04.05.2015 Views

CONCENTRATING SOLUTIONS FOR A PLANAR ... - CAPDE

CONCENTRATING SOLUTIONS FOR A PLANAR ... - CAPDE

CONCENTRATING SOLUTIONS FOR A PLANAR ... - CAPDE

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Proof. We have already shown that the map ξ → φ ξ is a C 1 −map into<br />

H 1 0 (Ω) and then, F (ξ) is a C1 -function of ξ.<br />

Since D ξ F (ξ) = 0, we have that<br />

∫<br />

0 = −<br />

= −<br />

= −<br />

Ω<br />

2∑ m∑<br />

i=1 j=1<br />

2∑ m∑<br />

i=1 j=1<br />

(∆(U ξ + φ ξ ) + (U ξ + φ ξ ) p ) (D ξ U ξ + D ξ φ ξ )<br />

∫<br />

c ij (ξ) e U j<br />

Z ij (D ξ U ξ + D ξ φ ξ )<br />

Ω<br />

∫<br />

c ij (ξ) e U j<br />

Z ij D ξ U ξ +<br />

Ω<br />

2∑<br />

m∑<br />

i=1 j=1<br />

∫<br />

c ij (ξ) D ξ (e U j<br />

Z ij )φ ξ<br />

Ω<br />

since ∫ Ω eU j<br />

Z ij φ ξ = 0. By the expression of U ξ , we have that:<br />

m∑<br />

[<br />

1<br />

∂ (ξj ) i<br />

U ξ = −<br />

2<br />

P<br />

p−1<br />

s=1 γµ s<br />

2<br />

+<br />

p 2 (p − 1) w 1 + 1 p ∇w 0 · y + 1 p 2 ∇w 1 · y<br />

(<br />

1<br />

+<br />

2<br />

P<br />

p−1<br />

γδ j µ j<br />

(<br />

1<br />

=<br />

2<br />

P<br />

p−1<br />

γδ j µ<br />

j<br />

2<br />

p − 1 U δ s ,ξ s<br />

− 2Z 0s +<br />

) ∣∣y=<br />

x−ξs<br />

δs<br />

Z ij − 1 p ∂ iw 0 ( x − ξ j<br />

) − 1 δ j p 2 ∂ iw 1 ( x − ξ j<br />

)<br />

δ j<br />

Z ij − 1 p ∂ iw 0 ( x − ξ j<br />

) − 1 δ j p 2 ∂ iw 1 ( x − ξ j<br />

)<br />

δ j<br />

29<br />

(<br />

2<br />

p(p − 1) w 0 (5.3)<br />

]<br />

∂ (ξj ) i<br />

log µ s<br />

)<br />

)<br />

+ O( 1 γ ),<br />

since P : L ∞ (Ω) → L ∞ 1<br />

(Ω) is a continuous operator (apply to<br />

p−1 U δ s ,ξ s<br />

,<br />

Z 0s , 1 p w j( x−ξs<br />

δ s<br />

), ∇w j ( x−ξs<br />

δ s<br />

) · ( x−ξs<br />

δ s<br />

) for j = 0, 1 which are bounded in Ω in<br />

view of Lemma 2.1), and<br />

∂ (ξj ) i<br />

(<br />

e U h<br />

Z lh<br />

)<br />

(<br />

= −4δ h e U δ<br />

h<br />

il<br />

δh 2 + |x − ξ h| 2 − 6(x − ξ )<br />

h) l (x − ξ j ) i<br />

(δh 2 + |x − ξ h| 2 ) 2 δ hj<br />

+3e U h<br />

Z 0h Z lh ∂ (ξj ) i<br />

log µ h , (5.4)<br />

where δ hj denotes the Kronecker’s symbol. Hence, by (5.3)-(5.4) for i = 1, 2<br />

and j = 1, . . . , m we get that<br />

1<br />

2∑ m∑<br />

)<br />

0 = ∂ (ξj ) i<br />

F (ξ) = −<br />

2<br />

c lh (ξ)<br />

(P Z ij , P Z lh<br />

p−1<br />

H<br />

γδ j µ l=1 h=1<br />

1 0 (Ω)<br />

j<br />

( )<br />

1<br />

+O + ‖φ ξ ‖ ∞ |∂<br />

pγδ (ξj ) i<br />

(e<br />

j<br />

∫Ω<br />

U ∑ 2 m∑<br />

h<br />

Z lh )| |c lh (ξ)|<br />

l=1 h=1

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!