11.06.2015 Views

Elevated ozone in the boundary layer at South Pole - Doug Davis

Elevated ozone in the boundary layer at South Pole - Doug Davis

Elevated ozone in the boundary layer at South Pole - Doug Davis

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

ARTICLE IN PRESS<br />

Atmospheric Environment 42 (2008) 2788–2803<br />

www.elsevier.com/loc<strong>at</strong>e/<strong>at</strong>mosenv<br />

<strong>Elev<strong>at</strong>ed</strong> <strong>ozone</strong> <strong>in</strong> <strong>the</strong> <strong>boundary</strong> <strong>layer</strong> <strong>at</strong> <strong>South</strong> <strong>Pole</strong><br />

Detlev Helmig a, , Bryan Johnson b , Samuel J. Oltmans b , William Neff b ,<br />

Fred Eisele c , <strong>Doug</strong>las D. <strong>Davis</strong> d<br />

a Institute of Arctic and Alp<strong>in</strong>e Research (INSTAAR), University of Colorado <strong>at</strong> Boulder, UCB 450, Boulder, CO 80309, USA<br />

b Earth System Research Labor<strong>at</strong>ory, N<strong>at</strong>ional Oceanic and Atmospheric Adm<strong>in</strong>istr<strong>at</strong>ion (NOAA), 325 Broadway, Boulder, CO 80305, USA<br />

c N<strong>at</strong>ional Center for Atmospheric Research, Boulder, CO 80307, USA<br />

d Georgia Institute of Technology, Atlanta, GA 30332, USA<br />

Received 23 June 2006; received <strong>in</strong> revised form 8 December 2006; accepted 8 December 2006<br />

Abstract<br />

Vertical profile measurements of <strong>ozone</strong>, w<strong>at</strong>er vapor, and meteorological conditions, as well as surface and tower<br />

measurements of <strong>the</strong>se parameters dur<strong>in</strong>g <strong>the</strong> 2003 Antarctic Tropospheric Chemistry Investig<strong>at</strong>ion (ANTCI) yielded <strong>the</strong>ir<br />

vertical (between <strong>the</strong> surface and 500 m) and temporal distribution <strong>in</strong> <strong>the</strong> <strong>boundary</strong> <strong>layer</strong> <strong>at</strong> <strong>South</strong> <strong>Pole</strong> (SP) dur<strong>in</strong>g<br />

December 13–30, 2003. Ozone <strong>in</strong> <strong>the</strong> surface and lower planetary <strong>boundary</strong> <strong>layer</strong> above SP was frequently enhanced over<br />

lower free tropospheric levels. Dur<strong>in</strong>g stable <strong>at</strong>mospheric conditions (which typically existed dur<strong>in</strong>g low w<strong>in</strong>d and fair sky<br />

conditions) <strong>ozone</strong> accumul<strong>at</strong>ed <strong>in</strong> <strong>the</strong> surface <strong>layer</strong> to reach up to twice its background concentr<strong>at</strong>ion. These conditions<br />

were correl<strong>at</strong>ed with air transport from <strong>the</strong> N–SE sector, when air flowed downslope from <strong>the</strong> Antarctic pl<strong>at</strong>eau towards<br />

<strong>the</strong> SP. These d<strong>at</strong>a provide fur<strong>the</strong>r <strong>in</strong>sight <strong>in</strong>to <strong>the</strong> vigorous photochemistry and <strong>ozone</strong> production th<strong>at</strong> result from <strong>the</strong><br />

highly elev<strong>at</strong>ed levels of nitrogen oxides (NO x ) <strong>in</strong> <strong>the</strong> Antarctic surface <strong>layer</strong>.<br />

r 2007 Elsevier Ltd. All rights reserved.<br />

Keywords: Antarctic pl<strong>at</strong>eau; Tropospheric <strong>ozone</strong>; Snowpack-<strong>at</strong>mosphere gas exchange; Snow photochemistry; Synoptic transport<br />

1. Introduction<br />

Recent studies have revealed a previously unexpected<br />

air and snowpack chemistry <strong>in</strong> <strong>the</strong> polar<br />

environment (Dom<strong>in</strong>e and Shepson, 2002), and<br />

have po<strong>in</strong>ted out an unusual photochemical situ<strong>at</strong>ion<br />

<strong>at</strong> <strong>South</strong> <strong>Pole</strong> (SP) (<strong>Davis</strong> et al., 2001, 2004).<br />

Fur<strong>the</strong>rmore, <strong>the</strong> annual, reoccurr<strong>in</strong>g form<strong>at</strong>ion of<br />

<strong>the</strong> Antarctic str<strong>at</strong>ospheric <strong>ozone</strong> hole has gener<strong>at</strong>ed<br />

ra<strong>the</strong>r unn<strong>at</strong>ural radi<strong>at</strong>ive and chemical conditions<br />

over <strong>the</strong> Antarctic cont<strong>in</strong>ent. In 1991 Schnell<br />

Correspond<strong>in</strong>g author.<br />

E-mail address: Detlev.Helmig@colorado.edu (D. Helmig).<br />

et al. (1991) reported a decl<strong>in</strong>e <strong>in</strong> 1975–1990 surface<br />

<strong>ozone</strong> <strong>at</strong> SP and specul<strong>at</strong>ed th<strong>at</strong> this change was<br />

driven by <strong>in</strong>creased photochemical destruction of<br />

<strong>ozone</strong> <strong>in</strong> <strong>the</strong> lower troposphere caused by <strong>the</strong><br />

<strong>in</strong>creased penetr<strong>at</strong>ion of ultraviolet radi<strong>at</strong>ion. Secondly,<br />

<strong>the</strong>se authors noted an enhanced transport of<br />

<strong>ozone</strong>-poorer mar<strong>in</strong>e air to SP th<strong>at</strong> may have<br />

<strong>in</strong>fluenced surface <strong>ozone</strong> levels. Newer analyses,<br />

<strong>in</strong>corpor<strong>at</strong><strong>in</strong>g l<strong>at</strong>er SP <strong>ozone</strong> d<strong>at</strong>a, have found<br />

<strong>in</strong>creases <strong>in</strong> <strong>ozone</strong> dur<strong>in</strong>g <strong>the</strong> past 15 years<br />

(Crawford et al., 2001; Jones and Wolff, 2003;<br />

Oltmans et al., 2006; Helmig et al., 2007a), which<br />

implies a surpris<strong>in</strong>g reversal of <strong>the</strong> earlier trend and<br />

poses questions about its <strong>in</strong>terpret<strong>at</strong>ion.<br />

1352-2310/$ - see front m<strong>at</strong>ter r 2007 Elsevier Ltd. All rights reserved.<br />

doi:10.1016/j.<strong>at</strong>mosenv.2006.12.032


ARTICLE IN PRESS<br />

D. Helmig et al. / Atmospheric Environment 42 (2008) 2788–2803 2789<br />

Tropospheric <strong>ozone</strong> production and loss processes<br />

are <strong>in</strong>tim<strong>at</strong>ely rel<strong>at</strong>ed to levels and conversion<br />

r<strong>at</strong>es of nitrogen oxides. The production and release<br />

of <strong>the</strong> nitrogen oxide gases NO, NO 2 , and HONO<br />

from sunlit snowpack (e.g. Dibb et al., 1998, 2002;<br />

Honr<strong>at</strong>h et al., 1999, 2000a, b, 2002; Jones et al.,<br />

2000, 2001; Oncley et al., 2004), and result<strong>in</strong>g<br />

unexpected high ambient levels of NO th<strong>at</strong> have<br />

been observed <strong>in</strong> ambient air <strong>at</strong> SP (<strong>Davis</strong> et al.,<br />

2001, 2004), have raised <strong>the</strong> question of how <strong>ozone</strong><br />

is affected by <strong>the</strong> result<strong>in</strong>g photochemistry. Surface<br />

<strong>ozone</strong> <strong>at</strong> SP <strong>in</strong>deed shows anomalous fe<strong>at</strong>ures<br />

(Crawford et al., 2001; Jones and Wolff, 2003;<br />

Helmig et al., 2007a). The annual <strong>ozone</strong> cycle, with<br />

an expected m<strong>in</strong>imum dur<strong>in</strong>g <strong>the</strong> Antarctic summer<br />

months, is disturbed by <strong>the</strong> frequent occurrence of<br />

events with largely <strong>in</strong>creased surface <strong>ozone</strong> levels.<br />

The Antarctic Tropospheric Chemistry Investig<strong>at</strong>ion<br />

(ANTCI) dur<strong>in</strong>g <strong>the</strong> 2003/2004 austral summer<br />

<strong>in</strong>vestig<strong>at</strong>ed l<strong>in</strong>kages between snowpack-photochemical<br />

processes, <strong>boundary</strong>-<strong>layer</strong> <strong>at</strong>mospheric chemistry,<br />

and transport across <strong>the</strong> Antarctic cont<strong>in</strong>ent.<br />

The distributions of <strong>ozone</strong> and NO were studied by<br />

surface <strong>layer</strong> measurements, from a te<strong>the</strong>red balloon<br />

pl<strong>at</strong>form and by aircraft. The <strong>in</strong>terpret<strong>at</strong>ion of<br />

<strong>the</strong>se high resolution vertical and temporal <strong>ozone</strong><br />

and meteorological d<strong>at</strong>a provide new evidence for<br />

l<strong>in</strong>kages between <strong>the</strong> unique SP <strong>boundary</strong> <strong>layer</strong><br />

stability conditions and snowpack and surface <strong>layer</strong><br />

photochemistry th<strong>at</strong> can result <strong>in</strong> <strong>the</strong> unexpected,<br />

surface <strong>layer</strong> <strong>ozone</strong> production dur<strong>in</strong>g <strong>the</strong> Antarctic<br />

summer, suggested previously by Crawford et al.<br />

(2001) and Chen et al. (2004).<br />

2. Experimental<br />

Site description: This experiment was conducted<br />

from December 10–31, 2003 <strong>at</strong> <strong>the</strong> Amundson-Scott<br />

research st<strong>at</strong>ion <strong>at</strong> SP. Conventions for directions <strong>at</strong><br />

<strong>the</strong> SP identify ‘‘north’’ as <strong>the</strong> Greenwich meridian<br />

so th<strong>at</strong> 901E longitude becomes ‘‘east’’ and so forth.<br />

The te<strong>the</strong>red balloon launch site was 300 m east<br />

from <strong>the</strong> geographic SP.<br />

Surface <strong>layer</strong> <strong>ozone</strong> measurements: Surface <strong>layer</strong><br />

<strong>ozone</strong> was measured cont<strong>in</strong>uously with two UV<br />

absorption monitors (Thermo Electron Corpor<strong>at</strong>ion<br />

Model 49C, Frankl<strong>in</strong>, MA). One d<strong>at</strong>a set used <strong>in</strong> this<br />

analysis was from <strong>the</strong> SP st<strong>at</strong>ion monitor, which is<br />

loc<strong>at</strong>ed <strong>in</strong> <strong>the</strong> <strong>at</strong>mospheric research observ<strong>at</strong>ory<br />

(ARO) and collects air from an <strong>in</strong>let on <strong>the</strong> roof of<br />

this build<strong>in</strong>g, <strong>at</strong> approxim<strong>at</strong>ely 17 m above <strong>the</strong> snow<br />

surface. These d<strong>at</strong>a are collected <strong>at</strong> 10-s <strong>in</strong>tervals and<br />

stored and reported as 5-m<strong>in</strong> and 1-h averages. The<br />

second <strong>ozone</strong> monitor was oper<strong>at</strong>ed <strong>in</strong> a small,<br />

temporary build<strong>in</strong>g near <strong>the</strong> te<strong>the</strong>red balloon launch<br />

site, approxim<strong>at</strong>ely 150 m east of <strong>the</strong> ARO. Surface<br />

<strong>layer</strong> air <strong>at</strong> <strong>the</strong> balloon launch site was sampled<br />

through a 10 m Teflon sampl<strong>in</strong>g l<strong>in</strong>e from an<br />

adjacent tower with an <strong>in</strong>let <strong>at</strong> 2 m above <strong>the</strong> surface.<br />

Dur<strong>in</strong>g <strong>the</strong> day of year 2003 (DOY) 350–357.2 an<br />

<strong>in</strong>let on <strong>the</strong> roof of <strong>the</strong> balloon launch shelter (4 m<br />

above ground) was used. Both TEI <strong>in</strong>struments were<br />

calibr<strong>at</strong>ed aga<strong>in</strong>st a labor<strong>at</strong>ory reference <strong>in</strong>strument<br />

<strong>in</strong> <strong>the</strong> Boulder NOAA Earth System Research<br />

Labor<strong>at</strong>ory. The estim<strong>at</strong>ed accuracy and precision<br />

of <strong>the</strong>se two <strong>in</strong>struments are 1 and 0.1 ppbv,<br />

respectively, for averaged 5-m<strong>in</strong> d<strong>at</strong>a.<br />

Surface <strong>layer</strong> meteorological measurements: Surface<br />

<strong>layer</strong> meteorological measurements were also<br />

made <strong>at</strong> <strong>the</strong> 2-m tower, 10 m west of <strong>the</strong> balloon<br />

launch site. Instruments mounted on this tower<br />

<strong>in</strong>cluded a w<strong>in</strong>d speed/w<strong>in</strong>d direction cup anemometer<br />

with w<strong>in</strong>d vane (Model 034B, Met One<br />

Instruments, Grants Pass, OR), an aspir<strong>at</strong>ed type E<br />

<strong>the</strong>rmocouple for air temper<strong>at</strong>ure, and an <strong>in</strong>cident<br />

solar radi<strong>at</strong>ion sensor (LI200X pyranometer,<br />

Campbell Scientific, Logan, UT). D<strong>at</strong>a were<br />

recorded every second and averaged and stored <strong>in</strong><br />

1-m<strong>in</strong> <strong>in</strong>tervals. Atmospheric turbulence was measured<br />

with a 3D sonic anemometer (CSAT-3,<br />

Campbell) <strong>at</strong> 60 Hz and averaged to 20 Hz d<strong>at</strong>a.<br />

D<strong>at</strong>a analysis procedures for <strong>the</strong> sonic anemometer<br />

d<strong>at</strong>a were presented by Cohen et al. (2007).<br />

Te<strong>the</strong>red balloon pl<strong>at</strong>form: Depend<strong>in</strong>g on w<strong>in</strong>d<br />

conditions and payload, two helium-filled Sky-Doc<br />

te<strong>the</strong>red balloons (one 4.2 m diameter two-ply and<br />

one 5.4 m diameter s<strong>in</strong>gle-ply balloon, Flo<strong>at</strong>ograph<br />

Technolgies, Marion, IN) (Helmig et al., 2002) were<br />

altern<strong>at</strong>ed for <strong>the</strong> vertical profile experiments.<br />

Balloon ascent and descent were used for <strong>the</strong> vertical<br />

profile with a hydraulic w<strong>in</strong>ch. Two types of profile<br />

observ<strong>at</strong>ions were conducted. Profiles with <strong>the</strong> lightweight,<br />

b<strong>at</strong>tery-oper<strong>at</strong>ed <strong>in</strong>struments (electrochemical<br />

concentr<strong>at</strong>ion cell, ECC <strong>ozone</strong>, te<strong>the</strong>rsonde) were<br />

done to a target altitude of 500 m. Ascent and<br />

descent r<strong>at</strong>es typically were 0.2–0.3 m s 1 , result<strong>in</strong>g <strong>in</strong><br />

1–1.5 h dur<strong>at</strong>ion experiments. The long sampl<strong>in</strong>g l<strong>in</strong>e<br />

experiments (see below) were performed to <strong>the</strong> height<br />

of <strong>the</strong> maximum length of <strong>the</strong> sampl<strong>in</strong>g l<strong>in</strong>e, i.e.<br />

120 m. Te<strong>the</strong>rsonde and ECC-radiosonde comb<strong>in</strong><strong>at</strong>ions<br />

were deployed toge<strong>the</strong>r with <strong>the</strong> long<br />

sampl<strong>in</strong>g l<strong>in</strong>e for concurrent meteorological and<br />

ECC <strong>ozone</strong> measurements. The <strong>in</strong>stantaneous balloon<br />

geopotential height was calcul<strong>at</strong>ed from <strong>the</strong>


2790<br />

ARTICLE IN PRESS<br />

D. Helmig et al. / Atmospheric Environment 42 (2008) 2788–2803<br />

barometric pressure and temper<strong>at</strong>ure measurement<br />

of <strong>the</strong> radiosonde and te<strong>the</strong>rsonde us<strong>in</strong>g <strong>the</strong> hypsometric<br />

rel<strong>at</strong>ionship. All flight d<strong>at</strong>a, <strong>in</strong>clud<strong>in</strong>g launch<br />

time, apex time, touchdown time and maximum<br />

altitude are graphically displayed <strong>in</strong> Fig. 1. Overall<br />

64 profile flights were conducted, yield<strong>in</strong>g a maximum<br />

of 178 vertical profile d<strong>at</strong>a sets (one flight<br />

typically yields two profiles, some parameters were<br />

measured with multiple <strong>in</strong>struments). The cont<strong>in</strong>uous<br />

d<strong>at</strong>a series from <strong>the</strong> two tower measurements<br />

are also displayed <strong>in</strong> this figure. Besides <strong>the</strong> te<strong>the</strong>red<br />

balloon vertical profiles, four ECC/radiosonde release<br />

balloons were launched from SP <strong>at</strong> times<br />

co<strong>in</strong>cid<strong>in</strong>g with te<strong>the</strong>red balloon profiles on DOY<br />

352.23, 357.27, 360.28, and 363.28.<br />

Electrochemical <strong>ozone</strong> sondes: EN-SCI Model 2Z<br />

(EN-SCI Corpor<strong>at</strong>ion, Boulder, CO) ECC sondes<br />

were used for <strong>the</strong> vertical <strong>ozone</strong> profile measurements.<br />

An evalu<strong>at</strong>ion and <strong>in</strong>tercomparison of <strong>the</strong>se<br />

measurements is discussed <strong>in</strong> more detail by<br />

Johnson et al. (2007). The ECC sondes were<br />

<strong>in</strong>terfaced to RS-80 radiosondes (Vaisala, Hels<strong>in</strong>ki,<br />

F<strong>in</strong>land) for remote d<strong>at</strong>a transfer.<br />

Vertical profile meteorological measurements:<br />

TSP-5A-SP Vaisala te<strong>the</strong>rsondes were used for <strong>the</strong><br />

measurement of meteorological conditions dur<strong>in</strong>g<br />

<strong>the</strong> balloon profil<strong>in</strong>g. D<strong>at</strong>a were transmitted to a<br />

ground receiv<strong>in</strong>g st<strong>at</strong>ion. The te<strong>the</strong>rsonde measures<br />

temper<strong>at</strong>ure, rel<strong>at</strong>ive humidity, w<strong>in</strong>d speed, w<strong>in</strong>d<br />

direction and barometric pressure. The RS-80<br />

radiosonde records temper<strong>at</strong>ure, rel<strong>at</strong>ive humidity<br />

and barometric pressure.<br />

Long sampl<strong>in</strong>g l<strong>in</strong>e experiments: In a second series<br />

of experiments <strong>the</strong> surface <strong>layer</strong> was probed with a<br />

long sampl<strong>in</strong>g l<strong>in</strong>e with an air <strong>in</strong>let th<strong>at</strong> was<br />

mounted to <strong>the</strong> balloon. This tub<strong>in</strong>g was made of<br />

PFA Teflon (0.78 cm o.d, 0.64 cm i.d., 135 m length,<br />

McCoy, Fort Coll<strong>in</strong>s, CO) with an PFA <strong>in</strong>let funnel<br />

(Sallivex Corp., M<strong>in</strong>netonka, MN) which housed a<br />

PTFE (polytetrafluoroethylene) membrane filter<br />

(Millipore Corp., Bellerica, MA). Prior to <strong>the</strong> field<br />

trip, this tub<strong>in</strong>g was conditioned <strong>in</strong> <strong>the</strong> labor<strong>at</strong>ory<br />

by purg<strong>in</strong>g it with 250 ppbv of <strong>ozone</strong>-enriched air<br />

for two days. The <strong>in</strong>let was mounted to <strong>the</strong> te<strong>the</strong>r<br />

l<strong>in</strong>e, approxim<strong>at</strong>ely 6 m below <strong>the</strong> balloon. Air was<br />

pulled through <strong>the</strong> l<strong>in</strong>e cont<strong>in</strong>uously while <strong>the</strong><br />

balloon raised and lowered <strong>the</strong> sampl<strong>in</strong>g l<strong>in</strong>e <strong>in</strong>let<br />

to a maximum height of 120 m. The surface end of<br />

this l<strong>in</strong>e ran <strong>in</strong>to <strong>the</strong> balloon launch build<strong>in</strong>g and<br />

was connected to a sampl<strong>in</strong>g manifold th<strong>at</strong> allowed<br />

sampl<strong>in</strong>g of air with ei<strong>the</strong>r <strong>the</strong> TEI <strong>ozone</strong> monitor<br />

or an NO chemilum<strong>in</strong>escence <strong>in</strong>strument or both<br />

700<br />

600<br />

Balloon Profiles<br />

Short profiles<br />

2 m Tower<br />

17 m ARO<br />

500<br />

Height (m)<br />

400<br />

300<br />

200<br />

100<br />

0<br />

347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365<br />

Fig. 1. Distribution of te<strong>the</strong>red balloon profiles dur<strong>in</strong>g <strong>the</strong> December 2003 profil<strong>in</strong>g experiment <strong>at</strong> <strong>South</strong> <strong>Pole</strong>. Balloon apex height is<br />

plotted aga<strong>in</strong>st <strong>the</strong> day of year 2003 (December 13–31). High profiles (to 500 m) were conducted us<strong>in</strong>g <strong>the</strong> balloon-borne radiosonde<br />

<strong>in</strong>struments (ECC, te<strong>the</strong>rsonde), profiles to 100 m were done with <strong>the</strong> long Teflon sampl<strong>in</strong>g l<strong>in</strong>e <strong>at</strong>tached to <strong>the</strong> balloon. The cont<strong>in</strong>uous<br />

d<strong>at</strong>a from <strong>the</strong> surface monitor<strong>in</strong>g are also illustr<strong>at</strong>ed.


ARTICLE IN PRESS<br />

D. Helmig et al. / Atmospheric Environment 42 (2008) 2788–2803 2791<br />

simultaneously. The sampl<strong>in</strong>g flow r<strong>at</strong>e was determ<strong>in</strong>ed<br />

by <strong>the</strong> sampl<strong>in</strong>g pumps of <strong>the</strong>se two<br />

analyzers and was 1.2 l m<strong>in</strong> 1 (TEI) or 2.4 l m<strong>in</strong> 1<br />

(both <strong>in</strong>struments comb<strong>in</strong>ed). Under <strong>the</strong>se conditions<br />

<strong>the</strong> sample residence time <strong>in</strong> <strong>the</strong> sampl<strong>in</strong>g l<strong>in</strong>e<br />

was 4.2 m<strong>in</strong> and 2.1 m<strong>in</strong>, respectively. Between<br />

balloon flights a short sampl<strong>in</strong>g l<strong>in</strong>e (10 m) and<br />

<strong>the</strong> long l<strong>in</strong>e <strong>in</strong>let were placed side by side on <strong>the</strong> 2-<br />

m tower and sample air was altern<strong>at</strong>ed between<br />

<strong>the</strong>se two <strong>in</strong>lets every 5 m<strong>in</strong>. The <strong>ozone</strong> loss r<strong>at</strong>e <strong>in</strong><br />

<strong>the</strong> long l<strong>in</strong>e was determ<strong>in</strong>ed by compar<strong>in</strong>g <strong>the</strong>se<br />

two d<strong>at</strong>a series. This loss r<strong>at</strong>e fluctu<strong>at</strong>ed slightly<br />

over n<strong>in</strong>e days while this sampl<strong>in</strong>g l<strong>in</strong>e was used.<br />

A 6-h runn<strong>in</strong>g mean was calcul<strong>at</strong>ed and applied for<br />

correct<strong>in</strong>g all long sampl<strong>in</strong>g l<strong>in</strong>e d<strong>at</strong>a. The mean<br />

<strong>ozone</strong> loss r<strong>at</strong>e <strong>in</strong> <strong>the</strong> long sampl<strong>in</strong>g l<strong>in</strong>e over <strong>the</strong><br />

n<strong>in</strong>e-day period was 1.970.8%. A thorough <strong>in</strong>tercomparison<br />

between <strong>the</strong> long sampl<strong>in</strong>g l<strong>in</strong>e d<strong>at</strong>a<br />

and concurrent ECC sonde measurements is presented<br />

by Johnson et al. (2007); fur<strong>the</strong>r analytical<br />

details on <strong>the</strong> te<strong>the</strong>red balloon NO measurements<br />

are provided <strong>in</strong> Helmig et al. (2007b).<br />

Balloon d<strong>at</strong>a analysis: Ascent balloon heights<br />

were calcul<strong>at</strong>ed by <strong>the</strong> radiosonde change <strong>in</strong><br />

pressure referenced to <strong>the</strong> average ‘‘before launch’’<br />

pressure, while descent balloon height calcul<strong>at</strong>ions<br />

were referenced to <strong>the</strong> surface pressure measured<br />

after completion of <strong>the</strong> descent profile. All raw d<strong>at</strong>a<br />

were averaged to 1-m height <strong>in</strong>tervals. Miss<strong>in</strong>g d<strong>at</strong>a<br />

po<strong>in</strong>ts (fewer than 2% of 1-m <strong>in</strong>terval d<strong>at</strong>a) <strong>at</strong><br />

selected heights were <strong>in</strong>terpol<strong>at</strong>ed from adjacent<br />

height measurements. The temporal and sp<strong>at</strong>ial<br />

distribution of <strong>at</strong>mospheric stability was determ<strong>in</strong>ed<br />

by calcul<strong>at</strong><strong>in</strong>g 5-m <strong>in</strong>terval bulk Richardson numbers<br />

us<strong>in</strong>g <strong>the</strong> vertical gradient temper<strong>at</strong>ure, w<strong>in</strong>d<br />

speed and w<strong>in</strong>d direction d<strong>at</strong>a from 2 m above and<br />

below <strong>the</strong> reference height. The averaged balloon<br />

and <strong>the</strong> time series surface d<strong>at</strong>a were comb<strong>in</strong>ed for<br />

<strong>the</strong> color contour analysis plots.<br />

Back trajectories: The back trajectories to SP<br />

were computed from <strong>the</strong> NCEP/NCAR Reanalysis<br />

D<strong>at</strong>a Set (Kalnay et al., 1996). The trajectory model<br />

(Harris et al., 2005) determ<strong>in</strong>es <strong>the</strong> vertical position<br />

of <strong>the</strong> air parcel explicitly us<strong>in</strong>g <strong>the</strong> vertical w<strong>in</strong>d<br />

field <strong>in</strong> <strong>the</strong> analyzed d<strong>at</strong>a set (3D trajectories).<br />

3. Results and discussion<br />

3.1. Surface <strong>ozone</strong><br />

D<strong>at</strong>a from <strong>the</strong> two cont<strong>in</strong>uous <strong>ozone</strong> surface<br />

measurements (ARO and balloon launch site) are<br />

55<br />

50<br />

Balloon Build<strong>in</strong>g<br />

ARO<br />

45<br />

Ozone (ppbv)<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365<br />

Fig. 2. Ozone dur<strong>in</strong>g day of year 2003 measured from <strong>the</strong> roof (17 m) of <strong>the</strong> ARO build<strong>in</strong>g (hourly mean d<strong>at</strong>a, black solid l<strong>in</strong>e) <strong>in</strong><br />

comparison to surface <strong>ozone</strong> (1-m<strong>in</strong> d<strong>at</strong>a) measured from <strong>the</strong> roof (4 m above <strong>the</strong> surface, DOY 350.0–357.2) and a 2-m tower <strong>in</strong>let<br />

(DOY 347.4–350.0, 357.2–364.1) adjacent of <strong>the</strong> balloon launch shelter.


2792<br />

ARTICLE IN PRESS<br />

D. Helmig et al. / Atmospheric Environment 42 (2008) 2788–2803<br />

shown <strong>in</strong> Fig. 2. Dur<strong>in</strong>g <strong>the</strong> period of this experiment,<br />

surface <strong>ozone</strong> <strong>at</strong> SP showed large vari<strong>at</strong>ions,<br />

between m<strong>in</strong>ima of 18 ppbv (DOY 354) and maxima<br />

of 50 ppbv on DOY 358. Both measurements, even<br />

though 130 m separ<strong>at</strong>ed by distance and 15 m by<br />

height show excellent agreement, typically with<strong>in</strong><br />

1 ppbv dur<strong>in</strong>g <strong>the</strong> first phase. A strik<strong>in</strong>g fe<strong>at</strong>ure of<br />

<strong>the</strong>se observ<strong>at</strong>ions is th<strong>at</strong> dur<strong>in</strong>g <strong>the</strong> l<strong>at</strong>er part of<br />

DOY 354, a significant <strong>in</strong>crease <strong>in</strong> surface <strong>ozone</strong><br />

(almost doubl<strong>in</strong>g) was observed and th<strong>at</strong> <strong>the</strong>reafter<br />

both measurements showed a 3–4 ppbv disagreement<br />

until <strong>ozone</strong> levels dropped back to below 30 ppbv on<br />

DOY 359. Upon closer <strong>in</strong>spection, it becomes<br />

apparent th<strong>at</strong> generally high agreement between<br />

<strong>the</strong>se two d<strong>at</strong>a series is seen <strong>at</strong> lower <strong>ozone</strong> levels<br />

and th<strong>at</strong> <strong>the</strong> disagreement scales with <strong>the</strong> absolute<br />

<strong>ozone</strong> levels. The vertical balloon profile d<strong>at</strong>a, to be<br />

discussed <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g paragraphs, show th<strong>at</strong> <strong>the</strong><br />

differences <strong>in</strong> <strong>the</strong>se two measurements do not stem<br />

from an analytical bias, but <strong>in</strong>stead represent vertical<br />

<strong>ozone</strong> gradients <strong>in</strong> <strong>the</strong> shallow SP surface <strong>layer</strong>.<br />

3.2. Vertical <strong>ozone</strong> profiles<br />

The vertical <strong>ozone</strong> distribution <strong>at</strong> SP showed<br />

strong vari<strong>at</strong>ions dur<strong>in</strong>g December 2003. Two<br />

examples th<strong>at</strong> illustr<strong>at</strong>e <strong>the</strong> extremes of <strong>the</strong>se<br />

conditions are presented <strong>in</strong> Fig. 3. On December<br />

24 a strong variability <strong>in</strong> <strong>ozone</strong> was seen <strong>in</strong> <strong>the</strong><br />

lowest 500 m of <strong>the</strong> <strong>at</strong>mosphere. Near <strong>the</strong> surface,<br />

<strong>ozone</strong> levels were approach<strong>in</strong>g 50 ppbv. Ozone<br />

mix<strong>in</strong>g r<strong>at</strong>ios decl<strong>in</strong>ed steeply with altitude, dropp<strong>in</strong>g<br />

to 22 ppbv <strong>at</strong> 180 m. Several <strong>layer</strong>s with<br />

2–4 ppbv enhanced <strong>ozone</strong> were seen between 200<br />

and 500 m height. D<strong>at</strong>a from <strong>the</strong> balloon ascent and<br />

descent show a high degree of agreement, <strong>in</strong>dic<strong>at</strong>ive<br />

th<strong>at</strong> <strong>ozone</strong> profiles changed very little dur<strong>in</strong>g <strong>the</strong> 58-<br />

m<strong>in</strong> flight dur<strong>at</strong>ion. It should be noted th<strong>at</strong> due to<br />

<strong>the</strong> 25–30 s response time of <strong>the</strong> ECC sonde, <strong>the</strong><br />

<strong>ozone</strong> read<strong>in</strong>gs are somewh<strong>at</strong> delayed caus<strong>in</strong>g a<br />

slight upwards/downwards shift of <strong>the</strong> <strong>ozone</strong> profile<br />

dur<strong>in</strong>g ascent and descent, respectively (by 10 m <strong>at</strong><br />

<strong>the</strong> 0.3 m s 1 ascent/descent r<strong>at</strong>e). Correct<strong>in</strong>g for<br />

this effect would fur<strong>the</strong>r improve <strong>the</strong> agreement<br />

between <strong>the</strong> ascent and descent <strong>ozone</strong> profiles.<br />

Ozone mix<strong>in</strong>g r<strong>at</strong>ios measured near <strong>the</strong> surface<br />

generally agreed with<strong>in</strong> 1–2 ppbv with <strong>the</strong> concurrent<br />

ARO and tower observ<strong>at</strong>ions (Fig. 2) (Johnson<br />

et al., 2007). Much different conditions were<br />

encountered two days l<strong>at</strong>er, as shown <strong>in</strong> <strong>the</strong> pair<br />

of profiles on <strong>the</strong> right <strong>in</strong> Fig. 3. Ozone was<br />

homogenously distributed <strong>in</strong> <strong>the</strong> surface and<br />

<strong>boundary</strong> <strong>layer</strong>, show<strong>in</strong>g less than a 2 ppbv gradient<br />

between <strong>the</strong> surface and 500 m. Aga<strong>in</strong>, both ascent<br />

and descent d<strong>at</strong>a follow each o<strong>the</strong>r closely and<br />

<strong>ozone</strong> d<strong>at</strong>a from <strong>the</strong> balloon <strong>in</strong>struments near <strong>the</strong><br />

500<br />

450<br />

Ascent<br />

Descent<br />

500<br />

450<br />

Ascent<br />

Descent<br />

400<br />

400<br />

350<br />

350<br />

Height (m)<br />

300<br />

250<br />

200<br />

Height (m)<br />

300<br />

250<br />

200<br />

150<br />

150<br />

100<br />

100<br />

50<br />

50<br />

0<br />

15 20 25 30 35 40 45 50<br />

Ozone (ppbv)<br />

0<br />

15 20 25 30 35 40 45 50<br />

Ozone (ppbv)<br />

Fig. 3. Two examples of vertical <strong>ozone</strong> distribution <strong>at</strong> <strong>South</strong> <strong>Pole</strong> dur<strong>in</strong>g December 2003. The profiles on <strong>the</strong> left were measured on<br />

December 24 (launch time DOY 358.82, flight dur<strong>at</strong>ion 57 m<strong>in</strong>). The profiles on <strong>the</strong> right were obta<strong>in</strong>ed on December 26 (launch time<br />

DOY 360.89, flight dur<strong>at</strong>ion 47 m<strong>in</strong>).


ARTICLE IN PRESS<br />

D. Helmig et al. / Atmospheric Environment 42 (2008) 2788–2803 2793<br />

surface are <strong>in</strong> excellent agreement with <strong>the</strong> cont<strong>in</strong>uous<br />

surface measurements <strong>at</strong> this time<br />

(19–20 ppbv, Fig. 2).<br />

The temporal behavior of <strong>the</strong> observed surface<br />

<strong>layer</strong> <strong>ozone</strong> gradient was <strong>in</strong>vestig<strong>at</strong>ed <strong>in</strong> ano<strong>the</strong>r<br />

balloon experiment on December 21 where <strong>the</strong> long<br />

sampl<strong>in</strong>g l<strong>in</strong>e was raised and ‘‘parked’’ for 3 h <strong>at</strong><br />

110 m. Dur<strong>in</strong>g this experiment ambient air was<br />

sampled from two <strong>in</strong>let l<strong>in</strong>es th<strong>at</strong> were altern<strong>at</strong>ed<br />

every 5 m<strong>in</strong> and analyzed with <strong>the</strong> TEI monitor<br />

(Fig. 4). First, <strong>the</strong> short and long sampl<strong>in</strong>g l<strong>in</strong>e <strong>in</strong>lets<br />

were both near <strong>the</strong> surface (balloon l<strong>in</strong>e <strong>in</strong>let <strong>at</strong> 2 m,<br />

short sampl<strong>in</strong>g l<strong>in</strong>e <strong>in</strong>let <strong>at</strong> 4 m). Ozone <strong>in</strong> air from<br />

both <strong>in</strong>lets showed no discernable difference; both<br />

samples agreed with<strong>in</strong> better than 0.5 ppbv. Next,<br />

<strong>the</strong> long l<strong>in</strong>e <strong>in</strong>let was raised with <strong>the</strong> balloon <strong>in</strong> 7 m<strong>in</strong><br />

to 110 m. Ozone <strong>in</strong> air collected from <strong>the</strong> balloon<br />

dur<strong>in</strong>g <strong>the</strong> ascent dropped <strong>in</strong>stantaneously from<br />

45 ppbv to 40 ppbv. Over <strong>the</strong> next three hours <strong>ozone</strong><br />

<strong>at</strong> 110 m rema<strong>in</strong>ed lower, approxim<strong>at</strong>ely 5 ppbv<br />

below <strong>the</strong> surface read<strong>in</strong>gs. Dur<strong>in</strong>g this time surface<br />

<strong>ozone</strong> <strong>in</strong>creased by 1 ppbv. Similarly, an <strong>in</strong>crease <strong>in</strong><br />

<strong>ozone</strong> <strong>at</strong> 110 m was observed; towards <strong>the</strong> end of this<br />

experiment, <strong>the</strong> vertical <strong>ozone</strong> gradient decreased<br />

slightly. After 3 h <strong>the</strong> balloon was brought back<br />

down, and ano<strong>the</strong>r, more rapid up and down profile<br />

(25 m<strong>in</strong>) was measured with cont<strong>in</strong>uous sampl<strong>in</strong>g<br />

through <strong>the</strong> long balloon sampl<strong>in</strong>g l<strong>in</strong>e. These d<strong>at</strong>a<br />

confirm <strong>the</strong> results from <strong>the</strong> previous <strong>in</strong>termittent<br />

sampl<strong>in</strong>g and th<strong>at</strong> <strong>the</strong> <strong>ozone</strong> gradient between <strong>the</strong><br />

surface and 110 m had decl<strong>in</strong>ed to 3 ppbv.<br />

3.3. Vertical and temporal <strong>ozone</strong> distribution<br />

The vertical and temporal (December 13–31)<br />

distribution of <strong>ozone</strong> shown <strong>in</strong> <strong>the</strong> 3D contour plot<br />

<strong>in</strong> Fig. 5 comb<strong>in</strong>es <strong>the</strong> d<strong>at</strong>a from all ECC sonde<br />

profiles, <strong>the</strong> cont<strong>in</strong>uous monitor<strong>in</strong>g <strong>at</strong> <strong>the</strong> ARO <strong>at</strong><br />

17 m, <strong>the</strong> cont<strong>in</strong>uous monitor<strong>in</strong>g <strong>at</strong> <strong>the</strong> te<strong>the</strong>red<br />

balloon launch site (<strong>at</strong> 2 and 4 m height) and from<br />

<strong>the</strong> long sampl<strong>in</strong>g l<strong>in</strong>e profile measurements. The<br />

results of this analysis reemphasize <strong>the</strong> conditions<br />

with enhanced and variable <strong>boundary</strong> <strong>layer</strong> <strong>ozone</strong> <strong>at</strong><br />

SP. Dur<strong>in</strong>g most times <strong>ozone</strong> near <strong>the</strong> surface (e.g. <strong>in</strong><br />

<strong>the</strong> 0–300 m <strong>layer</strong>) was elev<strong>at</strong>ed compared to air<br />

aloft. The observed gradients varied widely. Dur<strong>in</strong>g<br />

two isol<strong>at</strong>ed conditions with overall low concentr<strong>at</strong>ions<br />

(DOY 354, 361) <strong>ozone</strong> showed a homogenous<br />

vertical distribution (also see Fig. 2). Dur<strong>in</strong>g all o<strong>the</strong>r<br />

times, <strong>ozone</strong> near <strong>the</strong> surface was enhanced, with<br />

gradients of typically 5–25 ppbv higher <strong>ozone</strong> near<br />

<strong>the</strong> surface. Dur<strong>in</strong>g a four-day period from DOY<br />

355–359, susta<strong>in</strong>ed conditions with 20–25 ppbv<br />

enhanced <strong>ozone</strong> <strong>in</strong> <strong>the</strong> surface <strong>layer</strong> were observed.<br />

The depth of this enhanced <strong>ozone</strong> <strong>layer</strong> varied from<br />

60 to 200 m. In <strong>the</strong> follow<strong>in</strong>g section we will analyze<br />

49<br />

47<br />

45<br />

110<br />

90<br />

Ozone (ppbv)<br />

43<br />

41<br />

70<br />

50<br />

Height (m)<br />

39<br />

30<br />

Roof Inlet<br />

37<br />

Long L<strong>in</strong>e <strong>at</strong> 2 m<br />

10<br />

Balloon Inlet<br />

Balloon Inlet Height<br />

35<br />

-10<br />

355.15 355.20 355.25 355.30 355.35 355.40<br />

Time<br />

Fig. 4. Approxim<strong>at</strong>ely 4 h of <strong>ozone</strong> measurements from two surface <strong>in</strong>lets (roof <strong>in</strong>let <strong>at</strong> 4 m height, and long l<strong>in</strong>e <strong>in</strong>let <strong>at</strong> 2 m height) and<br />

from 110 m. First, two <strong>in</strong>let l<strong>in</strong>es were sampled side by side near <strong>the</strong> surface. Next <strong>the</strong> long sampl<strong>in</strong>g l<strong>in</strong>e <strong>in</strong>let was lifted to 110 m and air<br />

was altern<strong>at</strong>ed between <strong>the</strong> raised balloon <strong>in</strong>let and <strong>the</strong> tower <strong>in</strong>let every 5 m<strong>in</strong>. After 3 h, <strong>the</strong> balloon was brought back to <strong>the</strong> surface,<br />

equipped with a new pressure sensor and ano<strong>the</strong>r vertical profile was measured with cont<strong>in</strong>uous sampl<strong>in</strong>g from <strong>the</strong> balloon <strong>in</strong>let.


2794<br />

ARTICLE IN PRESS<br />

D. Helmig et al. / Atmospheric Environment 42 (2008) 2788–2803<br />

A<br />

500<br />

Height [m]<br />

B<br />

400<br />

300<br />

200<br />

100<br />

0<br />

500<br />

15<br />

Ozone<br />

(ppbv)<br />

350 355 360 365<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

Height [m]<br />

C<br />

400<br />

300<br />

200<br />

100<br />

0<br />

500<br />

350 355 360 365<br />

Temp<br />

(K)<br />

290<br />

288<br />

280<br />

284<br />

282<br />

280<br />

278<br />

276<br />

274<br />

Height [m]<br />

400<br />

300<br />

200<br />

100<br />

0<br />

350 355 360 365<br />

WS<br />

(m/s)<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

Fig. 5. Ozone (A), potential temper<strong>at</strong>ure (B), w<strong>in</strong>d speed (C), w<strong>in</strong>d direction (D, next page), and w<strong>at</strong>er vapor partial pressure (E, next<br />

page) <strong>at</strong> <strong>South</strong> <strong>Pole</strong> (<strong>in</strong> ppbv) between <strong>the</strong> surface and 500 m height dur<strong>in</strong>g day of year 2003 (December 13–30) with d<strong>at</strong>a from all available<br />

balloon (up to 179 vertical profile d<strong>at</strong>a series) and surface measurements. The black dots <strong>in</strong>dic<strong>at</strong>e <strong>the</strong> distribution of d<strong>at</strong>a po<strong>in</strong>ts th<strong>at</strong> went<br />

<strong>in</strong>to <strong>the</strong> contour plot analyses.


ARTICLE IN PRESS<br />

D. Helmig et al. / Atmospheric Environment 42 (2008) 2788–2803 2795<br />

D<br />

500<br />

Height [m]<br />

E<br />

400<br />

300<br />

200<br />

100<br />

0<br />

500<br />

440<br />

410<br />

380<br />

350<br />

320<br />

290<br />

WD<br />

(degrees)<br />

350 355 360 365<br />

Height [m]<br />

400<br />

300<br />

200<br />

100<br />

0<br />

0.3<br />

VP<br />

(mBar)<br />

350 355 360 365<br />

Fig. 5. (Cont<strong>in</strong>ued)<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.0<br />

0.4<br />

<strong>the</strong> meteorological and <strong>boundary</strong> <strong>layer</strong> conditions<br />

th<strong>at</strong> fostered this <strong>ozone</strong> buildup <strong>in</strong> <strong>the</strong> SP surface<br />

<strong>layer</strong>.<br />

3.4. Boundary-<strong>layer</strong> conditions<br />

The contour plots of potential temper<strong>at</strong>ure<br />

(Fig. 5B), w<strong>in</strong>d speed (Fig. 5C), and w<strong>in</strong>d direction<br />

(Fig. 5D) illustr<strong>at</strong>e <strong>the</strong> susta<strong>in</strong>ed, stable <strong>boundary</strong><br />

<strong>layer</strong> conditions dur<strong>in</strong>g <strong>the</strong> period with <strong>in</strong>creased<br />

surface <strong>ozone</strong>. The potential temper<strong>at</strong>ure gradient<br />

between <strong>the</strong> surface and 300 m was on <strong>the</strong> order of<br />

10 1C dur<strong>in</strong>g DOY 355–359. These conditions were<br />

accompanied by low w<strong>in</strong>ds (o2ms 1 ) from <strong>the</strong><br />

surface to 500 m. The low w<strong>in</strong>d speeds and lack of<br />

w<strong>in</strong>d shear with altitude cre<strong>at</strong>e conditions with<br />

m<strong>in</strong>imal vertical mix<strong>in</strong>g. The w<strong>at</strong>er vapor partial<br />

pressure distribution (Fig. 5E) fur<strong>the</strong>r underl<strong>in</strong>es<br />

<strong>the</strong> strongly str<strong>at</strong>ified conditions. The warmer air<br />

aloft was drier than surface air, <strong>in</strong>dic<strong>at</strong><strong>in</strong>g <strong>the</strong> lack<br />

of vertical mix<strong>in</strong>g and, consequently, <strong>the</strong> lack of gas<br />

exchange throughout this period. Air with<strong>in</strong> <strong>the</strong><br />

lowest 50 m shows a positive w<strong>at</strong>er vapor gradient,<br />

which suggests dry<strong>in</strong>g of <strong>the</strong> lowest air <strong>layer</strong>s<br />

possibility through freezeout of <strong>at</strong>mospheric w<strong>at</strong>er<br />

vapor to <strong>the</strong> surface, which dur<strong>in</strong>g December<br />

rema<strong>in</strong>s 101 colder than <strong>the</strong> average air temper<strong>at</strong>ure<br />

<strong>at</strong> SP. The time series with <strong>the</strong> <strong>in</strong>cident solar<br />

radi<strong>at</strong>ion d<strong>at</strong>a (Fig. 6) illustr<strong>at</strong>e <strong>the</strong> clear sky<br />

conditions dur<strong>in</strong>g this time. SP, lack<strong>in</strong>g a diurnal<br />

solar cycle is expected to have no diurnal changes <strong>in</strong><br />

<strong>in</strong>com<strong>in</strong>g radi<strong>at</strong>ion. Devi<strong>at</strong>ions from this behavior


2796<br />

ARTICLE IN PRESS<br />

D. Helmig et al. / Atmospheric Environment 42 (2008) 2788–2803<br />

700<br />

600<br />

500<br />

W m -2<br />

400<br />

300<br />

200<br />

100<br />

0<br />

348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365<br />

Fig. 6. Incom<strong>in</strong>g solar radi<strong>at</strong>ion <strong>at</strong> <strong>South</strong> <strong>Pole</strong> dur<strong>in</strong>g calendar day 2003 measured adjacent to <strong>the</strong> balloon launch site. A few occasional<br />

artificially reduced radi<strong>at</strong>ion read<strong>in</strong>gs (e.g. <strong>at</strong> DOY 355.3, 356.3, 359.3) were caused by <strong>the</strong> shad<strong>in</strong>g from <strong>the</strong> balloon.<br />

<strong>in</strong> <strong>the</strong> d<strong>at</strong>a are from <strong>the</strong> slight distance of our<br />

measurement site from <strong>the</strong> geographic pole and a<br />

slight tilt of <strong>the</strong> radi<strong>at</strong>ion sensor (some of which has<br />

been corrected <strong>in</strong> <strong>the</strong> d<strong>at</strong>a analysis). Occasionally <strong>the</strong><br />

balloon was cast<strong>in</strong>g a shadow on <strong>the</strong> sensor, caus<strong>in</strong>g<br />

a few, artificially lowered read<strong>in</strong>gs. Prior to and after<br />

<strong>the</strong> enhanced <strong>ozone</strong> episode, <strong>in</strong>cident radi<strong>at</strong>ion<br />

fluctu<strong>at</strong>ed highly, with values typically rang<strong>in</strong>g<br />

between 250 and 550 W m 2 .Thesefluctu<strong>at</strong>ionswere<br />

due to <strong>the</strong> vary<strong>in</strong>g degree of cloud cover and height.<br />

In contrast, dur<strong>in</strong>g <strong>the</strong> clear sky conditions on DOY<br />

355–359, <strong>in</strong>cident radi<strong>at</strong>ion levels were much less<br />

variable, averag<strong>in</strong>g about 460 W m 2 . It is well<br />

known th<strong>at</strong> over snow, due to <strong>the</strong> high reflection of<br />

radi<strong>at</strong>ion from <strong>the</strong> snowpack and backsc<strong>at</strong>ter from<br />

clouds, <strong>in</strong>com<strong>in</strong>g radi<strong>at</strong>ion to <strong>the</strong> surface dur<strong>in</strong>g<br />

times with overhead cloud cover can be significantly<br />

higher than dur<strong>in</strong>g clear sky conditions. Conversely,<br />

clear-sky conditions over <strong>the</strong> snowpack lead to net<br />

radi<strong>at</strong>ive losses and stable str<strong>at</strong>ific<strong>at</strong>ion (Anbach,<br />

1974), as observed dur<strong>in</strong>g <strong>the</strong> period of maximum<br />

<strong>ozone</strong> production dur<strong>in</strong>g DOY 355–359.<br />

The sonic anemometer turbulence d<strong>at</strong>a and sound<strong>in</strong>gs<br />

from a SODAR system (Neff et al., 2007) were<br />

used to develop a cont<strong>in</strong>uous record of mixed<br />

<strong>boundary</strong> <strong>layer</strong> depth. Mixed <strong>boundary</strong> <strong>layer</strong> heights<br />

fluctu<strong>at</strong>ed between 40 and 200 m dur<strong>in</strong>g DOY<br />

347–354 and 359–365, but dur<strong>in</strong>g <strong>the</strong> DOY 354–359<br />

period, an un<strong>in</strong>terrupted, shallow <strong>boundary</strong> <strong>layer</strong><br />

height of 20–40 m was observed. The contour plot<br />

analysis of <strong>the</strong> bulk gradient Richardson number<br />

from <strong>the</strong> te<strong>the</strong>red balloon sound<strong>in</strong>gs fur<strong>the</strong>r solidifies<br />

this analysis. Above a shallow, neutrally stable 20 m-<br />

deep surface <strong>layer</strong>, <strong>the</strong> <strong>at</strong>mosphere was consistently<br />

stable (Richardson numbers 40.5) <strong>in</strong> both <strong>the</strong><br />

temporal (DOY 355–359) as well as <strong>the</strong> vertical<br />

(50–500 m) doma<strong>in</strong>.<br />

3.5. Air transport dur<strong>in</strong>g conditions with <strong>ozone</strong><br />

enhancements<br />

On DOY 354 surface <strong>ozone</strong> rose from 19 to<br />

41 ppbv <strong>in</strong> 10 h and to 44 ppbv after 22 h. This<br />

<strong>in</strong>crease (2.2 ppbv hr 1 ) is larger than calcul<strong>at</strong>ed<br />

<strong>ozone</strong> production r<strong>at</strong>es for SP, which were estim<strong>at</strong>ed<br />

to be 0.09–0.15/0.25 ppbv hr 1 (Crawford et al., 2001)<br />

and 0.13–0.20/0.27 ppbv hr 1 (Chen et al., 2004)<br />

(<strong>in</strong>terquartile range/maximum), respectively (see more<br />

discussions on <strong>ozone</strong> production below). Thus, <strong>the</strong><br />

rapid <strong>in</strong>crease <strong>in</strong> <strong>ozone</strong> on DOY 354 cannot be<br />

expla<strong>in</strong>ed by local <strong>ozone</strong> production alone, but<br />

transport of air with elev<strong>at</strong>ed <strong>ozone</strong> to SP must be<br />

ano<strong>the</strong>r determ<strong>in</strong><strong>in</strong>g factor. Surface w<strong>in</strong>d d<strong>at</strong>a and<br />

trajectory analyses were used to <strong>in</strong>vestig<strong>at</strong>e <strong>the</strong> air<br />

flows associ<strong>at</strong>ed with <strong>the</strong> transitions and periods of<br />

enhanced <strong>ozone</strong> levels.<br />

In Fig. 7, <strong>the</strong> <strong>ozone</strong> record from <strong>the</strong> 17 m <strong>in</strong>let on<br />

<strong>the</strong> ARO is plotted with <strong>the</strong> w<strong>in</strong>d speed and w<strong>in</strong>d<br />

direction d<strong>at</strong>a from <strong>the</strong> NOAA tower (<strong>at</strong> 13 m)<br />

and u * (from <strong>the</strong> sonic anemometer turbulence


ARTICLE IN PRESS<br />

D. Helmig et al. / Atmospheric Environment 42 (2008) 2788–2803 2797<br />

50<br />

40<br />

<strong>ozone</strong><br />

Ozone (ppbv), W<strong>in</strong>d speed, u* (m s -1 )<br />

30<br />

20<br />

10<br />

0<br />

w<strong>in</strong>d speed<br />

u* (x 50)<br />

w<strong>in</strong>d direction<br />

200<br />

100<br />

0<br />

W<strong>in</strong>d direction (sector)<br />

350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365<br />

Fig. 7. Ozone (ARO <strong>at</strong> 17 m), w<strong>in</strong>d speed and w<strong>in</strong>d direction (NOAA tower <strong>at</strong> 13 m), and u * (from turbulence eddy correl<strong>at</strong>ion<br />

measurements <strong>at</strong> 2 m near <strong>the</strong> balloon launch site) dur<strong>in</strong>g day of year 2003 <strong>at</strong> SP. The 10-day back trajectories dur<strong>in</strong>g four selected times <strong>at</strong><br />

36 h spac<strong>in</strong>g (356.0; 357.5, 359.0; 360.5) and as <strong>in</strong>dic<strong>at</strong>ed by <strong>the</strong> arrows, are shown <strong>in</strong> <strong>the</strong> upper part of <strong>the</strong> figure. Numbers along <strong>the</strong><br />

trajectories <strong>in</strong>dic<strong>at</strong>e transport time <strong>in</strong> days.<br />

-100<br />

measurements). This figure also <strong>in</strong>cludes selected<br />

10-day back trajectories from <strong>the</strong> NCEP reanalysis.<br />

It should be noted th<strong>at</strong> <strong>the</strong> reanalysis d<strong>at</strong>a is coarse<br />

<strong>in</strong> resolution and may not reflect <strong>the</strong> flow with<strong>in</strong> <strong>the</strong><br />

shallow <strong>in</strong>versions th<strong>at</strong> occur over <strong>the</strong> icepack.<br />

Ra<strong>the</strong>r, trajectories derived from <strong>the</strong> reanalysis d<strong>at</strong>a<br />

should be seen as <strong>in</strong>dic<strong>at</strong><strong>in</strong>g <strong>the</strong> synoptic-scale<br />

orig<strong>in</strong>s of air above <strong>the</strong> surface <strong>in</strong>version. A fur<strong>the</strong>r<br />

limit<strong>at</strong>ion of this analysis lies <strong>in</strong> <strong>the</strong> absence of a<br />

surface observ<strong>in</strong>g network over <strong>the</strong> high pl<strong>at</strong>eau<br />

th<strong>at</strong> might give more <strong>in</strong>sight <strong>in</strong>to <strong>the</strong> orig<strong>in</strong>s of <strong>the</strong><br />

air near <strong>the</strong> surface.<br />

The w<strong>in</strong>d speed and u * d<strong>at</strong>a fur<strong>the</strong>r exemplify <strong>the</strong><br />

strong correl<strong>at</strong>ion of high <strong>ozone</strong> with low w<strong>in</strong>d<br />

speed and limited mix<strong>in</strong>g, as already po<strong>in</strong>ted out <strong>in</strong><br />

<strong>the</strong> discussion above and by <strong>the</strong> d<strong>at</strong>a <strong>in</strong> Fig. 5. Prior<br />

to DOY 354, w<strong>in</strong>ds were from <strong>the</strong> N to NW <strong>at</strong> w<strong>in</strong>d<br />

speeds of 4–6 m s 1 . Back trajectories for this period<br />

(not shown) show a counterclockwise flow p<strong>at</strong>tern,<br />

with air arriv<strong>in</strong>g <strong>at</strong> SP th<strong>at</strong> had been transported<br />

over <strong>the</strong> center and N–NE part of <strong>the</strong> cont<strong>in</strong>ent for<br />

<strong>the</strong> previous 1–10 days. Dur<strong>in</strong>g <strong>the</strong> time of rapid<br />

<strong>ozone</strong> <strong>in</strong>crease on DOY 354 <strong>the</strong> w<strong>in</strong>d d<strong>at</strong>a reveal a<br />

dist<strong>in</strong>ct change <strong>in</strong> air flow and w<strong>in</strong>d speed, as<br />

measured surface w<strong>in</strong>ds shifted from 3201 to 901<br />

and dropped from 6 to 2ms 1 . The back<br />

trajectory analyses for this transition period are<br />

<strong>in</strong>conclusive as <strong>the</strong>y show only a small shift of NW<br />

flow prior to DOY 354 to a somewh<strong>at</strong> more<br />

nor<strong>the</strong>asterly and slower transport between DOY


2798<br />

ARTICLE IN PRESS<br />

D. Helmig et al. / Atmospheric Environment 42 (2008) 2788–2803<br />

354.5–357.5. Dur<strong>in</strong>g <strong>the</strong> enhanced <strong>ozone</strong> period,<br />

w<strong>in</strong>ds rema<strong>in</strong>ed calm with cont<strong>in</strong>u<strong>in</strong>g easterly flow<br />

near <strong>the</strong> surface. Interest<strong>in</strong>gly, dur<strong>in</strong>g <strong>the</strong> tail end of<br />

<strong>the</strong> <strong>in</strong>creased <strong>ozone</strong> period, while <strong>the</strong> w<strong>in</strong>d direction<br />

shifted back from easterly to nor<strong>the</strong>rly w<strong>in</strong>ds and<br />

w<strong>in</strong>d speeds <strong>in</strong>creased gradually, <strong>ozone</strong> <strong>in</strong>creased by<br />

ano<strong>the</strong>r 5 ppbv and rema<strong>in</strong>ed elev<strong>at</strong>ed <strong>at</strong> this level<br />

for about a day. Here, <strong>the</strong> trajectories show th<strong>at</strong><br />

dur<strong>in</strong>g DOY 358 transport shifted for about one<br />

day from <strong>the</strong> previously prevail<strong>in</strong>g nor<strong>the</strong>rly flow<br />

towards a circular p<strong>at</strong>tern where air th<strong>at</strong> reached SP<br />

had resided <strong>in</strong> <strong>the</strong> area to <strong>the</strong> SE of SP for 2–4 days.<br />

On DOY 360.5 trajectories shift back towards <strong>the</strong><br />

previously dom<strong>in</strong><strong>at</strong><strong>in</strong>g nor<strong>the</strong>rly flow. Inspection of<br />

<strong>the</strong> raw<strong>in</strong>sonde d<strong>at</strong>a dur<strong>in</strong>g this period reveals th<strong>at</strong><br />

<strong>the</strong> w<strong>in</strong>d veers with height from easterly to nor<strong>the</strong>rly<br />

over <strong>the</strong> first 100–500 m. These d<strong>at</strong>a reaffirm th<strong>at</strong><br />

<strong>the</strong> trajectory analyses should be tre<strong>at</strong>ed with some<br />

caution because <strong>the</strong> reanalysis d<strong>at</strong>a may not reflect<br />

this f<strong>in</strong>e structure <strong>in</strong> <strong>the</strong> <strong>boundary</strong> <strong>layer</strong> w<strong>in</strong>d field.<br />

The entire December 2003 w<strong>in</strong>d direction and<br />

<strong>ozone</strong> records were used for a st<strong>at</strong>istical analysis of<br />

<strong>the</strong> rel<strong>at</strong>ionship between <strong>ozone</strong> and w<strong>in</strong>d direction.<br />

Hourly <strong>ozone</strong> enhancement values were calcul<strong>at</strong>ed<br />

by subtract<strong>in</strong>g <strong>the</strong> <strong>in</strong>ferred December <strong>ozone</strong> background<br />

(25.6 ppbv, Oltmans et al., 2007). Note th<strong>at</strong><br />

this <strong>in</strong>ferred background <strong>ozone</strong> mix<strong>in</strong>g r<strong>at</strong>io was<br />

derived from a smooth<strong>in</strong>g analysis of <strong>the</strong> seasonal<br />

<strong>ozone</strong> cycle and th<strong>at</strong> on occasion surface <strong>ozone</strong><br />

levels <strong>at</strong> SP dur<strong>in</strong>g December will be below this<br />

value. Results of this analysis <strong>in</strong> Fig. 8 illustr<strong>at</strong>e th<strong>at</strong><br />

<strong>in</strong> general significantly higher <strong>ozone</strong> levels were<br />

observed with air be<strong>in</strong>g transported from <strong>the</strong> N to<br />

SE sector while w<strong>in</strong>ds from W to NW brought <strong>in</strong> air<br />

with much lower <strong>ozone</strong>. Air th<strong>at</strong> was transported<br />

upslope (with w<strong>in</strong>ds from <strong>the</strong> lower elev<strong>at</strong>ion<br />

sectors <strong>at</strong> W/NW) typically was below or right <strong>at</strong><br />

<strong>the</strong> <strong>in</strong>ferred seasonal <strong>ozone</strong> background level.<br />

The contour map <strong>in</strong> Fig. 9 shows how <strong>the</strong><br />

landscape N to SE of SP is more homogenous,<br />

slop<strong>in</strong>g gradually uphill for 500 to 1000 km, whereas<br />

to <strong>the</strong> S, SW, W and NW <strong>the</strong> Antarctic terra<strong>in</strong><br />

drops rapidly <strong>in</strong> altitude. The MBL w<strong>in</strong>d speeds of<br />

2ms 1 th<strong>at</strong> were observed dur<strong>in</strong>g <strong>the</strong> <strong>ozone</strong><br />

enhancement period would result <strong>in</strong> a horizontal<br />

transport distance of 170 km per day near <strong>the</strong><br />

surface. At this w<strong>in</strong>d speed, with <strong>the</strong> susta<strong>in</strong>ed<br />

stable conditions dur<strong>in</strong>g DOY 355–359, and with<br />

<strong>the</strong> flow p<strong>at</strong>terns as <strong>in</strong>dic<strong>at</strong>ed by <strong>the</strong> trajectories, air<br />

would have been transported over high altitude<br />

(43000 m), rel<strong>at</strong>ively gently slop<strong>in</strong>g snowpack for<br />

several days before it reached SP.<br />

Ozone (ppbv) above Bckgrd<br />

20<br />

15<br />

10<br />

5<br />

0<br />

Ozone<br />

Hours<br />

-5<br />

270 0<br />

W<strong>in</strong>d Sector<br />

3.6. Chemical conditions th<strong>at</strong> are caus<strong>in</strong>g <strong>ozone</strong><br />

enhancements<br />

120<br />

100<br />

Fig. 8. Ozone enhancement <strong>in</strong> <strong>the</strong> SP surface <strong>layer</strong> with mean<br />

and standard devi<strong>at</strong>ion for 101 w<strong>in</strong>d sectors. The frequency of <strong>the</strong><br />

occurrence of w<strong>in</strong>d direction from <strong>the</strong> 101 sectors dur<strong>in</strong>g<br />

December 2003 is also <strong>in</strong>dic<strong>at</strong>ed.<br />

Fig. 9. Loc<strong>at</strong>ion of <strong>South</strong> <strong>Pole</strong> with w<strong>in</strong>d direction sectors and<br />

elev<strong>at</strong>ion contours on <strong>the</strong> Antarctic cont<strong>in</strong>ent. Map cre<strong>at</strong>ed from<br />

<strong>the</strong> map service Onl<strong>in</strong>e Map Cre<strong>at</strong>ion (<strong>at</strong> http://www.aquarius.<br />

geomar.de).<br />

A comb<strong>in</strong><strong>at</strong>ion of a series of unique meteorological<br />

and chemical conditions have been shown to<br />

contribute towards <strong>the</strong> surpris<strong>in</strong>g <strong>ozone</strong> production<br />

<strong>in</strong> <strong>the</strong> Antarctic <strong>boundary</strong> <strong>layer</strong>. A critical and<br />

determ<strong>in</strong><strong>in</strong>g parameter is <strong>the</strong> enhanced NO th<strong>at</strong><br />

builds up <strong>in</strong> <strong>the</strong> shallow surface <strong>layer</strong> above <strong>the</strong><br />

cold Antarctic snowpack. Previous surface and<br />

tower gradient measurements have shown th<strong>at</strong> NO<br />

90<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Hours of Occurrence


ARTICLE IN PRESS<br />

D. Helmig et al. / Atmospheric Environment 42 (2008) 2788–2803 2799<br />

orig<strong>in</strong><strong>at</strong>ed from surface emissions and th<strong>at</strong> surface<br />

<strong>layer</strong> concentr<strong>at</strong>ions were highest dur<strong>in</strong>g times with<br />

low <strong>boundary</strong> <strong>layer</strong> depths (<strong>Davis</strong> et al., 2001,<br />

2004). Dur<strong>in</strong>g ANTCI, measurements of NO were<br />

extended to higher <strong>in</strong> <strong>the</strong> <strong>at</strong>mosphere by vertical NO<br />

profile measurements from <strong>the</strong> te<strong>the</strong>red balloon<br />

(Helmig et al., 2007b) as well as by aircraft<br />

observ<strong>at</strong>ions (<strong>Davis</strong> et al., 2007). Both experiments<br />

showed large <strong>in</strong>creases of NO <strong>in</strong> <strong>the</strong> surface <strong>layer</strong>.<br />

Dur<strong>in</strong>g <strong>the</strong> stable conditions on DOY 354–359, <strong>the</strong><br />

balloon NO observ<strong>at</strong>ions showed gradually <strong>in</strong>creas<strong>in</strong>g<br />

NO near <strong>the</strong> surface, with NO eventually<br />

exceed<strong>in</strong>g 500 pptv on DOY 356–357. Concentr<strong>at</strong>ions<br />

dropped rapidly with <strong>in</strong>creas<strong>in</strong>g height,<br />

typically to less than one fifth <strong>at</strong> 50 m.<br />

Collectively, several factors are responsible for<br />

<strong>the</strong> buildup of high NO surface concentr<strong>at</strong>ions <strong>at</strong> SP<br />

(<strong>Davis</strong> et al., 2004). Twenty-four hour cont<strong>in</strong>uous<br />

radi<strong>at</strong>ion, stable <strong>at</strong>mospheric conditions, and accumul<strong>at</strong>ion<br />

result<strong>in</strong>g from surface-advected air parcels<br />

are critical for achiev<strong>in</strong>g high NO levels. Ano<strong>the</strong>r<br />

important factor is <strong>the</strong> non-l<strong>in</strong>ear lifetime of NO x<br />

ðNO x ¼ NO þ NO 2 Þ, as <strong>at</strong> higher NO x levels<br />

(4200 pptv) <strong>the</strong> NO x lifetime <strong>in</strong>creases steadily.<br />

This is due to <strong>the</strong> fact th<strong>at</strong> above 200 pptv of NO x ,<br />

NO 2 reduces both <strong>the</strong> levels of OH and HO 2 , which<br />

def<strong>in</strong>e <strong>the</strong> major s<strong>in</strong>ks for NO x , result<strong>in</strong>g <strong>in</strong> an<br />

overall <strong>in</strong>crease <strong>in</strong> <strong>the</strong> NO x lifetime (<strong>Davis</strong> et al.,<br />

2004). NO to NO 2 conversion is mostly facilit<strong>at</strong>ed<br />

by high levels of peroxy radicals (HO 2 and RO 2 ),<br />

which <strong>in</strong> turn are provided by H 2 O 2 ,CH 2 O and<br />

CH 4 oxid<strong>at</strong>ion. This conversion will subsequently<br />

result <strong>in</strong> <strong>ozone</strong> production as NO 2 þ hn !<br />

NO þ O, followed by O þ O 2 ! O 3 . Similar to<br />

OH levels and NO x lifetime, <strong>ozone</strong> production is<br />

expected to be strongly dependant on <strong>the</strong> height,<br />

with highest procution r<strong>at</strong>es <strong>at</strong> a dist<strong>in</strong>ct height<br />

above <strong>the</strong> surface and with smaller production<br />

r<strong>at</strong>es above and below (Helmig et al., 2007b; <strong>Davis</strong><br />

et al., 2007).<br />

Co<strong>in</strong>cident with <strong>the</strong> 25 ppbv <strong>in</strong>crease <strong>in</strong> <strong>ozone</strong><br />

on DOY 355–356, surface NO rose from about<br />

20 pptv to over 200 pptv. Sodar and balloon d<strong>at</strong>a<br />

show th<strong>at</strong> dur<strong>in</strong>g th<strong>at</strong> time <strong>the</strong> mix<strong>in</strong>g-<strong>layer</strong> depth<br />

decreased from over 150 m to less than 30 m. Of<br />

note was <strong>the</strong> fact th<strong>at</strong> <strong>the</strong> enhanced <strong>ozone</strong> extended<br />

above 300 m, whereas <strong>the</strong> NO enhancement was<br />

conf<strong>in</strong>ed to <strong>the</strong> lowest few tens of meters. This<br />

observ<strong>at</strong>ion suggests th<strong>at</strong> <strong>the</strong> NO enhancement<br />

represents a short-term response to conf<strong>in</strong><strong>in</strong>g surface<br />

emissions <strong>in</strong>to a th<strong>in</strong> <strong>boundary</strong> <strong>layer</strong>, whereas<br />

<strong>the</strong> deeper <strong>ozone</strong> enhancement implic<strong>at</strong>es a much<br />

longer history of transport and mix<strong>in</strong>g. Us<strong>in</strong>g <strong>the</strong><br />

maximum modeled <strong>ozone</strong> production r<strong>at</strong>es a m<strong>in</strong>imum<br />

time of 3–4 days would be required to<br />

gener<strong>at</strong>e 44 ppbv <strong>ozone</strong> from a 25 (seasonal background)<br />

or 19 ppbv (DOY 354) start<strong>in</strong>g level. While<br />

<strong>the</strong> meteorological d<strong>at</strong>a suggest a period of 5 days<br />

with susta<strong>in</strong>ed, sunny and stable <strong>boundary</strong> <strong>layer</strong><br />

conditions dur<strong>in</strong>g December 2003, an <strong>in</strong>spection of<br />

records from o<strong>the</strong>r years has shown th<strong>at</strong> most <strong>ozone</strong><br />

enhancement episodes (which yield similar maximum<br />

<strong>ozone</strong> levels) are shorter, typically last<strong>in</strong>g 2–3<br />

days. If this <strong>ozone</strong> production would occur locally,<br />

this comparison would suggest th<strong>at</strong> actual <strong>ozone</strong><br />

production r<strong>at</strong>es are likely <strong>in</strong> <strong>the</strong> upper range of <strong>the</strong><br />

modeled values (5–7 ppbv d 1 ). Ano<strong>the</strong>r possibility<br />

is th<strong>at</strong> stable <strong>boundary</strong> <strong>layer</strong> conditions <strong>in</strong> regions<br />

upw<strong>in</strong>d of SP prevail for longer periods than <strong>at</strong> SP<br />

itself and allow <strong>ozone</strong> levels to build up to <strong>the</strong>se<br />

high levels, with air conta<strong>in</strong><strong>in</strong>g <strong>in</strong>creased <strong>ozone</strong> <strong>the</strong>n<br />

be<strong>in</strong>g transported to SP. However, susta<strong>in</strong>ed stable<br />

<strong>boundary</strong> <strong>layer</strong> conditions become less likely with<br />

<strong>in</strong>creas<strong>in</strong>g distance from <strong>the</strong> poles (K<strong>in</strong>g et al., 2006;<br />

Cohen et al., 2007), as <strong>the</strong> <strong>in</strong>creas<strong>in</strong>g diurnal<br />

radi<strong>at</strong>ion cycle drives diurnally chang<strong>in</strong>g sensible<br />

he<strong>at</strong> fluxes and stability regimes, which will cause<br />

<strong>in</strong>creased <strong>boundary</strong> <strong>layer</strong> mix<strong>in</strong>g (K<strong>in</strong>g et al., 2006).<br />

This suggests th<strong>at</strong> this observed <strong>boundary</strong> <strong>layer</strong><br />

<strong>ozone</strong> production will be <strong>in</strong>creas<strong>in</strong>gly pronounced<br />

with decreas<strong>in</strong>g distance to <strong>the</strong> SP. These arguments<br />

<strong>the</strong>refore po<strong>in</strong>t towards an efficient <strong>ozone</strong> production<br />

<strong>in</strong> <strong>the</strong> vic<strong>in</strong>ity of SP, with net <strong>ozone</strong> production<br />

r<strong>at</strong>es likely be<strong>in</strong>g <strong>in</strong> <strong>the</strong> upper range, or possibly<br />

even higher than <strong>the</strong> previously modeled d<strong>at</strong>a.<br />

Note th<strong>at</strong> here we have given only a brief<br />

summary of <strong>the</strong> most important conditions th<strong>at</strong><br />

are foster<strong>in</strong>g enhanced <strong>ozone</strong> <strong>at</strong> SP as <strong>the</strong> focus of<br />

this manuscript is on <strong>the</strong> d<strong>at</strong>a and <strong>in</strong>terpret<strong>at</strong>ions of<br />

<strong>the</strong> te<strong>the</strong>red balloon experiment. More <strong>in</strong> depth<br />

tre<strong>at</strong>ment of <strong>the</strong> SP oxid<strong>at</strong>ion chemistry has been<br />

presented <strong>in</strong> previous public<strong>at</strong>ions (Crawford et al.,<br />

2001; <strong>Davis</strong> et al., 2004, Chen et al., 2004); newer<br />

analyses, <strong>in</strong>clud<strong>in</strong>g measurements from o<strong>the</strong>r concurrent<br />

experiments, are discussed <strong>in</strong> several o<strong>the</strong>r<br />

contributions to this special ANTCI issue (Eisele<br />

et al., 2007).<br />

3.7. Upwards <strong>ozone</strong> fluxes?<br />

The frequent neg<strong>at</strong>ive <strong>ozone</strong> gradients (higher<br />

<strong>ozone</strong> near <strong>the</strong> surface) are <strong>in</strong>dic<strong>at</strong>ive of conditions<br />

where <strong>ozone</strong> will be transported upwards out of <strong>the</strong><br />

height <strong>layer</strong> where maximum <strong>ozone</strong> production and


2800<br />

ARTICLE IN PRESS<br />

D. Helmig et al. / Atmospheric Environment 42 (2008) 2788–2803<br />

buildup of <strong>ozone</strong> occurs. At SP (Helmig, unpublished<br />

results), <strong>at</strong> Summit (Helmig et al., 2007c), and<br />

<strong>in</strong> midl<strong>at</strong>itude seasonal snow (Bocquet et al., 2007),<br />

<strong>ozone</strong> concentr<strong>at</strong>ions <strong>in</strong> air pulled from with<strong>in</strong> <strong>the</strong><br />

snowpack dur<strong>in</strong>g most times were lower than above<br />

<strong>the</strong> surface. S<strong>in</strong>ce <strong>ozone</strong> appears to be destroyed <strong>in</strong><br />

<strong>the</strong> snowpack, <strong>the</strong>re must also be a downward<br />

<strong>ozone</strong> flux close to <strong>the</strong> surface. With <strong>the</strong> limited<br />

resolution of <strong>the</strong> <strong>ozone</strong> profile d<strong>at</strong>a near <strong>the</strong><br />

surface and given <strong>the</strong> high uncerta<strong>in</strong>ty of published<br />

<strong>ozone</strong> deposition r<strong>at</strong>es (Helmig et al., 2007d), it is<br />

not possible to accur<strong>at</strong>ely determ<strong>in</strong>e <strong>the</strong> exact height<br />

<strong>at</strong> which <strong>ozone</strong> fluxes diverge. However, <strong>the</strong><br />

significant <strong>ozone</strong> enhancements seen <strong>at</strong> <strong>the</strong> <strong>in</strong>let<br />

height (2/4 m) of <strong>the</strong> balloon build<strong>in</strong>g site compared<br />

to <strong>the</strong> 17-m <strong>in</strong>let <strong>at</strong> <strong>the</strong> ARO, and <strong>the</strong> fact th<strong>at</strong><br />

<strong>ozone</strong> mix<strong>in</strong>g r<strong>at</strong>ios always decl<strong>in</strong>ed with height<br />

above <strong>the</strong> 2 m balloon launch reference height,<br />

suggests th<strong>at</strong> <strong>the</strong> <strong>ozone</strong> flux divergence height<br />

should be below <strong>the</strong> 2–17 m range. Hence, positive<br />

(upwards) <strong>ozone</strong> fluxes are expected <strong>at</strong> heights close<br />

to <strong>the</strong> surface, likely upwards from no more than a<br />

few meters height.<br />

Depend<strong>in</strong>g on <strong>the</strong> height of observ<strong>at</strong>ion, <strong>the</strong>se<br />

positive <strong>ozone</strong> fluxes may be <strong>in</strong>terpreted as <strong>ozone</strong><br />

com<strong>in</strong>g out of <strong>the</strong> snow. Such a surpris<strong>in</strong>g<br />

phenomenon has previously been described for<br />

midl<strong>at</strong>itude sites <strong>in</strong> Wyom<strong>in</strong>g (Zeller and Hehn,<br />

1994, 1996; Zeller, 2000) and Australia (Galbally<br />

and Allison, 1972), but hi<strong>the</strong>rto has lacked a<br />

plausible explan<strong>at</strong>ion. Interpret<strong>at</strong>ions of <strong>the</strong>se earlier<br />

studies suggested th<strong>at</strong> <strong>ozone</strong> may be stored and<br />

released out of <strong>the</strong> snowpack (Galbally and Allison,<br />

1972; Zeller and Hehn, 1994). However, as mentioned<br />

above, measurements of <strong>ozone</strong> <strong>in</strong> <strong>in</strong>terstitial<br />

air generally have shown lower <strong>ozone</strong> <strong>in</strong> <strong>the</strong> snow<br />

than above <strong>the</strong> surface (Bocquet et al., 2007; Helmig<br />

et al., 2007c). Of course, while both environments<br />

share <strong>the</strong> condition of snow cover, <strong>the</strong>re are a<br />

number of important differences between <strong>the</strong> polar<br />

and <strong>the</strong> midl<strong>at</strong>itude environments, where <strong>the</strong>se<br />

upwards <strong>ozone</strong> fluxes were reported. Most importantly,<br />

for <strong>the</strong> Wyom<strong>in</strong>g and Australia studies are<br />

<strong>the</strong> presence of soil underne<strong>at</strong>h <strong>the</strong> snow. Microbial<br />

activity <strong>in</strong> <strong>the</strong> soil underne<strong>at</strong>h <strong>the</strong> snow has been<br />

shown to significantly contribute to gas exchange<br />

through <strong>the</strong> snow. Most likely, soil fluxes (<strong>in</strong>clud<strong>in</strong>g<br />

NO) are <strong>the</strong> determ<strong>in</strong><strong>in</strong>g process for gas fluxes<br />

through <strong>the</strong> snow surface <strong>in</strong> snow-covered, extrapolar<br />

environments. Additionally, it should be<br />

noted th<strong>at</strong> snow-contam<strong>in</strong>ant levels typically are<br />

several factors higher <strong>in</strong> midl<strong>at</strong>itudes than <strong>at</strong> polar<br />

loc<strong>at</strong>ions, which provides a larger substr<strong>at</strong>e for<br />

activ<strong>at</strong>ion of gases by photochemistry (Bocquet<br />

et al., 2007 and references <strong>the</strong>re<strong>in</strong>). Given <strong>the</strong><br />

available observ<strong>at</strong>ions and with our current understand<strong>in</strong>g<br />

we specul<strong>at</strong>e th<strong>at</strong> NO x fluxes out of <strong>the</strong><br />

seasonal snowpack are likely to be higher than <strong>in</strong><br />

<strong>the</strong> polar environment. One recent study <strong>in</strong> <strong>the</strong><br />

Colorado Rocky Mounta<strong>in</strong>s has also shown th<strong>at</strong><br />

vol<strong>at</strong>ile organic compounds with<strong>in</strong>, and likely fluxes<br />

out of <strong>the</strong> snowpack, are significant (Swanson et al.,<br />

2005). S<strong>in</strong>ce, similar to SP, stable <strong>at</strong>mospheric<br />

conditions will also be enhanced over gently sloped<br />

and fl<strong>at</strong> terra<strong>in</strong> with seasonal snowpack, and given<br />

<strong>the</strong> aforementioned sources of RO 2 and NO x ,<br />

similar <strong>ozone</strong> production is expected for snowcovered,<br />

extra-polar environments dur<strong>in</strong>g times of<br />

high act<strong>in</strong>ic fluxes (daytime, sunny conditions). It is<br />

<strong>the</strong>refore possible th<strong>at</strong> <strong>the</strong> aforementioned earlier<br />

observ<strong>at</strong>ions of positive <strong>ozone</strong> fluxes (Galbally and<br />

Allison, 1972; Zeller and Hehn, 1994, 1996; Zeller,<br />

2000) may have resulted from <strong>at</strong>mospheric, gasphase<br />

<strong>ozone</strong> production <strong>in</strong> a shallow <strong>layer</strong> right<br />

above <strong>the</strong> snow surface. This <strong>ozone</strong> production will<br />

result <strong>in</strong> upward fluxes, which, dur<strong>in</strong>g tower<br />

gradient flux measurements (as applied <strong>in</strong> <strong>the</strong><br />

referenced liter<strong>at</strong>ure), depend<strong>in</strong>g on <strong>the</strong> <strong>in</strong>let height,<br />

may be <strong>in</strong>terpreted as <strong>ozone</strong> be<strong>in</strong>g released out of<br />

<strong>the</strong> snowpack.<br />

3.8. Implic<strong>at</strong>ions for SP <strong>ozone</strong> trends<br />

At SP <strong>ozone</strong> gradients up to 5 ppbv between <strong>the</strong><br />

surface and <strong>the</strong> 17 m-high <strong>in</strong>let of <strong>the</strong> ARO can be<br />

encountered. Hence, <strong>the</strong> <strong>in</strong>let height will be of<br />

importance when compar<strong>in</strong>g <strong>the</strong> SP <strong>ozone</strong> record,<br />

<strong>in</strong> particular summertime measurements, with d<strong>at</strong>a<br />

from o<strong>the</strong>r sites, or with older SP records where<br />

measurements were taken <strong>at</strong> a different height<br />

above <strong>the</strong> surface (note th<strong>at</strong> from 1977 onward<br />

<strong>the</strong> SP surface <strong>ozone</strong> measurements were made <strong>at</strong> a<br />

comparable height to wh<strong>at</strong> <strong>the</strong>y are now except for<br />

<strong>the</strong> vari<strong>at</strong>ion associ<strong>at</strong>ed with <strong>the</strong> drift<strong>in</strong>g of <strong>the</strong><br />

snow around <strong>the</strong> build<strong>in</strong>g).<br />

Decadal time scale trends and variability have<br />

been evident <strong>in</strong> <strong>the</strong> Antarctic tropospheric circul<strong>at</strong>ion,<br />

particularly <strong>in</strong> <strong>the</strong> Austral spr<strong>in</strong>g dur<strong>in</strong>g <strong>the</strong><br />

period of maximum <strong>ozone</strong> loss <strong>in</strong> <strong>the</strong> str<strong>at</strong>osphere.<br />

It has been argued th<strong>at</strong> photochemical <strong>ozone</strong><br />

depletion <strong>in</strong> <strong>the</strong> str<strong>at</strong>osphere has caused a longerlived<br />

polar vortex, an <strong>in</strong>creas<strong>in</strong>g strength of <strong>the</strong><br />

Antarctic oscill<strong>at</strong>ion (AAO) and colder temper<strong>at</strong>ures<br />

over <strong>the</strong> Antarctic pl<strong>at</strong>eau (Thompson and


ARTICLE IN PRESS<br />

D. Helmig et al. / Atmospheric Environment 42 (2008) 2788–2803 2801<br />

Solomon, 2002). Lower surface w<strong>in</strong>ds and temper<strong>at</strong>ures<br />

were observed <strong>at</strong> SP, follow<strong>in</strong>g a long-term<br />

trend towards <strong>in</strong>creased <strong>in</strong>version strength <strong>in</strong> <strong>the</strong><br />

1990s (Neff, 1999), a period when <strong>the</strong> AAO was <strong>in</strong><br />

its positive <strong>in</strong>dex st<strong>at</strong>e. Thus, <strong>in</strong>creases <strong>in</strong> <strong>the</strong> AAO<br />

as reported by Thompson and Solomon (2002), if<br />

<strong>the</strong>y cont<strong>in</strong>ue, should lead to more frequent<br />

episodes of light w<strong>in</strong>ds and stagn<strong>at</strong>ion <strong>in</strong> <strong>the</strong> SP<br />

region. Our d<strong>at</strong>a show <strong>the</strong> strong dependency of<br />

<strong>ozone</strong> production on <strong>boundary</strong> <strong>layer</strong> stability. It is<br />

noteworthy th<strong>at</strong> <strong>the</strong> <strong>in</strong>creas<strong>in</strong>g surface <strong>ozone</strong> trend<br />

dur<strong>in</strong>g 1990–2004 has exclusively resulted from<br />

an <strong>in</strong>crease <strong>in</strong> <strong>ozone</strong> dur<strong>in</strong>g November–January<br />

(Oltmans et al., 2006; Helmig et al., 2007a), when<br />

surface <strong>layer</strong> photochemical <strong>ozone</strong> production<br />

chemistry is expected to be most important. Therefore,<br />

we hypo<strong>the</strong>size th<strong>at</strong> a stronger AAO, by<br />

foster<strong>in</strong>g more stable <strong>boundary</strong> <strong>layer</strong> conditions,<br />

may have <strong>in</strong>fluenced <strong>ozone</strong> production <strong>in</strong> <strong>the</strong><br />

surface <strong>layer</strong> and has contributed to <strong>the</strong> observed<br />

recent <strong>in</strong>creases <strong>in</strong> <strong>the</strong> SP surface <strong>ozone</strong> record.<br />

3.9. Comparison of SP with o<strong>the</strong>r polar sites<br />

The <strong>ozone</strong> enhancements <strong>in</strong> <strong>the</strong> SP surface <strong>layer</strong><br />

are unique compared to o<strong>the</strong>r polar research sites.<br />

For <strong>in</strong>stance, <strong>at</strong> Summit, Greenland, <strong>ozone</strong> chemistry<br />

has been noted to be much different. Summit is<br />

<strong>at</strong> similar elev<strong>at</strong>ion and with similar year-round<br />

snowpack. However, be<strong>in</strong>g <strong>at</strong> 721N Summit experiences<br />

significant diurnal radi<strong>at</strong>ion cycles. The<br />

snowpack rema<strong>in</strong>s <strong>at</strong> sub-freez<strong>in</strong>g temper<strong>at</strong>ures<br />

year-round, although is some 10–151 warmer dur<strong>in</strong>g<br />

<strong>the</strong> summer than <strong>at</strong> SP, with daytime snow surface<br />

temper<strong>at</strong>ures regularly warm<strong>in</strong>g up to 10 to 5 1C<br />

(Helmig et al., 2007c). Episodes with <strong>in</strong>creased<br />

<strong>ozone</strong> <strong>at</strong> Summit are rel<strong>at</strong>ed to transport events<br />

with a frequent occurrence of transport from <strong>the</strong><br />

higher troposphere/lower str<strong>at</strong>osphere as well as<br />

occasional upslope flow with polluted air from<br />

lower l<strong>at</strong>itudes (Helmig et al., 2007e). Our ANTCI<br />

d<strong>at</strong>a and earlier studies (Oltmans and Komhyr,<br />

1976; Crawford et al., 2001) have shown th<strong>at</strong> high<br />

<strong>ozone</strong> <strong>at</strong> SP orig<strong>in</strong><strong>at</strong>es near <strong>the</strong> surface and is not<br />

transported from higher altitudes. Fur<strong>the</strong>rmore,<br />

<strong>the</strong>re is no <strong>in</strong>dic<strong>at</strong>ion for polluted, anthropogenically<br />

<strong>in</strong>fluenced air reach<strong>in</strong>g SP. Summit, <strong>in</strong> contrast<br />

to SP, dur<strong>in</strong>g summer is subject to substantial<br />

diurnal radi<strong>at</strong>ion and temper<strong>at</strong>ure cycles and<br />

<strong>the</strong> MBL is much more dynamic; e.g. stability<br />

regimes change frequently and are <strong>in</strong>homogeneous<br />

with altitude (Cohen et al., 2007). Snowpack<br />

temper<strong>at</strong>ures <strong>at</strong> Summit are higher and surface<br />

he<strong>at</strong><strong>in</strong>g dur<strong>in</strong>g sunny daytime conditions results <strong>in</strong><br />

convective he<strong>at</strong><strong>in</strong>g, which contributes to <strong>boundary</strong><br />

<strong>layer</strong> growth and <strong>in</strong>creased vertical mix<strong>in</strong>g. Stable<br />

<strong>at</strong>mospheric conditions <strong>at</strong> Summit mostly occur<br />

dur<strong>in</strong>g night, when <strong>the</strong>re is very little sunlight to<br />

drive photochemistry. Air reach<strong>in</strong>g Summit is<br />

mostly represent<strong>at</strong>ive of NH, lower tropospheric<br />

composition, ra<strong>the</strong>r than be<strong>in</strong>g transported upslope<br />

over <strong>the</strong> Greenland glacial ice shield. Consequently,<br />

<strong>the</strong> effective footpr<strong>in</strong>t and residence time of air <strong>in</strong><br />

contact with <strong>the</strong> snow surface on average is much<br />

shorter and susta<strong>in</strong>ed residence of air <strong>in</strong> a shallow<br />

surface <strong>layer</strong>, as <strong>at</strong> SP, is not encountered <strong>at</strong><br />

Summit. Under <strong>the</strong>se conditions, NO concentr<strong>at</strong>ions<br />

and <strong>ozone</strong> production <strong>in</strong> <strong>the</strong> surface <strong>layer</strong> do<br />

not build up to <strong>the</strong> high levels observed <strong>at</strong> SP (<strong>Davis</strong><br />

et al., 2004).<br />

4. Conclusions<br />

Enhanced <strong>ozone</strong> concentr<strong>at</strong>ions are a frequent<br />

phenomenon <strong>in</strong> <strong>the</strong> summertime surface and lower<br />

<strong>boundary</strong> <strong>layer</strong> <strong>at</strong> SP. Ozone is predom<strong>in</strong>antly<br />

produced and transported from <strong>the</strong> high altitude<br />

Antarctic pl<strong>at</strong>eau <strong>in</strong> <strong>the</strong> area surround<strong>in</strong>g SP from<br />

N to SE. Ozone production occurs by photochemical<br />

processes <strong>in</strong> a shallow surface <strong>layer</strong>, dur<strong>in</strong>g<br />

stable, light w<strong>in</strong>d, strongly str<strong>at</strong>ified <strong>boundary</strong> <strong>layer</strong><br />

conditions.<br />

These experiments show th<strong>at</strong> strong vertical<br />

<strong>ozone</strong> gradients, which result from a buildup of<br />

<strong>ozone</strong> <strong>in</strong> <strong>the</strong> surface <strong>layer</strong>, are a common, summertime<br />

condition <strong>at</strong> SP. Our d<strong>at</strong>a fur<strong>the</strong>r illustr<strong>at</strong>e th<strong>at</strong><br />

even between <strong>the</strong> surface and <strong>the</strong> 17 m-high <strong>in</strong>let of<br />

<strong>the</strong> ARO observ<strong>at</strong>ory up to 5 ppbv <strong>ozone</strong> gradients<br />

can be encountered. Hence, <strong>ozone</strong> mix<strong>in</strong>g r<strong>at</strong>ios will<br />

depend on <strong>the</strong> sampl<strong>in</strong>g height and consider<strong>at</strong>ion of<br />

<strong>the</strong> <strong>in</strong>let loc<strong>at</strong>ion will be of importance <strong>in</strong> compar<strong>in</strong>g<br />

<strong>the</strong> SP <strong>ozone</strong> record with d<strong>at</strong>a from o<strong>the</strong>r sites.<br />

Previously reported upwards <strong>ozone</strong> fluxes out of<br />

snow <strong>in</strong> o<strong>the</strong>r environments may have resulted from<br />

similar conditions of photochemical <strong>ozone</strong> production<br />

<strong>in</strong> a shallow <strong>at</strong>mospheric <strong>layer</strong> above <strong>the</strong> snow<br />

surface.<br />

These new observ<strong>at</strong>ions solidify <strong>the</strong> previous<br />

analyses and estim<strong>at</strong>es of summertime <strong>ozone</strong><br />

production chemistry <strong>at</strong> SP. Our measurements<br />

po<strong>in</strong>t towards <strong>the</strong> occurrences of <strong>ozone</strong> production<br />

r<strong>at</strong>es th<strong>at</strong> are <strong>in</strong> <strong>the</strong> upper range of previous<br />

calcul<strong>at</strong>ions. These d<strong>at</strong>a provide new evidence th<strong>at</strong><br />

polar surface <strong>ozone</strong> concentr<strong>at</strong>ions are tied to


2802<br />

ARTICLE IN PRESS<br />

D. Helmig et al. / Atmospheric Environment 42 (2008) 2788–2803<br />

photochemical processes <strong>in</strong> <strong>the</strong> sunlit snowpack,<br />

chemical reactions <strong>in</strong> <strong>the</strong> <strong>at</strong>mospheric surface <strong>layer</strong><br />

and <strong>boundary</strong> <strong>layer</strong> dynamics.<br />

These comparisons denote <strong>the</strong> remarkable conditions<br />

<strong>at</strong> SP. In contrast to <strong>the</strong> pre-ISCAT understand<strong>in</strong>g,<br />

it is likely th<strong>at</strong> <strong>the</strong> lower <strong>boundary</strong> <strong>layer</strong> of<br />

large areas of Antarctica should be considered a<br />

spr<strong>in</strong>g–summertime source of surface <strong>ozone</strong> as has<br />

been shown <strong>in</strong> <strong>the</strong> 3D model<strong>in</strong>g results of Wang et<br />

al. (2007). The Antarctic pl<strong>at</strong>eau represents a unique<br />

situ<strong>at</strong>ion on this planet, where <strong>the</strong> comb<strong>in</strong><strong>at</strong>ion of<br />

snowpack emissions, susta<strong>in</strong>ed stable <strong>boundary</strong><br />

<strong>layer</strong> regimes, and <strong>the</strong> presence of 24-h unmodul<strong>at</strong>ed<br />

sunlight can be found. The significant <strong>ozone</strong><br />

production chemistry above <strong>the</strong> snowpack th<strong>at</strong><br />

results from <strong>the</strong>se conditions has hi<strong>the</strong>rto not been<br />

reported from any o<strong>the</strong>r polar or clean-air environment<br />

on Earth. N<strong>at</strong>ural <strong>ozone</strong> production <strong>in</strong> <strong>the</strong><br />

lower troposphere has been known to occur mostly<br />

<strong>in</strong> air affected by biomass burn<strong>in</strong>g plumes and <strong>in</strong><br />

areas th<strong>at</strong> are subjected to high NO x levels from<br />

lightn<strong>in</strong>g. The chemistry occurr<strong>in</strong>g <strong>in</strong> <strong>the</strong> <strong>boundary</strong><br />

<strong>layer</strong> <strong>at</strong> SP represents ano<strong>the</strong>r situ<strong>at</strong>ion with<br />

significant <strong>ozone</strong> production <strong>in</strong> an environment<br />

th<strong>at</strong> is virtually devoid of human impacts.<br />

Acknowledgments<br />

This research was supported through <strong>the</strong> United<br />

St<strong>at</strong>es N<strong>at</strong>ional Science Found<strong>at</strong>ion (Office of Polar<br />

Programs, Grant #0230046). A. Drexler, J. Seiffert<br />

and M. Warshawsky helped with <strong>the</strong> balloon<br />

experiment <strong>at</strong> SP and I. Brown and T. Morse<br />

assisted <strong>in</strong> <strong>the</strong> d<strong>at</strong>a analysis and prepar<strong>at</strong>ion of<br />

some of <strong>the</strong> color figures. We thank Ray<strong>the</strong>on Polar<br />

Services and <strong>the</strong> US 109th Air N<strong>at</strong>ional Guard for<br />

provid<strong>in</strong>g excellent logistical support and <strong>the</strong> <strong>South</strong><br />

<strong>Pole</strong> staff for an extraord<strong>in</strong>ary effort <strong>in</strong> accommod<strong>at</strong><strong>in</strong>g<br />

<strong>the</strong> te<strong>the</strong>red balloon experiment.<br />

References<br />

Anbach, W., 1974. The <strong>in</strong>fluence of cloud<strong>in</strong>ess on <strong>the</strong> net<br />

radi<strong>at</strong>ion balance of a snow surface with high albedo. Journal<br />

of Glaciology 13, 73–84.<br />

Bocquet, F., Helmig, D., Oltmans, S.J., 2007. Ozone <strong>in</strong> <strong>the</strong><br />

<strong>in</strong>terstitial air of <strong>the</strong> mid-l<strong>at</strong>itude snowpack <strong>at</strong> Niwot Ridge,<br />

Colorado. Journal of Alp<strong>in</strong>e, Arctic and Antarctic Research,<br />

<strong>in</strong> press.<br />

Chen, G., <strong>Davis</strong>, D., Crawford, J., Hutterli, L.M., Huey, L.G.,<br />

Slusher, D., Mauld<strong>in</strong>, L., Eisele, F., Tanner, D., Dibb, J.,<br />

Buhr, M., McConnell, J., Lefer, B., Shetter, R., Blake, D.,<br />

Song, C.H., Lombardi, K., Arnoldy, J., 2004. A reassessment<br />

of HO x <strong>South</strong> <strong>Pole</strong> chemistry based on observ<strong>at</strong>ions recorded<br />

dur<strong>in</strong>g ISCAT 2000. Atmospheric Environment 38,<br />

5451–5461.<br />

Cohen, L., Helmig, D., Neff, W., Grachev, A., Fairall, C., 2007.<br />

Boundary <strong>layer</strong> dynamics and its <strong>in</strong>fluence on <strong>at</strong>mospheric<br />

chemistry <strong>at</strong> Summit, Greenland. Atmospheric Environment,<br />

<strong>in</strong> press, doi:10.1016/j.<strong>at</strong>mosenv.2006.06.068.<br />

Crawford, J.H., <strong>Davis</strong>, D.D., Chen, G., Buhr, M., Oltmans, S.,<br />

Weller, R., Mauld<strong>in</strong>, L., Eisele, F., Shetter, R., Lefer, B.,<br />

Arimoto, R., Hogan, A., 2001. Evidence for photochemical<br />

production of <strong>ozone</strong> <strong>at</strong> <strong>the</strong> <strong>South</strong> <strong>Pole</strong> surface. Geophysical<br />

Research Letters 28, 3641–3644.<br />

<strong>Davis</strong>, D., Nowak, J.B., Chen, G., Buhr, M., Arimoto, R.,<br />

Hogan, A., Eisele, F., Mauld<strong>in</strong>, L., Tanner, D., Shetter, R.,<br />

Lefer, B., McMurry, P., 2001. Unexpected high levels of NO<br />

observed <strong>at</strong> <strong>South</strong> <strong>Pole</strong>. Geophysical Research Letters 28,<br />

3625–3628.<br />

<strong>Davis</strong>, D., Chen, G., Buhr, M., Crawford, J., Lenshow, D., Lefer,<br />

B., Shetter, R., Eisele, F., Mauld<strong>in</strong>, L., Hogan, A., 2004.<br />

<strong>South</strong> <strong>Pole</strong> NO x chemistry: an assessment of factors controll<strong>in</strong>g<br />

variability and absolute levels. Atmospheric Environment<br />

38, 5375–5388.<br />

<strong>Davis</strong>, D.D., Huey, G., Crawford, J., Chen, G., Wang, Y., Buhr,<br />

M., Helmig, D., Neff, W., Blake, D., Arimoto, R., Eisele, F.,<br />

2007. A reassessment of Antarctic Pl<strong>at</strong>eau reactive nitrogen<br />

and its impact on <strong>the</strong> oxidiz<strong>in</strong>g properties of <strong>the</strong> near<br />

surface <strong>at</strong>mosphere. Atmospheric Environment, submitted<br />

for public<strong>at</strong>ion.<br />

Dibb, J.E., Talbot, R.W., Munger, J.W., Jacob, D.J., Fan, S.-M.,<br />

1998. Air-snow exchange of HNO 3 and NO y <strong>at</strong> Summit<br />

Greenland. Journal of Geophysical Research 103, 3475–3486.<br />

Dibb, J.E., Arsenault, M., Peterson, M.C., Honr<strong>at</strong>h, R.E., 2002.<br />

Fast nitrogen oxide photochemistry <strong>in</strong> Summit, Greenland<br />

snow. Atmospheric Environment 36, 2501–2511.<br />

Eisele, F., <strong>Davis</strong>, D.D., Helmig, D., Oltmans, S.J., Neff, W.,<br />

Huey, G., Tanner, D., Chen, G., Crawford, J., Arimoto, R.,<br />

Buhr, M., Mauld<strong>in</strong>, L., Hutterli, M., Dibb, J.E., Blake, D.,<br />

Brooks, S.B., Johnson, B., Roberts, J.M., Wang, Y., Tan, D.,<br />

Flocke, F., 2007. ANTCI Overview Paper. Atmospheric<br />

Environment, submitted for public<strong>at</strong>ion.<br />

Galbally, I., Allison, I., 1972. Ozone fluxes over snow surfaces.<br />

Journal of Geophysical Research 77, 3946–3949.<br />

Harris, J.M., Draxler, R.R., Oltmans, S.J., 2005. Trajectory<br />

model sensitivity to differences <strong>in</strong> <strong>in</strong>put d<strong>at</strong>a and vertical<br />

transport method. Journal of Geophysical Research 110,<br />

D14109, doi:10.1029/2004JD005750.<br />

Helmig, D., Boulter, J., David, D., Birks, J.W., Cullen, N.J.,<br />

Steffen, K., Johnson, B.J., Oltmans, S.J., 2002. Ozone and<br />

meteorological <strong>boundary</strong>-<strong>layer</strong> conditions <strong>at</strong> Summit, Greenland<br />

dur<strong>in</strong>g June 3–21, 2000. Atmospheric Environment 36,<br />

2595–2608.<br />

Helmig, D., Oltmans, S.J., Carlson, D., Lamarque, J.F., Jones,<br />

A., Labuschagne, C., Anlauf, K., Hayden, K., 2007a. A<br />

review of surface <strong>ozone</strong> <strong>in</strong> <strong>the</strong> polar regions. Atmospheric<br />

Environment, <strong>in</strong> press, doi:10.1016/j.<strong>at</strong>mosenv.2006.09.053.<br />

Helmig, D., Johnson, B., Warshawsky, M., Morse, T., Neff, W.,<br />

Eisele, F., <strong>Davis</strong>, D.D., 2007b. Nitric oxide <strong>in</strong> <strong>the</strong> <strong>boundary</strong><strong>layer</strong><br />

<strong>at</strong> <strong>South</strong> <strong>Pole</strong> dur<strong>in</strong>g <strong>the</strong> Antarctic Tropospheric<br />

Chemistry Investig<strong>at</strong>ion (ANTCI). Atmospheric Environment,<br />

<strong>in</strong> press, doi:10.1016/j.<strong>at</strong>mosenv.2007.03.061.<br />

Helmig, D., Bocquet, F., Cohen, L., Oltmans, S.J., 2007c. Ozone<br />

uptake to <strong>the</strong> polar snowpack <strong>at</strong> Summit, Greenland.


ARTICLE IN PRESS<br />

D. Helmig et al. / Atmospheric Environment 42 (2008) 2788–2803 2803<br />

Atmospheric Environment, <strong>in</strong> press, doi:10.1016/j.<strong>at</strong>mosenv.<br />

2006.06.064.<br />

Helmig, D., Ganzeveld, L., Butler, T., Oltmans, S.J., 2007d. The<br />

role of <strong>ozone</strong> <strong>at</strong>mosphere-snow gas exchange on polar,<br />

<strong>boundary</strong>-<strong>layer</strong> <strong>ozone</strong>—a review and sensitivity analysis.<br />

Atmospheric Chemistry and Physics 7, 15–30.<br />

Helmig, D., Oltmans, S.J., Morse, T.O., Dibb, J.E., 2007e. Wh<strong>at</strong><br />

is caus<strong>in</strong>g high <strong>ozone</strong> <strong>at</strong> Summit, Greenland? Atmospheric<br />

Environment, <strong>in</strong> press, doi:10.1016/j.<strong>at</strong>mosenv.2006.05.084.<br />

Honr<strong>at</strong>h, R.E., Peterson, M.C., Guo, S., Dibb, J.E., Shepson,<br />

P.B., Campbell, B., 1999. Evidence of NO production with<strong>in</strong><br />

or upon ice particles <strong>in</strong> <strong>the</strong> Greenland snowpack. Geophysical<br />

Research Letters 26, 695–698.<br />

Honr<strong>at</strong>h, R.E., Peterson, M.C., Dziobak, M.P., Dibb, J.E.,<br />

Arsenault, M.A., Green, S.A., 2000a. Release of NO x from<br />

sunlight-irradi<strong>at</strong>ed midl<strong>at</strong>itude snow. Geophysical Research<br />

Letters 27, 2237–2240.<br />

Honr<strong>at</strong>h, R.E., Guo, S., Peterson, M.C., Dziobak, M.P., Dibb,<br />

J.E., Arsenault, M.A., 2000b. Photochemical production of<br />

gas phase NO x from ice crystal NO 3 . Journal of Geophysical<br />

Research 105, 24,183–24,190.<br />

Honr<strong>at</strong>h, R.E., Yu, Y., Peterson, M.C., Dibb, J.E., Arsenault,<br />

M.A., Cullen, N.J., Steffen, K., 2002. Vertical fluxes of NO x ,<br />

HONO, and HNO 3 above <strong>the</strong> snowpack <strong>at</strong> Summit, Greenland.<br />

Atmospheric Environment 36, 2629–2640.<br />

Johnson, B., Helmig, D., Oltmans, S.J., 2007. Evalu<strong>at</strong>ion of<br />

<strong>ozone</strong> measurements from a te<strong>the</strong>red balloon sampl<strong>in</strong>g<br />

pl<strong>at</strong>form <strong>at</strong> <strong>South</strong> <strong>Pole</strong> St<strong>at</strong>ion <strong>in</strong> December, 2003. Atmospheric<br />

Environment, <strong>in</strong> press, doi:10.1016/j.<strong>at</strong>mosenv.<br />

2007.03.043.<br />

Jones, A.E., Weller, R., Wolff, E.W., Jacobi, H.W., 2000.<br />

Speci<strong>at</strong>ion and r<strong>at</strong>e of photochemical NO and NO 2 production<br />

<strong>in</strong> Antarctic snow. Geophysical Research Letters 27,<br />

345–348.<br />

Jones, A.E., Weller, R., Anderson, P.S., Jacobi, H.W., Wolff,<br />

E.W., Schrems, O., Miller, H., 2001. Measurements of NO x<br />

emissions from <strong>the</strong> Antarctic snowpack. Geophysical Research<br />

Letters 28, 1499–1502.<br />

Jones, A.E., Wolff, E.W., 2003. An analysis of <strong>the</strong> oxid<strong>at</strong>ion<br />

potential of <strong>the</strong> <strong>South</strong> <strong>Pole</strong> <strong>boundary</strong> <strong>layer</strong> and <strong>the</strong> <strong>in</strong>fluence<br />

of str<strong>at</strong>ospheric <strong>ozone</strong> depletion. Journal of Geophysical<br />

Research 108, 4565 doi:10.1029/2003JD003379.<br />

Kalnay, E., Kanamitsu, M., Kistler, R., Coll<strong>in</strong>s, W., Deaven, D.,<br />

Gand<strong>in</strong>, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu,<br />

Y., Chelliah, M., Ebisuzaki, W., Higg<strong>in</strong>s, W., Janowiak, J.,<br />

Mo, K.C., Ropelewski, C., Wang, J., Leetmaa, A., Reynolds,<br />

B., Jenne, R., Joseph, D., 1996. The NCEP/NCAR 40-year<br />

reanalysis project. Bullet<strong>in</strong> of <strong>the</strong> American Meteorological<br />

Society 77, 437–471.<br />

K<strong>in</strong>g, J.C., Argent<strong>in</strong>i, S.A., Anderson, P.S., 2006. Contrasts<br />

between <strong>the</strong> summertime surface energy balance and <strong>boundary</strong><br />

<strong>layer</strong> structure <strong>at</strong> Dome C and Halley st<strong>at</strong>ions,<br />

Antarctica. Journal of Geophysical Research 111 doi:10.1029/<br />

2005JD006130.<br />

Neff, W.D., 1999. Decadal time scale trends and variability <strong>in</strong> <strong>the</strong><br />

tropospheric circul<strong>at</strong>ion over <strong>the</strong> <strong>South</strong> <strong>Pole</strong>. Journal of<br />

Geophysical Research 104, 27,217–27,251.<br />

Neff, W.D., Helmig, D., Garchev, A., <strong>Davis</strong>, D., 2007. A study of<br />

<strong>boundary</strong> <strong>layer</strong> behavior associ<strong>at</strong>ed with high surface NO<br />

concentr<strong>at</strong>ions <strong>at</strong> <strong>the</strong> <strong>South</strong> <strong>Pole</strong> us<strong>in</strong>g a M<strong>in</strong>iSodar, te<strong>the</strong>red<br />

balloon, and sonic anemometer. Atmospheric Environment,<br />

<strong>in</strong> press, doi:10.1016/j.<strong>at</strong>mosenv.2007.01.033.<br />

Oltmans, S.J., Komhyr, W.D., 1976. Surface <strong>ozone</strong> <strong>in</strong> Antarctica.<br />

Journal of Geophysical Research 81, 5359–5364.<br />

Oltmans, S.J., Lefohn, A.S., Harris, J.M., Galbally, I., Scheel,<br />

H.E., Bodecker, G., Brunke, E., Claude, H., Tarasick, D.,<br />

Johnson, B.J., Simmonds, P., Shadwick, D., Anlauf, K.,<br />

Hayden, K., Schmidl<strong>in</strong>, F., Fujimoto, T., Akagi, K., Meyer,<br />

C., Nichol, S., Davies, J., Redondas, A., Cuevas, E., 2006.<br />

Long-term changes <strong>in</strong> tropospheric <strong>ozone</strong>. Atmospheric<br />

Environment 40, 3156–3173.<br />

Oltmans S.J., Johnson B.J., Helmig D., 2007, Episodes of high<br />

surface <strong>ozone</strong> amounts <strong>at</strong> <strong>South</strong> <strong>Pole</strong> dur<strong>in</strong>g summer and<br />

<strong>the</strong>ir impact on <strong>the</strong> long-term <strong>ozone</strong> vari<strong>at</strong>ion. Atmospheric<br />

Environment, <strong>in</strong> press, doi:10.1016/j.<strong>at</strong>mosenv.2007.01.020.<br />

Oncley, S.P., Buhr, M., Lenschow, D.H., <strong>Davis</strong>, D., Semmer,<br />

S.R., 2004. Observ<strong>at</strong>ions of summertime NO fluxes and<br />

<strong>boundary</strong>-<strong>layer</strong> height <strong>at</strong> <strong>the</strong> <strong>South</strong> <strong>Pole</strong> dur<strong>in</strong>g ISCAT 2000<br />

us<strong>in</strong>g scalar similarity. Atmospheric Environment 38,<br />

5389–5398.<br />

Schnell, R.C., Liu, S.C., Oltmans, S.J., Stone, R.S., Hofmann,<br />

D.J., Dutton, E.G., Deshler, T., Sturges, W.T., Harder, J.W.,<br />

Sewell, S.D., Tra<strong>in</strong>er, M., Harris, J.M., 1991. Decrease of<br />

summer tropospheric <strong>ozone</strong> concentr<strong>at</strong>ions <strong>in</strong> Antarctica.<br />

N<strong>at</strong>ure 351, 726–729.<br />

Swanson, A.L., Lefer, B.L., Stroud, V., Atlas, E., 2005. Trace gas<br />

emissions through a w<strong>in</strong>ter snowpack <strong>in</strong> <strong>the</strong> subalp<strong>in</strong>e<br />

ecosystem <strong>at</strong> Niwot Ridge, Colorado. Geophysical Research<br />

Letters 32, L03805, doi:10.1029/2004GL21809.<br />

Thompson, D.W.J., Solomon, S., 2002. Interpret<strong>at</strong>ion of recent<br />

Sou<strong>the</strong>rn Hemisphere clim<strong>at</strong>e change. Science 296, 895–899.<br />

Wang, Y., Choi, Y., Zeng, T., <strong>Davis</strong>, D., Buhr, M., Huey, L.G.,<br />

Neff, W., 2007. Assess<strong>in</strong>g <strong>the</strong> photochemical impact of snow<br />

NO x emissions over Antarctica dur<strong>in</strong>g ANTCI 2003. Atmospheric<br />

Environment, <strong>in</strong> press, doi:10.1016/j.<strong>at</strong>mosenv.<br />

2007.01.056.<br />

Zeller, K., 2000. W<strong>in</strong>tertime <strong>ozone</strong> fluxes and profiles above a<br />

subalp<strong>in</strong>e spruce-fir forest. Journal of Applied Meteology 39,<br />

92–101.<br />

Zeller, K., Hehn, T., 1994. W<strong>in</strong>tertime anomalies <strong>in</strong> <strong>ozone</strong><br />

deposition above a subalp<strong>in</strong>e spruce-fir forest. Research and<br />

applic<strong>at</strong>ions of chemical sciences <strong>in</strong> forestry. Proceed<strong>in</strong>gs of<br />

<strong>the</strong> Fourth Sou<strong>the</strong>rn St<strong>at</strong>ion Chemical Sciences Meet<strong>in</strong>g, New<br />

Orleans. General Technical Report SO-104, pp. 131–138.<br />

Zeller, K., Hehn, T., 1996. Measurements of upward turbulent<br />

<strong>ozone</strong> fluxes above a subalp<strong>in</strong>e spruce-fir forest. Geophysical<br />

Research Letters 23, 841–844.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!