04.05.2015 Views

CONCENTRATING SOLUTIONS FOR A PLANAR ... - CAPDE

CONCENTRATING SOLUTIONS FOR A PLANAR ... - CAPDE

CONCENTRATING SOLUTIONS FOR A PLANAR ... - CAPDE

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

14 PIERPAOLO ESPOSITO, MONICA MUSSO, AND ANGELA PISTOIA<br />

since (1 + s p )p ≤ e s . Thus, in this region<br />

⎛<br />

⎞−1 m∑<br />

∣<br />

δ ( )<br />

⎝<br />

j ⎠<br />

j=1 (δj 2 + |x − ξ ∆U<br />

j| 2 ) 3 ξ + U p ξ<br />

(x) ∣ (2.24)<br />

2<br />

(<br />

)<br />

p<br />

= O<br />

≤ Cpe − p x − ξ i<br />

(1 + |y| 2 ) 1 8 , y = .<br />

2<br />

δ i<br />

By (2.21), (2.23) and (2.24) we obtain the desired result.<br />

3. Analysis of the linearized operator<br />

In this Section, we prove bounded invertibility of the operator L, uniformly<br />

on ξ ∈ O ε , by using L ∞ -norms introduced in (2.18). Let us recall that<br />

L(φ) = ∆φ + W ξ φ, where W ξ (x) = pU p−1<br />

ξ<br />

(x). For simplicity of notation, we<br />

will omit the dependence of W ξ on ξ.<br />

As in Proposition 2.1, we have for the potential W (x) the following expansions.<br />

If |x − ξ i | ≤ ε for some i = 1, . . . , m<br />

p<br />

W (x) = p(<br />

γµ<br />

2<br />

p−1<br />

i<br />

+O( e− p 4<br />

p |y| + e− p 4<br />

p ) ) p−1<br />

= δ −2<br />

i<br />

(<br />

) p−1 (1 + 1 p v ∞(y) + 1 p 2 w 0(y) + 1 p 3 w 1(y) (3.1)<br />

1 + 1 p v ∞(y) + 1 p 2 w 0(y) + 1 p 3 w 1(y) + O( e− p 4<br />

p |y| + e− p 4<br />

p ) ) p−1<br />

where again we use the notation y = x−ξ i<br />

δ i<br />

. In this region, we have that<br />

W (x) ≤ C δi<br />

2 e v∞(y) e − 1 p v∞(y) ( )<br />

= O e U i(x)<br />

,<br />

since v ∞ (y) ≥ −2p. Indeed, by Taylor expansions of exponential and logarithmic<br />

functions as in (2.10), we obtain that, if |x − ξ i | ≤ ε √ δ i (and<br />

|y| ≤ √ ε<br />

δi<br />

),<br />

W (x) = δ −2<br />

i<br />

=<br />

(<br />

1 + 1 p v ∞(y) + 1 p 2 w 0(y) + 1 p 3 w 1(y) + O( e− p 4<br />

p |y| + e− p 4<br />

p ) ) p−1<br />

(<br />

8<br />

δi 2(1 + |y|2 ) 2 1 + 1 p (w 0 − v ∞ − 1 2 v2 ∞) + O( log4 (|y| + 2)<br />

p 2 )<br />

If |x − ξ i | ≥ ε for any i = 1, . . . , m:<br />

Summing up, we have that<br />

W (x) = O(p( C p )p−1 ).<br />

)<br />

.<br />

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!