11.06.2015 Views

Elevated ozone in the boundary layer at South Pole - Doug Davis

Elevated ozone in the boundary layer at South Pole - Doug Davis

Elevated ozone in the boundary layer at South Pole - Doug Davis

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

2796<br />

ARTICLE IN PRESS<br />

D. Helmig et al. / Atmospheric Environment 42 (2008) 2788–2803<br />

700<br />

600<br />

500<br />

W m -2<br />

400<br />

300<br />

200<br />

100<br />

0<br />

348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365<br />

Fig. 6. Incom<strong>in</strong>g solar radi<strong>at</strong>ion <strong>at</strong> <strong>South</strong> <strong>Pole</strong> dur<strong>in</strong>g calendar day 2003 measured adjacent to <strong>the</strong> balloon launch site. A few occasional<br />

artificially reduced radi<strong>at</strong>ion read<strong>in</strong>gs (e.g. <strong>at</strong> DOY 355.3, 356.3, 359.3) were caused by <strong>the</strong> shad<strong>in</strong>g from <strong>the</strong> balloon.<br />

<strong>in</strong> <strong>the</strong> d<strong>at</strong>a are from <strong>the</strong> slight distance of our<br />

measurement site from <strong>the</strong> geographic pole and a<br />

slight tilt of <strong>the</strong> radi<strong>at</strong>ion sensor (some of which has<br />

been corrected <strong>in</strong> <strong>the</strong> d<strong>at</strong>a analysis). Occasionally <strong>the</strong><br />

balloon was cast<strong>in</strong>g a shadow on <strong>the</strong> sensor, caus<strong>in</strong>g<br />

a few, artificially lowered read<strong>in</strong>gs. Prior to and after<br />

<strong>the</strong> enhanced <strong>ozone</strong> episode, <strong>in</strong>cident radi<strong>at</strong>ion<br />

fluctu<strong>at</strong>ed highly, with values typically rang<strong>in</strong>g<br />

between 250 and 550 W m 2 .Thesefluctu<strong>at</strong>ionswere<br />

due to <strong>the</strong> vary<strong>in</strong>g degree of cloud cover and height.<br />

In contrast, dur<strong>in</strong>g <strong>the</strong> clear sky conditions on DOY<br />

355–359, <strong>in</strong>cident radi<strong>at</strong>ion levels were much less<br />

variable, averag<strong>in</strong>g about 460 W m 2 . It is well<br />

known th<strong>at</strong> over snow, due to <strong>the</strong> high reflection of<br />

radi<strong>at</strong>ion from <strong>the</strong> snowpack and backsc<strong>at</strong>ter from<br />

clouds, <strong>in</strong>com<strong>in</strong>g radi<strong>at</strong>ion to <strong>the</strong> surface dur<strong>in</strong>g<br />

times with overhead cloud cover can be significantly<br />

higher than dur<strong>in</strong>g clear sky conditions. Conversely,<br />

clear-sky conditions over <strong>the</strong> snowpack lead to net<br />

radi<strong>at</strong>ive losses and stable str<strong>at</strong>ific<strong>at</strong>ion (Anbach,<br />

1974), as observed dur<strong>in</strong>g <strong>the</strong> period of maximum<br />

<strong>ozone</strong> production dur<strong>in</strong>g DOY 355–359.<br />

The sonic anemometer turbulence d<strong>at</strong>a and sound<strong>in</strong>gs<br />

from a SODAR system (Neff et al., 2007) were<br />

used to develop a cont<strong>in</strong>uous record of mixed<br />

<strong>boundary</strong> <strong>layer</strong> depth. Mixed <strong>boundary</strong> <strong>layer</strong> heights<br />

fluctu<strong>at</strong>ed between 40 and 200 m dur<strong>in</strong>g DOY<br />

347–354 and 359–365, but dur<strong>in</strong>g <strong>the</strong> DOY 354–359<br />

period, an un<strong>in</strong>terrupted, shallow <strong>boundary</strong> <strong>layer</strong><br />

height of 20–40 m was observed. The contour plot<br />

analysis of <strong>the</strong> bulk gradient Richardson number<br />

from <strong>the</strong> te<strong>the</strong>red balloon sound<strong>in</strong>gs fur<strong>the</strong>r solidifies<br />

this analysis. Above a shallow, neutrally stable 20 m-<br />

deep surface <strong>layer</strong>, <strong>the</strong> <strong>at</strong>mosphere was consistently<br />

stable (Richardson numbers 40.5) <strong>in</strong> both <strong>the</strong><br />

temporal (DOY 355–359) as well as <strong>the</strong> vertical<br />

(50–500 m) doma<strong>in</strong>.<br />

3.5. Air transport dur<strong>in</strong>g conditions with <strong>ozone</strong><br />

enhancements<br />

On DOY 354 surface <strong>ozone</strong> rose from 19 to<br />

41 ppbv <strong>in</strong> 10 h and to 44 ppbv after 22 h. This<br />

<strong>in</strong>crease (2.2 ppbv hr 1 ) is larger than calcul<strong>at</strong>ed<br />

<strong>ozone</strong> production r<strong>at</strong>es for SP, which were estim<strong>at</strong>ed<br />

to be 0.09–0.15/0.25 ppbv hr 1 (Crawford et al., 2001)<br />

and 0.13–0.20/0.27 ppbv hr 1 (Chen et al., 2004)<br />

(<strong>in</strong>terquartile range/maximum), respectively (see more<br />

discussions on <strong>ozone</strong> production below). Thus, <strong>the</strong><br />

rapid <strong>in</strong>crease <strong>in</strong> <strong>ozone</strong> on DOY 354 cannot be<br />

expla<strong>in</strong>ed by local <strong>ozone</strong> production alone, but<br />

transport of air with elev<strong>at</strong>ed <strong>ozone</strong> to SP must be<br />

ano<strong>the</strong>r determ<strong>in</strong><strong>in</strong>g factor. Surface w<strong>in</strong>d d<strong>at</strong>a and<br />

trajectory analyses were used to <strong>in</strong>vestig<strong>at</strong>e <strong>the</strong> air<br />

flows associ<strong>at</strong>ed with <strong>the</strong> transitions and periods of<br />

enhanced <strong>ozone</strong> levels.<br />

In Fig. 7, <strong>the</strong> <strong>ozone</strong> record from <strong>the</strong> 17 m <strong>in</strong>let on<br />

<strong>the</strong> ARO is plotted with <strong>the</strong> w<strong>in</strong>d speed and w<strong>in</strong>d<br />

direction d<strong>at</strong>a from <strong>the</strong> NOAA tower (<strong>at</strong> 13 m)<br />

and u * (from <strong>the</strong> sonic anemometer turbulence

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!