11.06.2015 Views

Elevated ozone in the boundary layer at South Pole - Doug Davis

Elevated ozone in the boundary layer at South Pole - Doug Davis

Elevated ozone in the boundary layer at South Pole - Doug Davis

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

ARTICLE IN PRESS<br />

D. Helmig et al. / Atmospheric Environment 42 (2008) 2788–2803 2791<br />

simultaneously. The sampl<strong>in</strong>g flow r<strong>at</strong>e was determ<strong>in</strong>ed<br />

by <strong>the</strong> sampl<strong>in</strong>g pumps of <strong>the</strong>se two<br />

analyzers and was 1.2 l m<strong>in</strong> 1 (TEI) or 2.4 l m<strong>in</strong> 1<br />

(both <strong>in</strong>struments comb<strong>in</strong>ed). Under <strong>the</strong>se conditions<br />

<strong>the</strong> sample residence time <strong>in</strong> <strong>the</strong> sampl<strong>in</strong>g l<strong>in</strong>e<br />

was 4.2 m<strong>in</strong> and 2.1 m<strong>in</strong>, respectively. Between<br />

balloon flights a short sampl<strong>in</strong>g l<strong>in</strong>e (10 m) and<br />

<strong>the</strong> long l<strong>in</strong>e <strong>in</strong>let were placed side by side on <strong>the</strong> 2-<br />

m tower and sample air was altern<strong>at</strong>ed between<br />

<strong>the</strong>se two <strong>in</strong>lets every 5 m<strong>in</strong>. The <strong>ozone</strong> loss r<strong>at</strong>e <strong>in</strong><br />

<strong>the</strong> long l<strong>in</strong>e was determ<strong>in</strong>ed by compar<strong>in</strong>g <strong>the</strong>se<br />

two d<strong>at</strong>a series. This loss r<strong>at</strong>e fluctu<strong>at</strong>ed slightly<br />

over n<strong>in</strong>e days while this sampl<strong>in</strong>g l<strong>in</strong>e was used.<br />

A 6-h runn<strong>in</strong>g mean was calcul<strong>at</strong>ed and applied for<br />

correct<strong>in</strong>g all long sampl<strong>in</strong>g l<strong>in</strong>e d<strong>at</strong>a. The mean<br />

<strong>ozone</strong> loss r<strong>at</strong>e <strong>in</strong> <strong>the</strong> long sampl<strong>in</strong>g l<strong>in</strong>e over <strong>the</strong><br />

n<strong>in</strong>e-day period was 1.970.8%. A thorough <strong>in</strong>tercomparison<br />

between <strong>the</strong> long sampl<strong>in</strong>g l<strong>in</strong>e d<strong>at</strong>a<br />

and concurrent ECC sonde measurements is presented<br />

by Johnson et al. (2007); fur<strong>the</strong>r analytical<br />

details on <strong>the</strong> te<strong>the</strong>red balloon NO measurements<br />

are provided <strong>in</strong> Helmig et al. (2007b).<br />

Balloon d<strong>at</strong>a analysis: Ascent balloon heights<br />

were calcul<strong>at</strong>ed by <strong>the</strong> radiosonde change <strong>in</strong><br />

pressure referenced to <strong>the</strong> average ‘‘before launch’’<br />

pressure, while descent balloon height calcul<strong>at</strong>ions<br />

were referenced to <strong>the</strong> surface pressure measured<br />

after completion of <strong>the</strong> descent profile. All raw d<strong>at</strong>a<br />

were averaged to 1-m height <strong>in</strong>tervals. Miss<strong>in</strong>g d<strong>at</strong>a<br />

po<strong>in</strong>ts (fewer than 2% of 1-m <strong>in</strong>terval d<strong>at</strong>a) <strong>at</strong><br />

selected heights were <strong>in</strong>terpol<strong>at</strong>ed from adjacent<br />

height measurements. The temporal and sp<strong>at</strong>ial<br />

distribution of <strong>at</strong>mospheric stability was determ<strong>in</strong>ed<br />

by calcul<strong>at</strong><strong>in</strong>g 5-m <strong>in</strong>terval bulk Richardson numbers<br />

us<strong>in</strong>g <strong>the</strong> vertical gradient temper<strong>at</strong>ure, w<strong>in</strong>d<br />

speed and w<strong>in</strong>d direction d<strong>at</strong>a from 2 m above and<br />

below <strong>the</strong> reference height. The averaged balloon<br />

and <strong>the</strong> time series surface d<strong>at</strong>a were comb<strong>in</strong>ed for<br />

<strong>the</strong> color contour analysis plots.<br />

Back trajectories: The back trajectories to SP<br />

were computed from <strong>the</strong> NCEP/NCAR Reanalysis<br />

D<strong>at</strong>a Set (Kalnay et al., 1996). The trajectory model<br />

(Harris et al., 2005) determ<strong>in</strong>es <strong>the</strong> vertical position<br />

of <strong>the</strong> air parcel explicitly us<strong>in</strong>g <strong>the</strong> vertical w<strong>in</strong>d<br />

field <strong>in</strong> <strong>the</strong> analyzed d<strong>at</strong>a set (3D trajectories).<br />

3. Results and discussion<br />

3.1. Surface <strong>ozone</strong><br />

D<strong>at</strong>a from <strong>the</strong> two cont<strong>in</strong>uous <strong>ozone</strong> surface<br />

measurements (ARO and balloon launch site) are<br />

55<br />

50<br />

Balloon Build<strong>in</strong>g<br />

ARO<br />

45<br />

Ozone (ppbv)<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365<br />

Fig. 2. Ozone dur<strong>in</strong>g day of year 2003 measured from <strong>the</strong> roof (17 m) of <strong>the</strong> ARO build<strong>in</strong>g (hourly mean d<strong>at</strong>a, black solid l<strong>in</strong>e) <strong>in</strong><br />

comparison to surface <strong>ozone</strong> (1-m<strong>in</strong> d<strong>at</strong>a) measured from <strong>the</strong> roof (4 m above <strong>the</strong> surface, DOY 350.0–357.2) and a 2-m tower <strong>in</strong>let<br />

(DOY 347.4–350.0, 357.2–364.1) adjacent of <strong>the</strong> balloon launch shelter.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!