04.05.2015 Views

CONCENTRATING SOLUTIONS FOR A PLANAR ... - CAPDE

CONCENTRATING SOLUTIONS FOR A PLANAR ... - CAPDE

CONCENTRATING SOLUTIONS FOR A PLANAR ... - CAPDE

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

The parameters µ j will be chosen later. Observe that for any j ≠ i and<br />

x = δ i y + ξ i<br />

1<br />

[P U δj ,ξ j<br />

(x) + 1 (<br />

p P w 0 ( x − ξ )<br />

j<br />

) + 1 (<br />

δ j p 2 P w 1 ( x − ξ )]<br />

j<br />

)<br />

δ j<br />

γµ<br />

2<br />

p−1<br />

j<br />

= 8π<br />

γµ<br />

2<br />

p−1<br />

j<br />

[<br />

G(ξ i , ξ j ) 1 − C 0<br />

4p − C ]<br />

1<br />

4p 2<br />

p + O( e− 4 + |x − ξ i |<br />

).<br />

γ<br />

Hence, we get that the function U ξ (x) is a good approximation for a solution<br />

to problem (1.1) exhibiting m points of concentration provided<br />

log(8µ 4 i ) =<br />

(<br />

8πH(ξ i , ξ i ) 1 − C 0<br />

4p − C )<br />

1<br />

4p 2 + log δ (<br />

i<br />

C 0 + C )<br />

1<br />

p p<br />

+8π ∑ 2<br />

p−1 [<br />

µ i<br />

2<br />

G(ξ j , ξ i ) 1 − C 0<br />

p−1<br />

4p − C ]<br />

1<br />

4p<br />

j≠i µ<br />

.<br />

A direct computation shows that, for p large, µ satisfies<br />

j=1<br />

γµ<br />

2<br />

p−1<br />

j<br />

j<br />

∑<br />

µ i = e − 3 2πH(ξ<br />

4 e i ,ξ i )+2π<br />

j≠i G(ξ j,ξ i ) 1 (1 + O( )). (2.13)<br />

p<br />

Indeed, with this choice of the parameters µ i , we have that<br />

m∑ 1<br />

[P U δj ,ξ j<br />

(x) + 1 (<br />

p P w 0 ( x − ξ )<br />

j<br />

) + 1 (<br />

δ j p 2 P<br />

= 1<br />

γµ<br />

2<br />

p−1<br />

i<br />

for x = δ i y + ξ i .<br />

w 1 ( x − ξ j<br />

δ j<br />

)<br />

(p + v ∞ (y) + 1 p w 0(y) + 1 p 2 w 1(y) + O(e − p 4 |y| + e<br />

− p 4 )<br />

)<br />

(2.14)<br />

Remark 2.1. Let us remark that U ξ is a positive function. Since |v ∞ +<br />

1<br />

p w 0 + 1 w<br />

p 2 1 | ≤ C in |y| ≤ ɛ δ i<br />

, by (2.14) we get that U ξ is positive in B(ξ i , ɛ)<br />

for any i = 1, . . . , m. Moreover, by (2.11) we get that<br />

(<br />

P w i ( x − ξ )<br />

j<br />

) → −2πC i G(·, ξ j )<br />

δ j<br />

in C 1 -norm on |x − ξ j | ≥ ɛ, i = 0, 1, and then<br />

P U δj ,ξ j<br />

+ 1 (<br />

p P w 0 ( x − ξ )<br />

j<br />

) + 1 (<br />

δ j p 2 P w 1 ( x − ξ )<br />

j<br />

)<br />

δ j<br />

→ 8πG(·, ξ j )<br />

in C 1 -norm on |x−ξ j | ≥ ɛ. Hence, since ∂G<br />

∂ n (·, ξ j) < 0 on ∂Ω, U ξ is a positive<br />

function in Ω.<br />

)]<br />

11

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!