11.06.2015 Views

Elevated ozone in the boundary layer at South Pole - Doug Davis

Elevated ozone in the boundary layer at South Pole - Doug Davis

Elevated ozone in the boundary layer at South Pole - Doug Davis

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

ARTICLE IN PRESS<br />

Atmospheric Environment 42 (2008) 2788–2803<br />

www.elsevier.com/loc<strong>at</strong>e/<strong>at</strong>mosenv<br />

<strong>Elev<strong>at</strong>ed</strong> <strong>ozone</strong> <strong>in</strong> <strong>the</strong> <strong>boundary</strong> <strong>layer</strong> <strong>at</strong> <strong>South</strong> <strong>Pole</strong><br />

Detlev Helmig a, , Bryan Johnson b , Samuel J. Oltmans b , William Neff b ,<br />

Fred Eisele c , <strong>Doug</strong>las D. <strong>Davis</strong> d<br />

a Institute of Arctic and Alp<strong>in</strong>e Research (INSTAAR), University of Colorado <strong>at</strong> Boulder, UCB 450, Boulder, CO 80309, USA<br />

b Earth System Research Labor<strong>at</strong>ory, N<strong>at</strong>ional Oceanic and Atmospheric Adm<strong>in</strong>istr<strong>at</strong>ion (NOAA), 325 Broadway, Boulder, CO 80305, USA<br />

c N<strong>at</strong>ional Center for Atmospheric Research, Boulder, CO 80307, USA<br />

d Georgia Institute of Technology, Atlanta, GA 30332, USA<br />

Received 23 June 2006; received <strong>in</strong> revised form 8 December 2006; accepted 8 December 2006<br />

Abstract<br />

Vertical profile measurements of <strong>ozone</strong>, w<strong>at</strong>er vapor, and meteorological conditions, as well as surface and tower<br />

measurements of <strong>the</strong>se parameters dur<strong>in</strong>g <strong>the</strong> 2003 Antarctic Tropospheric Chemistry Investig<strong>at</strong>ion (ANTCI) yielded <strong>the</strong>ir<br />

vertical (between <strong>the</strong> surface and 500 m) and temporal distribution <strong>in</strong> <strong>the</strong> <strong>boundary</strong> <strong>layer</strong> <strong>at</strong> <strong>South</strong> <strong>Pole</strong> (SP) dur<strong>in</strong>g<br />

December 13–30, 2003. Ozone <strong>in</strong> <strong>the</strong> surface and lower planetary <strong>boundary</strong> <strong>layer</strong> above SP was frequently enhanced over<br />

lower free tropospheric levels. Dur<strong>in</strong>g stable <strong>at</strong>mospheric conditions (which typically existed dur<strong>in</strong>g low w<strong>in</strong>d and fair sky<br />

conditions) <strong>ozone</strong> accumul<strong>at</strong>ed <strong>in</strong> <strong>the</strong> surface <strong>layer</strong> to reach up to twice its background concentr<strong>at</strong>ion. These conditions<br />

were correl<strong>at</strong>ed with air transport from <strong>the</strong> N–SE sector, when air flowed downslope from <strong>the</strong> Antarctic pl<strong>at</strong>eau towards<br />

<strong>the</strong> SP. These d<strong>at</strong>a provide fur<strong>the</strong>r <strong>in</strong>sight <strong>in</strong>to <strong>the</strong> vigorous photochemistry and <strong>ozone</strong> production th<strong>at</strong> result from <strong>the</strong><br />

highly elev<strong>at</strong>ed levels of nitrogen oxides (NO x ) <strong>in</strong> <strong>the</strong> Antarctic surface <strong>layer</strong>.<br />

r 2007 Elsevier Ltd. All rights reserved.<br />

Keywords: Antarctic pl<strong>at</strong>eau; Tropospheric <strong>ozone</strong>; Snowpack-<strong>at</strong>mosphere gas exchange; Snow photochemistry; Synoptic transport<br />

1. Introduction<br />

Recent studies have revealed a previously unexpected<br />

air and snowpack chemistry <strong>in</strong> <strong>the</strong> polar<br />

environment (Dom<strong>in</strong>e and Shepson, 2002), and<br />

have po<strong>in</strong>ted out an unusual photochemical situ<strong>at</strong>ion<br />

<strong>at</strong> <strong>South</strong> <strong>Pole</strong> (SP) (<strong>Davis</strong> et al., 2001, 2004).<br />

Fur<strong>the</strong>rmore, <strong>the</strong> annual, reoccurr<strong>in</strong>g form<strong>at</strong>ion of<br />

<strong>the</strong> Antarctic str<strong>at</strong>ospheric <strong>ozone</strong> hole has gener<strong>at</strong>ed<br />

ra<strong>the</strong>r unn<strong>at</strong>ural radi<strong>at</strong>ive and chemical conditions<br />

over <strong>the</strong> Antarctic cont<strong>in</strong>ent. In 1991 Schnell<br />

Correspond<strong>in</strong>g author.<br />

E-mail address: Detlev.Helmig@colorado.edu (D. Helmig).<br />

et al. (1991) reported a decl<strong>in</strong>e <strong>in</strong> 1975–1990 surface<br />

<strong>ozone</strong> <strong>at</strong> SP and specul<strong>at</strong>ed th<strong>at</strong> this change was<br />

driven by <strong>in</strong>creased photochemical destruction of<br />

<strong>ozone</strong> <strong>in</strong> <strong>the</strong> lower troposphere caused by <strong>the</strong><br />

<strong>in</strong>creased penetr<strong>at</strong>ion of ultraviolet radi<strong>at</strong>ion. Secondly,<br />

<strong>the</strong>se authors noted an enhanced transport of<br />

<strong>ozone</strong>-poorer mar<strong>in</strong>e air to SP th<strong>at</strong> may have<br />

<strong>in</strong>fluenced surface <strong>ozone</strong> levels. Newer analyses,<br />

<strong>in</strong>corpor<strong>at</strong><strong>in</strong>g l<strong>at</strong>er SP <strong>ozone</strong> d<strong>at</strong>a, have found<br />

<strong>in</strong>creases <strong>in</strong> <strong>ozone</strong> dur<strong>in</strong>g <strong>the</strong> past 15 years<br />

(Crawford et al., 2001; Jones and Wolff, 2003;<br />

Oltmans et al., 2006; Helmig et al., 2007a), which<br />

implies a surpris<strong>in</strong>g reversal of <strong>the</strong> earlier trend and<br />

poses questions about its <strong>in</strong>terpret<strong>at</strong>ion.<br />

1352-2310/$ - see front m<strong>at</strong>ter r 2007 Elsevier Ltd. All rights reserved.<br />

doi:10.1016/j.<strong>at</strong>mosenv.2006.12.032


ARTICLE IN PRESS<br />

D. Helmig et al. / Atmospheric Environment 42 (2008) 2788–2803 2789<br />

Tropospheric <strong>ozone</strong> production and loss processes<br />

are <strong>in</strong>tim<strong>at</strong>ely rel<strong>at</strong>ed to levels and conversion<br />

r<strong>at</strong>es of nitrogen oxides. The production and release<br />

of <strong>the</strong> nitrogen oxide gases NO, NO 2 , and HONO<br />

from sunlit snowpack (e.g. Dibb et al., 1998, 2002;<br />

Honr<strong>at</strong>h et al., 1999, 2000a, b, 2002; Jones et al.,<br />

2000, 2001; Oncley et al., 2004), and result<strong>in</strong>g<br />

unexpected high ambient levels of NO th<strong>at</strong> have<br />

been observed <strong>in</strong> ambient air <strong>at</strong> SP (<strong>Davis</strong> et al.,<br />

2001, 2004), have raised <strong>the</strong> question of how <strong>ozone</strong><br />

is affected by <strong>the</strong> result<strong>in</strong>g photochemistry. Surface<br />

<strong>ozone</strong> <strong>at</strong> SP <strong>in</strong>deed shows anomalous fe<strong>at</strong>ures<br />

(Crawford et al., 2001; Jones and Wolff, 2003;<br />

Helmig et al., 2007a). The annual <strong>ozone</strong> cycle, with<br />

an expected m<strong>in</strong>imum dur<strong>in</strong>g <strong>the</strong> Antarctic summer<br />

months, is disturbed by <strong>the</strong> frequent occurrence of<br />

events with largely <strong>in</strong>creased surface <strong>ozone</strong> levels.<br />

The Antarctic Tropospheric Chemistry Investig<strong>at</strong>ion<br />

(ANTCI) dur<strong>in</strong>g <strong>the</strong> 2003/2004 austral summer<br />

<strong>in</strong>vestig<strong>at</strong>ed l<strong>in</strong>kages between snowpack-photochemical<br />

processes, <strong>boundary</strong>-<strong>layer</strong> <strong>at</strong>mospheric chemistry,<br />

and transport across <strong>the</strong> Antarctic cont<strong>in</strong>ent.<br />

The distributions of <strong>ozone</strong> and NO were studied by<br />

surface <strong>layer</strong> measurements, from a te<strong>the</strong>red balloon<br />

pl<strong>at</strong>form and by aircraft. The <strong>in</strong>terpret<strong>at</strong>ion of<br />

<strong>the</strong>se high resolution vertical and temporal <strong>ozone</strong><br />

and meteorological d<strong>at</strong>a provide new evidence for<br />

l<strong>in</strong>kages between <strong>the</strong> unique SP <strong>boundary</strong> <strong>layer</strong><br />

stability conditions and snowpack and surface <strong>layer</strong><br />

photochemistry th<strong>at</strong> can result <strong>in</strong> <strong>the</strong> unexpected,<br />

surface <strong>layer</strong> <strong>ozone</strong> production dur<strong>in</strong>g <strong>the</strong> Antarctic<br />

summer, suggested previously by Crawford et al.<br />

(2001) and Chen et al. (2004).<br />

2. Experimental<br />

Site description: This experiment was conducted<br />

from December 10–31, 2003 <strong>at</strong> <strong>the</strong> Amundson-Scott<br />

research st<strong>at</strong>ion <strong>at</strong> SP. Conventions for directions <strong>at</strong><br />

<strong>the</strong> SP identify ‘‘north’’ as <strong>the</strong> Greenwich meridian<br />

so th<strong>at</strong> 901E longitude becomes ‘‘east’’ and so forth.<br />

The te<strong>the</strong>red balloon launch site was 300 m east<br />

from <strong>the</strong> geographic SP.<br />

Surface <strong>layer</strong> <strong>ozone</strong> measurements: Surface <strong>layer</strong><br />

<strong>ozone</strong> was measured cont<strong>in</strong>uously with two UV<br />

absorption monitors (Thermo Electron Corpor<strong>at</strong>ion<br />

Model 49C, Frankl<strong>in</strong>, MA). One d<strong>at</strong>a set used <strong>in</strong> this<br />

analysis was from <strong>the</strong> SP st<strong>at</strong>ion monitor, which is<br />

loc<strong>at</strong>ed <strong>in</strong> <strong>the</strong> <strong>at</strong>mospheric research observ<strong>at</strong>ory<br />

(ARO) and collects air from an <strong>in</strong>let on <strong>the</strong> roof of<br />

this build<strong>in</strong>g, <strong>at</strong> approxim<strong>at</strong>ely 17 m above <strong>the</strong> snow<br />

surface. These d<strong>at</strong>a are collected <strong>at</strong> 10-s <strong>in</strong>tervals and<br />

stored and reported as 5-m<strong>in</strong> and 1-h averages. The<br />

second <strong>ozone</strong> monitor was oper<strong>at</strong>ed <strong>in</strong> a small,<br />

temporary build<strong>in</strong>g near <strong>the</strong> te<strong>the</strong>red balloon launch<br />

site, approxim<strong>at</strong>ely 150 m east of <strong>the</strong> ARO. Surface<br />

<strong>layer</strong> air <strong>at</strong> <strong>the</strong> balloon launch site was sampled<br />

through a 10 m Teflon sampl<strong>in</strong>g l<strong>in</strong>e from an<br />

adjacent tower with an <strong>in</strong>let <strong>at</strong> 2 m above <strong>the</strong> surface.<br />

Dur<strong>in</strong>g <strong>the</strong> day of year 2003 (DOY) 350–357.2 an<br />

<strong>in</strong>let on <strong>the</strong> roof of <strong>the</strong> balloon launch shelter (4 m<br />

above ground) was used. Both TEI <strong>in</strong>struments were<br />

calibr<strong>at</strong>ed aga<strong>in</strong>st a labor<strong>at</strong>ory reference <strong>in</strong>strument<br />

<strong>in</strong> <strong>the</strong> Boulder NOAA Earth System Research<br />

Labor<strong>at</strong>ory. The estim<strong>at</strong>ed accuracy and precision<br />

of <strong>the</strong>se two <strong>in</strong>struments are 1 and 0.1 ppbv,<br />

respectively, for averaged 5-m<strong>in</strong> d<strong>at</strong>a.<br />

Surface <strong>layer</strong> meteorological measurements: Surface<br />

<strong>layer</strong> meteorological measurements were also<br />

made <strong>at</strong> <strong>the</strong> 2-m tower, 10 m west of <strong>the</strong> balloon<br />

launch site. Instruments mounted on this tower<br />

<strong>in</strong>cluded a w<strong>in</strong>d speed/w<strong>in</strong>d direction cup anemometer<br />

with w<strong>in</strong>d vane (Model 034B, Met One<br />

Instruments, Grants Pass, OR), an aspir<strong>at</strong>ed type E<br />

<strong>the</strong>rmocouple for air temper<strong>at</strong>ure, and an <strong>in</strong>cident<br />

solar radi<strong>at</strong>ion sensor (LI200X pyranometer,<br />

Campbell Scientific, Logan, UT). D<strong>at</strong>a were<br />

recorded every second and averaged and stored <strong>in</strong><br />

1-m<strong>in</strong> <strong>in</strong>tervals. Atmospheric turbulence was measured<br />

with a 3D sonic anemometer (CSAT-3,<br />

Campbell) <strong>at</strong> 60 Hz and averaged to 20 Hz d<strong>at</strong>a.<br />

D<strong>at</strong>a analysis procedures for <strong>the</strong> sonic anemometer<br />

d<strong>at</strong>a were presented by Cohen et al. (2007).<br />

Te<strong>the</strong>red balloon pl<strong>at</strong>form: Depend<strong>in</strong>g on w<strong>in</strong>d<br />

conditions and payload, two helium-filled Sky-Doc<br />

te<strong>the</strong>red balloons (one 4.2 m diameter two-ply and<br />

one 5.4 m diameter s<strong>in</strong>gle-ply balloon, Flo<strong>at</strong>ograph<br />

Technolgies, Marion, IN) (Helmig et al., 2002) were<br />

altern<strong>at</strong>ed for <strong>the</strong> vertical profile experiments.<br />

Balloon ascent and descent were used for <strong>the</strong> vertical<br />

profile with a hydraulic w<strong>in</strong>ch. Two types of profile<br />

observ<strong>at</strong>ions were conducted. Profiles with <strong>the</strong> lightweight,<br />

b<strong>at</strong>tery-oper<strong>at</strong>ed <strong>in</strong>struments (electrochemical<br />

concentr<strong>at</strong>ion cell, ECC <strong>ozone</strong>, te<strong>the</strong>rsonde) were<br />

done to a target altitude of 500 m. Ascent and<br />

descent r<strong>at</strong>es typically were 0.2–0.3 m s 1 , result<strong>in</strong>g <strong>in</strong><br />

1–1.5 h dur<strong>at</strong>ion experiments. The long sampl<strong>in</strong>g l<strong>in</strong>e<br />

experiments (see below) were performed to <strong>the</strong> height<br />

of <strong>the</strong> maximum length of <strong>the</strong> sampl<strong>in</strong>g l<strong>in</strong>e, i.e.<br />

120 m. Te<strong>the</strong>rsonde and ECC-radiosonde comb<strong>in</strong><strong>at</strong>ions<br />

were deployed toge<strong>the</strong>r with <strong>the</strong> long<br />

sampl<strong>in</strong>g l<strong>in</strong>e for concurrent meteorological and<br />

ECC <strong>ozone</strong> measurements. The <strong>in</strong>stantaneous balloon<br />

geopotential height was calcul<strong>at</strong>ed from <strong>the</strong>


2790<br />

ARTICLE IN PRESS<br />

D. Helmig et al. / Atmospheric Environment 42 (2008) 2788–2803<br />

barometric pressure and temper<strong>at</strong>ure measurement<br />

of <strong>the</strong> radiosonde and te<strong>the</strong>rsonde us<strong>in</strong>g <strong>the</strong> hypsometric<br />

rel<strong>at</strong>ionship. All flight d<strong>at</strong>a, <strong>in</strong>clud<strong>in</strong>g launch<br />

time, apex time, touchdown time and maximum<br />

altitude are graphically displayed <strong>in</strong> Fig. 1. Overall<br />

64 profile flights were conducted, yield<strong>in</strong>g a maximum<br />

of 178 vertical profile d<strong>at</strong>a sets (one flight<br />

typically yields two profiles, some parameters were<br />

measured with multiple <strong>in</strong>struments). The cont<strong>in</strong>uous<br />

d<strong>at</strong>a series from <strong>the</strong> two tower measurements<br />

are also displayed <strong>in</strong> this figure. Besides <strong>the</strong> te<strong>the</strong>red<br />

balloon vertical profiles, four ECC/radiosonde release<br />

balloons were launched from SP <strong>at</strong> times<br />

co<strong>in</strong>cid<strong>in</strong>g with te<strong>the</strong>red balloon profiles on DOY<br />

352.23, 357.27, 360.28, and 363.28.<br />

Electrochemical <strong>ozone</strong> sondes: EN-SCI Model 2Z<br />

(EN-SCI Corpor<strong>at</strong>ion, Boulder, CO) ECC sondes<br />

were used for <strong>the</strong> vertical <strong>ozone</strong> profile measurements.<br />

An evalu<strong>at</strong>ion and <strong>in</strong>tercomparison of <strong>the</strong>se<br />

measurements is discussed <strong>in</strong> more detail by<br />

Johnson et al. (2007). The ECC sondes were<br />

<strong>in</strong>terfaced to RS-80 radiosondes (Vaisala, Hels<strong>in</strong>ki,<br />

F<strong>in</strong>land) for remote d<strong>at</strong>a transfer.<br />

Vertical profile meteorological measurements:<br />

TSP-5A-SP Vaisala te<strong>the</strong>rsondes were used for <strong>the</strong><br />

measurement of meteorological conditions dur<strong>in</strong>g<br />

<strong>the</strong> balloon profil<strong>in</strong>g. D<strong>at</strong>a were transmitted to a<br />

ground receiv<strong>in</strong>g st<strong>at</strong>ion. The te<strong>the</strong>rsonde measures<br />

temper<strong>at</strong>ure, rel<strong>at</strong>ive humidity, w<strong>in</strong>d speed, w<strong>in</strong>d<br />

direction and barometric pressure. The RS-80<br />

radiosonde records temper<strong>at</strong>ure, rel<strong>at</strong>ive humidity<br />

and barometric pressure.<br />

Long sampl<strong>in</strong>g l<strong>in</strong>e experiments: In a second series<br />

of experiments <strong>the</strong> surface <strong>layer</strong> was probed with a<br />

long sampl<strong>in</strong>g l<strong>in</strong>e with an air <strong>in</strong>let th<strong>at</strong> was<br />

mounted to <strong>the</strong> balloon. This tub<strong>in</strong>g was made of<br />

PFA Teflon (0.78 cm o.d, 0.64 cm i.d., 135 m length,<br />

McCoy, Fort Coll<strong>in</strong>s, CO) with an PFA <strong>in</strong>let funnel<br />

(Sallivex Corp., M<strong>in</strong>netonka, MN) which housed a<br />

PTFE (polytetrafluoroethylene) membrane filter<br />

(Millipore Corp., Bellerica, MA). Prior to <strong>the</strong> field<br />

trip, this tub<strong>in</strong>g was conditioned <strong>in</strong> <strong>the</strong> labor<strong>at</strong>ory<br />

by purg<strong>in</strong>g it with 250 ppbv of <strong>ozone</strong>-enriched air<br />

for two days. The <strong>in</strong>let was mounted to <strong>the</strong> te<strong>the</strong>r<br />

l<strong>in</strong>e, approxim<strong>at</strong>ely 6 m below <strong>the</strong> balloon. Air was<br />

pulled through <strong>the</strong> l<strong>in</strong>e cont<strong>in</strong>uously while <strong>the</strong><br />

balloon raised and lowered <strong>the</strong> sampl<strong>in</strong>g l<strong>in</strong>e <strong>in</strong>let<br />

to a maximum height of 120 m. The surface end of<br />

this l<strong>in</strong>e ran <strong>in</strong>to <strong>the</strong> balloon launch build<strong>in</strong>g and<br />

was connected to a sampl<strong>in</strong>g manifold th<strong>at</strong> allowed<br />

sampl<strong>in</strong>g of air with ei<strong>the</strong>r <strong>the</strong> TEI <strong>ozone</strong> monitor<br />

or an NO chemilum<strong>in</strong>escence <strong>in</strong>strument or both<br />

700<br />

600<br />

Balloon Profiles<br />

Short profiles<br />

2 m Tower<br />

17 m ARO<br />

500<br />

Height (m)<br />

400<br />

300<br />

200<br />

100<br />

0<br />

347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365<br />

Fig. 1. Distribution of te<strong>the</strong>red balloon profiles dur<strong>in</strong>g <strong>the</strong> December 2003 profil<strong>in</strong>g experiment <strong>at</strong> <strong>South</strong> <strong>Pole</strong>. Balloon apex height is<br />

plotted aga<strong>in</strong>st <strong>the</strong> day of year 2003 (December 13–31). High profiles (to 500 m) were conducted us<strong>in</strong>g <strong>the</strong> balloon-borne radiosonde<br />

<strong>in</strong>struments (ECC, te<strong>the</strong>rsonde), profiles to 100 m were done with <strong>the</strong> long Teflon sampl<strong>in</strong>g l<strong>in</strong>e <strong>at</strong>tached to <strong>the</strong> balloon. The cont<strong>in</strong>uous<br />

d<strong>at</strong>a from <strong>the</strong> surface monitor<strong>in</strong>g are also illustr<strong>at</strong>ed.


ARTICLE IN PRESS<br />

D. Helmig et al. / Atmospheric Environment 42 (2008) 2788–2803 2791<br />

simultaneously. The sampl<strong>in</strong>g flow r<strong>at</strong>e was determ<strong>in</strong>ed<br />

by <strong>the</strong> sampl<strong>in</strong>g pumps of <strong>the</strong>se two<br />

analyzers and was 1.2 l m<strong>in</strong> 1 (TEI) or 2.4 l m<strong>in</strong> 1<br />

(both <strong>in</strong>struments comb<strong>in</strong>ed). Under <strong>the</strong>se conditions<br />

<strong>the</strong> sample residence time <strong>in</strong> <strong>the</strong> sampl<strong>in</strong>g l<strong>in</strong>e<br />

was 4.2 m<strong>in</strong> and 2.1 m<strong>in</strong>, respectively. Between<br />

balloon flights a short sampl<strong>in</strong>g l<strong>in</strong>e (10 m) and<br />

<strong>the</strong> long l<strong>in</strong>e <strong>in</strong>let were placed side by side on <strong>the</strong> 2-<br />

m tower and sample air was altern<strong>at</strong>ed between<br />

<strong>the</strong>se two <strong>in</strong>lets every 5 m<strong>in</strong>. The <strong>ozone</strong> loss r<strong>at</strong>e <strong>in</strong><br />

<strong>the</strong> long l<strong>in</strong>e was determ<strong>in</strong>ed by compar<strong>in</strong>g <strong>the</strong>se<br />

two d<strong>at</strong>a series. This loss r<strong>at</strong>e fluctu<strong>at</strong>ed slightly<br />

over n<strong>in</strong>e days while this sampl<strong>in</strong>g l<strong>in</strong>e was used.<br />

A 6-h runn<strong>in</strong>g mean was calcul<strong>at</strong>ed and applied for<br />

correct<strong>in</strong>g all long sampl<strong>in</strong>g l<strong>in</strong>e d<strong>at</strong>a. The mean<br />

<strong>ozone</strong> loss r<strong>at</strong>e <strong>in</strong> <strong>the</strong> long sampl<strong>in</strong>g l<strong>in</strong>e over <strong>the</strong><br />

n<strong>in</strong>e-day period was 1.970.8%. A thorough <strong>in</strong>tercomparison<br />

between <strong>the</strong> long sampl<strong>in</strong>g l<strong>in</strong>e d<strong>at</strong>a<br />

and concurrent ECC sonde measurements is presented<br />

by Johnson et al. (2007); fur<strong>the</strong>r analytical<br />

details on <strong>the</strong> te<strong>the</strong>red balloon NO measurements<br />

are provided <strong>in</strong> Helmig et al. (2007b).<br />

Balloon d<strong>at</strong>a analysis: Ascent balloon heights<br />

were calcul<strong>at</strong>ed by <strong>the</strong> radiosonde change <strong>in</strong><br />

pressure referenced to <strong>the</strong> average ‘‘before launch’’<br />

pressure, while descent balloon height calcul<strong>at</strong>ions<br />

were referenced to <strong>the</strong> surface pressure measured<br />

after completion of <strong>the</strong> descent profile. All raw d<strong>at</strong>a<br />

were averaged to 1-m height <strong>in</strong>tervals. Miss<strong>in</strong>g d<strong>at</strong>a<br />

po<strong>in</strong>ts (fewer than 2% of 1-m <strong>in</strong>terval d<strong>at</strong>a) <strong>at</strong><br />

selected heights were <strong>in</strong>terpol<strong>at</strong>ed from adjacent<br />

height measurements. The temporal and sp<strong>at</strong>ial<br />

distribution of <strong>at</strong>mospheric stability was determ<strong>in</strong>ed<br />

by calcul<strong>at</strong><strong>in</strong>g 5-m <strong>in</strong>terval bulk Richardson numbers<br />

us<strong>in</strong>g <strong>the</strong> vertical gradient temper<strong>at</strong>ure, w<strong>in</strong>d<br />

speed and w<strong>in</strong>d direction d<strong>at</strong>a from 2 m above and<br />

below <strong>the</strong> reference height. The averaged balloon<br />

and <strong>the</strong> time series surface d<strong>at</strong>a were comb<strong>in</strong>ed for<br />

<strong>the</strong> color contour analysis plots.<br />

Back trajectories: The back trajectories to SP<br />

were computed from <strong>the</strong> NCEP/NCAR Reanalysis<br />

D<strong>at</strong>a Set (Kalnay et al., 1996). The trajectory model<br />

(Harris et al., 2005) determ<strong>in</strong>es <strong>the</strong> vertical position<br />

of <strong>the</strong> air parcel explicitly us<strong>in</strong>g <strong>the</strong> vertical w<strong>in</strong>d<br />

field <strong>in</strong> <strong>the</strong> analyzed d<strong>at</strong>a set (3D trajectories).<br />

3. Results and discussion<br />

3.1. Surface <strong>ozone</strong><br />

D<strong>at</strong>a from <strong>the</strong> two cont<strong>in</strong>uous <strong>ozone</strong> surface<br />

measurements (ARO and balloon launch site) are<br />

55<br />

50<br />

Balloon Build<strong>in</strong>g<br />

ARO<br />

45<br />

Ozone (ppbv)<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365<br />

Fig. 2. Ozone dur<strong>in</strong>g day of year 2003 measured from <strong>the</strong> roof (17 m) of <strong>the</strong> ARO build<strong>in</strong>g (hourly mean d<strong>at</strong>a, black solid l<strong>in</strong>e) <strong>in</strong><br />

comparison to surface <strong>ozone</strong> (1-m<strong>in</strong> d<strong>at</strong>a) measured from <strong>the</strong> roof (4 m above <strong>the</strong> surface, DOY 350.0–357.2) and a 2-m tower <strong>in</strong>let<br />

(DOY 347.4–350.0, 357.2–364.1) adjacent of <strong>the</strong> balloon launch shelter.


2792<br />

ARTICLE IN PRESS<br />

D. Helmig et al. / Atmospheric Environment 42 (2008) 2788–2803<br />

shown <strong>in</strong> Fig. 2. Dur<strong>in</strong>g <strong>the</strong> period of this experiment,<br />

surface <strong>ozone</strong> <strong>at</strong> SP showed large vari<strong>at</strong>ions,<br />

between m<strong>in</strong>ima of 18 ppbv (DOY 354) and maxima<br />

of 50 ppbv on DOY 358. Both measurements, even<br />

though 130 m separ<strong>at</strong>ed by distance and 15 m by<br />

height show excellent agreement, typically with<strong>in</strong><br />

1 ppbv dur<strong>in</strong>g <strong>the</strong> first phase. A strik<strong>in</strong>g fe<strong>at</strong>ure of<br />

<strong>the</strong>se observ<strong>at</strong>ions is th<strong>at</strong> dur<strong>in</strong>g <strong>the</strong> l<strong>at</strong>er part of<br />

DOY 354, a significant <strong>in</strong>crease <strong>in</strong> surface <strong>ozone</strong><br />

(almost doubl<strong>in</strong>g) was observed and th<strong>at</strong> <strong>the</strong>reafter<br />

both measurements showed a 3–4 ppbv disagreement<br />

until <strong>ozone</strong> levels dropped back to below 30 ppbv on<br />

DOY 359. Upon closer <strong>in</strong>spection, it becomes<br />

apparent th<strong>at</strong> generally high agreement between<br />

<strong>the</strong>se two d<strong>at</strong>a series is seen <strong>at</strong> lower <strong>ozone</strong> levels<br />

and th<strong>at</strong> <strong>the</strong> disagreement scales with <strong>the</strong> absolute<br />

<strong>ozone</strong> levels. The vertical balloon profile d<strong>at</strong>a, to be<br />

discussed <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g paragraphs, show th<strong>at</strong> <strong>the</strong><br />

differences <strong>in</strong> <strong>the</strong>se two measurements do not stem<br />

from an analytical bias, but <strong>in</strong>stead represent vertical<br />

<strong>ozone</strong> gradients <strong>in</strong> <strong>the</strong> shallow SP surface <strong>layer</strong>.<br />

3.2. Vertical <strong>ozone</strong> profiles<br />

The vertical <strong>ozone</strong> distribution <strong>at</strong> SP showed<br />

strong vari<strong>at</strong>ions dur<strong>in</strong>g December 2003. Two<br />

examples th<strong>at</strong> illustr<strong>at</strong>e <strong>the</strong> extremes of <strong>the</strong>se<br />

conditions are presented <strong>in</strong> Fig. 3. On December<br />

24 a strong variability <strong>in</strong> <strong>ozone</strong> was seen <strong>in</strong> <strong>the</strong><br />

lowest 500 m of <strong>the</strong> <strong>at</strong>mosphere. Near <strong>the</strong> surface,<br />

<strong>ozone</strong> levels were approach<strong>in</strong>g 50 ppbv. Ozone<br />

mix<strong>in</strong>g r<strong>at</strong>ios decl<strong>in</strong>ed steeply with altitude, dropp<strong>in</strong>g<br />

to 22 ppbv <strong>at</strong> 180 m. Several <strong>layer</strong>s with<br />

2–4 ppbv enhanced <strong>ozone</strong> were seen between 200<br />

and 500 m height. D<strong>at</strong>a from <strong>the</strong> balloon ascent and<br />

descent show a high degree of agreement, <strong>in</strong>dic<strong>at</strong>ive<br />

th<strong>at</strong> <strong>ozone</strong> profiles changed very little dur<strong>in</strong>g <strong>the</strong> 58-<br />

m<strong>in</strong> flight dur<strong>at</strong>ion. It should be noted th<strong>at</strong> due to<br />

<strong>the</strong> 25–30 s response time of <strong>the</strong> ECC sonde, <strong>the</strong><br />

<strong>ozone</strong> read<strong>in</strong>gs are somewh<strong>at</strong> delayed caus<strong>in</strong>g a<br />

slight upwards/downwards shift of <strong>the</strong> <strong>ozone</strong> profile<br />

dur<strong>in</strong>g ascent and descent, respectively (by 10 m <strong>at</strong><br />

<strong>the</strong> 0.3 m s 1 ascent/descent r<strong>at</strong>e). Correct<strong>in</strong>g for<br />

this effect would fur<strong>the</strong>r improve <strong>the</strong> agreement<br />

between <strong>the</strong> ascent and descent <strong>ozone</strong> profiles.<br />

Ozone mix<strong>in</strong>g r<strong>at</strong>ios measured near <strong>the</strong> surface<br />

generally agreed with<strong>in</strong> 1–2 ppbv with <strong>the</strong> concurrent<br />

ARO and tower observ<strong>at</strong>ions (Fig. 2) (Johnson<br />

et al., 2007). Much different conditions were<br />

encountered two days l<strong>at</strong>er, as shown <strong>in</strong> <strong>the</strong> pair<br />

of profiles on <strong>the</strong> right <strong>in</strong> Fig. 3. Ozone was<br />

homogenously distributed <strong>in</strong> <strong>the</strong> surface and<br />

<strong>boundary</strong> <strong>layer</strong>, show<strong>in</strong>g less than a 2 ppbv gradient<br />

between <strong>the</strong> surface and 500 m. Aga<strong>in</strong>, both ascent<br />

and descent d<strong>at</strong>a follow each o<strong>the</strong>r closely and<br />

<strong>ozone</strong> d<strong>at</strong>a from <strong>the</strong> balloon <strong>in</strong>struments near <strong>the</strong><br />

500<br />

450<br />

Ascent<br />

Descent<br />

500<br />

450<br />

Ascent<br />

Descent<br />

400<br />

400<br />

350<br />

350<br />

Height (m)<br />

300<br />

250<br />

200<br />

Height (m)<br />

300<br />

250<br />

200<br />

150<br />

150<br />

100<br />

100<br />

50<br />

50<br />

0<br />

15 20 25 30 35 40 45 50<br />

Ozone (ppbv)<br />

0<br />

15 20 25 30 35 40 45 50<br />

Ozone (ppbv)<br />

Fig. 3. Two examples of vertical <strong>ozone</strong> distribution <strong>at</strong> <strong>South</strong> <strong>Pole</strong> dur<strong>in</strong>g December 2003. The profiles on <strong>the</strong> left were measured on<br />

December 24 (launch time DOY 358.82, flight dur<strong>at</strong>ion 57 m<strong>in</strong>). The profiles on <strong>the</strong> right were obta<strong>in</strong>ed on December 26 (launch time<br />

DOY 360.89, flight dur<strong>at</strong>ion 47 m<strong>in</strong>).


ARTICLE IN PRESS<br />

D. Helmig et al. / Atmospheric Environment 42 (2008) 2788–2803 2793<br />

surface are <strong>in</strong> excellent agreement with <strong>the</strong> cont<strong>in</strong>uous<br />

surface measurements <strong>at</strong> this time<br />

(19–20 ppbv, Fig. 2).<br />

The temporal behavior of <strong>the</strong> observed surface<br />

<strong>layer</strong> <strong>ozone</strong> gradient was <strong>in</strong>vestig<strong>at</strong>ed <strong>in</strong> ano<strong>the</strong>r<br />

balloon experiment on December 21 where <strong>the</strong> long<br />

sampl<strong>in</strong>g l<strong>in</strong>e was raised and ‘‘parked’’ for 3 h <strong>at</strong><br />

110 m. Dur<strong>in</strong>g this experiment ambient air was<br />

sampled from two <strong>in</strong>let l<strong>in</strong>es th<strong>at</strong> were altern<strong>at</strong>ed<br />

every 5 m<strong>in</strong> and analyzed with <strong>the</strong> TEI monitor<br />

(Fig. 4). First, <strong>the</strong> short and long sampl<strong>in</strong>g l<strong>in</strong>e <strong>in</strong>lets<br />

were both near <strong>the</strong> surface (balloon l<strong>in</strong>e <strong>in</strong>let <strong>at</strong> 2 m,<br />

short sampl<strong>in</strong>g l<strong>in</strong>e <strong>in</strong>let <strong>at</strong> 4 m). Ozone <strong>in</strong> air from<br />

both <strong>in</strong>lets showed no discernable difference; both<br />

samples agreed with<strong>in</strong> better than 0.5 ppbv. Next,<br />

<strong>the</strong> long l<strong>in</strong>e <strong>in</strong>let was raised with <strong>the</strong> balloon <strong>in</strong> 7 m<strong>in</strong><br />

to 110 m. Ozone <strong>in</strong> air collected from <strong>the</strong> balloon<br />

dur<strong>in</strong>g <strong>the</strong> ascent dropped <strong>in</strong>stantaneously from<br />

45 ppbv to 40 ppbv. Over <strong>the</strong> next three hours <strong>ozone</strong><br />

<strong>at</strong> 110 m rema<strong>in</strong>ed lower, approxim<strong>at</strong>ely 5 ppbv<br />

below <strong>the</strong> surface read<strong>in</strong>gs. Dur<strong>in</strong>g this time surface<br />

<strong>ozone</strong> <strong>in</strong>creased by 1 ppbv. Similarly, an <strong>in</strong>crease <strong>in</strong><br />

<strong>ozone</strong> <strong>at</strong> 110 m was observed; towards <strong>the</strong> end of this<br />

experiment, <strong>the</strong> vertical <strong>ozone</strong> gradient decreased<br />

slightly. After 3 h <strong>the</strong> balloon was brought back<br />

down, and ano<strong>the</strong>r, more rapid up and down profile<br />

(25 m<strong>in</strong>) was measured with cont<strong>in</strong>uous sampl<strong>in</strong>g<br />

through <strong>the</strong> long balloon sampl<strong>in</strong>g l<strong>in</strong>e. These d<strong>at</strong>a<br />

confirm <strong>the</strong> results from <strong>the</strong> previous <strong>in</strong>termittent<br />

sampl<strong>in</strong>g and th<strong>at</strong> <strong>the</strong> <strong>ozone</strong> gradient between <strong>the</strong><br />

surface and 110 m had decl<strong>in</strong>ed to 3 ppbv.<br />

3.3. Vertical and temporal <strong>ozone</strong> distribution<br />

The vertical and temporal (December 13–31)<br />

distribution of <strong>ozone</strong> shown <strong>in</strong> <strong>the</strong> 3D contour plot<br />

<strong>in</strong> Fig. 5 comb<strong>in</strong>es <strong>the</strong> d<strong>at</strong>a from all ECC sonde<br />

profiles, <strong>the</strong> cont<strong>in</strong>uous monitor<strong>in</strong>g <strong>at</strong> <strong>the</strong> ARO <strong>at</strong><br />

17 m, <strong>the</strong> cont<strong>in</strong>uous monitor<strong>in</strong>g <strong>at</strong> <strong>the</strong> te<strong>the</strong>red<br />

balloon launch site (<strong>at</strong> 2 and 4 m height) and from<br />

<strong>the</strong> long sampl<strong>in</strong>g l<strong>in</strong>e profile measurements. The<br />

results of this analysis reemphasize <strong>the</strong> conditions<br />

with enhanced and variable <strong>boundary</strong> <strong>layer</strong> <strong>ozone</strong> <strong>at</strong><br />

SP. Dur<strong>in</strong>g most times <strong>ozone</strong> near <strong>the</strong> surface (e.g. <strong>in</strong><br />

<strong>the</strong> 0–300 m <strong>layer</strong>) was elev<strong>at</strong>ed compared to air<br />

aloft. The observed gradients varied widely. Dur<strong>in</strong>g<br />

two isol<strong>at</strong>ed conditions with overall low concentr<strong>at</strong>ions<br />

(DOY 354, 361) <strong>ozone</strong> showed a homogenous<br />

vertical distribution (also see Fig. 2). Dur<strong>in</strong>g all o<strong>the</strong>r<br />

times, <strong>ozone</strong> near <strong>the</strong> surface was enhanced, with<br />

gradients of typically 5–25 ppbv higher <strong>ozone</strong> near<br />

<strong>the</strong> surface. Dur<strong>in</strong>g a four-day period from DOY<br />

355–359, susta<strong>in</strong>ed conditions with 20–25 ppbv<br />

enhanced <strong>ozone</strong> <strong>in</strong> <strong>the</strong> surface <strong>layer</strong> were observed.<br />

The depth of this enhanced <strong>ozone</strong> <strong>layer</strong> varied from<br />

60 to 200 m. In <strong>the</strong> follow<strong>in</strong>g section we will analyze<br />

49<br />

47<br />

45<br />

110<br />

90<br />

Ozone (ppbv)<br />

43<br />

41<br />

70<br />

50<br />

Height (m)<br />

39<br />

30<br />

Roof Inlet<br />

37<br />

Long L<strong>in</strong>e <strong>at</strong> 2 m<br />

10<br />

Balloon Inlet<br />

Balloon Inlet Height<br />

35<br />

-10<br />

355.15 355.20 355.25 355.30 355.35 355.40<br />

Time<br />

Fig. 4. Approxim<strong>at</strong>ely 4 h of <strong>ozone</strong> measurements from two surface <strong>in</strong>lets (roof <strong>in</strong>let <strong>at</strong> 4 m height, and long l<strong>in</strong>e <strong>in</strong>let <strong>at</strong> 2 m height) and<br />

from 110 m. First, two <strong>in</strong>let l<strong>in</strong>es were sampled side by side near <strong>the</strong> surface. Next <strong>the</strong> long sampl<strong>in</strong>g l<strong>in</strong>e <strong>in</strong>let was lifted to 110 m and air<br />

was altern<strong>at</strong>ed between <strong>the</strong> raised balloon <strong>in</strong>let and <strong>the</strong> tower <strong>in</strong>let every 5 m<strong>in</strong>. After 3 h, <strong>the</strong> balloon was brought back to <strong>the</strong> surface,<br />

equipped with a new pressure sensor and ano<strong>the</strong>r vertical profile was measured with cont<strong>in</strong>uous sampl<strong>in</strong>g from <strong>the</strong> balloon <strong>in</strong>let.


2794<br />

ARTICLE IN PRESS<br />

D. Helmig et al. / Atmospheric Environment 42 (2008) 2788–2803<br />

A<br />

500<br />

Height [m]<br />

B<br />

400<br />

300<br />

200<br />

100<br />

0<br />

500<br />

15<br />

Ozone<br />

(ppbv)<br />

350 355 360 365<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

Height [m]<br />

C<br />

400<br />

300<br />

200<br />

100<br />

0<br />

500<br />

350 355 360 365<br />

Temp<br />

(K)<br />

290<br />

288<br />

280<br />

284<br />

282<br />

280<br />

278<br />

276<br />

274<br />

Height [m]<br />

400<br />

300<br />

200<br />

100<br />

0<br />

350 355 360 365<br />

WS<br />

(m/s)<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

Fig. 5. Ozone (A), potential temper<strong>at</strong>ure (B), w<strong>in</strong>d speed (C), w<strong>in</strong>d direction (D, next page), and w<strong>at</strong>er vapor partial pressure (E, next<br />

page) <strong>at</strong> <strong>South</strong> <strong>Pole</strong> (<strong>in</strong> ppbv) between <strong>the</strong> surface and 500 m height dur<strong>in</strong>g day of year 2003 (December 13–30) with d<strong>at</strong>a from all available<br />

balloon (up to 179 vertical profile d<strong>at</strong>a series) and surface measurements. The black dots <strong>in</strong>dic<strong>at</strong>e <strong>the</strong> distribution of d<strong>at</strong>a po<strong>in</strong>ts th<strong>at</strong> went<br />

<strong>in</strong>to <strong>the</strong> contour plot analyses.


ARTICLE IN PRESS<br />

D. Helmig et al. / Atmospheric Environment 42 (2008) 2788–2803 2795<br />

D<br />

500<br />

Height [m]<br />

E<br />

400<br />

300<br />

200<br />

100<br />

0<br />

500<br />

440<br />

410<br />

380<br />

350<br />

320<br />

290<br />

WD<br />

(degrees)<br />

350 355 360 365<br />

Height [m]<br />

400<br />

300<br />

200<br />

100<br />

0<br />

0.3<br />

VP<br />

(mBar)<br />

350 355 360 365<br />

Fig. 5. (Cont<strong>in</strong>ued)<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.0<br />

0.4<br />

<strong>the</strong> meteorological and <strong>boundary</strong> <strong>layer</strong> conditions<br />

th<strong>at</strong> fostered this <strong>ozone</strong> buildup <strong>in</strong> <strong>the</strong> SP surface<br />

<strong>layer</strong>.<br />

3.4. Boundary-<strong>layer</strong> conditions<br />

The contour plots of potential temper<strong>at</strong>ure<br />

(Fig. 5B), w<strong>in</strong>d speed (Fig. 5C), and w<strong>in</strong>d direction<br />

(Fig. 5D) illustr<strong>at</strong>e <strong>the</strong> susta<strong>in</strong>ed, stable <strong>boundary</strong><br />

<strong>layer</strong> conditions dur<strong>in</strong>g <strong>the</strong> period with <strong>in</strong>creased<br />

surface <strong>ozone</strong>. The potential temper<strong>at</strong>ure gradient<br />

between <strong>the</strong> surface and 300 m was on <strong>the</strong> order of<br />

10 1C dur<strong>in</strong>g DOY 355–359. These conditions were<br />

accompanied by low w<strong>in</strong>ds (o2ms 1 ) from <strong>the</strong><br />

surface to 500 m. The low w<strong>in</strong>d speeds and lack of<br />

w<strong>in</strong>d shear with altitude cre<strong>at</strong>e conditions with<br />

m<strong>in</strong>imal vertical mix<strong>in</strong>g. The w<strong>at</strong>er vapor partial<br />

pressure distribution (Fig. 5E) fur<strong>the</strong>r underl<strong>in</strong>es<br />

<strong>the</strong> strongly str<strong>at</strong>ified conditions. The warmer air<br />

aloft was drier than surface air, <strong>in</strong>dic<strong>at</strong><strong>in</strong>g <strong>the</strong> lack<br />

of vertical mix<strong>in</strong>g and, consequently, <strong>the</strong> lack of gas<br />

exchange throughout this period. Air with<strong>in</strong> <strong>the</strong><br />

lowest 50 m shows a positive w<strong>at</strong>er vapor gradient,<br />

which suggests dry<strong>in</strong>g of <strong>the</strong> lowest air <strong>layer</strong>s<br />

possibility through freezeout of <strong>at</strong>mospheric w<strong>at</strong>er<br />

vapor to <strong>the</strong> surface, which dur<strong>in</strong>g December<br />

rema<strong>in</strong>s 101 colder than <strong>the</strong> average air temper<strong>at</strong>ure<br />

<strong>at</strong> SP. The time series with <strong>the</strong> <strong>in</strong>cident solar<br />

radi<strong>at</strong>ion d<strong>at</strong>a (Fig. 6) illustr<strong>at</strong>e <strong>the</strong> clear sky<br />

conditions dur<strong>in</strong>g this time. SP, lack<strong>in</strong>g a diurnal<br />

solar cycle is expected to have no diurnal changes <strong>in</strong><br />

<strong>in</strong>com<strong>in</strong>g radi<strong>at</strong>ion. Devi<strong>at</strong>ions from this behavior


2796<br />

ARTICLE IN PRESS<br />

D. Helmig et al. / Atmospheric Environment 42 (2008) 2788–2803<br />

700<br />

600<br />

500<br />

W m -2<br />

400<br />

300<br />

200<br />

100<br />

0<br />

348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365<br />

Fig. 6. Incom<strong>in</strong>g solar radi<strong>at</strong>ion <strong>at</strong> <strong>South</strong> <strong>Pole</strong> dur<strong>in</strong>g calendar day 2003 measured adjacent to <strong>the</strong> balloon launch site. A few occasional<br />

artificially reduced radi<strong>at</strong>ion read<strong>in</strong>gs (e.g. <strong>at</strong> DOY 355.3, 356.3, 359.3) were caused by <strong>the</strong> shad<strong>in</strong>g from <strong>the</strong> balloon.<br />

<strong>in</strong> <strong>the</strong> d<strong>at</strong>a are from <strong>the</strong> slight distance of our<br />

measurement site from <strong>the</strong> geographic pole and a<br />

slight tilt of <strong>the</strong> radi<strong>at</strong>ion sensor (some of which has<br />

been corrected <strong>in</strong> <strong>the</strong> d<strong>at</strong>a analysis). Occasionally <strong>the</strong><br />

balloon was cast<strong>in</strong>g a shadow on <strong>the</strong> sensor, caus<strong>in</strong>g<br />

a few, artificially lowered read<strong>in</strong>gs. Prior to and after<br />

<strong>the</strong> enhanced <strong>ozone</strong> episode, <strong>in</strong>cident radi<strong>at</strong>ion<br />

fluctu<strong>at</strong>ed highly, with values typically rang<strong>in</strong>g<br />

between 250 and 550 W m 2 .Thesefluctu<strong>at</strong>ionswere<br />

due to <strong>the</strong> vary<strong>in</strong>g degree of cloud cover and height.<br />

In contrast, dur<strong>in</strong>g <strong>the</strong> clear sky conditions on DOY<br />

355–359, <strong>in</strong>cident radi<strong>at</strong>ion levels were much less<br />

variable, averag<strong>in</strong>g about 460 W m 2 . It is well<br />

known th<strong>at</strong> over snow, due to <strong>the</strong> high reflection of<br />

radi<strong>at</strong>ion from <strong>the</strong> snowpack and backsc<strong>at</strong>ter from<br />

clouds, <strong>in</strong>com<strong>in</strong>g radi<strong>at</strong>ion to <strong>the</strong> surface dur<strong>in</strong>g<br />

times with overhead cloud cover can be significantly<br />

higher than dur<strong>in</strong>g clear sky conditions. Conversely,<br />

clear-sky conditions over <strong>the</strong> snowpack lead to net<br />

radi<strong>at</strong>ive losses and stable str<strong>at</strong>ific<strong>at</strong>ion (Anbach,<br />

1974), as observed dur<strong>in</strong>g <strong>the</strong> period of maximum<br />

<strong>ozone</strong> production dur<strong>in</strong>g DOY 355–359.<br />

The sonic anemometer turbulence d<strong>at</strong>a and sound<strong>in</strong>gs<br />

from a SODAR system (Neff et al., 2007) were<br />

used to develop a cont<strong>in</strong>uous record of mixed<br />

<strong>boundary</strong> <strong>layer</strong> depth. Mixed <strong>boundary</strong> <strong>layer</strong> heights<br />

fluctu<strong>at</strong>ed between 40 and 200 m dur<strong>in</strong>g DOY<br />

347–354 and 359–365, but dur<strong>in</strong>g <strong>the</strong> DOY 354–359<br />

period, an un<strong>in</strong>terrupted, shallow <strong>boundary</strong> <strong>layer</strong><br />

height of 20–40 m was observed. The contour plot<br />

analysis of <strong>the</strong> bulk gradient Richardson number<br />

from <strong>the</strong> te<strong>the</strong>red balloon sound<strong>in</strong>gs fur<strong>the</strong>r solidifies<br />

this analysis. Above a shallow, neutrally stable 20 m-<br />

deep surface <strong>layer</strong>, <strong>the</strong> <strong>at</strong>mosphere was consistently<br />

stable (Richardson numbers 40.5) <strong>in</strong> both <strong>the</strong><br />

temporal (DOY 355–359) as well as <strong>the</strong> vertical<br />

(50–500 m) doma<strong>in</strong>.<br />

3.5. Air transport dur<strong>in</strong>g conditions with <strong>ozone</strong><br />

enhancements<br />

On DOY 354 surface <strong>ozone</strong> rose from 19 to<br />

41 ppbv <strong>in</strong> 10 h and to 44 ppbv after 22 h. This<br />

<strong>in</strong>crease (2.2 ppbv hr 1 ) is larger than calcul<strong>at</strong>ed<br />

<strong>ozone</strong> production r<strong>at</strong>es for SP, which were estim<strong>at</strong>ed<br />

to be 0.09–0.15/0.25 ppbv hr 1 (Crawford et al., 2001)<br />

and 0.13–0.20/0.27 ppbv hr 1 (Chen et al., 2004)<br />

(<strong>in</strong>terquartile range/maximum), respectively (see more<br />

discussions on <strong>ozone</strong> production below). Thus, <strong>the</strong><br />

rapid <strong>in</strong>crease <strong>in</strong> <strong>ozone</strong> on DOY 354 cannot be<br />

expla<strong>in</strong>ed by local <strong>ozone</strong> production alone, but<br />

transport of air with elev<strong>at</strong>ed <strong>ozone</strong> to SP must be<br />

ano<strong>the</strong>r determ<strong>in</strong><strong>in</strong>g factor. Surface w<strong>in</strong>d d<strong>at</strong>a and<br />

trajectory analyses were used to <strong>in</strong>vestig<strong>at</strong>e <strong>the</strong> air<br />

flows associ<strong>at</strong>ed with <strong>the</strong> transitions and periods of<br />

enhanced <strong>ozone</strong> levels.<br />

In Fig. 7, <strong>the</strong> <strong>ozone</strong> record from <strong>the</strong> 17 m <strong>in</strong>let on<br />

<strong>the</strong> ARO is plotted with <strong>the</strong> w<strong>in</strong>d speed and w<strong>in</strong>d<br />

direction d<strong>at</strong>a from <strong>the</strong> NOAA tower (<strong>at</strong> 13 m)<br />

and u * (from <strong>the</strong> sonic anemometer turbulence


ARTICLE IN PRESS<br />

D. Helmig et al. / Atmospheric Environment 42 (2008) 2788–2803 2797<br />

50<br />

40<br />

<strong>ozone</strong><br />

Ozone (ppbv), W<strong>in</strong>d speed, u* (m s -1 )<br />

30<br />

20<br />

10<br />

0<br />

w<strong>in</strong>d speed<br />

u* (x 50)<br />

w<strong>in</strong>d direction<br />

200<br />

100<br />

0<br />

W<strong>in</strong>d direction (sector)<br />

350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365<br />

Fig. 7. Ozone (ARO <strong>at</strong> 17 m), w<strong>in</strong>d speed and w<strong>in</strong>d direction (NOAA tower <strong>at</strong> 13 m), and u * (from turbulence eddy correl<strong>at</strong>ion<br />

measurements <strong>at</strong> 2 m near <strong>the</strong> balloon launch site) dur<strong>in</strong>g day of year 2003 <strong>at</strong> SP. The 10-day back trajectories dur<strong>in</strong>g four selected times <strong>at</strong><br />

36 h spac<strong>in</strong>g (356.0; 357.5, 359.0; 360.5) and as <strong>in</strong>dic<strong>at</strong>ed by <strong>the</strong> arrows, are shown <strong>in</strong> <strong>the</strong> upper part of <strong>the</strong> figure. Numbers along <strong>the</strong><br />

trajectories <strong>in</strong>dic<strong>at</strong>e transport time <strong>in</strong> days.<br />

-100<br />

measurements). This figure also <strong>in</strong>cludes selected<br />

10-day back trajectories from <strong>the</strong> NCEP reanalysis.<br />

It should be noted th<strong>at</strong> <strong>the</strong> reanalysis d<strong>at</strong>a is coarse<br />

<strong>in</strong> resolution and may not reflect <strong>the</strong> flow with<strong>in</strong> <strong>the</strong><br />

shallow <strong>in</strong>versions th<strong>at</strong> occur over <strong>the</strong> icepack.<br />

Ra<strong>the</strong>r, trajectories derived from <strong>the</strong> reanalysis d<strong>at</strong>a<br />

should be seen as <strong>in</strong>dic<strong>at</strong><strong>in</strong>g <strong>the</strong> synoptic-scale<br />

orig<strong>in</strong>s of air above <strong>the</strong> surface <strong>in</strong>version. A fur<strong>the</strong>r<br />

limit<strong>at</strong>ion of this analysis lies <strong>in</strong> <strong>the</strong> absence of a<br />

surface observ<strong>in</strong>g network over <strong>the</strong> high pl<strong>at</strong>eau<br />

th<strong>at</strong> might give more <strong>in</strong>sight <strong>in</strong>to <strong>the</strong> orig<strong>in</strong>s of <strong>the</strong><br />

air near <strong>the</strong> surface.<br />

The w<strong>in</strong>d speed and u * d<strong>at</strong>a fur<strong>the</strong>r exemplify <strong>the</strong><br />

strong correl<strong>at</strong>ion of high <strong>ozone</strong> with low w<strong>in</strong>d<br />

speed and limited mix<strong>in</strong>g, as already po<strong>in</strong>ted out <strong>in</strong><br />

<strong>the</strong> discussion above and by <strong>the</strong> d<strong>at</strong>a <strong>in</strong> Fig. 5. Prior<br />

to DOY 354, w<strong>in</strong>ds were from <strong>the</strong> N to NW <strong>at</strong> w<strong>in</strong>d<br />

speeds of 4–6 m s 1 . Back trajectories for this period<br />

(not shown) show a counterclockwise flow p<strong>at</strong>tern,<br />

with air arriv<strong>in</strong>g <strong>at</strong> SP th<strong>at</strong> had been transported<br />

over <strong>the</strong> center and N–NE part of <strong>the</strong> cont<strong>in</strong>ent for<br />

<strong>the</strong> previous 1–10 days. Dur<strong>in</strong>g <strong>the</strong> time of rapid<br />

<strong>ozone</strong> <strong>in</strong>crease on DOY 354 <strong>the</strong> w<strong>in</strong>d d<strong>at</strong>a reveal a<br />

dist<strong>in</strong>ct change <strong>in</strong> air flow and w<strong>in</strong>d speed, as<br />

measured surface w<strong>in</strong>ds shifted from 3201 to 901<br />

and dropped from 6 to 2ms 1 . The back<br />

trajectory analyses for this transition period are<br />

<strong>in</strong>conclusive as <strong>the</strong>y show only a small shift of NW<br />

flow prior to DOY 354 to a somewh<strong>at</strong> more<br />

nor<strong>the</strong>asterly and slower transport between DOY


2798<br />

ARTICLE IN PRESS<br />

D. Helmig et al. / Atmospheric Environment 42 (2008) 2788–2803<br />

354.5–357.5. Dur<strong>in</strong>g <strong>the</strong> enhanced <strong>ozone</strong> period,<br />

w<strong>in</strong>ds rema<strong>in</strong>ed calm with cont<strong>in</strong>u<strong>in</strong>g easterly flow<br />

near <strong>the</strong> surface. Interest<strong>in</strong>gly, dur<strong>in</strong>g <strong>the</strong> tail end of<br />

<strong>the</strong> <strong>in</strong>creased <strong>ozone</strong> period, while <strong>the</strong> w<strong>in</strong>d direction<br />

shifted back from easterly to nor<strong>the</strong>rly w<strong>in</strong>ds and<br />

w<strong>in</strong>d speeds <strong>in</strong>creased gradually, <strong>ozone</strong> <strong>in</strong>creased by<br />

ano<strong>the</strong>r 5 ppbv and rema<strong>in</strong>ed elev<strong>at</strong>ed <strong>at</strong> this level<br />

for about a day. Here, <strong>the</strong> trajectories show th<strong>at</strong><br />

dur<strong>in</strong>g DOY 358 transport shifted for about one<br />

day from <strong>the</strong> previously prevail<strong>in</strong>g nor<strong>the</strong>rly flow<br />

towards a circular p<strong>at</strong>tern where air th<strong>at</strong> reached SP<br />

had resided <strong>in</strong> <strong>the</strong> area to <strong>the</strong> SE of SP for 2–4 days.<br />

On DOY 360.5 trajectories shift back towards <strong>the</strong><br />

previously dom<strong>in</strong><strong>at</strong><strong>in</strong>g nor<strong>the</strong>rly flow. Inspection of<br />

<strong>the</strong> raw<strong>in</strong>sonde d<strong>at</strong>a dur<strong>in</strong>g this period reveals th<strong>at</strong><br />

<strong>the</strong> w<strong>in</strong>d veers with height from easterly to nor<strong>the</strong>rly<br />

over <strong>the</strong> first 100–500 m. These d<strong>at</strong>a reaffirm th<strong>at</strong><br />

<strong>the</strong> trajectory analyses should be tre<strong>at</strong>ed with some<br />

caution because <strong>the</strong> reanalysis d<strong>at</strong>a may not reflect<br />

this f<strong>in</strong>e structure <strong>in</strong> <strong>the</strong> <strong>boundary</strong> <strong>layer</strong> w<strong>in</strong>d field.<br />

The entire December 2003 w<strong>in</strong>d direction and<br />

<strong>ozone</strong> records were used for a st<strong>at</strong>istical analysis of<br />

<strong>the</strong> rel<strong>at</strong>ionship between <strong>ozone</strong> and w<strong>in</strong>d direction.<br />

Hourly <strong>ozone</strong> enhancement values were calcul<strong>at</strong>ed<br />

by subtract<strong>in</strong>g <strong>the</strong> <strong>in</strong>ferred December <strong>ozone</strong> background<br />

(25.6 ppbv, Oltmans et al., 2007). Note th<strong>at</strong><br />

this <strong>in</strong>ferred background <strong>ozone</strong> mix<strong>in</strong>g r<strong>at</strong>io was<br />

derived from a smooth<strong>in</strong>g analysis of <strong>the</strong> seasonal<br />

<strong>ozone</strong> cycle and th<strong>at</strong> on occasion surface <strong>ozone</strong><br />

levels <strong>at</strong> SP dur<strong>in</strong>g December will be below this<br />

value. Results of this analysis <strong>in</strong> Fig. 8 illustr<strong>at</strong>e th<strong>at</strong><br />

<strong>in</strong> general significantly higher <strong>ozone</strong> levels were<br />

observed with air be<strong>in</strong>g transported from <strong>the</strong> N to<br />

SE sector while w<strong>in</strong>ds from W to NW brought <strong>in</strong> air<br />

with much lower <strong>ozone</strong>. Air th<strong>at</strong> was transported<br />

upslope (with w<strong>in</strong>ds from <strong>the</strong> lower elev<strong>at</strong>ion<br />

sectors <strong>at</strong> W/NW) typically was below or right <strong>at</strong><br />

<strong>the</strong> <strong>in</strong>ferred seasonal <strong>ozone</strong> background level.<br />

The contour map <strong>in</strong> Fig. 9 shows how <strong>the</strong><br />

landscape N to SE of SP is more homogenous,<br />

slop<strong>in</strong>g gradually uphill for 500 to 1000 km, whereas<br />

to <strong>the</strong> S, SW, W and NW <strong>the</strong> Antarctic terra<strong>in</strong><br />

drops rapidly <strong>in</strong> altitude. The MBL w<strong>in</strong>d speeds of<br />

2ms 1 th<strong>at</strong> were observed dur<strong>in</strong>g <strong>the</strong> <strong>ozone</strong><br />

enhancement period would result <strong>in</strong> a horizontal<br />

transport distance of 170 km per day near <strong>the</strong><br />

surface. At this w<strong>in</strong>d speed, with <strong>the</strong> susta<strong>in</strong>ed<br />

stable conditions dur<strong>in</strong>g DOY 355–359, and with<br />

<strong>the</strong> flow p<strong>at</strong>terns as <strong>in</strong>dic<strong>at</strong>ed by <strong>the</strong> trajectories, air<br />

would have been transported over high altitude<br />

(43000 m), rel<strong>at</strong>ively gently slop<strong>in</strong>g snowpack for<br />

several days before it reached SP.<br />

Ozone (ppbv) above Bckgrd<br />

20<br />

15<br />

10<br />

5<br />

0<br />

Ozone<br />

Hours<br />

-5<br />

270 0<br />

W<strong>in</strong>d Sector<br />

3.6. Chemical conditions th<strong>at</strong> are caus<strong>in</strong>g <strong>ozone</strong><br />

enhancements<br />

120<br />

100<br />

Fig. 8. Ozone enhancement <strong>in</strong> <strong>the</strong> SP surface <strong>layer</strong> with mean<br />

and standard devi<strong>at</strong>ion for 101 w<strong>in</strong>d sectors. The frequency of <strong>the</strong><br />

occurrence of w<strong>in</strong>d direction from <strong>the</strong> 101 sectors dur<strong>in</strong>g<br />

December 2003 is also <strong>in</strong>dic<strong>at</strong>ed.<br />

Fig. 9. Loc<strong>at</strong>ion of <strong>South</strong> <strong>Pole</strong> with w<strong>in</strong>d direction sectors and<br />

elev<strong>at</strong>ion contours on <strong>the</strong> Antarctic cont<strong>in</strong>ent. Map cre<strong>at</strong>ed from<br />

<strong>the</strong> map service Onl<strong>in</strong>e Map Cre<strong>at</strong>ion (<strong>at</strong> http://www.aquarius.<br />

geomar.de).<br />

A comb<strong>in</strong><strong>at</strong>ion of a series of unique meteorological<br />

and chemical conditions have been shown to<br />

contribute towards <strong>the</strong> surpris<strong>in</strong>g <strong>ozone</strong> production<br />

<strong>in</strong> <strong>the</strong> Antarctic <strong>boundary</strong> <strong>layer</strong>. A critical and<br />

determ<strong>in</strong><strong>in</strong>g parameter is <strong>the</strong> enhanced NO th<strong>at</strong><br />

builds up <strong>in</strong> <strong>the</strong> shallow surface <strong>layer</strong> above <strong>the</strong><br />

cold Antarctic snowpack. Previous surface and<br />

tower gradient measurements have shown th<strong>at</strong> NO<br />

90<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Hours of Occurrence


ARTICLE IN PRESS<br />

D. Helmig et al. / Atmospheric Environment 42 (2008) 2788–2803 2799<br />

orig<strong>in</strong><strong>at</strong>ed from surface emissions and th<strong>at</strong> surface<br />

<strong>layer</strong> concentr<strong>at</strong>ions were highest dur<strong>in</strong>g times with<br />

low <strong>boundary</strong> <strong>layer</strong> depths (<strong>Davis</strong> et al., 2001,<br />

2004). Dur<strong>in</strong>g ANTCI, measurements of NO were<br />

extended to higher <strong>in</strong> <strong>the</strong> <strong>at</strong>mosphere by vertical NO<br />

profile measurements from <strong>the</strong> te<strong>the</strong>red balloon<br />

(Helmig et al., 2007b) as well as by aircraft<br />

observ<strong>at</strong>ions (<strong>Davis</strong> et al., 2007). Both experiments<br />

showed large <strong>in</strong>creases of NO <strong>in</strong> <strong>the</strong> surface <strong>layer</strong>.<br />

Dur<strong>in</strong>g <strong>the</strong> stable conditions on DOY 354–359, <strong>the</strong><br />

balloon NO observ<strong>at</strong>ions showed gradually <strong>in</strong>creas<strong>in</strong>g<br />

NO near <strong>the</strong> surface, with NO eventually<br />

exceed<strong>in</strong>g 500 pptv on DOY 356–357. Concentr<strong>at</strong>ions<br />

dropped rapidly with <strong>in</strong>creas<strong>in</strong>g height,<br />

typically to less than one fifth <strong>at</strong> 50 m.<br />

Collectively, several factors are responsible for<br />

<strong>the</strong> buildup of high NO surface concentr<strong>at</strong>ions <strong>at</strong> SP<br />

(<strong>Davis</strong> et al., 2004). Twenty-four hour cont<strong>in</strong>uous<br />

radi<strong>at</strong>ion, stable <strong>at</strong>mospheric conditions, and accumul<strong>at</strong>ion<br />

result<strong>in</strong>g from surface-advected air parcels<br />

are critical for achiev<strong>in</strong>g high NO levels. Ano<strong>the</strong>r<br />

important factor is <strong>the</strong> non-l<strong>in</strong>ear lifetime of NO x<br />

ðNO x ¼ NO þ NO 2 Þ, as <strong>at</strong> higher NO x levels<br />

(4200 pptv) <strong>the</strong> NO x lifetime <strong>in</strong>creases steadily.<br />

This is due to <strong>the</strong> fact th<strong>at</strong> above 200 pptv of NO x ,<br />

NO 2 reduces both <strong>the</strong> levels of OH and HO 2 , which<br />

def<strong>in</strong>e <strong>the</strong> major s<strong>in</strong>ks for NO x , result<strong>in</strong>g <strong>in</strong> an<br />

overall <strong>in</strong>crease <strong>in</strong> <strong>the</strong> NO x lifetime (<strong>Davis</strong> et al.,<br />

2004). NO to NO 2 conversion is mostly facilit<strong>at</strong>ed<br />

by high levels of peroxy radicals (HO 2 and RO 2 ),<br />

which <strong>in</strong> turn are provided by H 2 O 2 ,CH 2 O and<br />

CH 4 oxid<strong>at</strong>ion. This conversion will subsequently<br />

result <strong>in</strong> <strong>ozone</strong> production as NO 2 þ hn !<br />

NO þ O, followed by O þ O 2 ! O 3 . Similar to<br />

OH levels and NO x lifetime, <strong>ozone</strong> production is<br />

expected to be strongly dependant on <strong>the</strong> height,<br />

with highest procution r<strong>at</strong>es <strong>at</strong> a dist<strong>in</strong>ct height<br />

above <strong>the</strong> surface and with smaller production<br />

r<strong>at</strong>es above and below (Helmig et al., 2007b; <strong>Davis</strong><br />

et al., 2007).<br />

Co<strong>in</strong>cident with <strong>the</strong> 25 ppbv <strong>in</strong>crease <strong>in</strong> <strong>ozone</strong><br />

on DOY 355–356, surface NO rose from about<br />

20 pptv to over 200 pptv. Sodar and balloon d<strong>at</strong>a<br />

show th<strong>at</strong> dur<strong>in</strong>g th<strong>at</strong> time <strong>the</strong> mix<strong>in</strong>g-<strong>layer</strong> depth<br />

decreased from over 150 m to less than 30 m. Of<br />

note was <strong>the</strong> fact th<strong>at</strong> <strong>the</strong> enhanced <strong>ozone</strong> extended<br />

above 300 m, whereas <strong>the</strong> NO enhancement was<br />

conf<strong>in</strong>ed to <strong>the</strong> lowest few tens of meters. This<br />

observ<strong>at</strong>ion suggests th<strong>at</strong> <strong>the</strong> NO enhancement<br />

represents a short-term response to conf<strong>in</strong><strong>in</strong>g surface<br />

emissions <strong>in</strong>to a th<strong>in</strong> <strong>boundary</strong> <strong>layer</strong>, whereas<br />

<strong>the</strong> deeper <strong>ozone</strong> enhancement implic<strong>at</strong>es a much<br />

longer history of transport and mix<strong>in</strong>g. Us<strong>in</strong>g <strong>the</strong><br />

maximum modeled <strong>ozone</strong> production r<strong>at</strong>es a m<strong>in</strong>imum<br />

time of 3–4 days would be required to<br />

gener<strong>at</strong>e 44 ppbv <strong>ozone</strong> from a 25 (seasonal background)<br />

or 19 ppbv (DOY 354) start<strong>in</strong>g level. While<br />

<strong>the</strong> meteorological d<strong>at</strong>a suggest a period of 5 days<br />

with susta<strong>in</strong>ed, sunny and stable <strong>boundary</strong> <strong>layer</strong><br />

conditions dur<strong>in</strong>g December 2003, an <strong>in</strong>spection of<br />

records from o<strong>the</strong>r years has shown th<strong>at</strong> most <strong>ozone</strong><br />

enhancement episodes (which yield similar maximum<br />

<strong>ozone</strong> levels) are shorter, typically last<strong>in</strong>g 2–3<br />

days. If this <strong>ozone</strong> production would occur locally,<br />

this comparison would suggest th<strong>at</strong> actual <strong>ozone</strong><br />

production r<strong>at</strong>es are likely <strong>in</strong> <strong>the</strong> upper range of <strong>the</strong><br />

modeled values (5–7 ppbv d 1 ). Ano<strong>the</strong>r possibility<br />

is th<strong>at</strong> stable <strong>boundary</strong> <strong>layer</strong> conditions <strong>in</strong> regions<br />

upw<strong>in</strong>d of SP prevail for longer periods than <strong>at</strong> SP<br />

itself and allow <strong>ozone</strong> levels to build up to <strong>the</strong>se<br />

high levels, with air conta<strong>in</strong><strong>in</strong>g <strong>in</strong>creased <strong>ozone</strong> <strong>the</strong>n<br />

be<strong>in</strong>g transported to SP. However, susta<strong>in</strong>ed stable<br />

<strong>boundary</strong> <strong>layer</strong> conditions become less likely with<br />

<strong>in</strong>creas<strong>in</strong>g distance from <strong>the</strong> poles (K<strong>in</strong>g et al., 2006;<br />

Cohen et al., 2007), as <strong>the</strong> <strong>in</strong>creas<strong>in</strong>g diurnal<br />

radi<strong>at</strong>ion cycle drives diurnally chang<strong>in</strong>g sensible<br />

he<strong>at</strong> fluxes and stability regimes, which will cause<br />

<strong>in</strong>creased <strong>boundary</strong> <strong>layer</strong> mix<strong>in</strong>g (K<strong>in</strong>g et al., 2006).<br />

This suggests th<strong>at</strong> this observed <strong>boundary</strong> <strong>layer</strong><br />

<strong>ozone</strong> production will be <strong>in</strong>creas<strong>in</strong>gly pronounced<br />

with decreas<strong>in</strong>g distance to <strong>the</strong> SP. These arguments<br />

<strong>the</strong>refore po<strong>in</strong>t towards an efficient <strong>ozone</strong> production<br />

<strong>in</strong> <strong>the</strong> vic<strong>in</strong>ity of SP, with net <strong>ozone</strong> production<br />

r<strong>at</strong>es likely be<strong>in</strong>g <strong>in</strong> <strong>the</strong> upper range, or possibly<br />

even higher than <strong>the</strong> previously modeled d<strong>at</strong>a.<br />

Note th<strong>at</strong> here we have given only a brief<br />

summary of <strong>the</strong> most important conditions th<strong>at</strong><br />

are foster<strong>in</strong>g enhanced <strong>ozone</strong> <strong>at</strong> SP as <strong>the</strong> focus of<br />

this manuscript is on <strong>the</strong> d<strong>at</strong>a and <strong>in</strong>terpret<strong>at</strong>ions of<br />

<strong>the</strong> te<strong>the</strong>red balloon experiment. More <strong>in</strong> depth<br />

tre<strong>at</strong>ment of <strong>the</strong> SP oxid<strong>at</strong>ion chemistry has been<br />

presented <strong>in</strong> previous public<strong>at</strong>ions (Crawford et al.,<br />

2001; <strong>Davis</strong> et al., 2004, Chen et al., 2004); newer<br />

analyses, <strong>in</strong>clud<strong>in</strong>g measurements from o<strong>the</strong>r concurrent<br />

experiments, are discussed <strong>in</strong> several o<strong>the</strong>r<br />

contributions to this special ANTCI issue (Eisele<br />

et al., 2007).<br />

3.7. Upwards <strong>ozone</strong> fluxes?<br />

The frequent neg<strong>at</strong>ive <strong>ozone</strong> gradients (higher<br />

<strong>ozone</strong> near <strong>the</strong> surface) are <strong>in</strong>dic<strong>at</strong>ive of conditions<br />

where <strong>ozone</strong> will be transported upwards out of <strong>the</strong><br />

height <strong>layer</strong> where maximum <strong>ozone</strong> production and


2800<br />

ARTICLE IN PRESS<br />

D. Helmig et al. / Atmospheric Environment 42 (2008) 2788–2803<br />

buildup of <strong>ozone</strong> occurs. At SP (Helmig, unpublished<br />

results), <strong>at</strong> Summit (Helmig et al., 2007c), and<br />

<strong>in</strong> midl<strong>at</strong>itude seasonal snow (Bocquet et al., 2007),<br />

<strong>ozone</strong> concentr<strong>at</strong>ions <strong>in</strong> air pulled from with<strong>in</strong> <strong>the</strong><br />

snowpack dur<strong>in</strong>g most times were lower than above<br />

<strong>the</strong> surface. S<strong>in</strong>ce <strong>ozone</strong> appears to be destroyed <strong>in</strong><br />

<strong>the</strong> snowpack, <strong>the</strong>re must also be a downward<br />

<strong>ozone</strong> flux close to <strong>the</strong> surface. With <strong>the</strong> limited<br />

resolution of <strong>the</strong> <strong>ozone</strong> profile d<strong>at</strong>a near <strong>the</strong><br />

surface and given <strong>the</strong> high uncerta<strong>in</strong>ty of published<br />

<strong>ozone</strong> deposition r<strong>at</strong>es (Helmig et al., 2007d), it is<br />

not possible to accur<strong>at</strong>ely determ<strong>in</strong>e <strong>the</strong> exact height<br />

<strong>at</strong> which <strong>ozone</strong> fluxes diverge. However, <strong>the</strong><br />

significant <strong>ozone</strong> enhancements seen <strong>at</strong> <strong>the</strong> <strong>in</strong>let<br />

height (2/4 m) of <strong>the</strong> balloon build<strong>in</strong>g site compared<br />

to <strong>the</strong> 17-m <strong>in</strong>let <strong>at</strong> <strong>the</strong> ARO, and <strong>the</strong> fact th<strong>at</strong><br />

<strong>ozone</strong> mix<strong>in</strong>g r<strong>at</strong>ios always decl<strong>in</strong>ed with height<br />

above <strong>the</strong> 2 m balloon launch reference height,<br />

suggests th<strong>at</strong> <strong>the</strong> <strong>ozone</strong> flux divergence height<br />

should be below <strong>the</strong> 2–17 m range. Hence, positive<br />

(upwards) <strong>ozone</strong> fluxes are expected <strong>at</strong> heights close<br />

to <strong>the</strong> surface, likely upwards from no more than a<br />

few meters height.<br />

Depend<strong>in</strong>g on <strong>the</strong> height of observ<strong>at</strong>ion, <strong>the</strong>se<br />

positive <strong>ozone</strong> fluxes may be <strong>in</strong>terpreted as <strong>ozone</strong><br />

com<strong>in</strong>g out of <strong>the</strong> snow. Such a surpris<strong>in</strong>g<br />

phenomenon has previously been described for<br />

midl<strong>at</strong>itude sites <strong>in</strong> Wyom<strong>in</strong>g (Zeller and Hehn,<br />

1994, 1996; Zeller, 2000) and Australia (Galbally<br />

and Allison, 1972), but hi<strong>the</strong>rto has lacked a<br />

plausible explan<strong>at</strong>ion. Interpret<strong>at</strong>ions of <strong>the</strong>se earlier<br />

studies suggested th<strong>at</strong> <strong>ozone</strong> may be stored and<br />

released out of <strong>the</strong> snowpack (Galbally and Allison,<br />

1972; Zeller and Hehn, 1994). However, as mentioned<br />

above, measurements of <strong>ozone</strong> <strong>in</strong> <strong>in</strong>terstitial<br />

air generally have shown lower <strong>ozone</strong> <strong>in</strong> <strong>the</strong> snow<br />

than above <strong>the</strong> surface (Bocquet et al., 2007; Helmig<br />

et al., 2007c). Of course, while both environments<br />

share <strong>the</strong> condition of snow cover, <strong>the</strong>re are a<br />

number of important differences between <strong>the</strong> polar<br />

and <strong>the</strong> midl<strong>at</strong>itude environments, where <strong>the</strong>se<br />

upwards <strong>ozone</strong> fluxes were reported. Most importantly,<br />

for <strong>the</strong> Wyom<strong>in</strong>g and Australia studies are<br />

<strong>the</strong> presence of soil underne<strong>at</strong>h <strong>the</strong> snow. Microbial<br />

activity <strong>in</strong> <strong>the</strong> soil underne<strong>at</strong>h <strong>the</strong> snow has been<br />

shown to significantly contribute to gas exchange<br />

through <strong>the</strong> snow. Most likely, soil fluxes (<strong>in</strong>clud<strong>in</strong>g<br />

NO) are <strong>the</strong> determ<strong>in</strong><strong>in</strong>g process for gas fluxes<br />

through <strong>the</strong> snow surface <strong>in</strong> snow-covered, extrapolar<br />

environments. Additionally, it should be<br />

noted th<strong>at</strong> snow-contam<strong>in</strong>ant levels typically are<br />

several factors higher <strong>in</strong> midl<strong>at</strong>itudes than <strong>at</strong> polar<br />

loc<strong>at</strong>ions, which provides a larger substr<strong>at</strong>e for<br />

activ<strong>at</strong>ion of gases by photochemistry (Bocquet<br />

et al., 2007 and references <strong>the</strong>re<strong>in</strong>). Given <strong>the</strong><br />

available observ<strong>at</strong>ions and with our current understand<strong>in</strong>g<br />

we specul<strong>at</strong>e th<strong>at</strong> NO x fluxes out of <strong>the</strong><br />

seasonal snowpack are likely to be higher than <strong>in</strong><br />

<strong>the</strong> polar environment. One recent study <strong>in</strong> <strong>the</strong><br />

Colorado Rocky Mounta<strong>in</strong>s has also shown th<strong>at</strong><br />

vol<strong>at</strong>ile organic compounds with<strong>in</strong>, and likely fluxes<br />

out of <strong>the</strong> snowpack, are significant (Swanson et al.,<br />

2005). S<strong>in</strong>ce, similar to SP, stable <strong>at</strong>mospheric<br />

conditions will also be enhanced over gently sloped<br />

and fl<strong>at</strong> terra<strong>in</strong> with seasonal snowpack, and given<br />

<strong>the</strong> aforementioned sources of RO 2 and NO x ,<br />

similar <strong>ozone</strong> production is expected for snowcovered,<br />

extra-polar environments dur<strong>in</strong>g times of<br />

high act<strong>in</strong>ic fluxes (daytime, sunny conditions). It is<br />

<strong>the</strong>refore possible th<strong>at</strong> <strong>the</strong> aforementioned earlier<br />

observ<strong>at</strong>ions of positive <strong>ozone</strong> fluxes (Galbally and<br />

Allison, 1972; Zeller and Hehn, 1994, 1996; Zeller,<br />

2000) may have resulted from <strong>at</strong>mospheric, gasphase<br />

<strong>ozone</strong> production <strong>in</strong> a shallow <strong>layer</strong> right<br />

above <strong>the</strong> snow surface. This <strong>ozone</strong> production will<br />

result <strong>in</strong> upward fluxes, which, dur<strong>in</strong>g tower<br />

gradient flux measurements (as applied <strong>in</strong> <strong>the</strong><br />

referenced liter<strong>at</strong>ure), depend<strong>in</strong>g on <strong>the</strong> <strong>in</strong>let height,<br />

may be <strong>in</strong>terpreted as <strong>ozone</strong> be<strong>in</strong>g released out of<br />

<strong>the</strong> snowpack.<br />

3.8. Implic<strong>at</strong>ions for SP <strong>ozone</strong> trends<br />

At SP <strong>ozone</strong> gradients up to 5 ppbv between <strong>the</strong><br />

surface and <strong>the</strong> 17 m-high <strong>in</strong>let of <strong>the</strong> ARO can be<br />

encountered. Hence, <strong>the</strong> <strong>in</strong>let height will be of<br />

importance when compar<strong>in</strong>g <strong>the</strong> SP <strong>ozone</strong> record,<br />

<strong>in</strong> particular summertime measurements, with d<strong>at</strong>a<br />

from o<strong>the</strong>r sites, or with older SP records where<br />

measurements were taken <strong>at</strong> a different height<br />

above <strong>the</strong> surface (note th<strong>at</strong> from 1977 onward<br />

<strong>the</strong> SP surface <strong>ozone</strong> measurements were made <strong>at</strong> a<br />

comparable height to wh<strong>at</strong> <strong>the</strong>y are now except for<br />

<strong>the</strong> vari<strong>at</strong>ion associ<strong>at</strong>ed with <strong>the</strong> drift<strong>in</strong>g of <strong>the</strong><br />

snow around <strong>the</strong> build<strong>in</strong>g).<br />

Decadal time scale trends and variability have<br />

been evident <strong>in</strong> <strong>the</strong> Antarctic tropospheric circul<strong>at</strong>ion,<br />

particularly <strong>in</strong> <strong>the</strong> Austral spr<strong>in</strong>g dur<strong>in</strong>g <strong>the</strong><br />

period of maximum <strong>ozone</strong> loss <strong>in</strong> <strong>the</strong> str<strong>at</strong>osphere.<br />

It has been argued th<strong>at</strong> photochemical <strong>ozone</strong><br />

depletion <strong>in</strong> <strong>the</strong> str<strong>at</strong>osphere has caused a longerlived<br />

polar vortex, an <strong>in</strong>creas<strong>in</strong>g strength of <strong>the</strong><br />

Antarctic oscill<strong>at</strong>ion (AAO) and colder temper<strong>at</strong>ures<br />

over <strong>the</strong> Antarctic pl<strong>at</strong>eau (Thompson and


ARTICLE IN PRESS<br />

D. Helmig et al. / Atmospheric Environment 42 (2008) 2788–2803 2801<br />

Solomon, 2002). Lower surface w<strong>in</strong>ds and temper<strong>at</strong>ures<br />

were observed <strong>at</strong> SP, follow<strong>in</strong>g a long-term<br />

trend towards <strong>in</strong>creased <strong>in</strong>version strength <strong>in</strong> <strong>the</strong><br />

1990s (Neff, 1999), a period when <strong>the</strong> AAO was <strong>in</strong><br />

its positive <strong>in</strong>dex st<strong>at</strong>e. Thus, <strong>in</strong>creases <strong>in</strong> <strong>the</strong> AAO<br />

as reported by Thompson and Solomon (2002), if<br />

<strong>the</strong>y cont<strong>in</strong>ue, should lead to more frequent<br />

episodes of light w<strong>in</strong>ds and stagn<strong>at</strong>ion <strong>in</strong> <strong>the</strong> SP<br />

region. Our d<strong>at</strong>a show <strong>the</strong> strong dependency of<br />

<strong>ozone</strong> production on <strong>boundary</strong> <strong>layer</strong> stability. It is<br />

noteworthy th<strong>at</strong> <strong>the</strong> <strong>in</strong>creas<strong>in</strong>g surface <strong>ozone</strong> trend<br />

dur<strong>in</strong>g 1990–2004 has exclusively resulted from<br />

an <strong>in</strong>crease <strong>in</strong> <strong>ozone</strong> dur<strong>in</strong>g November–January<br />

(Oltmans et al., 2006; Helmig et al., 2007a), when<br />

surface <strong>layer</strong> photochemical <strong>ozone</strong> production<br />

chemistry is expected to be most important. Therefore,<br />

we hypo<strong>the</strong>size th<strong>at</strong> a stronger AAO, by<br />

foster<strong>in</strong>g more stable <strong>boundary</strong> <strong>layer</strong> conditions,<br />

may have <strong>in</strong>fluenced <strong>ozone</strong> production <strong>in</strong> <strong>the</strong><br />

surface <strong>layer</strong> and has contributed to <strong>the</strong> observed<br />

recent <strong>in</strong>creases <strong>in</strong> <strong>the</strong> SP surface <strong>ozone</strong> record.<br />

3.9. Comparison of SP with o<strong>the</strong>r polar sites<br />

The <strong>ozone</strong> enhancements <strong>in</strong> <strong>the</strong> SP surface <strong>layer</strong><br />

are unique compared to o<strong>the</strong>r polar research sites.<br />

For <strong>in</strong>stance, <strong>at</strong> Summit, Greenland, <strong>ozone</strong> chemistry<br />

has been noted to be much different. Summit is<br />

<strong>at</strong> similar elev<strong>at</strong>ion and with similar year-round<br />

snowpack. However, be<strong>in</strong>g <strong>at</strong> 721N Summit experiences<br />

significant diurnal radi<strong>at</strong>ion cycles. The<br />

snowpack rema<strong>in</strong>s <strong>at</strong> sub-freez<strong>in</strong>g temper<strong>at</strong>ures<br />

year-round, although is some 10–151 warmer dur<strong>in</strong>g<br />

<strong>the</strong> summer than <strong>at</strong> SP, with daytime snow surface<br />

temper<strong>at</strong>ures regularly warm<strong>in</strong>g up to 10 to 5 1C<br />

(Helmig et al., 2007c). Episodes with <strong>in</strong>creased<br />

<strong>ozone</strong> <strong>at</strong> Summit are rel<strong>at</strong>ed to transport events<br />

with a frequent occurrence of transport from <strong>the</strong><br />

higher troposphere/lower str<strong>at</strong>osphere as well as<br />

occasional upslope flow with polluted air from<br />

lower l<strong>at</strong>itudes (Helmig et al., 2007e). Our ANTCI<br />

d<strong>at</strong>a and earlier studies (Oltmans and Komhyr,<br />

1976; Crawford et al., 2001) have shown th<strong>at</strong> high<br />

<strong>ozone</strong> <strong>at</strong> SP orig<strong>in</strong><strong>at</strong>es near <strong>the</strong> surface and is not<br />

transported from higher altitudes. Fur<strong>the</strong>rmore,<br />

<strong>the</strong>re is no <strong>in</strong>dic<strong>at</strong>ion for polluted, anthropogenically<br />

<strong>in</strong>fluenced air reach<strong>in</strong>g SP. Summit, <strong>in</strong> contrast<br />

to SP, dur<strong>in</strong>g summer is subject to substantial<br />

diurnal radi<strong>at</strong>ion and temper<strong>at</strong>ure cycles and<br />

<strong>the</strong> MBL is much more dynamic; e.g. stability<br />

regimes change frequently and are <strong>in</strong>homogeneous<br />

with altitude (Cohen et al., 2007). Snowpack<br />

temper<strong>at</strong>ures <strong>at</strong> Summit are higher and surface<br />

he<strong>at</strong><strong>in</strong>g dur<strong>in</strong>g sunny daytime conditions results <strong>in</strong><br />

convective he<strong>at</strong><strong>in</strong>g, which contributes to <strong>boundary</strong><br />

<strong>layer</strong> growth and <strong>in</strong>creased vertical mix<strong>in</strong>g. Stable<br />

<strong>at</strong>mospheric conditions <strong>at</strong> Summit mostly occur<br />

dur<strong>in</strong>g night, when <strong>the</strong>re is very little sunlight to<br />

drive photochemistry. Air reach<strong>in</strong>g Summit is<br />

mostly represent<strong>at</strong>ive of NH, lower tropospheric<br />

composition, ra<strong>the</strong>r than be<strong>in</strong>g transported upslope<br />

over <strong>the</strong> Greenland glacial ice shield. Consequently,<br />

<strong>the</strong> effective footpr<strong>in</strong>t and residence time of air <strong>in</strong><br />

contact with <strong>the</strong> snow surface on average is much<br />

shorter and susta<strong>in</strong>ed residence of air <strong>in</strong> a shallow<br />

surface <strong>layer</strong>, as <strong>at</strong> SP, is not encountered <strong>at</strong><br />

Summit. Under <strong>the</strong>se conditions, NO concentr<strong>at</strong>ions<br />

and <strong>ozone</strong> production <strong>in</strong> <strong>the</strong> surface <strong>layer</strong> do<br />

not build up to <strong>the</strong> high levels observed <strong>at</strong> SP (<strong>Davis</strong><br />

et al., 2004).<br />

4. Conclusions<br />

Enhanced <strong>ozone</strong> concentr<strong>at</strong>ions are a frequent<br />

phenomenon <strong>in</strong> <strong>the</strong> summertime surface and lower<br />

<strong>boundary</strong> <strong>layer</strong> <strong>at</strong> SP. Ozone is predom<strong>in</strong>antly<br />

produced and transported from <strong>the</strong> high altitude<br />

Antarctic pl<strong>at</strong>eau <strong>in</strong> <strong>the</strong> area surround<strong>in</strong>g SP from<br />

N to SE. Ozone production occurs by photochemical<br />

processes <strong>in</strong> a shallow surface <strong>layer</strong>, dur<strong>in</strong>g<br />

stable, light w<strong>in</strong>d, strongly str<strong>at</strong>ified <strong>boundary</strong> <strong>layer</strong><br />

conditions.<br />

These experiments show th<strong>at</strong> strong vertical<br />

<strong>ozone</strong> gradients, which result from a buildup of<br />

<strong>ozone</strong> <strong>in</strong> <strong>the</strong> surface <strong>layer</strong>, are a common, summertime<br />

condition <strong>at</strong> SP. Our d<strong>at</strong>a fur<strong>the</strong>r illustr<strong>at</strong>e th<strong>at</strong><br />

even between <strong>the</strong> surface and <strong>the</strong> 17 m-high <strong>in</strong>let of<br />

<strong>the</strong> ARO observ<strong>at</strong>ory up to 5 ppbv <strong>ozone</strong> gradients<br />

can be encountered. Hence, <strong>ozone</strong> mix<strong>in</strong>g r<strong>at</strong>ios will<br />

depend on <strong>the</strong> sampl<strong>in</strong>g height and consider<strong>at</strong>ion of<br />

<strong>the</strong> <strong>in</strong>let loc<strong>at</strong>ion will be of importance <strong>in</strong> compar<strong>in</strong>g<br />

<strong>the</strong> SP <strong>ozone</strong> record with d<strong>at</strong>a from o<strong>the</strong>r sites.<br />

Previously reported upwards <strong>ozone</strong> fluxes out of<br />

snow <strong>in</strong> o<strong>the</strong>r environments may have resulted from<br />

similar conditions of photochemical <strong>ozone</strong> production<br />

<strong>in</strong> a shallow <strong>at</strong>mospheric <strong>layer</strong> above <strong>the</strong> snow<br />

surface.<br />

These new observ<strong>at</strong>ions solidify <strong>the</strong> previous<br />

analyses and estim<strong>at</strong>es of summertime <strong>ozone</strong><br />

production chemistry <strong>at</strong> SP. Our measurements<br />

po<strong>in</strong>t towards <strong>the</strong> occurrences of <strong>ozone</strong> production<br />

r<strong>at</strong>es th<strong>at</strong> are <strong>in</strong> <strong>the</strong> upper range of previous<br />

calcul<strong>at</strong>ions. These d<strong>at</strong>a provide new evidence th<strong>at</strong><br />

polar surface <strong>ozone</strong> concentr<strong>at</strong>ions are tied to


2802<br />

ARTICLE IN PRESS<br />

D. Helmig et al. / Atmospheric Environment 42 (2008) 2788–2803<br />

photochemical processes <strong>in</strong> <strong>the</strong> sunlit snowpack,<br />

chemical reactions <strong>in</strong> <strong>the</strong> <strong>at</strong>mospheric surface <strong>layer</strong><br />

and <strong>boundary</strong> <strong>layer</strong> dynamics.<br />

These comparisons denote <strong>the</strong> remarkable conditions<br />

<strong>at</strong> SP. In contrast to <strong>the</strong> pre-ISCAT understand<strong>in</strong>g,<br />

it is likely th<strong>at</strong> <strong>the</strong> lower <strong>boundary</strong> <strong>layer</strong> of<br />

large areas of Antarctica should be considered a<br />

spr<strong>in</strong>g–summertime source of surface <strong>ozone</strong> as has<br />

been shown <strong>in</strong> <strong>the</strong> 3D model<strong>in</strong>g results of Wang et<br />

al. (2007). The Antarctic pl<strong>at</strong>eau represents a unique<br />

situ<strong>at</strong>ion on this planet, where <strong>the</strong> comb<strong>in</strong><strong>at</strong>ion of<br />

snowpack emissions, susta<strong>in</strong>ed stable <strong>boundary</strong><br />

<strong>layer</strong> regimes, and <strong>the</strong> presence of 24-h unmodul<strong>at</strong>ed<br />

sunlight can be found. The significant <strong>ozone</strong><br />

production chemistry above <strong>the</strong> snowpack th<strong>at</strong><br />

results from <strong>the</strong>se conditions has hi<strong>the</strong>rto not been<br />

reported from any o<strong>the</strong>r polar or clean-air environment<br />

on Earth. N<strong>at</strong>ural <strong>ozone</strong> production <strong>in</strong> <strong>the</strong><br />

lower troposphere has been known to occur mostly<br />

<strong>in</strong> air affected by biomass burn<strong>in</strong>g plumes and <strong>in</strong><br />

areas th<strong>at</strong> are subjected to high NO x levels from<br />

lightn<strong>in</strong>g. The chemistry occurr<strong>in</strong>g <strong>in</strong> <strong>the</strong> <strong>boundary</strong><br />

<strong>layer</strong> <strong>at</strong> SP represents ano<strong>the</strong>r situ<strong>at</strong>ion with<br />

significant <strong>ozone</strong> production <strong>in</strong> an environment<br />

th<strong>at</strong> is virtually devoid of human impacts.<br />

Acknowledgments<br />

This research was supported through <strong>the</strong> United<br />

St<strong>at</strong>es N<strong>at</strong>ional Science Found<strong>at</strong>ion (Office of Polar<br />

Programs, Grant #0230046). A. Drexler, J. Seiffert<br />

and M. Warshawsky helped with <strong>the</strong> balloon<br />

experiment <strong>at</strong> SP and I. Brown and T. Morse<br />

assisted <strong>in</strong> <strong>the</strong> d<strong>at</strong>a analysis and prepar<strong>at</strong>ion of<br />

some of <strong>the</strong> color figures. We thank Ray<strong>the</strong>on Polar<br />

Services and <strong>the</strong> US 109th Air N<strong>at</strong>ional Guard for<br />

provid<strong>in</strong>g excellent logistical support and <strong>the</strong> <strong>South</strong><br />

<strong>Pole</strong> staff for an extraord<strong>in</strong>ary effort <strong>in</strong> accommod<strong>at</strong><strong>in</strong>g<br />

<strong>the</strong> te<strong>the</strong>red balloon experiment.<br />

References<br />

Anbach, W., 1974. The <strong>in</strong>fluence of cloud<strong>in</strong>ess on <strong>the</strong> net<br />

radi<strong>at</strong>ion balance of a snow surface with high albedo. Journal<br />

of Glaciology 13, 73–84.<br />

Bocquet, F., Helmig, D., Oltmans, S.J., 2007. Ozone <strong>in</strong> <strong>the</strong><br />

<strong>in</strong>terstitial air of <strong>the</strong> mid-l<strong>at</strong>itude snowpack <strong>at</strong> Niwot Ridge,<br />

Colorado. Journal of Alp<strong>in</strong>e, Arctic and Antarctic Research,<br />

<strong>in</strong> press.<br />

Chen, G., <strong>Davis</strong>, D., Crawford, J., Hutterli, L.M., Huey, L.G.,<br />

Slusher, D., Mauld<strong>in</strong>, L., Eisele, F., Tanner, D., Dibb, J.,<br />

Buhr, M., McConnell, J., Lefer, B., Shetter, R., Blake, D.,<br />

Song, C.H., Lombardi, K., Arnoldy, J., 2004. A reassessment<br />

of HO x <strong>South</strong> <strong>Pole</strong> chemistry based on observ<strong>at</strong>ions recorded<br />

dur<strong>in</strong>g ISCAT 2000. Atmospheric Environment 38,<br />

5451–5461.<br />

Cohen, L., Helmig, D., Neff, W., Grachev, A., Fairall, C., 2007.<br />

Boundary <strong>layer</strong> dynamics and its <strong>in</strong>fluence on <strong>at</strong>mospheric<br />

chemistry <strong>at</strong> Summit, Greenland. Atmospheric Environment,<br />

<strong>in</strong> press, doi:10.1016/j.<strong>at</strong>mosenv.2006.06.068.<br />

Crawford, J.H., <strong>Davis</strong>, D.D., Chen, G., Buhr, M., Oltmans, S.,<br />

Weller, R., Mauld<strong>in</strong>, L., Eisele, F., Shetter, R., Lefer, B.,<br />

Arimoto, R., Hogan, A., 2001. Evidence for photochemical<br />

production of <strong>ozone</strong> <strong>at</strong> <strong>the</strong> <strong>South</strong> <strong>Pole</strong> surface. Geophysical<br />

Research Letters 28, 3641–3644.<br />

<strong>Davis</strong>, D., Nowak, J.B., Chen, G., Buhr, M., Arimoto, R.,<br />

Hogan, A., Eisele, F., Mauld<strong>in</strong>, L., Tanner, D., Shetter, R.,<br />

Lefer, B., McMurry, P., 2001. Unexpected high levels of NO<br />

observed <strong>at</strong> <strong>South</strong> <strong>Pole</strong>. Geophysical Research Letters 28,<br />

3625–3628.<br />

<strong>Davis</strong>, D., Chen, G., Buhr, M., Crawford, J., Lenshow, D., Lefer,<br />

B., Shetter, R., Eisele, F., Mauld<strong>in</strong>, L., Hogan, A., 2004.<br />

<strong>South</strong> <strong>Pole</strong> NO x chemistry: an assessment of factors controll<strong>in</strong>g<br />

variability and absolute levels. Atmospheric Environment<br />

38, 5375–5388.<br />

<strong>Davis</strong>, D.D., Huey, G., Crawford, J., Chen, G., Wang, Y., Buhr,<br />

M., Helmig, D., Neff, W., Blake, D., Arimoto, R., Eisele, F.,<br />

2007. A reassessment of Antarctic Pl<strong>at</strong>eau reactive nitrogen<br />

and its impact on <strong>the</strong> oxidiz<strong>in</strong>g properties of <strong>the</strong> near<br />

surface <strong>at</strong>mosphere. Atmospheric Environment, submitted<br />

for public<strong>at</strong>ion.<br />

Dibb, J.E., Talbot, R.W., Munger, J.W., Jacob, D.J., Fan, S.-M.,<br />

1998. Air-snow exchange of HNO 3 and NO y <strong>at</strong> Summit<br />

Greenland. Journal of Geophysical Research 103, 3475–3486.<br />

Dibb, J.E., Arsenault, M., Peterson, M.C., Honr<strong>at</strong>h, R.E., 2002.<br />

Fast nitrogen oxide photochemistry <strong>in</strong> Summit, Greenland<br />

snow. Atmospheric Environment 36, 2501–2511.<br />

Eisele, F., <strong>Davis</strong>, D.D., Helmig, D., Oltmans, S.J., Neff, W.,<br />

Huey, G., Tanner, D., Chen, G., Crawford, J., Arimoto, R.,<br />

Buhr, M., Mauld<strong>in</strong>, L., Hutterli, M., Dibb, J.E., Blake, D.,<br />

Brooks, S.B., Johnson, B., Roberts, J.M., Wang, Y., Tan, D.,<br />

Flocke, F., 2007. ANTCI Overview Paper. Atmospheric<br />

Environment, submitted for public<strong>at</strong>ion.<br />

Galbally, I., Allison, I., 1972. Ozone fluxes over snow surfaces.<br />

Journal of Geophysical Research 77, 3946–3949.<br />

Harris, J.M., Draxler, R.R., Oltmans, S.J., 2005. Trajectory<br />

model sensitivity to differences <strong>in</strong> <strong>in</strong>put d<strong>at</strong>a and vertical<br />

transport method. Journal of Geophysical Research 110,<br />

D14109, doi:10.1029/2004JD005750.<br />

Helmig, D., Boulter, J., David, D., Birks, J.W., Cullen, N.J.,<br />

Steffen, K., Johnson, B.J., Oltmans, S.J., 2002. Ozone and<br />

meteorological <strong>boundary</strong>-<strong>layer</strong> conditions <strong>at</strong> Summit, Greenland<br />

dur<strong>in</strong>g June 3–21, 2000. Atmospheric Environment 36,<br />

2595–2608.<br />

Helmig, D., Oltmans, S.J., Carlson, D., Lamarque, J.F., Jones,<br />

A., Labuschagne, C., Anlauf, K., Hayden, K., 2007a. A<br />

review of surface <strong>ozone</strong> <strong>in</strong> <strong>the</strong> polar regions. Atmospheric<br />

Environment, <strong>in</strong> press, doi:10.1016/j.<strong>at</strong>mosenv.2006.09.053.<br />

Helmig, D., Johnson, B., Warshawsky, M., Morse, T., Neff, W.,<br />

Eisele, F., <strong>Davis</strong>, D.D., 2007b. Nitric oxide <strong>in</strong> <strong>the</strong> <strong>boundary</strong><strong>layer</strong><br />

<strong>at</strong> <strong>South</strong> <strong>Pole</strong> dur<strong>in</strong>g <strong>the</strong> Antarctic Tropospheric<br />

Chemistry Investig<strong>at</strong>ion (ANTCI). Atmospheric Environment,<br />

<strong>in</strong> press, doi:10.1016/j.<strong>at</strong>mosenv.2007.03.061.<br />

Helmig, D., Bocquet, F., Cohen, L., Oltmans, S.J., 2007c. Ozone<br />

uptake to <strong>the</strong> polar snowpack <strong>at</strong> Summit, Greenland.


ARTICLE IN PRESS<br />

D. Helmig et al. / Atmospheric Environment 42 (2008) 2788–2803 2803<br />

Atmospheric Environment, <strong>in</strong> press, doi:10.1016/j.<strong>at</strong>mosenv.<br />

2006.06.064.<br />

Helmig, D., Ganzeveld, L., Butler, T., Oltmans, S.J., 2007d. The<br />

role of <strong>ozone</strong> <strong>at</strong>mosphere-snow gas exchange on polar,<br />

<strong>boundary</strong>-<strong>layer</strong> <strong>ozone</strong>—a review and sensitivity analysis.<br />

Atmospheric Chemistry and Physics 7, 15–30.<br />

Helmig, D., Oltmans, S.J., Morse, T.O., Dibb, J.E., 2007e. Wh<strong>at</strong><br />

is caus<strong>in</strong>g high <strong>ozone</strong> <strong>at</strong> Summit, Greenland? Atmospheric<br />

Environment, <strong>in</strong> press, doi:10.1016/j.<strong>at</strong>mosenv.2006.05.084.<br />

Honr<strong>at</strong>h, R.E., Peterson, M.C., Guo, S., Dibb, J.E., Shepson,<br />

P.B., Campbell, B., 1999. Evidence of NO production with<strong>in</strong><br />

or upon ice particles <strong>in</strong> <strong>the</strong> Greenland snowpack. Geophysical<br />

Research Letters 26, 695–698.<br />

Honr<strong>at</strong>h, R.E., Peterson, M.C., Dziobak, M.P., Dibb, J.E.,<br />

Arsenault, M.A., Green, S.A., 2000a. Release of NO x from<br />

sunlight-irradi<strong>at</strong>ed midl<strong>at</strong>itude snow. Geophysical Research<br />

Letters 27, 2237–2240.<br />

Honr<strong>at</strong>h, R.E., Guo, S., Peterson, M.C., Dziobak, M.P., Dibb,<br />

J.E., Arsenault, M.A., 2000b. Photochemical production of<br />

gas phase NO x from ice crystal NO 3 . Journal of Geophysical<br />

Research 105, 24,183–24,190.<br />

Honr<strong>at</strong>h, R.E., Yu, Y., Peterson, M.C., Dibb, J.E., Arsenault,<br />

M.A., Cullen, N.J., Steffen, K., 2002. Vertical fluxes of NO x ,<br />

HONO, and HNO 3 above <strong>the</strong> snowpack <strong>at</strong> Summit, Greenland.<br />

Atmospheric Environment 36, 2629–2640.<br />

Johnson, B., Helmig, D., Oltmans, S.J., 2007. Evalu<strong>at</strong>ion of<br />

<strong>ozone</strong> measurements from a te<strong>the</strong>red balloon sampl<strong>in</strong>g<br />

pl<strong>at</strong>form <strong>at</strong> <strong>South</strong> <strong>Pole</strong> St<strong>at</strong>ion <strong>in</strong> December, 2003. Atmospheric<br />

Environment, <strong>in</strong> press, doi:10.1016/j.<strong>at</strong>mosenv.<br />

2007.03.043.<br />

Jones, A.E., Weller, R., Wolff, E.W., Jacobi, H.W., 2000.<br />

Speci<strong>at</strong>ion and r<strong>at</strong>e of photochemical NO and NO 2 production<br />

<strong>in</strong> Antarctic snow. Geophysical Research Letters 27,<br />

345–348.<br />

Jones, A.E., Weller, R., Anderson, P.S., Jacobi, H.W., Wolff,<br />

E.W., Schrems, O., Miller, H., 2001. Measurements of NO x<br />

emissions from <strong>the</strong> Antarctic snowpack. Geophysical Research<br />

Letters 28, 1499–1502.<br />

Jones, A.E., Wolff, E.W., 2003. An analysis of <strong>the</strong> oxid<strong>at</strong>ion<br />

potential of <strong>the</strong> <strong>South</strong> <strong>Pole</strong> <strong>boundary</strong> <strong>layer</strong> and <strong>the</strong> <strong>in</strong>fluence<br />

of str<strong>at</strong>ospheric <strong>ozone</strong> depletion. Journal of Geophysical<br />

Research 108, 4565 doi:10.1029/2003JD003379.<br />

Kalnay, E., Kanamitsu, M., Kistler, R., Coll<strong>in</strong>s, W., Deaven, D.,<br />

Gand<strong>in</strong>, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu,<br />

Y., Chelliah, M., Ebisuzaki, W., Higg<strong>in</strong>s, W., Janowiak, J.,<br />

Mo, K.C., Ropelewski, C., Wang, J., Leetmaa, A., Reynolds,<br />

B., Jenne, R., Joseph, D., 1996. The NCEP/NCAR 40-year<br />

reanalysis project. Bullet<strong>in</strong> of <strong>the</strong> American Meteorological<br />

Society 77, 437–471.<br />

K<strong>in</strong>g, J.C., Argent<strong>in</strong>i, S.A., Anderson, P.S., 2006. Contrasts<br />

between <strong>the</strong> summertime surface energy balance and <strong>boundary</strong><br />

<strong>layer</strong> structure <strong>at</strong> Dome C and Halley st<strong>at</strong>ions,<br />

Antarctica. Journal of Geophysical Research 111 doi:10.1029/<br />

2005JD006130.<br />

Neff, W.D., 1999. Decadal time scale trends and variability <strong>in</strong> <strong>the</strong><br />

tropospheric circul<strong>at</strong>ion over <strong>the</strong> <strong>South</strong> <strong>Pole</strong>. Journal of<br />

Geophysical Research 104, 27,217–27,251.<br />

Neff, W.D., Helmig, D., Garchev, A., <strong>Davis</strong>, D., 2007. A study of<br />

<strong>boundary</strong> <strong>layer</strong> behavior associ<strong>at</strong>ed with high surface NO<br />

concentr<strong>at</strong>ions <strong>at</strong> <strong>the</strong> <strong>South</strong> <strong>Pole</strong> us<strong>in</strong>g a M<strong>in</strong>iSodar, te<strong>the</strong>red<br />

balloon, and sonic anemometer. Atmospheric Environment,<br />

<strong>in</strong> press, doi:10.1016/j.<strong>at</strong>mosenv.2007.01.033.<br />

Oltmans, S.J., Komhyr, W.D., 1976. Surface <strong>ozone</strong> <strong>in</strong> Antarctica.<br />

Journal of Geophysical Research 81, 5359–5364.<br />

Oltmans, S.J., Lefohn, A.S., Harris, J.M., Galbally, I., Scheel,<br />

H.E., Bodecker, G., Brunke, E., Claude, H., Tarasick, D.,<br />

Johnson, B.J., Simmonds, P., Shadwick, D., Anlauf, K.,<br />

Hayden, K., Schmidl<strong>in</strong>, F., Fujimoto, T., Akagi, K., Meyer,<br />

C., Nichol, S., Davies, J., Redondas, A., Cuevas, E., 2006.<br />

Long-term changes <strong>in</strong> tropospheric <strong>ozone</strong>. Atmospheric<br />

Environment 40, 3156–3173.<br />

Oltmans S.J., Johnson B.J., Helmig D., 2007, Episodes of high<br />

surface <strong>ozone</strong> amounts <strong>at</strong> <strong>South</strong> <strong>Pole</strong> dur<strong>in</strong>g summer and<br />

<strong>the</strong>ir impact on <strong>the</strong> long-term <strong>ozone</strong> vari<strong>at</strong>ion. Atmospheric<br />

Environment, <strong>in</strong> press, doi:10.1016/j.<strong>at</strong>mosenv.2007.01.020.<br />

Oncley, S.P., Buhr, M., Lenschow, D.H., <strong>Davis</strong>, D., Semmer,<br />

S.R., 2004. Observ<strong>at</strong>ions of summertime NO fluxes and<br />

<strong>boundary</strong>-<strong>layer</strong> height <strong>at</strong> <strong>the</strong> <strong>South</strong> <strong>Pole</strong> dur<strong>in</strong>g ISCAT 2000<br />

us<strong>in</strong>g scalar similarity. Atmospheric Environment 38,<br />

5389–5398.<br />

Schnell, R.C., Liu, S.C., Oltmans, S.J., Stone, R.S., Hofmann,<br />

D.J., Dutton, E.G., Deshler, T., Sturges, W.T., Harder, J.W.,<br />

Sewell, S.D., Tra<strong>in</strong>er, M., Harris, J.M., 1991. Decrease of<br />

summer tropospheric <strong>ozone</strong> concentr<strong>at</strong>ions <strong>in</strong> Antarctica.<br />

N<strong>at</strong>ure 351, 726–729.<br />

Swanson, A.L., Lefer, B.L., Stroud, V., Atlas, E., 2005. Trace gas<br />

emissions through a w<strong>in</strong>ter snowpack <strong>in</strong> <strong>the</strong> subalp<strong>in</strong>e<br />

ecosystem <strong>at</strong> Niwot Ridge, Colorado. Geophysical Research<br />

Letters 32, L03805, doi:10.1029/2004GL21809.<br />

Thompson, D.W.J., Solomon, S., 2002. Interpret<strong>at</strong>ion of recent<br />

Sou<strong>the</strong>rn Hemisphere clim<strong>at</strong>e change. Science 296, 895–899.<br />

Wang, Y., Choi, Y., Zeng, T., <strong>Davis</strong>, D., Buhr, M., Huey, L.G.,<br />

Neff, W., 2007. Assess<strong>in</strong>g <strong>the</strong> photochemical impact of snow<br />

NO x emissions over Antarctica dur<strong>in</strong>g ANTCI 2003. Atmospheric<br />

Environment, <strong>in</strong> press, doi:10.1016/j.<strong>at</strong>mosenv.<br />

2007.01.056.<br />

Zeller, K., 2000. W<strong>in</strong>tertime <strong>ozone</strong> fluxes and profiles above a<br />

subalp<strong>in</strong>e spruce-fir forest. Journal of Applied Meteology 39,<br />

92–101.<br />

Zeller, K., Hehn, T., 1994. W<strong>in</strong>tertime anomalies <strong>in</strong> <strong>ozone</strong><br />

deposition above a subalp<strong>in</strong>e spruce-fir forest. Research and<br />

applic<strong>at</strong>ions of chemical sciences <strong>in</strong> forestry. Proceed<strong>in</strong>gs of<br />

<strong>the</strong> Fourth Sou<strong>the</strong>rn St<strong>at</strong>ion Chemical Sciences Meet<strong>in</strong>g, New<br />

Orleans. General Technical Report SO-104, pp. 131–138.<br />

Zeller, K., Hehn, T., 1996. Measurements of upward turbulent<br />

<strong>ozone</strong> fluxes above a subalp<strong>in</strong>e spruce-fir forest. Geophysical<br />

Research Letters 23, 841–844.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!