04.05.2015 Views

CONCENTRATING SOLUTIONS FOR A PLANAR ... - CAPDE

CONCENTRATING SOLUTIONS FOR A PLANAR ... - CAPDE

CONCENTRATING SOLUTIONS FOR A PLANAR ... - CAPDE

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

33<br />

where δ lj denotes the Kronecker’s symbol, and hence, we get that<br />

|<br />

2∑<br />

k=1 l=1<br />

m∑<br />

∫<br />

c kl<br />

Ω<br />

≤ C‖φ ξ ‖ ∞ max |c kl |<br />

k , l<br />

[∂ (ξj ) i<br />

(e U l<br />

Z kl<br />

)<br />

+ η(x − ξ j )∂ xi<br />

(e U l<br />

Z kl<br />

)]<br />

φ ξ |<br />

∫<br />

Ω<br />

(<br />

)<br />

e U l<br />

+ O(e − 3 4 p ) = O( 1 p 7 )<br />

in view of |Z 0l Z kl | ≤ 2, (4.5)-(4.6). Inserting in (5.8), we get that<br />

∫<br />

Ω<br />

(<br />

∆u ξ + u p )<br />

ξ<br />

∂ (ξj ) i<br />

φ ξ = −<br />

2∑<br />

k=1 l=1<br />

+O( 1 p 7 ).<br />

m∑<br />

∫<br />

c kl<br />

Ω<br />

e U l<br />

Z kl ∂ xi (η(x − ξ j )φ ξ )(5.9)<br />

Since pφ ξ → 0 in C 1 -norm away from ξ 1 , . . . , ξ m , (5.9) gives that<br />

∫<br />

Ω<br />

( )<br />

∆u ξ + u p ξ<br />

∂ (ξj ) i<br />

φ ξ = −<br />

= −<br />

2∑<br />

k=1 l=1<br />

∫<br />

m∑<br />

∫<br />

c kl<br />

B(ξ j ,ɛ)<br />

always in view of (4.1) and (4.5)-(4.6).<br />

B(ξ j ,ɛ)<br />

(<br />

∆u ξ + u p ξ<br />

e U l<br />

Z kl ∂ xi φ ξ + O( 1 p 7 )<br />

)<br />

∂ xi φ ξ + O( 1 p 7 ) (5.10)<br />

Now, by Lemma 2.1 we get that | 1 δ s<br />

∂ xi w l ( x−ξs<br />

δ s<br />

)| ≤ C for any l = 1, 2 and<br />

for x away from ξ s . Hence, by the expression of U ξ and (2.2), (2.11) we get<br />

that for |x − ξ j | ≤ 2ɛ:<br />

m∑<br />

(<br />

1<br />

∂ xi U ξ =<br />

2<br />

∂ xi P U δs ,ξ s<br />

+ 1 (<br />

p−1<br />

p ∂ x i<br />

P w 0 ( x − ξ )<br />

s<br />

)<br />

(5.11)<br />

δ<br />

s=1 γµ<br />

s<br />

s<br />

+ 1 (<br />

p 2 ∂ x i<br />

P w 1 ( x − ξ ))<br />

s<br />

)<br />

δ s<br />

m∑<br />

(<br />

1<br />

=<br />

2<br />

∂ xi U δs,ξs + 1 ∂ xi w 0 ( x − ξ s<br />

) + 1<br />

p−1<br />

pδ<br />

s=1 γµ<br />

s δ s p 2 ∂ xi w 1 ( x − ξ )<br />

s<br />

) + O( 1 δ s δ s γ )<br />

s<br />

(<br />

1<br />

= −<br />

2<br />

Z ij − 1<br />

p−1 p ∂ x i<br />

w 0 ( x − ξ j<br />

) − 1 δ<br />

γδ j µ<br />

j p 2 ∂ x i<br />

w 1 ( x − ξ )<br />

j<br />

) + O( 1 δ j γ ),<br />

j<br />

since ∂ xi U δs ,ξ s<br />

= − 1 δ s<br />

Z is . Since, as already observed, ∂ xi w l ( x−ξ j<br />

δ j<br />

) = O(δ j )<br />

uniformly away from ξ j , l = 1, 2, by (5.11) in particular we get:<br />

∂ xi U ξ = O( 1 ), (5.12)<br />

γ

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!