30.03.2015 Views

Lecture Notes (PDF) - Aqueous and Environmental Geochemistry

Lecture Notes (PDF) - Aqueous and Environmental Geochemistry

Lecture Notes (PDF) - Aqueous and Environmental Geochemistry

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Environmental</strong> <strong>Geochemistry</strong><br />

DM Sherman, University of Bristol<br />

2014/2015<br />

Kinetics <strong>and</strong> Geochemical<br />

Dynamics<br />

<strong>Environmental</strong> <strong>Geochemistry</strong><br />

D.M. Sherman, University of Bristol<br />

Open Systems<br />

A system (e.g., a geochemical reservior) is open if it<br />

can exchange matter with the surroundings.<br />

Atmosphere<br />

Hydrothermal<br />

processes<br />

Ppt’n<br />

Hydrosphere<br />

Evap’n<br />

Weathering<br />

Chemical<br />

Sedimentation<br />

Nutrient<br />

Uptake<br />

Respiration<br />

Photosynthesis<br />

Biosphere<br />

Biomineralization<br />

Volcanic Emission<br />

Lithosphere<br />

Page 1


<strong>Environmental</strong> <strong>Geochemistry</strong><br />

DM Sherman, University of Bristol<br />

2014/2015<br />

Simple Box Model!<br />

Input<br />

Reservoir<br />

Output<br />

F in = QC in<br />

M res = VC res<br />

F out = QC out<br />

F = flux of chemical species (mass/time)<br />

Q = flow rate (volume/time)<br />

V = volume of reservoir<br />

C = concentration (mass/volume)<br />

Simple Box Model!<br />

Input<br />

Reservoir<br />

Output<br />

F in = QC in<br />

M res = VC res<br />

F out = QC out<br />

The system will be in steady state when F in = F out<br />

The residence time (t R ) of a chemical species is<br />

the average time an atom of that species is in the<br />

reservoir.<br />

t R = V resC res<br />

F out<br />

€<br />

Page 2


<strong>Environmental</strong> <strong>Geochemistry</strong><br />

DM Sherman, University of Bristol<br />

2014/2015<br />

Residence Times of Chemical Species!<br />

Water in the Oceans:<br />

Volume of Oceans (V ocean ) = 1.37 x 10 21 L<br />

Global Riverine Input (F Riv ) = 3.6 x 10 16 L/y<br />

t H oceans = V oceans<br />

F Riv<br />

= 1.37 x1021 L<br />

3.6 x10 16 L / yr = 3.81x 104 years<br />

€<br />

Residence Times of Chemical Species!<br />

Sodium in the Oceans:<br />

Concentration in Oceans (C ocean ) = 0.47 mol/L<br />

Avg. Conc. in Rivers = 2.2 x 10 -4 mol/L<br />

oceans = C Na<br />

oceans<br />

=<br />

Na F River<br />

t Na<br />

C River<br />

V oceans<br />

(0.47mol / L)(1.37 x10 21 L)<br />

(2.2x10 −4 mol / L)(3.6 x10 16 L / yr ) = 8.1 x 107 years<br />

€<br />

Page 3


<strong>Environmental</strong> <strong>Geochemistry</strong><br />

DM Sherman, University of Bristol<br />

2014/2015<br />

Non-Steady State:<br />

Conservative (Non-reactive) Species!<br />

Input<br />

Reservoir<br />

Output<br />

F in = QC in<br />

M res = VC res<br />

F out = QC res<br />

Conservation of mass requires that:<br />

dM res<br />

dt<br />

= F in − F out<br />

V dC res<br />

dt<br />

= Q(C in − C res )<br />

€<br />

€<br />

Conservative (Non-reactive) Species!<br />

Input<br />

Reservoir<br />

Output<br />

F in = QC in<br />

M res = VC res<br />

F out = QC res<br />

Rearranging gives:<br />

V dC res<br />

+ C<br />

Q dt res = C in<br />

€<br />

Page 4


<strong>Environmental</strong> <strong>Geochemistry</strong><br />

DM Sherman, University of Bristol<br />

2014/2015<br />

Conservative (Non-reactive) Species!<br />

Input<br />

Reservoir<br />

Output<br />

F in = QC in<br />

M res = VC res<br />

F out = QC res<br />

Suppose we shut off the input (set C in = 0) <strong>and</strong><br />

let the system evolve:<br />

V dC res<br />

+ C res = 0<br />

Q dt<br />

C res = C 0<br />

⎛<br />

res exp −t ⎞<br />

⎜ ⎟<br />

⎝ V / Q⎠<br />

€<br />

€<br />

Conservative (Non-reactive) Species!<br />

The quantity V/Q is simply the residence time of<br />

water in the reservoir. This will be designated t H<br />

⎛<br />

C res = C 0 exp −t ⎞<br />

⎜ ⎟<br />

⎝ ⎠<br />

t H<br />

€<br />

Page 5


<strong>Environmental</strong> <strong>Geochemistry</strong><br />

DM Sherman, University of Bristol<br />

2014/2015<br />

Box Models (Example: Hg Cycle)!<br />

Atmosphere (40)<br />

Ppt’n (167)<br />

Volatilization (167)<br />

Ppt’n (83)<br />

Volatilization (83)<br />

Oceans<br />

(42.5 x10 5 )<br />

Rivers (13)<br />

Continental Crust<br />

(1x10 5 )<br />

Deposition (13) Uplift (13)<br />

Sediments (3.3 x10 9 )<br />

Fluxes in 10 8 Gt/y; Masses in 10 8 Gt<br />

Box Models (Example: Hg Cycle)!<br />

What would be the<br />

effect on atmospheric<br />

Hg if we perturb the<br />

steady state system by<br />

the anthropogenic flux<br />

of 102 x 10 8 g/yr?<br />

Page 6


<strong>Environmental</strong> <strong>Geochemistry</strong><br />

DM Sherman, University of Bristol<br />

2014/2015<br />

Box Models (Example: Hg Cycle)!<br />

Atmosphere (40)<br />

Ppt’n (F out )<br />

Volatilization (F in )<br />

L<strong>and</strong>+Oceans<br />

Hg<br />

dM Atm<br />

dt<br />

= F in<br />

− F out<br />

If we assume first-order kinetics for F out :<br />

Hg<br />

dM Atm<br />

dt<br />

€<br />

Hg<br />

= F in<br />

− F out<br />

= F in<br />

− kM Atm<br />

€<br />

Box Models (Example: Hg Cycle)!<br />

Atmosphere (40)<br />

Ppt’n (F out )<br />

Volatilization (F in )<br />

L<strong>and</strong>+Oceans<br />

Hg<br />

dM Atm<br />

dt<br />

Hg<br />

= F in<br />

− kM Atm<br />

Solving for M atm (t) gives:<br />

€<br />

Hg (t) = F in<br />

k (1− e−kt ) + M atm<br />

M atm<br />

Hg (0)e −kt<br />

€<br />

Page 7


<strong>Environmental</strong> <strong>Geochemistry</strong><br />

DM Sherman, University of Bristol<br />

2014/2015<br />

Box Models (Example: Hg Cycle)!<br />

Atmosphere (40)<br />

Ppt’n (250)<br />

Volatilization (250)<br />

L<strong>and</strong>+Oceans<br />

We can evaluate the rate constant k: under steady state<br />

conditions, F in - F out = 0 so that<br />

k =<br />

F in<br />

Hg<br />

M atmos<br />

= 250 x108 g / y<br />

40 x10 8 g<br />

= 6.25 y −1<br />

€<br />

Box Models (Example: Hg Cycle)!<br />

We can now evaluate the effect of the anthropogenic<br />

perturbation on input flux:<br />

Atmosphere (40)<br />

Ppt’n Volatilization (250 + 102 Anthropogenic)<br />

60<br />

L<strong>and</strong>+Oceans<br />

M Hg<br />

/10 8 g<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

0 0.2 0.4 0.6 0.8 1<br />

Time (years)<br />

Page 8


<strong>Environmental</strong> <strong>Geochemistry</strong><br />

DM Sherman, University of Bristol<br />

2014/2015<br />

Reactive Species in Open Systems<br />

Chemical Equilibrium vs. Steady State!<br />

The link between steady state <strong>and</strong><br />

chemical equilibrium is kinetics<br />

Transition State Theory: Energy Barriers<br />

<strong>and</strong> Rate Constants<br />

k = k B T<br />

h e−ΔG± /RT<br />

Page 9


<strong>Environmental</strong> <strong>Geochemistry</strong><br />

DM Sherman, University of Bristol<br />

2014/2015<br />

Transition State Theory: Reaction Rate<br />

<strong>and</strong> Disequilibrium<br />

Rate net<br />

= Rate forward<br />

− Rate reverse<br />

€<br />

For an elementary reaction<br />

A → B<br />

Rate forward<br />

= k f<br />

[A] = [A] k T B ±<br />

h e−ΔG f<br />

/RT<br />

Rate reverse<br />

= k r<br />

[B] = [B] k BT<br />

h e−ΔG r ± / RT<br />

€<br />

Transition State Theory: Reaction Rate<br />

<strong>and</strong> Disequilibrium<br />

Since<br />

ΔG = ΔG f ± − ΔG r<br />

±<br />

Rate forward<br />

± = e−ΔG f<br />

/RT<br />

Rate reverse e −ΔG r<br />

± /RT = e−ΔG/RT<br />

Rate net<br />

= Rate forward<br />

(1− e −ΔG / RT )<br />

€<br />

Rate net<br />

= Rate forward<br />

(1− Q K )<br />

Note: don’t confuse this<br />

Q with the discharge Q.<br />

€<br />

Page 10


<strong>Environmental</strong> <strong>Geochemistry</strong><br />

DM Sherman, University of Bristol<br />

2014/2015<br />

d[A]<br />

dt<br />

Integrating Rate laws..!<br />

Suppose we have a simple first-order rate law for<br />

the transformation of A:<br />

= −k f<br />

[A]<br />

Multiply both sides by dt <strong>and</strong> rearranging gives..<br />

€<br />

dA = −k f<br />

[A]dt<br />

€<br />

d[A]<br />

[A]<br />

= −k f<br />

dt<br />

€<br />

Integrating Rate laws (cont)..!<br />

Now we integrate both sides. We have our initial<br />

condition that at t = 0, [A] = [A] 0 .<br />

A d[A] t<br />

∫ = −kf ∫ dt<br />

[A] 0<br />

A 0<br />

€<br />

⎛<br />

ln [A] ⎞<br />

⎜ ⎟ = −k f<br />

t<br />

⎝ [A] 0 ⎠<br />

€<br />

[A] = [A] 0<br />

e −k f t<br />

€<br />

Page 11


<strong>Environmental</strong> <strong>Geochemistry</strong><br />

DM Sherman, University of Bristol<br />

2014/2015<br />

Half-Life!<br />

The half-life of A is the time it takes for half of A<br />

to disappear (no reverse reaction):<br />

If<br />

A = A o<br />

e −k f t<br />

€<br />

Then when A = A 0 /2:<br />

t 1/ 2 = 0.693/ k f<br />

€<br />

Half-Life!<br />

Process<br />

Ion complexation<br />

Adsorption<br />

Gas dissolution<br />

Hydrolysis<br />

Precipitation/Dissolution<br />

Mineral Recrystallization<br />

Half-life<br />


<strong>Environmental</strong> <strong>Geochemistry</strong><br />

DM Sherman, University of Bristol<br />

2014/2015<br />

Reactive Species in Open Systems<br />

Chemical Equilibrium vs. Steady State!<br />

Input<br />

C in = 0<br />

Reservoir<br />

rate = k(C sat<br />

−C)<br />

Output<br />

F out = QC<br />

A mineral dissolves in the reservoir with a rate = k(C sat -C)<br />

€<br />

Conservation of mass gives us:<br />

V dC<br />

dt<br />

= Vk(C sat<br />

−C) −QC<br />

€<br />

Reactive Species in Open Systems<br />

Chemical Equilibrium vs. Steady State!<br />

Input<br />

C in = 0<br />

Reservoir<br />

rate = k(C sat<br />

−C)<br />

Output<br />

F out = QC<br />

At steady state:<br />

€<br />

V dC = Vk(C sat<br />

−C) −QC = 0<br />

dt<br />

€<br />

C =<br />

kC sat<br />

k + (Q /V)<br />

Page 13


<strong>Environmental</strong> <strong>Geochemistry</strong><br />

DM Sherman, University of Bristol<br />

2014/2015<br />

Reactive Species in Open Systems<br />

Chemical Equilibrium vs. Steady State!<br />

Input<br />

C in = 0<br />

Reservoir<br />

rate = k(C sat<br />

−C)<br />

Output<br />

F out = QC<br />

t 1/2<br />

= ln(2) / k = time for reaction to go 1/2 way<br />

€<br />

t H<br />

=V / Q = residence time of water<br />

⎛ t<br />

C = C sat<br />

1+ 1/2<br />

⎞<br />

⎜<br />

⎝ (ln2)t<br />

⎟<br />

H ⎠<br />

−1<br />

Hence, C will only<br />

achieve chemical<br />

equilibrium if t H >> t 1/2 .<br />

Reaction Rates <strong>and</strong> H 2 O Residence<br />

Times!<br />

Page 14

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!