11.06.2015 Views

Elevated ozone in the boundary layer at South Pole - Doug Davis

Elevated ozone in the boundary layer at South Pole - Doug Davis

Elevated ozone in the boundary layer at South Pole - Doug Davis

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

ARTICLE IN PRESS<br />

D. Helmig et al. / Atmospheric Environment 42 (2008) 2788–2803 2793<br />

surface are <strong>in</strong> excellent agreement with <strong>the</strong> cont<strong>in</strong>uous<br />

surface measurements <strong>at</strong> this time<br />

(19–20 ppbv, Fig. 2).<br />

The temporal behavior of <strong>the</strong> observed surface<br />

<strong>layer</strong> <strong>ozone</strong> gradient was <strong>in</strong>vestig<strong>at</strong>ed <strong>in</strong> ano<strong>the</strong>r<br />

balloon experiment on December 21 where <strong>the</strong> long<br />

sampl<strong>in</strong>g l<strong>in</strong>e was raised and ‘‘parked’’ for 3 h <strong>at</strong><br />

110 m. Dur<strong>in</strong>g this experiment ambient air was<br />

sampled from two <strong>in</strong>let l<strong>in</strong>es th<strong>at</strong> were altern<strong>at</strong>ed<br />

every 5 m<strong>in</strong> and analyzed with <strong>the</strong> TEI monitor<br />

(Fig. 4). First, <strong>the</strong> short and long sampl<strong>in</strong>g l<strong>in</strong>e <strong>in</strong>lets<br />

were both near <strong>the</strong> surface (balloon l<strong>in</strong>e <strong>in</strong>let <strong>at</strong> 2 m,<br />

short sampl<strong>in</strong>g l<strong>in</strong>e <strong>in</strong>let <strong>at</strong> 4 m). Ozone <strong>in</strong> air from<br />

both <strong>in</strong>lets showed no discernable difference; both<br />

samples agreed with<strong>in</strong> better than 0.5 ppbv. Next,<br />

<strong>the</strong> long l<strong>in</strong>e <strong>in</strong>let was raised with <strong>the</strong> balloon <strong>in</strong> 7 m<strong>in</strong><br />

to 110 m. Ozone <strong>in</strong> air collected from <strong>the</strong> balloon<br />

dur<strong>in</strong>g <strong>the</strong> ascent dropped <strong>in</strong>stantaneously from<br />

45 ppbv to 40 ppbv. Over <strong>the</strong> next three hours <strong>ozone</strong><br />

<strong>at</strong> 110 m rema<strong>in</strong>ed lower, approxim<strong>at</strong>ely 5 ppbv<br />

below <strong>the</strong> surface read<strong>in</strong>gs. Dur<strong>in</strong>g this time surface<br />

<strong>ozone</strong> <strong>in</strong>creased by 1 ppbv. Similarly, an <strong>in</strong>crease <strong>in</strong><br />

<strong>ozone</strong> <strong>at</strong> 110 m was observed; towards <strong>the</strong> end of this<br />

experiment, <strong>the</strong> vertical <strong>ozone</strong> gradient decreased<br />

slightly. After 3 h <strong>the</strong> balloon was brought back<br />

down, and ano<strong>the</strong>r, more rapid up and down profile<br />

(25 m<strong>in</strong>) was measured with cont<strong>in</strong>uous sampl<strong>in</strong>g<br />

through <strong>the</strong> long balloon sampl<strong>in</strong>g l<strong>in</strong>e. These d<strong>at</strong>a<br />

confirm <strong>the</strong> results from <strong>the</strong> previous <strong>in</strong>termittent<br />

sampl<strong>in</strong>g and th<strong>at</strong> <strong>the</strong> <strong>ozone</strong> gradient between <strong>the</strong><br />

surface and 110 m had decl<strong>in</strong>ed to 3 ppbv.<br />

3.3. Vertical and temporal <strong>ozone</strong> distribution<br />

The vertical and temporal (December 13–31)<br />

distribution of <strong>ozone</strong> shown <strong>in</strong> <strong>the</strong> 3D contour plot<br />

<strong>in</strong> Fig. 5 comb<strong>in</strong>es <strong>the</strong> d<strong>at</strong>a from all ECC sonde<br />

profiles, <strong>the</strong> cont<strong>in</strong>uous monitor<strong>in</strong>g <strong>at</strong> <strong>the</strong> ARO <strong>at</strong><br />

17 m, <strong>the</strong> cont<strong>in</strong>uous monitor<strong>in</strong>g <strong>at</strong> <strong>the</strong> te<strong>the</strong>red<br />

balloon launch site (<strong>at</strong> 2 and 4 m height) and from<br />

<strong>the</strong> long sampl<strong>in</strong>g l<strong>in</strong>e profile measurements. The<br />

results of this analysis reemphasize <strong>the</strong> conditions<br />

with enhanced and variable <strong>boundary</strong> <strong>layer</strong> <strong>ozone</strong> <strong>at</strong><br />

SP. Dur<strong>in</strong>g most times <strong>ozone</strong> near <strong>the</strong> surface (e.g. <strong>in</strong><br />

<strong>the</strong> 0–300 m <strong>layer</strong>) was elev<strong>at</strong>ed compared to air<br />

aloft. The observed gradients varied widely. Dur<strong>in</strong>g<br />

two isol<strong>at</strong>ed conditions with overall low concentr<strong>at</strong>ions<br />

(DOY 354, 361) <strong>ozone</strong> showed a homogenous<br />

vertical distribution (also see Fig. 2). Dur<strong>in</strong>g all o<strong>the</strong>r<br />

times, <strong>ozone</strong> near <strong>the</strong> surface was enhanced, with<br />

gradients of typically 5–25 ppbv higher <strong>ozone</strong> near<br />

<strong>the</strong> surface. Dur<strong>in</strong>g a four-day period from DOY<br />

355–359, susta<strong>in</strong>ed conditions with 20–25 ppbv<br />

enhanced <strong>ozone</strong> <strong>in</strong> <strong>the</strong> surface <strong>layer</strong> were observed.<br />

The depth of this enhanced <strong>ozone</strong> <strong>layer</strong> varied from<br />

60 to 200 m. In <strong>the</strong> follow<strong>in</strong>g section we will analyze<br />

49<br />

47<br />

45<br />

110<br />

90<br />

Ozone (ppbv)<br />

43<br />

41<br />

70<br />

50<br />

Height (m)<br />

39<br />

30<br />

Roof Inlet<br />

37<br />

Long L<strong>in</strong>e <strong>at</strong> 2 m<br />

10<br />

Balloon Inlet<br />

Balloon Inlet Height<br />

35<br />

-10<br />

355.15 355.20 355.25 355.30 355.35 355.40<br />

Time<br />

Fig. 4. Approxim<strong>at</strong>ely 4 h of <strong>ozone</strong> measurements from two surface <strong>in</strong>lets (roof <strong>in</strong>let <strong>at</strong> 4 m height, and long l<strong>in</strong>e <strong>in</strong>let <strong>at</strong> 2 m height) and<br />

from 110 m. First, two <strong>in</strong>let l<strong>in</strong>es were sampled side by side near <strong>the</strong> surface. Next <strong>the</strong> long sampl<strong>in</strong>g l<strong>in</strong>e <strong>in</strong>let was lifted to 110 m and air<br />

was altern<strong>at</strong>ed between <strong>the</strong> raised balloon <strong>in</strong>let and <strong>the</strong> tower <strong>in</strong>let every 5 m<strong>in</strong>. After 3 h, <strong>the</strong> balloon was brought back to <strong>the</strong> surface,<br />

equipped with a new pressure sensor and ano<strong>the</strong>r vertical profile was measured with cont<strong>in</strong>uous sampl<strong>in</strong>g from <strong>the</strong> balloon <strong>in</strong>let.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!