ∑ µ i dn i<br />

i<br />

i<br />

= µ A dn A + µ B dn B + µ C dn C + µ D dn D<br />

Define the reaction progress variable ξ so that<br />

€<br />

dn A = −αdξ, dn B = −βdξ, dn C = γdξ dn D = δdξ<br />

€<br />

Law of Mass Action: Chemical Equilibria<br />

Then we can write:<br />

dG<br />

dξ = −αµ A 0 − αRT ln(a A ) − βµ B0 − βRT ln(a B )<br />

+ γµ c0 + γRT ln(a C ) + δµ D0 + δRT ln(a D )<br />

( ) + RT ln (a C) γ (a D ) δ<br />

⎜<br />

= γµ c0 + δµ D0 − αµ A0 − βµ B<br />

0<br />

⎛ ⎞<br />

⎝ (a A ) α (a B ) β ⎟<br />

⎠<br />

⎛<br />

= ΔG 0 + RT ln (a C )γ (a D ) δ ⎞<br />

⎜<br />

⎝ (a A ) α (a B ) β ⎟<br />

⎠<br />


<strong>Geochemistry</strong><br />

DM Sherman, University of Bristol<br />

2009/2010<br />

Law of Mass Action: Chemical Equilibria<br />

The system will be in chemical equilibrium when:<br />

dG<br />

dξ = 0<br />

⎛<br />

ΔG 0 = −RT ln (a C )γ (a D ) δ ⎞<br />

⎜<br />

⎝ (a A ) α (a B ) β ⎟<br />

⎠<br />

We define the equilibrium constant K as:<br />

€<br />

⎛<br />

K =<br />

(a C )γ (a D ) δ ⎞<br />

⎜<br />

⎝ (a A ) α (a B ) β ⎟<br />

⎠<br />

then lnK = −ΔG 0 / RT<br />

€<br />

The Phase Rule<br />

f = c - p + 2<br />

• A phase is something that can be mechanically<br />

separated from the other phases (e.g., ice, water).<br />

• A component is one of the smallest number of<br />

chemical species needed to define the compositions<br />

of the phases in the system (e.g., H 2 O).<br />

• A degree of freedom is a property that can be<br />

independently varied (e.g., P, T).


<strong>Geochemistry</strong><br />

DM Sherman, University of Bristol<br />

2009/2010<br />

The Phase Rule<br />

For each of the p phases we have<br />

Since<br />

dG = VdP −SdT + ∑µ i<br />

dn i<br />

i<br />

€<br />

€<br />

G = ∑ n i<br />

µ i<br />

i<br />

dG = ∑µ i<br />

dn i<br />

+ ∑n i<br />

dµ i<br />

= 0<br />

i<br />

i<br />

dG = VdP −SdT −∑ n i<br />

dµ i<br />

= 0<br />

c<br />

i =1<br />

€<br />

€<br />

The Phase Rule<br />

For each of the p phases we have an equation<br />

VdP −SdT −∑ n i<br />

dµ i<br />

= 0<br />

c<br />

i =1<br />

with 2 (i.e., P <strong>and</strong> T) + c variables. Hence the variance<br />

of the system is<br />

f = c - p + 2


<strong>Geochemistry</strong><br />

DM Sherman, University of Bristol<br />

2009/2010<br />

The Phase Rule<br />

Example: the Al 2 SiO 5<br />

system.<br />

c = 1 (Al 2 SiO 5 )<br />

f = c - p + 2<br />

The Phase Rule<br />

f = c - p + 2<br />

Example: SiO 2 (qtz) + H 4 SiO 4 (aq) + <strong>Aqueous</strong> solution<br />

c = 2 (e.g., SiO 2 + H 2 O)<br />

p = 2 (quartz + aqueous solution)<br />

f = 2 (P,T, [H 2 SiO 4 ])


<strong>Geochemistry</strong><br />

DM Sherman, University of Bristol<br />

2009/2010<br />

The Phase Rule<br />

Example: the system calcite + water + CO 2<br />

There are over 9 species within this system defined by<br />

the following equilibria:<br />

CaCO 3 = Ca +2 + CO 3<br />

-2<br />

CO 3<br />

-2<br />

+ H+ = HCO 3<br />

-<br />

HCO 3<br />

-<br />

+ H + = H 2 CO 3<br />

H 2 CO 3 = H 2 O + CO 2<br />

H + + OH - = H 2 O<br />

The Phase Rule<br />

Example: the system calcite + water + CO 2<br />

However, all of the species can be expressed in terms<br />

of four components, c = 4:<br />

(e.g., Ca 2+ + CO 3<br />

-2<br />

+ H 2 O + H + )<br />

The number of phases p is 3:<br />

Calcite (CaCO 3 ) + <strong>Aqueous</strong> solution + CO 2 (g)<br />

The number independent degrees of freedom f is:<br />

c-p + 2 = 3. (e.g., P,T, pCO 2 ; or P, T, pH)


<strong>Geochemistry</strong><br />

DM Sherman, University of Bristol<br />

2009/2010<br />

For a reaction<br />

Summary<br />

αA + βB = γC + δD<br />

⎛<br />

K = (a C )γ (a D<br />

) δ ⎞<br />

⎜ ⎟<br />

⎝ (a A<br />

) α (a B<br />

) β<br />

⎠<br />

€<br />

with lnK = −ΔG 0 / RT<br />

€<br />

Where a i is the activity of species i.<br />

ΔG 0 is the change in free energy when all components<br />

are in their st<strong>and</strong>ard state.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!