30.03.2015 Views

Lecture Notes (PDF) - Aqueous and Environmental Geochemistry

Lecture Notes (PDF) - Aqueous and Environmental Geochemistry

Lecture Notes (PDF) - Aqueous and Environmental Geochemistry

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Marine Chemistry I<br />

<strong>Environmental</strong> <strong>Geochemistry</strong><br />

DM Sherman, University of Bristol<br />

The Hydrologic Cycle<br />

1


Average Rivers vs. Ocean<br />

Concentration<br />

in Average<br />

River<br />

(mmol/kg)<br />

Seawater<br />

Concentration<br />

(mmol/kg)<br />

(M/Cl)sw<br />

(M/Cl)riv<br />

Cl - 0.16<br />

54.6<br />

Na + 0.224 48.0<br />

Mg +2 0.138 5.4<br />

Ca +2 0.334 1.0<br />

SO<br />

-2<br />

4 0.068 2.9<br />

K + 0.033 1.0<br />

HCO 3 0.852 0.211<br />

Br - --<br />

0.087<br />

H 4 SiO 4 0.173 0.10<br />

1<br />

0.62<br />

0.11<br />

0.12<br />

0.009<br />

0.09<br />

0.0007<br />

0.002<br />

Why is seawater different from river<br />

water?<br />

•You cannot get seawater by evaporating river water<br />

(instead, you get an alkaline NaHCO 3 brine).<br />

•Ca 2+ , HCO 3<br />

-<br />

<strong>and</strong> H 4 SiO 4 are taken up by marine<br />

organisms <strong>and</strong> lost as sediments.<br />

•Mg 2+ <strong>and</strong> SO 4<br />

-2<br />

are taken up by basalt-seawater<br />

interactions at Mid-Ocean Ridges.<br />

•Cations such as K+ may be taken up in clays via<br />

“reverse weathering” <strong>and</strong> ion exchange.<br />

2


Sillen’s (1961) Equilibrium Model<br />

•Major ion composition of seawater determined by<br />

chemical equilibrium.<br />

•Cations (Ca, Si, Al, Na, K <strong>and</strong> Mg) supplied by<br />

weathering igneous rocks<br />

•Anions (Cl, HCO 3- ,) suppled by volcanic emission.<br />

•Formation of clay minerals from solution <strong>and</strong> by<br />

reverse weathering:<br />

(K, Ca, Mg..) + kaolinite + Si(OH) 4 + HCO 3<br />

-<br />

=<br />

(K,Ca, Mg)-clays + CO 2<br />

Arguments against Equilibrium Model<br />

•Reverse weathering reactions are extremely slow.<br />

•No evidence has been found for such reactions in<br />

marine sediments.<br />

•Distribution of clays suggests detrital (eolian <strong>and</strong><br />

riverine) origin; not formed authigenic.<br />

3


Mackenzie <strong>and</strong> Garrels (1966):<br />

Steady State Model<br />

Input<br />

Oceans<br />

Output<br />

•Rivers<br />

•Hydrothermal<br />

Vents<br />

•Atmosphere<br />

V = 1.4 x 10 21 L<br />

•Sedimentation<br />

•Evaporation<br />

•Hydrothermal<br />

alteration<br />

If we assume that the oceans are at steady state, then the<br />

concentrations of elements are determined by the balance of<br />

input <strong>and</strong> output fluxes.<br />

Example: Mg Cycle<br />

Net flux = -1.5<br />

(not steady state)<br />

Atmosphere/Evaporites<br />

0.5 x10 12 mol/y<br />

River Input<br />

8.0 x10 12 mol/y<br />

Oceans<br />

Mg = 69 x 10 18 moles<br />

Ion Exchange/<br />

Reverse Weathering<br />

1.2 x10 12 mol/y<br />

Hydrothermal Alteration<br />

7.8 x10 12 mol/y<br />

4


Residence Times of Chemical Species<br />

Water in the Oceans:<br />

Volume of Oceans (V ocean ) = 1.37 x 10 21 L<br />

Global Riverine Input (F Riv ) = 3.6 x 10 16 L/y<br />

t H oceans = V oceans<br />

F Riv<br />

= 1.37 x1021 L<br />

3.6 x10 16 L / yr = 3.81x 104 years<br />

!<br />

Residence Times of Chemical Species<br />

Sodium in the Oceans:<br />

Concentration in Oceans (C ocean ) = 0.47 mol/L<br />

Avg. Conc. in Rivers = 2.2 x 10 -4 mol/L<br />

oceans = C Na<br />

oceans<br />

=<br />

Na F River<br />

t Na<br />

C River<br />

V oceans<br />

(0.47mol / L)(1.37 x10 21 L)<br />

(2.2x10 "4 mol / L)(3.6 x10 16 L / yr ) = 8.1 x 107 years<br />

!<br />

5


Residence Times of Chemical Species<br />

Highly reactive elements have short residence<br />

times.<br />

Element<br />

log(t R /Yr)*<br />

Element<br />

log(t R /Yr)<br />

Na 7.9<br />

K 6.7<br />

Mg 7.0<br />

Ca 5.9<br />

*Based on riverine input.<br />

Fe<br />

Co<br />

Cu,Zn<br />

Pb<br />

2.0<br />

4.5<br />

4.0<br />

2.6<br />

Distribution of Marine Sediments<br />

6


Silica in Seawater<br />

Dissolved Si as (H 4 SiO 4 )<br />

is taken up by<br />

radiolarians in surface<br />

waters <strong>and</strong> deposited as<br />

siliceous ooze in bottom<br />

sediments.<br />

Silica(am) <strong>and</strong> quartz are undersaturated in seawater but<br />

the dissolution of SiO 2 tests is slow.<br />

Clay Mineral Input to Oceans<br />

Clay minerals are input into<br />

oceans as part of the<br />

suspended load of rivers.<br />

aeolian dust, <strong>and</strong> volcanic<br />

ash.<br />

Reverse weathering:<br />

take up Mg <strong>and</strong> K<br />

Ion Exchange: take up<br />

Na <strong>and</strong> release Ca<br />

7


Clay Minerals<br />

Reverse Weathering Examples<br />

2K + + 3Al 2 Si 2 O 5 (OH) 4<br />

= 2 KAl 3 Si 3 O 10 (OH) 2 + 3H 2 O + 2H+<br />

10Mg 2+ + 2Al 2 Si 2 O 5 (OH) 4 + 2Si(OH) 4 + 10H 2 O<br />

= 2 Mg 5 Al 2 Si 3 O 10 (OH) 8 + 20H +<br />

18Mg 2+ + 2Na + + Al 2 Si 2 O 5 (OH) 4 + 20Si(OH) 4<br />

= 6 Na 0.33 Mg 3 Al 0.33 Si 3.67 O 10 (OH) 2 + 38H + + 18H 2 O<br />

8


Reverse Weathering<br />

Ion Exchange with Riverine Clays<br />

2Na + + Ca-Clay = Na 2 -Clay + Ca 2+<br />

Average Equivalent<br />

Fraction<br />

River<br />

Clays<br />

Marine<br />

Clays<br />

Net Removal<br />

from Ocean<br />

(10 12 g/year)<br />

Percentage<br />

of River<br />

Input<br />

Na + 0.04 0.42<br />

45<br />

30<br />

K + 0.01 0.06<br />

9<br />

13<br />

Ca +2 0.6 0.16 -40<br />

-8<br />

Mg +2 0.25 0.32<br />

4<br />

3<br />

These reaction are kinetically fast <strong>and</strong> should reach<br />

equilibrium.<br />

9


Hydrothermal Input/Output<br />

Distribution of Hydrothermal Vents<br />

Hydrothermal Input/Output<br />

10


Hydrothermal Fluxes<br />

River Flux<br />

(10 10 mol/yr)<br />

F - 16<br />

-1.1<br />

Rb + 0.04<br />

0.24<br />

Mg +2 530<br />

-800<br />

Ca +2 1200 350<br />

SO<br />

-2<br />

4 400<br />

-400<br />

K + 190<br />

190<br />

H 4 SiO 4 600<br />

300<br />

(Edmund et al., 1979)<br />

Hydrothermal<br />

Flux<br />

(10 10 mol/yr)<br />

Ferromanganese Deposits in the Ocean<br />

Vast deposits of Fe-Mn oxides (todorokite, birnessite..)<br />

occur as ferromanganese nodules <strong>and</strong> crusts on the<br />

seafloor. These contain up to 1-2 wt % Co <strong>and</strong> Ni.<br />

11


Distribution of Ferromanganese<br />

Crusts/Nodules<br />

Authigenic Manganese(III,IV) (Hydr)oxides<br />

Birnessite<br />

(Na,K) 4 Mn 14 O 27 xH 2 O<br />

Todorokite<br />

(Ca,Na,K) 4 Mn 5 O 12 xH 2 O<br />

12


Authigenic Iron(III) (Hydr)oxides<br />

Goethite (α-FeOOH)<br />

Lepidocrocite (γ-FeOOH)<br />

Akaganeite (β-FeOOH)<br />

<strong>and</strong> Schwertmannite<br />

(Fe 8<br />

O 8<br />

(OH) 6<br />

SO 4<br />

)<br />

Sorption Edges to FeOOH<br />

(Approximate..)<br />

13


Element Behavior in the Oceans<br />

Conservative: these elements (e.g., Na + , Cl - ) are<br />

unreactive; their concentrations are determined by<br />

physical processes such as mixing, dilution <strong>and</strong><br />

evaporation. They show constant concentrations relative<br />

to salinity.<br />

Nutrient: these elements (e.g.,P, N, Si) are taken-up<br />

by organisms. Nutrients are depleted in surface water<br />

but enriched in deep water by decomposition.<br />

Scavenged: these elements (e.g., Fe, Mn, Co, REE)<br />

are strongly sorbed onto “particulate matter”. They<br />

occur at very low concentrations but may be elevated<br />

in surface water by dissolution of dust input.<br />

Photosynthesis <strong>and</strong> Nutrient Uptake<br />

Before, we simplified the fixation of carbon by<br />

the reaction<br />

CO 2 + H 2 O → CH 2 O + O 2<br />

Based on the average composition of marine<br />

plankton, a better model would be:<br />

106 CO 2 + 16 NO 3<br />

-<br />

+ HPO 4<br />

-<br />

+ 122 H 2 O + 18 H+<br />

→ C 106 H 263 O 110 N 16 P + 138 O 2<br />

C 106: N 16: P is known as the Redfield Ratio<br />

14


Biolimiting Micronutrients<br />

H<br />

1<br />

Li<br />

3<br />

Na<br />

11<br />

K<br />

19<br />

Rb<br />

37<br />

Cs<br />

55<br />

Fr<br />

87<br />

Be<br />

4<br />

Mg<br />

12<br />

Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn<br />

20 21 22 23 24 25 26 27 28 29 30<br />

Sr<br />

38<br />

Ba<br />

56<br />

Ra<br />

88<br />

Y<br />

39<br />

La<br />

57<br />

Ac<br />

89<br />

Zr<br />

40<br />

Hf<br />

73<br />

Nb Mo Tc<br />

41 42 43<br />

Ta<br />

73<br />

B<br />

5<br />

C<br />

6<br />

W Re Os Ir Pt Au Hg Tl Pb<br />

74 75 76 77 78 79 80 81 82<br />

U<br />

92<br />

Ru<br />

44<br />

Rh<br />

45<br />

Pd<br />

46<br />

O<br />

8<br />

F<br />

9<br />

Al Si P S Cl<br />

13 14 15 16 17<br />

Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu<br />

58 59 60 61 62 63 64 65 66 67 68 69 70 71<br />

Th<br />

90<br />

Pa<br />

91<br />

Ag<br />

47<br />

Cd<br />

48<br />

Ga<br />

31<br />

In<br />

49<br />

Ge<br />

32<br />

Sn<br />

50<br />

N<br />

7<br />

As<br />

33<br />

Sb<br />

51<br />

Bi<br />

83<br />

Se<br />

34<br />

Te<br />

52<br />

Po<br />

84<br />

Br<br />

35<br />

I<br />

53<br />

At<br />

85<br />

He<br />

2<br />

Ne<br />

10<br />

Ar<br />

18<br />

Kr<br />

36<br />

Xe<br />

54<br />

Rn<br />

86<br />

Vertical Profiles <strong>and</strong> Element Behavior<br />

Biolimiting<br />

(P, N, Si)<br />

Intermediate<br />

(ΣCO 2 )<br />

Conservative<br />

(Cl, Na, Mg)<br />

15


Summary<br />

•Seawater composition results from<br />

river input + hydrothermal input<br />

- biological uptake +/- basalt interactions<br />

+/- ion exchange +/- reverse weathering<br />

•Whether chemical species are in steady state or<br />

chemical equilibrium is unclear.<br />

•Some elements (e.g., Mg) may not even be in steady<br />

state.<br />

16

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!