04.05.2015 Views

CONCENTRATING SOLUTIONS FOR A PLANAR ... - CAPDE

CONCENTRATING SOLUTIONS FOR A PLANAR ... - CAPDE

CONCENTRATING SOLUTIONS FOR A PLANAR ... - CAPDE

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

16 PIERPAOLO ESPOSITO, MONICA MUSSO, AND ANGELA PISTOIA<br />

Given h ∈ C(¯Ω), we consider the linear problem of finding a function<br />

φ ∈ W 2,2 (Ω) such that<br />

2∑ m∑<br />

L(φ) = h + c ij e U j<br />

Z ij , in Ω, (3.3)<br />

i=1 j=1<br />

∫<br />

φ = 0, on ∂Ω, (3.4)<br />

e U j<br />

Z ij φ = 0, for all i = 1, 2, j = 1, . . . , m, (3.5)<br />

Ω<br />

for some coefficients c ij , i = 1, 2 and j = 1, . . . , m. Here and in the sequel,<br />

for any i = 0, 1, 2 and j = 1, . . . , m we denote<br />

⎧<br />

⎪⎨<br />

Z ij (x) := z i ( x − ξ j<br />

δ j<br />

) =<br />

The main result of this Section is the following:<br />

⎪⎩<br />

|x−ξ j | 2 −δ 2 j<br />

δ 2 j +|x−ξ j| 2 if i = 0<br />

4δ j (x−ξ j ) i<br />

δ 2 j +|x−ξ j| 2 if i = 1, 2.<br />

Proposition 3.1. Let ε > 0 be fixed. There exist p 0 > 0 and C > 0 such<br />

that, for h ∈ C(¯Ω) there is a unique solution to problem (3.3)-(3.5), for any<br />

p > p 0 and ξ ∈ O ε , which satisfies<br />

‖φ‖ ∞ ≤ Cp‖h‖ ∗ . (3.6)<br />

Proof. The proof of this result consists of six steps.<br />

1 st Step. The operator L satisfies the maximum principle in ˜Ω := Ω \<br />

∪ m j=1 B(ξ j, Rδ j ) for R large, independent on p. Namely,<br />

if L(ψ) ≤ 0 in ˜Ω and ψ ≥ 0 on ∂ ˜Ω, then ψ ≥ 0 in ˜Ω.<br />

In order to prove this fact, we show the existence of a positive function Z<br />

in ˜Ω satisfying L(Z) < 0. We define Z to be<br />

( )<br />

m∑ a(x − ξj )<br />

Z(x) = z 0 , a > 0.<br />

δ j<br />

j=1<br />

First, observe that, if |x−ξ j | ≥ Rδ j for R > 1 a<br />

, then Z(x) > 0. On the other<br />

hand, we have:<br />

⎛<br />

m∑<br />

W (x)Z(x) ≤ D 0 ⎝<br />

e U j(x)<br />

j=1<br />

⎞<br />

⎠ Z(x) ≤ D 0 Z(x)<br />

m∑<br />

j=1<br />

8δ 2 j<br />

|x − ξ j | 4 ,<br />

where D 0 is the constant in Lemma 3.1. Further,by definition of z 0 ,<br />

m∑<br />

−∆Z(x) = a 2 8δ2 j (a2 |x − ξ j | 2 − δj 2)<br />

(a 2 |x − ξ j | 2 + δj 2)3<br />

≥ 1 3<br />

j=1<br />

m∑<br />

j=1<br />

8a 2 δ 2 j<br />

(a 2 |x − ξ j | 2 + δ 2 j )2 ≥ 4 27<br />

m∑<br />

j=1<br />

8δ 2 j<br />

a 2 |x − ξ j | 4

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!