11.06.2015 Views

niobium quarter-wave resonator development for a heavy ion re ...

niobium quarter-wave resonator development for a heavy ion re ...

niobium quarter-wave resonator development for a heavy ion re ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

≪≪≪ Poster TuP67 ≫≫≫<br />

P<strong>re</strong>sented at the<br />

13th Int’l Workshop on RF Superconductivity<br />

15–19 October 2007, Beijing, China<br />

NIOBIUM QUARTER-WAVE<br />

RESONATOR<br />

DEVELOPMENT FOR A<br />

HEAVY ION<br />

RE-ACCELERATOR<br />

W. Hartung, J. Bierwagen, S. Bricker,<br />

C. Compton, T. Grimm, M. Johnson, F. Marti,<br />

J. Popielarski, L. Saxton, R. York<br />

Nat<strong>ion</strong>al Superconducting Cyclotron Laboratory<br />

Michigan State University<br />

A. Facco<br />

Istituto Naz<strong>ion</strong>ale di Fisica Nuclea<strong>re</strong><br />

Laboratori Naz<strong>ion</strong>ali di Legnaro<br />

E. Zaplatin<br />

Forschungszentrum Jülich


Introduct<strong>ion</strong><br />

The Nat<strong>ion</strong>al Superconducting Cyclotron Laboratory<br />

(NSCL) is building a <strong>re</strong>accelerator <strong>for</strong> exotic<br />

<strong>ion</strong> beams. Stable <strong>ion</strong>s a<strong>re</strong> produced in an <strong>ion</strong><br />

source and accelerated in the NSCL coupled cyclotron<br />

facility. The primary beam produces a secondary<br />

beam of exotic <strong>ion</strong>s by particle fragmentat<strong>ion</strong>.<br />

The <strong>re</strong>accelerator will consist of a gas stopper to<br />

slow down the secondary <strong>ion</strong> beam, a charge b<strong>re</strong>eder<br />

to inc<strong>re</strong>ase the charge of the <strong>ion</strong>s by <strong>re</strong>moving electrons,<br />

a radio f<strong>re</strong>quency quadrupole to provide initial<br />

accelerat<strong>ion</strong> and focussing, and a superconducting<br />

linac to accelerate the beam to a final energy<br />

of about 3 MeV per nucleon. The superconducting<br />

linac will consist of <strong>quarter</strong>-<strong>wave</strong> <strong><strong>re</strong>sonator</strong>s<br />

(QWRs) optimised <strong>for</strong> β = 0.041 and β = 0.085.<br />

This poster covers the RF design and prototyping<br />

of the β = 0.041 QWR. The β = 0.085 QWR has<br />

al<strong>re</strong>ady been prototyped.


Experiments<br />

with<br />

fast RIBs<br />

Coupled Cyclotron Facility<br />

Reaccelerator Layout


Cavity Design<br />

The <strong>quarter</strong>-<strong>wave</strong> <strong><strong>re</strong>sonator</strong>s developed by Legnaro<br />

<strong>for</strong> ALPI and PIAVE a<strong>re</strong> the basis <strong>for</strong> the design<br />

of the QWR <strong>for</strong> the <strong>re</strong>accelerator. A slightly larger<br />

apertu<strong>re</strong> is used <strong>for</strong> the <strong>re</strong>accelerator cavities. Another<br />

diffe<strong>re</strong>nces is separat<strong>ion</strong> of the cavity vacuum<br />

from the insulat<strong>ion</strong> vacuum to <strong>re</strong>duce particulate<br />

contaminat<strong>ion</strong> of the cavity surfaces.<br />

• Shorting plate is <strong>for</strong>med from sheet Nb (3 mm<br />

thick) (similar to Argonne design) instead of<br />

being machined.<br />

• Tuning plate (1.25 mm thick) is slotted to <strong>re</strong>duce<br />

the tuning <strong>for</strong>ce (similar to TRIUMF design).<br />

• Probe couplers a<strong>re</strong> attached to the bottom flange<br />

(same as β = 0.085 prototype).


Selected QWR Parameters<br />

Optimum β 0.042<br />

Resonant f<strong>re</strong>quency f 80.5 MHz<br />

Design E p<br />

16.5 MV/m<br />

Design B p<br />

29.2 mT<br />

Design V a<br />

0.45 MV<br />

R s /Q<br />

433 Ω<br />

Geometry factor<br />

15.4 Ω<br />

Operating temperatu<strong>re</strong> 4.5 K<br />

Design Q 0 5 · 10 8<br />

Nominal OC diameter 180 mm<br />

Nominal IC diameter 60 mm<br />

Nominal height (λ/4) 931 mm<br />

Active length<br />

95 mm<br />

Apertu<strong>re</strong><br />

30 mm<br />

OC = Outer Conductor; IC = Inner Conductor<br />

ANALYST was used <strong>for</strong> numerical calculat<strong>ion</strong>s and<br />

optimisat<strong>ion</strong> of the RF parameters.


0.2<br />

0.4<br />

0<br />

3181007−006<br />

V a<br />

[MV]<br />

0.6<br />

0 0.1 0.2 0.3 0.4 0.5<br />

β<br />

Dependence of accelerating voltage on beam<br />

velocity


Fabricat<strong>ion</strong> of Prototype Cavity<br />

• Sheet Nb of thickness 2 mm and RRR ≥ 250<br />

was used.<br />

• The tip of the center conductor and the beam<br />

tubes we<strong>re</strong> machined from solid Nb.<br />

• Nb tuning plate on bottom in Nb-Ti to stainless<br />

steel flange.<br />

• Forming was done at NSCL and in local a<strong>re</strong>a;<br />

electron beam welding was done with an industrial<br />

company.<br />

• Indium joints we<strong>re</strong> used to seal the bottom flange.<br />

Knife-edge seals we<strong>re</strong> used <strong>for</strong> beam tube flanges.<br />

• c. 150 µm etch (BCP).<br />

• High-p<strong>re</strong>ssu<strong>re</strong> rinse with ultra-pu<strong>re</strong> water <strong>for</strong> about<br />

80 minutes.


Electron beam welding of β = 0.041 QWR


Nb parts <strong>for</strong> β = 0.041 QWR (top) and inside view<br />

of completed cavity (bottom)


Etching (left) and rinsing (right) of β = 0.041<br />

QWR


0<br />

Ref − S 21<br />

phase (deg<strong>re</strong>es)<br />

0.5 1 1.5<br />

3181007−005<br />

2<br />

0 50 100 150<br />

z (arbitrary units)<br />

Bead pull <strong>for</strong> β = 0.041 QWR


RF Test on β = 0.041 QWR<br />

• Vertical test with cavity immersed in liquid helium.<br />

• Multipacting barriers at low field, we<strong>re</strong> able to<br />

get through them rapidly.<br />

• Observed x-rays at high field (9 R/hour at max<br />

field); did some RF condit<strong>ion</strong>ing, but not able<br />

to eliminate the field emiss<strong>ion</strong>.<br />

• Did not observe thermal b<strong>re</strong>akdown.<br />

• Max fields: E p ≈ 80 MV/m, B p ≈ 140 mT,<br />

V a ≈ 2.2 MV.


P<strong>re</strong>paring <strong>for</strong> RF test of the β = 0.041 QWR


Q 0<br />

10 8 10 9 10 10<br />

4.6 K<br />

4.2 K<br />

2.0 K<br />

0 20 40 60 80<br />

E p<br />

[MV/m]<br />

3181007−004<br />

RF test of β = 0.041 (September-October 2007)


F<strong>re</strong>quency Issues<br />

• Measu<strong>re</strong>d <strong>re</strong>sonant f<strong>re</strong>quency at 4.5 K was too<br />

high by 225 kHz; need to cor<strong>re</strong>ct this with product<strong>ion</strong><br />

cavities.<br />

• Tuning range and tuning <strong>for</strong>ce need to be checked<br />

and compa<strong>re</strong>d with p<strong>re</strong>dict<strong>ion</strong>s.<br />

Structural Analysis<br />

• Structural analyses of the QWR a<strong>re</strong> being done<br />

with ANSYS.<br />

• Stiffening methods a<strong>re</strong> being explo<strong>re</strong>d with the<br />

aim of minimising f<strong>re</strong>quency shifts due to p<strong>re</strong>ssu<strong>re</strong><br />

fluctuat<strong>ion</strong>s and microphonics.


Conclus<strong>ion</strong><br />

• A β = 0.041 QWR has been fabricated and<br />

tested.<br />

• RF test <strong>re</strong>sults exceeded the design goals by a<br />

com<strong>for</strong>table margin.<br />

• Multipacting and field emiss<strong>ion</strong> we<strong>re</strong> observed,<br />

but they did not p<strong>re</strong>vent the cavity from <strong>re</strong>aching<br />

the design goals.<br />

• Futu<strong>re</strong> steps: product<strong>ion</strong> β = 0.041 and β =<br />

0.085 cavities <strong>for</strong> the NSCL <strong>re</strong>accelerator.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!