11.06.2015 Views

Elevated ozone in the boundary layer at South Pole - Doug Davis

Elevated ozone in the boundary layer at South Pole - Doug Davis

Elevated ozone in the boundary layer at South Pole - Doug Davis

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

2800<br />

ARTICLE IN PRESS<br />

D. Helmig et al. / Atmospheric Environment 42 (2008) 2788–2803<br />

buildup of <strong>ozone</strong> occurs. At SP (Helmig, unpublished<br />

results), <strong>at</strong> Summit (Helmig et al., 2007c), and<br />

<strong>in</strong> midl<strong>at</strong>itude seasonal snow (Bocquet et al., 2007),<br />

<strong>ozone</strong> concentr<strong>at</strong>ions <strong>in</strong> air pulled from with<strong>in</strong> <strong>the</strong><br />

snowpack dur<strong>in</strong>g most times were lower than above<br />

<strong>the</strong> surface. S<strong>in</strong>ce <strong>ozone</strong> appears to be destroyed <strong>in</strong><br />

<strong>the</strong> snowpack, <strong>the</strong>re must also be a downward<br />

<strong>ozone</strong> flux close to <strong>the</strong> surface. With <strong>the</strong> limited<br />

resolution of <strong>the</strong> <strong>ozone</strong> profile d<strong>at</strong>a near <strong>the</strong><br />

surface and given <strong>the</strong> high uncerta<strong>in</strong>ty of published<br />

<strong>ozone</strong> deposition r<strong>at</strong>es (Helmig et al., 2007d), it is<br />

not possible to accur<strong>at</strong>ely determ<strong>in</strong>e <strong>the</strong> exact height<br />

<strong>at</strong> which <strong>ozone</strong> fluxes diverge. However, <strong>the</strong><br />

significant <strong>ozone</strong> enhancements seen <strong>at</strong> <strong>the</strong> <strong>in</strong>let<br />

height (2/4 m) of <strong>the</strong> balloon build<strong>in</strong>g site compared<br />

to <strong>the</strong> 17-m <strong>in</strong>let <strong>at</strong> <strong>the</strong> ARO, and <strong>the</strong> fact th<strong>at</strong><br />

<strong>ozone</strong> mix<strong>in</strong>g r<strong>at</strong>ios always decl<strong>in</strong>ed with height<br />

above <strong>the</strong> 2 m balloon launch reference height,<br />

suggests th<strong>at</strong> <strong>the</strong> <strong>ozone</strong> flux divergence height<br />

should be below <strong>the</strong> 2–17 m range. Hence, positive<br />

(upwards) <strong>ozone</strong> fluxes are expected <strong>at</strong> heights close<br />

to <strong>the</strong> surface, likely upwards from no more than a<br />

few meters height.<br />

Depend<strong>in</strong>g on <strong>the</strong> height of observ<strong>at</strong>ion, <strong>the</strong>se<br />

positive <strong>ozone</strong> fluxes may be <strong>in</strong>terpreted as <strong>ozone</strong><br />

com<strong>in</strong>g out of <strong>the</strong> snow. Such a surpris<strong>in</strong>g<br />

phenomenon has previously been described for<br />

midl<strong>at</strong>itude sites <strong>in</strong> Wyom<strong>in</strong>g (Zeller and Hehn,<br />

1994, 1996; Zeller, 2000) and Australia (Galbally<br />

and Allison, 1972), but hi<strong>the</strong>rto has lacked a<br />

plausible explan<strong>at</strong>ion. Interpret<strong>at</strong>ions of <strong>the</strong>se earlier<br />

studies suggested th<strong>at</strong> <strong>ozone</strong> may be stored and<br />

released out of <strong>the</strong> snowpack (Galbally and Allison,<br />

1972; Zeller and Hehn, 1994). However, as mentioned<br />

above, measurements of <strong>ozone</strong> <strong>in</strong> <strong>in</strong>terstitial<br />

air generally have shown lower <strong>ozone</strong> <strong>in</strong> <strong>the</strong> snow<br />

than above <strong>the</strong> surface (Bocquet et al., 2007; Helmig<br />

et al., 2007c). Of course, while both environments<br />

share <strong>the</strong> condition of snow cover, <strong>the</strong>re are a<br />

number of important differences between <strong>the</strong> polar<br />

and <strong>the</strong> midl<strong>at</strong>itude environments, where <strong>the</strong>se<br />

upwards <strong>ozone</strong> fluxes were reported. Most importantly,<br />

for <strong>the</strong> Wyom<strong>in</strong>g and Australia studies are<br />

<strong>the</strong> presence of soil underne<strong>at</strong>h <strong>the</strong> snow. Microbial<br />

activity <strong>in</strong> <strong>the</strong> soil underne<strong>at</strong>h <strong>the</strong> snow has been<br />

shown to significantly contribute to gas exchange<br />

through <strong>the</strong> snow. Most likely, soil fluxes (<strong>in</strong>clud<strong>in</strong>g<br />

NO) are <strong>the</strong> determ<strong>in</strong><strong>in</strong>g process for gas fluxes<br />

through <strong>the</strong> snow surface <strong>in</strong> snow-covered, extrapolar<br />

environments. Additionally, it should be<br />

noted th<strong>at</strong> snow-contam<strong>in</strong>ant levels typically are<br />

several factors higher <strong>in</strong> midl<strong>at</strong>itudes than <strong>at</strong> polar<br />

loc<strong>at</strong>ions, which provides a larger substr<strong>at</strong>e for<br />

activ<strong>at</strong>ion of gases by photochemistry (Bocquet<br />

et al., 2007 and references <strong>the</strong>re<strong>in</strong>). Given <strong>the</strong><br />

available observ<strong>at</strong>ions and with our current understand<strong>in</strong>g<br />

we specul<strong>at</strong>e th<strong>at</strong> NO x fluxes out of <strong>the</strong><br />

seasonal snowpack are likely to be higher than <strong>in</strong><br />

<strong>the</strong> polar environment. One recent study <strong>in</strong> <strong>the</strong><br />

Colorado Rocky Mounta<strong>in</strong>s has also shown th<strong>at</strong><br />

vol<strong>at</strong>ile organic compounds with<strong>in</strong>, and likely fluxes<br />

out of <strong>the</strong> snowpack, are significant (Swanson et al.,<br />

2005). S<strong>in</strong>ce, similar to SP, stable <strong>at</strong>mospheric<br />

conditions will also be enhanced over gently sloped<br />

and fl<strong>at</strong> terra<strong>in</strong> with seasonal snowpack, and given<br />

<strong>the</strong> aforementioned sources of RO 2 and NO x ,<br />

similar <strong>ozone</strong> production is expected for snowcovered,<br />

extra-polar environments dur<strong>in</strong>g times of<br />

high act<strong>in</strong>ic fluxes (daytime, sunny conditions). It is<br />

<strong>the</strong>refore possible th<strong>at</strong> <strong>the</strong> aforementioned earlier<br />

observ<strong>at</strong>ions of positive <strong>ozone</strong> fluxes (Galbally and<br />

Allison, 1972; Zeller and Hehn, 1994, 1996; Zeller,<br />

2000) may have resulted from <strong>at</strong>mospheric, gasphase<br />

<strong>ozone</strong> production <strong>in</strong> a shallow <strong>layer</strong> right<br />

above <strong>the</strong> snow surface. This <strong>ozone</strong> production will<br />

result <strong>in</strong> upward fluxes, which, dur<strong>in</strong>g tower<br />

gradient flux measurements (as applied <strong>in</strong> <strong>the</strong><br />

referenced liter<strong>at</strong>ure), depend<strong>in</strong>g on <strong>the</strong> <strong>in</strong>let height,<br />

may be <strong>in</strong>terpreted as <strong>ozone</strong> be<strong>in</strong>g released out of<br />

<strong>the</strong> snowpack.<br />

3.8. Implic<strong>at</strong>ions for SP <strong>ozone</strong> trends<br />

At SP <strong>ozone</strong> gradients up to 5 ppbv between <strong>the</strong><br />

surface and <strong>the</strong> 17 m-high <strong>in</strong>let of <strong>the</strong> ARO can be<br />

encountered. Hence, <strong>the</strong> <strong>in</strong>let height will be of<br />

importance when compar<strong>in</strong>g <strong>the</strong> SP <strong>ozone</strong> record,<br />

<strong>in</strong> particular summertime measurements, with d<strong>at</strong>a<br />

from o<strong>the</strong>r sites, or with older SP records where<br />

measurements were taken <strong>at</strong> a different height<br />

above <strong>the</strong> surface (note th<strong>at</strong> from 1977 onward<br />

<strong>the</strong> SP surface <strong>ozone</strong> measurements were made <strong>at</strong> a<br />

comparable height to wh<strong>at</strong> <strong>the</strong>y are now except for<br />

<strong>the</strong> vari<strong>at</strong>ion associ<strong>at</strong>ed with <strong>the</strong> drift<strong>in</strong>g of <strong>the</strong><br />

snow around <strong>the</strong> build<strong>in</strong>g).<br />

Decadal time scale trends and variability have<br />

been evident <strong>in</strong> <strong>the</strong> Antarctic tropospheric circul<strong>at</strong>ion,<br />

particularly <strong>in</strong> <strong>the</strong> Austral spr<strong>in</strong>g dur<strong>in</strong>g <strong>the</strong><br />

period of maximum <strong>ozone</strong> loss <strong>in</strong> <strong>the</strong> str<strong>at</strong>osphere.<br />

It has been argued th<strong>at</strong> photochemical <strong>ozone</strong><br />

depletion <strong>in</strong> <strong>the</strong> str<strong>at</strong>osphere has caused a longerlived<br />

polar vortex, an <strong>in</strong>creas<strong>in</strong>g strength of <strong>the</strong><br />

Antarctic oscill<strong>at</strong>ion (AAO) and colder temper<strong>at</strong>ures<br />

over <strong>the</strong> Antarctic pl<strong>at</strong>eau (Thompson and

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!