11.06.2015 Views

Elevated ozone in the boundary layer at South Pole - Doug Davis

Elevated ozone in the boundary layer at South Pole - Doug Davis

Elevated ozone in the boundary layer at South Pole - Doug Davis

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

ARTICLE IN PRESS<br />

D. Helmig et al. / Atmospheric Environment 42 (2008) 2788–2803 2801<br />

Solomon, 2002). Lower surface w<strong>in</strong>ds and temper<strong>at</strong>ures<br />

were observed <strong>at</strong> SP, follow<strong>in</strong>g a long-term<br />

trend towards <strong>in</strong>creased <strong>in</strong>version strength <strong>in</strong> <strong>the</strong><br />

1990s (Neff, 1999), a period when <strong>the</strong> AAO was <strong>in</strong><br />

its positive <strong>in</strong>dex st<strong>at</strong>e. Thus, <strong>in</strong>creases <strong>in</strong> <strong>the</strong> AAO<br />

as reported by Thompson and Solomon (2002), if<br />

<strong>the</strong>y cont<strong>in</strong>ue, should lead to more frequent<br />

episodes of light w<strong>in</strong>ds and stagn<strong>at</strong>ion <strong>in</strong> <strong>the</strong> SP<br />

region. Our d<strong>at</strong>a show <strong>the</strong> strong dependency of<br />

<strong>ozone</strong> production on <strong>boundary</strong> <strong>layer</strong> stability. It is<br />

noteworthy th<strong>at</strong> <strong>the</strong> <strong>in</strong>creas<strong>in</strong>g surface <strong>ozone</strong> trend<br />

dur<strong>in</strong>g 1990–2004 has exclusively resulted from<br />

an <strong>in</strong>crease <strong>in</strong> <strong>ozone</strong> dur<strong>in</strong>g November–January<br />

(Oltmans et al., 2006; Helmig et al., 2007a), when<br />

surface <strong>layer</strong> photochemical <strong>ozone</strong> production<br />

chemistry is expected to be most important. Therefore,<br />

we hypo<strong>the</strong>size th<strong>at</strong> a stronger AAO, by<br />

foster<strong>in</strong>g more stable <strong>boundary</strong> <strong>layer</strong> conditions,<br />

may have <strong>in</strong>fluenced <strong>ozone</strong> production <strong>in</strong> <strong>the</strong><br />

surface <strong>layer</strong> and has contributed to <strong>the</strong> observed<br />

recent <strong>in</strong>creases <strong>in</strong> <strong>the</strong> SP surface <strong>ozone</strong> record.<br />

3.9. Comparison of SP with o<strong>the</strong>r polar sites<br />

The <strong>ozone</strong> enhancements <strong>in</strong> <strong>the</strong> SP surface <strong>layer</strong><br />

are unique compared to o<strong>the</strong>r polar research sites.<br />

For <strong>in</strong>stance, <strong>at</strong> Summit, Greenland, <strong>ozone</strong> chemistry<br />

has been noted to be much different. Summit is<br />

<strong>at</strong> similar elev<strong>at</strong>ion and with similar year-round<br />

snowpack. However, be<strong>in</strong>g <strong>at</strong> 721N Summit experiences<br />

significant diurnal radi<strong>at</strong>ion cycles. The<br />

snowpack rema<strong>in</strong>s <strong>at</strong> sub-freez<strong>in</strong>g temper<strong>at</strong>ures<br />

year-round, although is some 10–151 warmer dur<strong>in</strong>g<br />

<strong>the</strong> summer than <strong>at</strong> SP, with daytime snow surface<br />

temper<strong>at</strong>ures regularly warm<strong>in</strong>g up to 10 to 5 1C<br />

(Helmig et al., 2007c). Episodes with <strong>in</strong>creased<br />

<strong>ozone</strong> <strong>at</strong> Summit are rel<strong>at</strong>ed to transport events<br />

with a frequent occurrence of transport from <strong>the</strong><br />

higher troposphere/lower str<strong>at</strong>osphere as well as<br />

occasional upslope flow with polluted air from<br />

lower l<strong>at</strong>itudes (Helmig et al., 2007e). Our ANTCI<br />

d<strong>at</strong>a and earlier studies (Oltmans and Komhyr,<br />

1976; Crawford et al., 2001) have shown th<strong>at</strong> high<br />

<strong>ozone</strong> <strong>at</strong> SP orig<strong>in</strong><strong>at</strong>es near <strong>the</strong> surface and is not<br />

transported from higher altitudes. Fur<strong>the</strong>rmore,<br />

<strong>the</strong>re is no <strong>in</strong>dic<strong>at</strong>ion for polluted, anthropogenically<br />

<strong>in</strong>fluenced air reach<strong>in</strong>g SP. Summit, <strong>in</strong> contrast<br />

to SP, dur<strong>in</strong>g summer is subject to substantial<br />

diurnal radi<strong>at</strong>ion and temper<strong>at</strong>ure cycles and<br />

<strong>the</strong> MBL is much more dynamic; e.g. stability<br />

regimes change frequently and are <strong>in</strong>homogeneous<br />

with altitude (Cohen et al., 2007). Snowpack<br />

temper<strong>at</strong>ures <strong>at</strong> Summit are higher and surface<br />

he<strong>at</strong><strong>in</strong>g dur<strong>in</strong>g sunny daytime conditions results <strong>in</strong><br />

convective he<strong>at</strong><strong>in</strong>g, which contributes to <strong>boundary</strong><br />

<strong>layer</strong> growth and <strong>in</strong>creased vertical mix<strong>in</strong>g. Stable<br />

<strong>at</strong>mospheric conditions <strong>at</strong> Summit mostly occur<br />

dur<strong>in</strong>g night, when <strong>the</strong>re is very little sunlight to<br />

drive photochemistry. Air reach<strong>in</strong>g Summit is<br />

mostly represent<strong>at</strong>ive of NH, lower tropospheric<br />

composition, ra<strong>the</strong>r than be<strong>in</strong>g transported upslope<br />

over <strong>the</strong> Greenland glacial ice shield. Consequently,<br />

<strong>the</strong> effective footpr<strong>in</strong>t and residence time of air <strong>in</strong><br />

contact with <strong>the</strong> snow surface on average is much<br />

shorter and susta<strong>in</strong>ed residence of air <strong>in</strong> a shallow<br />

surface <strong>layer</strong>, as <strong>at</strong> SP, is not encountered <strong>at</strong><br />

Summit. Under <strong>the</strong>se conditions, NO concentr<strong>at</strong>ions<br />

and <strong>ozone</strong> production <strong>in</strong> <strong>the</strong> surface <strong>layer</strong> do<br />

not build up to <strong>the</strong> high levels observed <strong>at</strong> SP (<strong>Davis</strong><br />

et al., 2004).<br />

4. Conclusions<br />

Enhanced <strong>ozone</strong> concentr<strong>at</strong>ions are a frequent<br />

phenomenon <strong>in</strong> <strong>the</strong> summertime surface and lower<br />

<strong>boundary</strong> <strong>layer</strong> <strong>at</strong> SP. Ozone is predom<strong>in</strong>antly<br />

produced and transported from <strong>the</strong> high altitude<br />

Antarctic pl<strong>at</strong>eau <strong>in</strong> <strong>the</strong> area surround<strong>in</strong>g SP from<br />

N to SE. Ozone production occurs by photochemical<br />

processes <strong>in</strong> a shallow surface <strong>layer</strong>, dur<strong>in</strong>g<br />

stable, light w<strong>in</strong>d, strongly str<strong>at</strong>ified <strong>boundary</strong> <strong>layer</strong><br />

conditions.<br />

These experiments show th<strong>at</strong> strong vertical<br />

<strong>ozone</strong> gradients, which result from a buildup of<br />

<strong>ozone</strong> <strong>in</strong> <strong>the</strong> surface <strong>layer</strong>, are a common, summertime<br />

condition <strong>at</strong> SP. Our d<strong>at</strong>a fur<strong>the</strong>r illustr<strong>at</strong>e th<strong>at</strong><br />

even between <strong>the</strong> surface and <strong>the</strong> 17 m-high <strong>in</strong>let of<br />

<strong>the</strong> ARO observ<strong>at</strong>ory up to 5 ppbv <strong>ozone</strong> gradients<br />

can be encountered. Hence, <strong>ozone</strong> mix<strong>in</strong>g r<strong>at</strong>ios will<br />

depend on <strong>the</strong> sampl<strong>in</strong>g height and consider<strong>at</strong>ion of<br />

<strong>the</strong> <strong>in</strong>let loc<strong>at</strong>ion will be of importance <strong>in</strong> compar<strong>in</strong>g<br />

<strong>the</strong> SP <strong>ozone</strong> record with d<strong>at</strong>a from o<strong>the</strong>r sites.<br />

Previously reported upwards <strong>ozone</strong> fluxes out of<br />

snow <strong>in</strong> o<strong>the</strong>r environments may have resulted from<br />

similar conditions of photochemical <strong>ozone</strong> production<br />

<strong>in</strong> a shallow <strong>at</strong>mospheric <strong>layer</strong> above <strong>the</strong> snow<br />

surface.<br />

These new observ<strong>at</strong>ions solidify <strong>the</strong> previous<br />

analyses and estim<strong>at</strong>es of summertime <strong>ozone</strong><br />

production chemistry <strong>at</strong> SP. Our measurements<br />

po<strong>in</strong>t towards <strong>the</strong> occurrences of <strong>ozone</strong> production<br />

r<strong>at</strong>es th<strong>at</strong> are <strong>in</strong> <strong>the</strong> upper range of previous<br />

calcul<strong>at</strong>ions. These d<strong>at</strong>a provide new evidence th<strong>at</strong><br />

polar surface <strong>ozone</strong> concentr<strong>at</strong>ions are tied to

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!