11.06.2015 Views

on the dependence of the q-value on the accelerating gradient for ...

on the dependence of the q-value on the accelerating gradient for ...

on the dependence of the q-value on the accelerating gradient for ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

ON THE DEPENDENCE OF THE Q-VALUE ON THE ACCELERATING<br />

GRADIENT FOR SUPERCONDUCTING CAVITIES<br />

W. Weingarten, CERN, Geneva, Switzerland #<br />

Abstract<br />

The per<strong>for</strong>mance <strong>of</strong> niobium superc<strong>on</strong>ducting cavities<br />

<strong>for</strong> accelerator applicati<strong>on</strong>s has improved c<strong>on</strong>siderably<br />

over <strong>the</strong> last decade. Individual cavities reach <strong>accelerating</strong><br />

<strong>gradient</strong>s close to <strong>the</strong> <strong>the</strong>oretical limit (about 50 MV/m),<br />

however sometimes at <strong>the</strong> expense <strong>of</strong> a re-treatment<br />

(baking, electro-polishing, rinsing) needed to eliminate an<br />

undesired decrease <strong>of</strong> <strong>the</strong> Q-<strong>value</strong> with <strong>the</strong> field <strong>gradient</strong><br />

(Q-slope, Q-drop). Cures have been developed, but a<br />

generally accepted physical explanati<strong>on</strong> is still missing.<br />

Fur<strong>the</strong>rmore, <strong>for</strong> successful research work <strong>on</strong> materials<br />

o<strong>the</strong>r than niobium, it is <strong>of</strong> utmost importance to<br />

understand better <strong>the</strong> limitati<strong>on</strong>s in <strong>gradient</strong> and Q-<strong>value</strong><br />

<strong>of</strong> superc<strong>on</strong>ducting cavities. The paper presents an<br />

alternative explanati<strong>on</strong> <strong>for</strong> <strong>the</strong> Q-slope and c<strong>on</strong>fr<strong>on</strong>ts it<br />

with experimental results <strong>for</strong> 352 and 1500 MHz cavities.<br />

INTRODUCTION AND SCOPE<br />

The technology <strong>of</strong> superc<strong>on</strong>ducting niobium cavities <strong>for</strong><br />

accelerator applicati<strong>on</strong> has made large progress in <strong>the</strong> last<br />

decade. Accelerating <strong>gradient</strong>s between 5 and 10 MV/m<br />

that were safely obtained in <strong>the</strong> past, as <strong>for</strong> example in <strong>the</strong><br />

Large Electr<strong>on</strong> Positr<strong>on</strong> collider LEP [1], are now<br />

reproducibly surpassed in individual cavities as well as in<br />

prototype cryo-modules such as needed <strong>for</strong> <strong>the</strong> XFEL at<br />

DESY (23.6 MV/m) or <strong>the</strong> Internati<strong>on</strong>al Linear Collider<br />

ILC under design study right now (31.5 MV/m).<br />

This paper is intended to revise earlier and recent<br />

experimental results <strong>on</strong> <strong>the</strong> decrease <strong>of</strong> <strong>the</strong> Q-<strong>value</strong> with<br />

<strong>the</strong> RF field amplitude, <strong>of</strong>ten observed <strong>for</strong><br />

superc<strong>on</strong>ducting <strong>accelerating</strong> cavities.<br />

Although this decrease is observed as well in niobium<br />

cavities manufactured from sheet metal [2], <strong>the</strong> focus <strong>of</strong><br />

<strong>the</strong> paper is directed to niobium film cavities pi<strong>on</strong>eered by<br />

CERN <strong>for</strong> <strong>the</strong> LEP electr<strong>on</strong> positr<strong>on</strong> collider and now<br />

also installed in <strong>the</strong> Large Hadr<strong>on</strong> Collider LHC.<br />

Never<strong>the</strong>less <strong>the</strong> attempt is made to assess <strong>the</strong>se two<br />

technologies (sheet metal and film) under a comm<strong>on</strong><br />

viewpoint.<br />

In fact <strong>the</strong>re are three different regimes where <strong>the</strong> Q-<br />

<strong>value</strong> depends <strong>on</strong> <strong>the</strong> <strong>accelerating</strong> <strong>gradient</strong> or,<br />

equivalently, <strong>the</strong> maximum applied magnetic surface field<br />

amplitude B. In <strong>the</strong> low field regi<strong>on</strong> (B < 20 mT) <strong>the</strong> Q-<br />

<strong>value</strong> may increase with B (low field Q-increase). In <strong>the</strong><br />

intermediate field regi<strong>on</strong> (20-120 mT) <strong>the</strong> Q-<strong>value</strong><br />

decreases, and bey<strong>on</strong>d, incidentally, <strong>the</strong> Q-<strong>value</strong> may<br />

drop even faster. These latter two observati<strong>on</strong>s are named<br />

“Q-slope” and “Q-drop”.<br />

To understand <strong>the</strong> physical mechanism behind <strong>the</strong>se<br />

observati<strong>on</strong>s is not <strong>on</strong>ly <strong>of</strong> academic interest, especially<br />

________________________________________<br />

# wolfgang.weingarten@cern.ch<br />

<strong>for</strong> film cavities. As <strong>the</strong> reas<strong>on</strong> is nei<strong>the</strong>r clear nor<br />

mastered, film cavities are disregarded from being a<br />

serious competitor to sheet metal cavities. N<strong>on</strong>e<strong>the</strong>less,<br />

<strong>the</strong> many assets <strong>of</strong> <strong>the</strong> film technology make it a very<br />

serious candidate <strong>for</strong> large new projects. They include: a<br />

better <strong>the</strong>rmal protecti<strong>on</strong> against quenches; a lower<br />

niobium cost; no need <strong>for</strong> niobium chemistry; revamping<br />

possibility.<br />

POSTULATES<br />

The postulates <strong>of</strong> <strong>the</strong> model presented in this paper are<br />

<strong>the</strong> following:<br />

(i) Niobium metal, whe<strong>the</strong>r produced as a film or from<br />

sheet metal, is inhomogeneous and c<strong>on</strong>sists <strong>of</strong> different<br />

composites, say two <strong>of</strong> <strong>the</strong>m <strong>for</strong> reas<strong>on</strong>s <strong>of</strong> c<strong>on</strong>venience.<br />

The first, filling up <strong>the</strong> smaller volume <strong>of</strong> both, is made<br />

up <strong>of</strong> a weak superc<strong>on</strong>ductor with a smaller lower critical<br />

field B 0 than that <strong>of</strong> pure Nb, called “defects”. They have<br />

a surface density n s0 and a size a much smaller than all<br />

characteristic lengths <strong>of</strong> <strong>the</strong> superc<strong>on</strong>ductor (such as <strong>the</strong><br />

coherence length ξ and penetrati<strong>on</strong> depth λ). The sec<strong>on</strong>d,<br />

filling up <strong>the</strong> larger volume <strong>of</strong> both, c<strong>on</strong>sists <strong>of</strong> niobium<br />

metal, called “bulk”, characterized by a lower critical<br />

field B c1 * , different from that <strong>of</strong> ordinary niobium, and a<br />

coherence lengths ξ determined by <strong>the</strong> mean free paths l<br />

and <strong>the</strong> coherence length ξ 0 in <strong>the</strong> clean limit,<br />

1<br />

ξ<br />

1<br />

1<br />

= + l ξ0<br />

. (1)<br />

(ii) The RF losses are created by <strong>the</strong> transiti<strong>on</strong> <strong>of</strong> <strong>the</strong>se<br />

defects from <strong>the</strong> superc<strong>on</strong>ducting to <strong>the</strong> normal<br />

c<strong>on</strong>ducting state, starting from B 0 , and increasing <strong>the</strong> size<br />

<strong>of</strong> its normal c<strong>on</strong>ducting volume with increasing magnetic<br />

field B. They per<strong>for</strong>m <strong>the</strong> transiti<strong>on</strong> back again into <strong>the</strong><br />

superc<strong>on</strong>ducting state when B decreases again later during<br />

<strong>the</strong> RF cycle. Their inherent c<strong>on</strong>densati<strong>on</strong> energy is<br />

dissipated to <strong>the</strong> helium bath, twice per RF cycle.<br />

THE RF LOSSES ASSOCIATED WITH<br />

THE Q-SLOPE<br />

The phase transiti<strong>on</strong> as described be<strong>for</strong>e is supposed be<br />

<strong>of</strong> sec<strong>on</strong>d order, because niobium is a type II<br />

superc<strong>on</strong>ductor, already when being in elemental <strong>for</strong>m<br />

and <strong>the</strong> more when c<strong>on</strong>taining impurities. A rigorous<br />

approach should <strong>the</strong>re<strong>for</strong>e be based <strong>on</strong> <strong>the</strong> Ginzburg-<br />

Landau <strong>the</strong>ory, which, <strong>for</strong> small ξ, is approximated by <strong>the</strong><br />

L<strong>on</strong>d<strong>on</strong> <strong>the</strong>ory. The latter approach is chosen as a more<br />

qualitative approach, <strong>the</strong> aim being mainly to present <strong>for</strong>


discussi<strong>on</strong> in this workshop a possible explanati<strong>on</strong> <strong>for</strong> <strong>the</strong><br />

Q-slope and Q-drop.<br />

The normal-superc<strong>on</strong>ducting interface<br />

We imagine an interface between a vacuum or normal<br />

c<strong>on</strong>ducting metal and a superc<strong>on</strong>ducting metal (Fig. 1).<br />

The critical magnetic field B * c1 is determined from <strong>the</strong><br />

fact that <strong>the</strong> interface energy <strong>of</strong> type II superc<strong>on</strong>ductors<br />

becomes negative, if B > B * c1 .<br />

In a type II superc<strong>on</strong>ductor, characterized by a<br />

Ginzburg-Landau parameter κ = λ/ξ > 1/√2, when passing<br />

<strong>the</strong> interface al<strong>on</strong>g <strong>the</strong> z-axis, <strong>the</strong> c<strong>on</strong>densati<strong>on</strong> into<br />

Cooper pair s <strong>of</strong> <strong>the</strong> normal c<strong>on</strong>ducting electr<strong>on</strong>s reaches<br />

its bulk <strong>value</strong> <strong>on</strong>ly after a distance ξ, <strong>the</strong> coherence length.<br />

Likewise, <strong>the</strong> complete suppressi<strong>on</strong> <strong>of</strong> <strong>the</strong> magnetic field<br />

inside <strong>the</strong> superc<strong>on</strong>ductor <strong>on</strong>ly happens at a still fur<strong>the</strong>r<br />

distance λ, <strong>the</strong> penetrati<strong>on</strong> depth. This first effect gives<br />

rise to an increase <strong>of</strong> <strong>the</strong> c<strong>on</strong>densati<strong>on</strong> energy density ΔE c<br />

= 1/(2μ 0 )B th2·V c over a volume V c = A·ξ (surface area A)<br />

compared to a situati<strong>on</strong> where <strong>the</strong> Cooper pair density<br />

will reach its bulk <strong>value</strong> already at <strong>the</strong> interface z = 0. V c<br />

is called <strong>the</strong> “c<strong>on</strong>densati<strong>on</strong>” volume. B th is <strong>the</strong> local<br />

<strong>the</strong>rmodynamic critical field in <strong>the</strong> vicinity <strong>of</strong> <strong>the</strong> defect<br />

that depends <strong>on</strong> <strong>the</strong> temperature T as:<br />

2<br />

⎛ ⎞<br />

( ) ⎜ ⎛ T ⎞<br />

B ⎟<br />

⎜<br />

⎜<br />

⎟<br />

th<br />

T = B<br />

0<br />

⋅ 1−<br />

,<br />

th<br />

⎟<br />

⎝ ⎝Tc<br />

⎠ ⎠<br />

with T c being <strong>the</strong> critical temperature.<br />

The sec<strong>on</strong>d effect gives rise to a decrease <strong>of</strong> <strong>the</strong><br />

diamagnetic energy ΔE B = 1/(2μ 0 )B 2·V m over a volume V m<br />

= A·λ compared to a situati<strong>on</strong> where <strong>the</strong> magnetic field<br />

will reach its bulk <strong>value</strong> already at <strong>the</strong> interface z = 0. B is<br />

<strong>the</strong> externally applied magnetic field. V m is called <strong>the</strong><br />

“magnetic” volume. There<strong>for</strong>e, when figuring out <strong>the</strong><br />

energy balance, in a type II superc<strong>on</strong>ductor, <strong>for</strong><br />

sufficiently large B, <strong>the</strong> diamagnetic energy loss exceeds<br />

<strong>the</strong> c<strong>on</strong>densati<strong>on</strong> energy gain and is <strong>the</strong>re<strong>for</strong>e<br />

energetically favoured. In o<strong>the</strong>r words, <strong>the</strong> interface<br />

energy ΔE c - ΔE B becomes negative. Hence <strong>the</strong> tendency<br />

to create as many interfaces between <strong>the</strong> normal metal<br />

and <strong>the</strong> superc<strong>on</strong>ductor, as is physically possible from an<br />

energy and stability point <strong>of</strong> view. That is <strong>the</strong> reas<strong>on</strong> why<br />

<strong>the</strong> magnetic field in a type II superc<strong>on</strong>ductor splits up<br />

into minuscule filaments.<br />

Based <strong>on</strong> <strong>the</strong> preceding arguments, <strong>the</strong> energy balance<br />

ΔE between <strong>the</strong> c<strong>on</strong>densati<strong>on</strong> energy E c and <strong>the</strong><br />

diamagnetic energy E B , <strong>for</strong> a defect with volume V c ,<br />

exposed to a magnetic field B, is<br />

ΔE<br />

= ΔE<br />

− ΔE<br />

=<br />

2<br />

⇒ B ⋅V<br />

c<br />

m<br />

≥ B<br />

2<br />

th<br />

B<br />

⋅V<br />

c<br />

1<br />

2μ<br />

0<br />

⋅ B<br />

2<br />

th<br />

⋅V<br />

−<br />

c<br />

1<br />

2μ<br />

0<br />

2<br />

⋅ B ⋅V<br />

≤ 0<br />

m<br />

.<br />

Figure 1: Interface between vacuum or normal<br />

c<strong>on</strong>ducting metal and superc<strong>on</strong>ducting metal <strong>for</strong> a type II<br />

superc<strong>on</strong>ductor with at <strong>the</strong> top a smaller applied<br />

magnetic field B than at <strong>the</strong> bottom. The hatched red and<br />

blue areas indicate <strong>the</strong> c<strong>on</strong>densati<strong>on</strong> energy gain or <strong>the</strong><br />

diamagnetic energy loss near <strong>the</strong> interface. They are<br />

about equal in size indicating that <strong>the</strong> magnetic field B is<br />

just above <strong>the</strong> threshold field B c1 * necessary to create <strong>the</strong><br />

interface normal c<strong>on</strong>ductor-superc<strong>on</strong>ductor, whereas <strong>the</strong><br />

magnetic field B inside <strong>the</strong> superc<strong>on</strong>ductor is below that<br />

threshold. For increasing magnetic field B, <strong>the</strong><br />

c<strong>on</strong>densati<strong>on</strong> volume, symbolized by ξ, increases as well<br />

(bottom).<br />

Hence, <strong>the</strong> energy balance ΔE becomes negative <strong>on</strong>ce<br />

<strong>the</strong> applied magnetic field B exceeds<br />

B<br />

*<br />

c1<br />

=<br />

V<br />

V<br />

c<br />

m<br />

⋅ B<br />

th<br />

which is equivalent with<br />

,


V ⋅ B = V ⋅B<br />

. (2)<br />

c<br />

2<br />

th<br />

m<br />

*2<br />

c1<br />

For <strong>the</strong> special case <strong>of</strong> an interface between a normalc<strong>on</strong>ducting<br />

half sphere <strong>of</strong> radius a embedded at <strong>the</strong><br />

surface <strong>of</strong> a superc<strong>on</strong>ducting metal, <strong>the</strong> c<strong>on</strong>cerned<br />

3<br />

volumes are V m = 2/3⋅π⋅(a+ λ) and V c = 2/3⋅π⋅(a+ ξ)3 ,<br />

from which we derive<br />

B<br />

⎛ ξ ⎞<br />

≈ ⎜ ⎟<br />

⎝ λ ⎠<br />

*<br />

c1<br />

a→0<br />

3 2<br />

⋅ B<br />

th<br />

.<br />

Eq. 2 may be interpreted as a functi<strong>on</strong>al relati<strong>on</strong><br />

between <strong>the</strong> applied magnetic field B = B *<br />

c1 and <strong>the</strong><br />

associated c<strong>on</strong>densati<strong>on</strong> volume V c (B), with B th and V m<br />

being c<strong>on</strong>sidered as c<strong>on</strong>stant.<br />

Fig. 1 depicts <strong>the</strong> <strong>dependence</strong> <strong>on</strong> <strong>the</strong> magnetic field B <strong>of</strong><br />

<strong>the</strong> c<strong>on</strong>densati<strong>on</strong> volume V c , being proporti<strong>on</strong>al to <strong>the</strong><br />

coherence length ξ. The top <strong>of</strong> Fig. 1 illustrates <strong>the</strong><br />

threshold c<strong>on</strong>diti<strong>on</strong> ΔE = 0 <strong>for</strong> a smaller magnetic field B<br />

than at <strong>the</strong> bottom.<br />

Differentiating eq. 2 results in an expressi<strong>on</strong> <strong>for</strong> <strong>the</strong><br />

increase <strong>of</strong> <strong>the</strong> c<strong>on</strong>densati<strong>on</strong> volume ΔV c (B c1 * ) by <strong>the</strong><br />

acti<strong>on</strong> <strong>of</strong> <strong>the</strong> applied magnetic field ΔB c1 * ,<br />

ΔV<br />

c<br />

*<br />

* 2 ⋅ Bc<br />

1<br />

⋅Vm<br />

*<br />

( B ) = ⋅ ΔB<br />

c1<br />

B<br />

2<br />

th<br />

c1<br />

. (3)<br />

If <strong>the</strong> magnetic volume V m is not c<strong>on</strong>stant, eq. 3 must<br />

be modified to<br />

ΔV<br />

c<br />

*<br />

*<br />

* 2 ⋅ Bc<br />

V ⎛<br />

m<br />

B ⎞<br />

1<br />

⋅<br />

* c1<br />

( Bc<br />

) = ⋅ ΔB<br />

⎜ ⎟<br />

1<br />

c1<br />

+ ΔVm<br />

B<br />

2<br />

th<br />

⎜<br />

⎝ B<br />

In this case <strong>the</strong> following relati<strong>on</strong>s hold:<br />

and<br />

ΔV<br />

ΔV<br />

m<br />

c<br />

⎛ a + λ ⎞<br />

= ⎜ ⎟<br />

⎝ a + ξ ⎠<br />

*<br />

2 ⋅ Bc<br />

1<br />

⋅V<br />

ΔVc<br />

=<br />

2<br />

B − κ ⋅ B<br />

2<br />

th<br />

2<br />

apλ,<br />

ξ<br />

m<br />

* 2<br />

c1<br />

2<br />

⎛ λ ⎞<br />

≈ ⎜ ⎟<br />

⎝ ξ ⎠<br />

th<br />

2<br />

⎟<br />

⎠<br />

2<br />

= κ<br />

,<br />

*<br />

⋅ ΔBc<br />

1<br />

. (4)<br />

A distincti<strong>on</strong> must be made between <strong>the</strong> situati<strong>on</strong>, when<br />

<strong>the</strong> defect is located at <strong>the</strong> surface and when it is located<br />

in <strong>the</strong> bulk, but still within a distance <strong>of</strong> <strong>the</strong> penetrati<strong>on</strong><br />

depth λ away from <strong>the</strong> surface and hence exposed to <strong>the</strong><br />

RF current.<br />

If embedded in <strong>the</strong> bulk, <strong>the</strong> current passes around <strong>the</strong><br />

defect <strong>on</strong> both sides, when becoming normal c<strong>on</strong>ducting.<br />

In o<strong>the</strong>r words, a loop-like microscopic magnetic field is<br />

created with <strong>the</strong> net result <strong>of</strong> zero change <strong>of</strong> magnetic<br />

inducti<strong>on</strong> in <strong>the</strong> superc<strong>on</strong>ductor: <strong>the</strong> diamagnetic energy<br />

remains unchanged, <strong>the</strong> energy balance ΔE will not<br />

.<br />

become negative, and hence no transiti<strong>on</strong> from <strong>the</strong><br />

superc<strong>on</strong>ducting state to <strong>the</strong> normal c<strong>on</strong>ducting state will<br />

occur. This is <strong>the</strong> reas<strong>on</strong> why <strong>the</strong> effect as described here<br />

will <strong>on</strong>ly take place at <strong>the</strong> surface and not inside <strong>the</strong><br />

superc<strong>on</strong>ductor.<br />

Determinati<strong>on</strong> <strong>of</strong> <strong>the</strong> Q-slope related RF losses<br />

The basic idea <strong>for</strong> determining <strong>the</strong> RF losses c<strong>on</strong>sists in<br />

<strong>the</strong> fact that sufficiently small normal c<strong>on</strong>ducting<br />

“defects” <strong>of</strong> radius a < ξ are looped around by <strong>the</strong> RF<br />

currents. The radius a may be c<strong>on</strong>sidered as equivalent to<br />

a local coherence length being smaller than <strong>the</strong> “bulk”-<br />

<strong>value</strong>. The passing <strong>of</strong> <strong>the</strong> RF currents around <strong>the</strong> normal<br />

c<strong>on</strong>ducting z<strong>on</strong>es is a situati<strong>on</strong> very similar to <strong>the</strong> DC<br />

case. In what follows a precisi<strong>on</strong> shall be given <strong>on</strong> what<br />

means “small” and why is it that <strong>the</strong> RF current flows<br />

around <strong>the</strong>se defects when being in <strong>the</strong> normal state.<br />

Under what c<strong>on</strong>diti<strong>on</strong>s does <strong>the</strong> RF current loop around<br />

<strong>the</strong> defect when being in <strong>the</strong> normal c<strong>on</strong>ducting state?<br />

The idea is - as in <strong>the</strong> DC case - that <strong>the</strong> distributi<strong>on</strong> <strong>of</strong><br />

current is such that it follows a path that minimizes <strong>the</strong><br />

producti<strong>on</strong> <strong>of</strong> heat. In o<strong>the</strong>r words, <strong>the</strong> distributi<strong>on</strong> <strong>of</strong><br />

impedances determines <strong>the</strong> pattern <strong>of</strong> current flow. In <strong>the</strong><br />

present situati<strong>on</strong> <strong>the</strong> relevant impedances are <strong>the</strong> ohmic<br />

resistance R <strong>of</strong> <strong>the</strong> defect and <strong>the</strong> kinetic inductance L <strong>of</strong><br />

<strong>the</strong> bulk superc<strong>on</strong>ducting metal after having become<br />

normal c<strong>on</strong>ducting (as shown in Fig. 2).<br />

Figure 2: Parallel impedance model descripti<strong>on</strong> <strong>of</strong><br />

current with kinetic inductance L looping around a defect<br />

with resistance R.<br />

The ohmic resistance amounts to R = (σ·δ) -1 , depending<br />

<strong>on</strong> <strong>the</strong> c<strong>on</strong>ductivity σ and <strong>the</strong> skin depth δ, whereas <strong>the</strong><br />

kinetic inductance is L ~ μ 0·a 2/3·λ 1/3 /4, as shown in <strong>the</strong><br />

Annex. The c<strong>on</strong>diti<strong>on</strong> that <strong>the</strong> current avoids <strong>the</strong> normal<br />

c<strong>on</strong>ducting defect is <strong>the</strong>re<strong>for</strong>e ω·μ 0· a ≤ ω·μ 0· a 2/3·λ 1/3 «<br />

(σ·δ) -1 . With <strong>the</strong> normal c<strong>on</strong>ducting skin depth, δ =<br />

(2/μ 0·σ·ω) 1/2 , <strong>the</strong> inequality relati<strong>on</strong> implies that <strong>the</strong><br />

defect size a is small compared to <strong>the</strong> critical defect size<br />

a c = δ/2. For normal c<strong>on</strong>ducting niobium at 1 GHz and<br />

4.2 K, with a room temperature c<strong>on</strong>ductivity σ = 7.6⋅10 6<br />

(Ωm) -1 , and a residual resistivity ratio RRR = 10, <strong>the</strong><br />

critical defect size is a c = 900 nm. One c<strong>on</strong>cludes<br />

<strong>the</strong>re<strong>for</strong>e that <strong>the</strong> RF current avoids <strong>the</strong> normal<br />

c<strong>on</strong>ducting defect if its actual size is much smaller than a c ,<br />

say in <strong>the</strong> order <strong>of</strong> magnitude <strong>of</strong> <strong>the</strong> penetrati<strong>on</strong> depth λ ≈<br />

50-100 nm or below, very similar to flux<strong>on</strong>-induced<br />

losses [3].


Figure 3: Interface between normal and superc<strong>on</strong>ducting metal including a normal c<strong>on</strong>ducting “surface defect”; <strong>the</strong><br />

distributi<strong>on</strong> <strong>of</strong> current looping around <strong>the</strong> defect (a) is a superpositi<strong>on</strong> <strong>of</strong> two different current distributi<strong>on</strong>s (b, c). Case<br />

(b) is equivalent to <strong>the</strong> defect being in <strong>the</strong> superc<strong>on</strong>ducting state and <strong>the</strong> current passing through. For case (c) <strong>the</strong><br />

current inside <strong>the</strong> defect is opposite to <strong>the</strong> current in (b), resulting in a net zero current in (a,) and giving rise to an<br />

additi<strong>on</strong>al inductance L, as outlined in <strong>the</strong> Annex.<br />

DETERMINATION OF THE SURFACE<br />

RESISTANCE<br />

Quantitative analysis <strong>of</strong> <strong>the</strong> Q-slope<br />

In summary we c<strong>on</strong>clude that, if <strong>the</strong> defect is located at<br />

<strong>the</strong> surface, up<strong>on</strong> becoming normal c<strong>on</strong>ducting, <strong>the</strong> RF<br />

current loops around it, provided that its radius a is much<br />

smaller than <strong>the</strong> normal c<strong>on</strong>ducting skin depth δ.<br />

C<strong>on</strong>sequently, when it undergoes <strong>the</strong> transiti<strong>on</strong> from<br />

superc<strong>on</strong>ducting to normal c<strong>on</strong>ducting, a voltage V is<br />

created across such that <strong>the</strong> current I inside <strong>the</strong> defect<br />

vanishes.<br />

The energy balance between <strong>the</strong> defect being in <strong>the</strong><br />

superc<strong>on</strong>ducting and in <strong>the</strong> normal c<strong>on</strong>ducting state is<br />

illustrated in Fig. 3. The energy <strong>of</strong> <strong>the</strong> normal c<strong>on</strong>ducting<br />

state, compared to that <strong>of</strong> <strong>the</strong> superc<strong>on</strong>ducting state, is<br />

increased by three c<strong>on</strong>tributi<strong>on</strong>s: (i) <strong>the</strong> c<strong>on</strong>densati<strong>on</strong><br />

energy <strong>of</strong> <strong>the</strong> defect, (ii) <strong>the</strong> kinetic energy <strong>of</strong> <strong>the</strong><br />

circulating currents that annihilate <strong>the</strong> superc<strong>on</strong>ducting<br />

current through <strong>the</strong> normal c<strong>on</strong>ducting defect, and (iii) <strong>the</strong><br />

additi<strong>on</strong>al magnetic field that <strong>the</strong>se circulating currents<br />

create. The sec<strong>on</strong>d term is not altered by <strong>the</strong> transiti<strong>on</strong><br />

from <strong>the</strong> superc<strong>on</strong>ducting to <strong>the</strong> normal c<strong>on</strong>ducting state,<br />

because <strong>the</strong> current I is supposed to be equal be<strong>for</strong>e and<br />

after. The third effect does not lead to dissipati<strong>on</strong>, because<br />

<strong>the</strong> induced voltage V = L·dI/dt is in quadrature to <strong>the</strong><br />

current I. There<strong>for</strong>e, <strong>on</strong>ly <strong>the</strong> first effect creates<br />

dissipati<strong>on</strong>.<br />

The c<strong>on</strong>densati<strong>on</strong> energy ΔE c needed to trans<strong>for</strong>m <strong>the</strong><br />

c<strong>on</strong>densati<strong>on</strong> volume ΔV c normal c<strong>on</strong>ducting, is given by<br />

<strong>the</strong> expressi<strong>on</strong><br />

1<br />

ΔEc<br />

= ⋅ B<br />

2μ 0<br />

* 2<br />

c1<br />

⋅ ΔVc<br />

.<br />

Inserti<strong>on</strong> <strong>of</strong> eq. 3 and integrati<strong>on</strong> over B c1<br />

*<br />

from 0, <strong>for</strong><br />

c<strong>on</strong>venience, to <strong>the</strong> magnetic field amplitude B, results in<br />

1 4<br />

Ec<br />

= ⋅ B<br />

4μ 0<br />

V<br />

⋅<br />

B<br />

m<br />

2<br />

th<br />

.<br />

By taking into account that per full RF cycle T = 1/f, f<br />

being <strong>the</strong> RF frequency, twice <strong>the</strong> work ΔE c will be<br />

expended by <strong>the</strong> RF field, <strong>the</strong> dissipated power P due to<br />

<strong>the</strong> increase <strong>of</strong> <strong>the</strong> normal c<strong>on</strong>ducting z<strong>on</strong>e is<br />

P<br />

1 4 V<br />

⋅ B ⋅<br />

2μ 0<br />

Bth<br />

= m<br />

⋅<br />

2<br />

f<br />

.<br />

For n 0 defects per volume, <strong>the</strong> surface density <strong>of</strong> defects<br />

is n s0 = n 0 2/3 . Hence <strong>the</strong> dissipated power p per area is<br />

1<br />

p = ⋅ B<br />

2μ 0<br />

4<br />

V<br />

⋅<br />

B<br />

m<br />

2<br />

th<br />

⋅ f ⋅ n<br />

s0<br />

.<br />

By <strong>the</strong> definiti<strong>on</strong> <strong>of</strong> <strong>the</strong> surface resistance R s , p =<br />

R s·H 2 /2, H = B/μ 0 being <strong>the</strong> applied RF magnetic field<br />

amplitude, and defining <strong>the</strong> magnetic volume <strong>of</strong> a half<br />

sphere as V m = 2/3·π·λ 3 , we derive <strong>for</strong> <strong>the</strong> surface<br />

resistance<br />

2<br />

2 ⎛ B ⎞<br />

3<br />

Rs<br />

= ⋅ π ⋅ μ 0<br />

⋅ ⋅ ⋅ f ⋅ ns0<br />

3<br />

⎜<br />

B<br />

⎟ λ<br />

⎝ th ⎠ . (5)<br />

A more refined analysis, by taking into account eq. 4,<br />

results in an infinite product expansi<strong>on</strong>


2 3<br />

2<br />

2<br />

λ ⋅ns0<br />

2<br />

2<br />

2<br />

0<br />

⋅ ⋅ f ⋅ B<br />

⋅<br />

2<br />

Bth<br />

Rs<br />

= ⋅ π ⋅μ<br />

3<br />

123<br />

2 ⎛ κ ⎞<br />

⋅(1<br />

+ ⋅ ⋅<br />

3<br />

⎜<br />

⎟ B<br />

⎝ Bth<br />

123 ⎠<br />

3 ⎛ κ ⎞<br />

⋅(1<br />

+ ⋅ ⋅<br />

4<br />

⎜<br />

⎟ B<br />

⎝ Bth<br />

123 ⎠<br />

...)<br />

= α<br />

= β<br />

= β<br />

,<br />

which depends critically, <strong>for</strong> larger magnetic fields B, <strong>on</strong><br />

<strong>the</strong> Ginzburg-Landau parameter κ.<br />

With <strong>the</strong> two independent fit parameters, α = λ 3·n 2<br />

s0 /B th<br />

and β = (κ/B th ) 2 , which depend via λ, κ, and B th <strong>on</strong> <strong>the</strong><br />

temperature T, <strong>the</strong> surface resistance is<br />

R s<br />

( f , B,<br />

α , β , B )<br />

2<br />

= ⋅ π ⋅μ<br />

3<br />

0<br />

0<br />

=<br />

⋅α<br />

⋅ f ⋅ B<br />

2<br />

⎛ 2<br />

⋅⎜1+<br />

⋅ β ⋅ B<br />

⎝ 3<br />

2<br />

3<br />

⋅ (1 + ⋅ β ⋅ B<br />

4<br />

2<br />

.(6)<br />

⎞<br />

) ⋅...<br />

⎟<br />

⎠<br />

The two parameters α and β describe <strong>the</strong> Q-slope and<br />

Q-drop, respectively.<br />

Remarks <strong>on</strong> <strong>the</strong> Q-drop<br />

As suggested by <strong>the</strong> singularity <strong>of</strong> eq. 4, <strong>the</strong> surface<br />

resistance will grow rapidly above <strong>the</strong> “<strong>on</strong>set” magnetic<br />

field, if <strong>the</strong> applied magnetic field B = B c1 * will approach<br />

<strong>the</strong> lower critical field <strong>of</strong> <strong>the</strong> bulk B c1 ≈ B th /κ .<br />

At that moment, <strong>the</strong> magnetic volume V m can no l<strong>on</strong>ger<br />

be c<strong>on</strong>sidered as c<strong>on</strong>stant, but will increase rapidly with B.<br />

The important parameter is <strong>the</strong> Ginzburg-Landau<br />

parameter κ that depends <strong>on</strong> interstitial impurities such as<br />

oxygen. By diffusing <strong>the</strong>se impurities from <strong>the</strong> surface<br />

into <strong>the</strong> bulk, κ can be decreased with a c<strong>on</strong>sequent<br />

increase <strong>of</strong> <strong>the</strong> <strong>on</strong>set field <strong>for</strong> <strong>the</strong> Q-drop. This<br />

mechanism may explain <strong>the</strong> observed Q-drop as well as<br />

<strong>the</strong> cures that were experimentally found to shift <strong>the</strong> <strong>on</strong>set<br />

field to higher <strong>value</strong>s [2].<br />

Remarks <strong>on</strong> <strong>the</strong> low field Q-increase<br />

The surface resistance as described by eq. 6 needs<br />

ano<strong>the</strong>r modificati<strong>on</strong> due to <strong>the</strong> transiti<strong>on</strong> per RF half<br />

cycle <strong>of</strong> <strong>the</strong> defects, in <strong>the</strong> very low magnetic field regi<strong>on</strong><br />

regi<strong>on</strong> B < 20 mT, into <strong>the</strong> normal c<strong>on</strong>ducting state and<br />

back again. In a similar manner as decribed by eq. 2 <strong>the</strong><br />

c<strong>on</strong>densati<strong>on</strong> energy<br />

E<br />

c,<br />

d<br />

=<br />

1<br />

2μ<br />

0<br />

⋅ B<br />

2<br />

th,<br />

d<br />

⋅V<br />

c,<br />

d<br />

=<br />

1<br />

2μ<br />

0<br />

⋅ B<br />

2<br />

0<br />

⋅V<br />

is dissipated, independent <strong>of</strong> <strong>the</strong> RF magnetic field<br />

amplitude B. The subscript “d” refers to <strong>the</strong> defect, and B 0<br />

is its critical field. This additi<strong>on</strong>al loss results in an<br />

additive term <strong>for</strong> <strong>the</strong> surface resistance<br />

R<br />

2<br />

4 ⎛ B0<br />

⎞ 3<br />

s, d<br />

= ⋅ π ⋅μ 0<br />

⋅⎜<br />

⎟ ⋅ λ ⋅ f ⋅ n , (7)<br />

s0<br />

3<br />

⎝ B ⎠<br />

which explains <strong>the</strong> low field Q-increase.<br />

m<br />

EXPERIMENTAL RESULTS<br />

Series RF measurements <strong>of</strong> 352 and 1500 MHz<br />

niobium film cavities<br />

A large number <strong>of</strong> cavities at 352 MHz and 1500 MHz<br />

were tested at CERN, <strong>the</strong> first series <strong>of</strong> measurements <strong>for</strong><br />

validating <strong>the</strong> specified per<strong>for</strong>mance <strong>of</strong> <strong>the</strong> niobium film<br />

cavities <strong>for</strong> <strong>the</strong> LEP collider, <strong>the</strong> sec<strong>on</strong>d series <strong>for</strong> better<br />

understanding <strong>the</strong> behavior <strong>of</strong> <strong>the</strong> niobium film under<br />

exposure to an RF field. The original papers and <strong>the</strong><br />

comparis<strong>on</strong> <strong>of</strong> <strong>the</strong> results in terms <strong>of</strong> Q-slope are<br />

published elsewhere [4, 5].<br />

Figure 4: Surface resistance (in nΩ) at 4.2 K <strong>of</strong> niobium<br />

film cavities at 352 MHz (<strong>for</strong> LEP, top) and 1500 MHz<br />

(bottom) versus <strong>the</strong> RF magnetic field amplitude B (in<br />

mT). Superposed in black are <strong>the</strong> data from <strong>the</strong> original<br />

papers, ref. 4 and 5, respectively. Error bars include <strong>the</strong><br />

effect <strong>of</strong> <strong>the</strong> spread between different films (bottom). The<br />

dashed coloured lines indicate <strong>the</strong> measured <strong>value</strong>s, <strong>the</strong><br />

c<strong>on</strong>tinuous coloured <strong>on</strong>es are calculated by using eq. 5<br />

with, except <strong>for</strong> <strong>the</strong> frequency, a comm<strong>on</strong> parameter α.<br />

The rati<strong>on</strong>ale behind this study was <strong>the</strong> hope that by<br />

analyzing such a large number <strong>of</strong> cavities (34 at 352<br />

MHz) random variati<strong>on</strong>s in RF per<strong>for</strong>mance will average<br />

out and that <strong>the</strong> summary data are representative <strong>for</strong> <strong>the</strong><br />

physics <strong>of</strong> <strong>the</strong> film.<br />

Instead <strong>of</strong> <strong>the</strong> Q-slope, <strong>the</strong> equivalent surface resistance<br />

R s was determined <strong>for</strong> <strong>the</strong>se two sets <strong>of</strong> analysis. They are<br />

summarized in <strong>the</strong> relati<strong>on</strong>s R s [nΩ] = 0.26⋅ B [mT] +<br />

0.033⋅ B 2 [mT] (4.2 K, 352 MHz) and R s [nΩ] = 0.741⋅ B<br />

[mT] + 0.140⋅ B 2 [mT] (4.2 K, 1500 MHz), c.f. Fig. 4.


Figure 5: The surface resistance (left column) and <strong>the</strong> Q-<strong>value</strong> (right column) <strong>of</strong> two niobium sheet metal cavities (top)<br />

and <strong>on</strong>e niobium film cavitiy (bottom) displaying <strong>the</strong> typical low field Q-increase, Q-slope and Q-drop. The fit<br />

parameters are indicated in <strong>the</strong> right column each below <strong>the</strong> graphs: (a) unbaked; (b) electro-polished and baked; (c)<br />

high per<strong>for</strong>mance cavity sputtered under Kr gas atmosphere.<br />

The surface resistances R s determined experimentally<br />

are indicated by <strong>the</strong> dashed coloured lines, those as<br />

determined from eq. 5 are represented by <strong>the</strong> c<strong>on</strong>tinuous<br />

coloured lines. A comm<strong>on</strong> set <strong>of</strong> parameters, <strong>the</strong><br />

frequency f excepted, were used to determine R s from eq.<br />

5 <strong>for</strong> both sets <strong>of</strong> data: α = 2.7·10 -8 [m/T 2 ].


TYPICAL TEST RESULTS OF INDIVIDUAL<br />

NIOBIUM SHEET METAL AND FILM CAVITIES<br />

In order to fur<strong>the</strong>r check <strong>the</strong> proposed model, some RF<br />

tests results <strong>of</strong> individual sheet metal and film cavities<br />

were investigated in more detail. The c<strong>on</strong>cerned cavities<br />

are representative <strong>of</strong> state <strong>of</strong> <strong>the</strong> art processing. They<br />

show <strong>the</strong> behaviour <strong>of</strong> Q-slope and Q-drop. The data<br />

points were adopted from references 5, 6, and 7 (Fig.5).<br />

The data points were analyzed by applying eq. 6 with<br />

<strong>the</strong> infinite product expansi<strong>on</strong> breaking <strong>of</strong>f after <strong>the</strong> 25 th<br />

term and taking into account <strong>the</strong> term descibing <strong>the</strong> low<br />

field Q-increae (eq. 7).<br />

The physical significance <strong>of</strong> <strong>the</strong> parameters α and β, as<br />

introduced in eq. 6, is <strong>the</strong> following: α describes <strong>the</strong> total<br />

magnetic volume per unit area (which in fact is a length)<br />

pr<strong>on</strong>e to undergo <strong>the</strong> transiti<strong>on</strong> from <strong>the</strong> superc<strong>on</strong>ducting<br />

to <strong>the</strong> normal c<strong>on</strong>ducting state. This volume is mainly<br />

determined by <strong>the</strong> cube <strong>of</strong> <strong>the</strong> penetrati<strong>on</strong> depth λ. It<br />

remains c<strong>on</strong>stant with increasing B until <strong>the</strong> threshold <strong>of</strong><br />

<strong>the</strong> lower critical magnetic field B c1 <strong>of</strong> <strong>the</strong> bulk is reached.<br />

at which moment it increases rapidly. The parameter β is<br />

linked to this threshold, being proporti<strong>on</strong>al to <strong>the</strong> square<br />

<strong>of</strong> <strong>the</strong> Ginzburg-Landau parameter κ.<br />

DATA ANALYSIS<br />

A first and very preliminary example <strong>of</strong> a possible data<br />

analysis shall be presented here, by using <strong>the</strong> data <strong>of</strong> Fig.<br />

5 (a) – (c).<br />

No rigourous error analysis is included. The analysis<br />

starts with <strong>the</strong> parameters α and β as well as <strong>the</strong><br />

penetrati<strong>on</strong> depth λ, all three being directly determined by<br />

RF measurements.<br />

The analysis is based <strong>on</strong> well established relati<strong>on</strong>s <strong>for</strong><br />

dirty superc<strong>on</strong>ductors [9]. The mean free path l is<br />

determined from <strong>the</strong> relati<strong>on</strong><br />

( T ) = λ ( T )<br />

L<br />

1 ξ 0<br />

λ ⋅ +<br />

l .<br />

ξ 0 and λ L are <strong>the</strong> coherence length and L<strong>on</strong>d<strong>on</strong><br />

penetrati<strong>on</strong> depth <strong>for</strong> clean niobium. The coherence<br />

length ξ <strong>for</strong> a dirty superc<strong>on</strong>ductor is given by eq. 1.<br />

Using κ = λ/ξ, <strong>the</strong> <strong>the</strong>rmodynamic critical field B th is<br />

determined from β = (κ/B th ) 2 , and <strong>the</strong> surface density <strong>of</strong><br />

defects from α = λ 3·n s0 /B th 2 .<br />

It is reassuring that <strong>the</strong> data analysis (Table 1) results<br />

in <strong>value</strong>s <strong>for</strong> both <strong>the</strong> <strong>the</strong>rmodynamic critical field B th0<br />

and <strong>the</strong> Ginzburg-Landau parameter κ which are in <strong>the</strong><br />

range <strong>of</strong> <strong>the</strong> expected: B th0 = 186 (182, 207) mT <strong>for</strong> κ =<br />

1.7 (1.0, 2.3) [10].<br />

Assuming <strong>the</strong> correctness <strong>of</strong> <strong>the</strong> model as decribed, <strong>the</strong><br />

surface density <strong>of</strong> defects n s0 and <strong>the</strong> Ginzburg-Landau<br />

parameter κ <strong>of</strong> <strong>the</strong> film cavity (c) are both much larger<br />

than <strong>the</strong> similar <strong>value</strong>s <strong>for</strong> <strong>the</strong> sheet metal cavities (a, b),<br />

c<strong>on</strong>firming <strong>the</strong> larger <strong>value</strong> <strong>of</strong> Q-slope that <strong>the</strong> film<br />

cavities display. In additi<strong>on</strong>, <strong>the</strong> average distance <strong>of</strong><br />

defects <strong>for</strong> film cavities n s0<br />

-1/2<br />

= 1.2 μm lies bey<strong>on</strong>d <strong>the</strong><br />

intrinsic lengths such as <strong>the</strong> grain size, corroberating <strong>the</strong><br />

possible importance <strong>of</strong> macroscopic defects relative to <strong>the</strong><br />

RF per<strong>for</strong>mance [8]. The critical field <strong>of</strong> <strong>the</strong> defects is<br />

much lower (factor 10 2 - 10 3 ) than that <strong>of</strong> <strong>the</strong> bulk. This<br />

in<strong>for</strong>mati<strong>on</strong>, combined with an analysis <strong>of</strong> RF tests under<br />

different helium bath temperatures, should allow<br />

identifying <strong>the</strong> nature <strong>of</strong> <strong>the</strong> defects in <strong>the</strong> future and<br />

hopefully pave <strong>the</strong> way <strong>for</strong> <strong>the</strong>ir eliminati<strong>on</strong>.<br />

Table 1: Preliminary analysis <strong>of</strong> <strong>the</strong> data as shown in Fig. 5<br />

(a) (b) (c)<br />

Temperature <strong>of</strong> helium bath T [K] 1.37 1.8 1.7<br />

Effective penetrati<strong>on</strong> depth λ [nm] 36 [6] 30.5 [5] 40 [5]<br />

Fit parameter α [m·T -2 ] 2.7·10 -11 11·10 -11 87·10 -11<br />

Fit parameter β [T -2 ] 85 34 132<br />

Critical field <strong>of</strong> defect Β 0 [mT] 1.5 1.5 0.15<br />

Mean free path l [nm] 61 311 37<br />

Effective coherence length ξ [nm] 21 30 17<br />

Ginzburg-Landau parameter κ 1.7 1.0 2.3<br />

Thermodynamic critical field B th0<br />

near defect [mT]<br />

186 182 207<br />

Surface density <strong>of</strong> defects n s0 [m -2 ] 2·10 10 12·10 10 58·10 10<br />

Clean limit coherence length <strong>for</strong> Nb ξ 0 = 33 nm [5]<br />

L<strong>on</strong>d<strong>on</strong> penetrati<strong>on</strong> depth <strong>for</strong> Nb λ L = 29 nm [5]<br />

CONCLUSION<br />

The dissipati<strong>on</strong> that becomes manifest by <strong>the</strong> low field<br />

Q-increase, Q-slope and Q-drop is explained in terms <strong>of</strong> a<br />

surface effect caused by <strong>the</strong> magnetic field.<br />

The superc<strong>on</strong>ducting surface is composed <strong>of</strong> <strong>the</strong><br />

ordinary superc<strong>on</strong>ducting metal (bulk) into which<br />

minuscule weak superc<strong>on</strong>ducting “defects” are embedded.<br />

These defects lead to dissipati<strong>on</strong> into <strong>the</strong> helium bath <strong>of</strong><br />

<strong>the</strong> c<strong>on</strong>densati<strong>on</strong> energy involved when <strong>the</strong>y undergo <strong>the</strong><br />

transiti<strong>on</strong>, under <strong>the</strong> acti<strong>on</strong> <strong>of</strong> <strong>the</strong> RF magnetic field, from<br />

<strong>the</strong> superc<strong>on</strong>ducting into <strong>the</strong> normal c<strong>on</strong>ducting state and<br />

back again during an RF half cycle.<br />

The dissipati<strong>on</strong> is described in terms <strong>of</strong> a surface<br />

resistance that depends, apart from <strong>the</strong> experimentally<br />

c<strong>on</strong>trolled parameters, such as <strong>the</strong> RF frequency f, bath<br />

temperature T and <strong>the</strong> RF magnetic field amplitude B, <strong>on</strong><br />

three parameters, B 0 , α and β, describing, in this order,<br />

<strong>the</strong> low field Q-increase, <strong>the</strong> Q-slope and <strong>the</strong> Q-drop.<br />

The magnetic field B 0 indicates <strong>the</strong> critical field <strong>of</strong> <strong>the</strong><br />

defect, <strong>the</strong> parameter α is mainly determined by <strong>the</strong><br />

density <strong>of</strong> defects and <strong>the</strong> cube <strong>of</strong> <strong>the</strong> penetrati<strong>on</strong> depth λ<br />

<strong>of</strong> <strong>the</strong> bulk superc<strong>on</strong>ductor. The parameter β, is


proporti<strong>on</strong>al to <strong>the</strong> square <strong>of</strong> <strong>the</strong> Ginzburg-Landau<br />

parameter κ <strong>of</strong> <strong>the</strong> bulk superc<strong>on</strong>ductor.<br />

A principle way <strong>of</strong> data analysis was outlined.<br />

The superior per<strong>for</strong>mance <strong>of</strong> state-<strong>of</strong>-<strong>the</strong>-art Nb sheet<br />

cavities compared to Nb film cavities is explained in<br />

terms <strong>of</strong> a smaller defect density and smaller Ginzburg-<br />

Landau parameter.<br />

Evidence is presented <strong>for</strong> weak superc<strong>on</strong>ducting defects<br />

(with an average distance bey<strong>on</strong>d <strong>the</strong> grain size) causing<br />

<strong>the</strong> <strong>dependence</strong> <strong>of</strong> <strong>the</strong> Q-<strong>value</strong> <strong>on</strong> <strong>the</strong> field.<br />

ANNEX: DETERMINATION OF THE<br />

INDUCTANCE OF A DEFECT<br />

In <strong>the</strong> high κ limit, <strong>the</strong> magnetic inducti<strong>on</strong> B outside <strong>the</strong><br />

weakly superc<strong>on</strong>ducting hemispherical defect <strong>of</strong> radius a<br />

is described by <strong>the</strong> differential equati<strong>on</strong> derived from <strong>the</strong><br />

L<strong>on</strong>d<strong>on</strong> approximati<strong>on</strong> <strong>of</strong> <strong>the</strong> Ginzburg-Landau<br />

<strong>for</strong>malism,<br />

1<br />

B + ∇ × ∇ × B =<br />

2<br />

0<br />

λ ,<br />

which, <strong>for</strong> spherical coordinates, is identical with<br />

1<br />

−<br />

λ<br />

∂<br />

∂r<br />

2<br />

1 ∂ 1 ∂<br />

2<br />

Φ<br />

r 14 ∂Θ sin 444 Θ ∂Θ 24444<br />

3<br />

( rB ) + ( rB ) +<br />

( sin ΘrB<br />

) 0<br />

2 Φ<br />

=<br />

2 Φ<br />

Separati<strong>on</strong> <strong>of</strong> variables by <strong>the</strong> ansatz<br />

B<br />

Φ<br />

( r Θ)<br />

results in<br />

() r<br />

ul<br />

, = ⋅ Pl<br />

r<br />

1<br />

ul<br />

− ulPl<br />

+ Pu<br />

l l′′+<br />

2<br />

λ<br />

r<br />

r<br />

( cosΘ)<br />

1 ∂ ⎛ ∂ ⎞ rBΦ<br />

⎜ sin Θ rBΦ<br />

⎟−<br />

sin Θ ∂Θ<br />

2<br />

⎝ ∂Θ ⎠ sin Θ<br />

1 ∂ ⎛ ∂ ⎞ ulPl<br />

⎜sin<br />

Θ Pl<br />

⎟ −<br />

2<br />

sin Θ ∂Θ ⎝ ∂Θ ⎠ r sin Θ<br />

2<br />

=<br />

u′′<br />

1<br />

∂<br />

∂Θ<br />

⎛<br />

⎜sin<br />

Θ<br />

∂<br />

∂Θ<br />

⎞<br />

P ⎟<br />

2<br />

l<br />

2 l sin Θ<br />

− + r +<br />

⎝ ⎠<br />

− = 0<br />

2<br />

2<br />

ul<br />

Pl<br />

sin Θ<br />

14243<br />

λ<br />

l( l + 1)<br />

.<br />

The separati<strong>on</strong> ansatz leads to two differential equati<strong>on</strong>s,<br />

<strong>the</strong> first <strong>of</strong> which is<br />

and<br />

( l 1)<br />

⎛ 1 l +<br />

ul′−<br />

⎜ +<br />

2<br />

⎝ λ r<br />

1<br />

sinΘ<br />

⎞<br />

⎠<br />

′ =<br />

2 ⎟ul<br />

∂<br />

∂Θ<br />

⎛<br />

⎜sinΘ<br />

⎝<br />

∂<br />

∂Θ<br />

⎞<br />

P<br />

⎠<br />

0<br />

⎛<br />

⎝<br />

1<br />

1 ⎞<br />

⎟<br />

sin Θ ⎠<br />

( l + 1) − 0<br />

l ⎟ + ⎜l<br />

P =<br />

2 l<br />

It can be trans<strong>for</strong>med, by means <strong>of</strong> () r B ⋅ r<br />

into<br />

u l<br />

.<br />

0<br />

.<br />

= Φ<br />

,<br />

( l 1)<br />

⎛ 1 l + ⎞ 2<br />

B′ ⎜<br />

+ ′<br />

Φ<br />

− +<br />

= 0<br />

2 2 ⎟BΦ<br />

BΦ<br />

⎝ λ r ⎠ r .<br />

By finally using<br />

B<br />

Φ<br />

=<br />

1<br />

⋅ wl<br />

r<br />

() r<br />

,<br />

r<br />

x = ,<br />

λ<br />

<strong>the</strong> equati<strong>on</strong> is identical with <strong>the</strong> Bessel differential<br />

equati<strong>on</strong> [11]<br />

⎛ 1 2 ⎞<br />

2<br />

⎜<br />

2 ⎛ ⎞<br />

x ⋅ w<br />

⎟<br />

l ′′+ x ⋅ wl<br />

′ − x + = 0<br />

⎜l<br />

+ ⎟ w<br />

2<br />

l<br />

⎝ ⎝ ⎠ ⎠ ,<br />

which has <strong>the</strong> soluti<strong>on</strong> that vanishes <strong>for</strong> x → ∞,<br />

⎛ ⎞<br />

= − x 1 1<br />

wl<br />

e ⋅ ⎜ +<br />

1 2 3 2 ⎟<br />

⎝ x x ⎠ .<br />

The sec<strong>on</strong>d differential equati<strong>on</strong>,<br />

1<br />

sin Θ<br />

∂<br />

∂Θ<br />

⎛<br />

⎜sin<br />

Θ<br />

⎝<br />

trans<strong>for</strong>ms, using<br />

x = cosΘ ,<br />

∂<br />

∂Θ<br />

⎞<br />

P<br />

⎠<br />

⎛<br />

⎝<br />

1 ⎞<br />

⎟<br />

sin Θ ⎠<br />

( l + 1) −<br />

0<br />

l ⎟ + ⎜l<br />

P =<br />

2 l<br />

into <strong>the</strong> associated Legendre differential equati<strong>on</strong><br />

2 ⎛ 1 ⎞<br />

( − x ) P′′−<br />

2xP′+<br />

⎜l( l + 1) − ⎟P<br />

= 0<br />

1<br />

l l<br />

2<br />

It is solved by<br />

P<br />

1<br />

l<br />

2 2<br />

( x) = ( 1− x ) 1<br />

P ( x)<br />

⎝<br />

d<br />

dx<br />

l<br />

1−<br />

x ⎠<br />

Re-inserting back, and taking into account <strong>the</strong> boundary<br />

c<strong>on</strong>diti<strong>on</strong>s <strong>for</strong> r = a,<br />

B<br />

( )<br />

Φ<br />

Θ<br />

r = a<br />

= μ<br />

0<br />

H<br />

⋅<br />

.<br />

⋅a<br />

⋅sin<br />

Θ<br />

2 ⋅ λ ,<br />

0<br />

<strong>on</strong>e finds <strong>for</strong> <strong>the</strong> magnetic inducti<strong>on</strong> outside <strong>the</strong> defect,<br />

when a ≤ r, a « λ, with H 0 <strong>the</strong> applied magnetic field,<br />

B<br />

Φ,o<br />

( H r,<br />

Θ)<br />

0<br />

−( r−a<br />

) λ<br />

H<br />

0 ⎛ a ⎞ e<br />

, = μ<br />

0<br />

⋅ ⋅ ⎜ ⎟ ⋅<br />

2<br />

2 ⎝ λ ⎠ ⎛ r ⎞<br />

⎜ ⎟<br />

⎝ λ ⎠<br />

and inside <strong>the</strong> defect, r ≤ a,<br />

B<br />

Φ,i<br />

H<br />

2<br />

0<br />

( H , r,<br />

Θ) = μ ⋅ ⋅ sinΘ<br />

0<br />

0<br />

3<br />

⎛ r ⎞<br />

⎜ ⎟⋅<br />

⎝ λ ⎠<br />

.<br />

l<br />

.<br />

r<br />

1+<br />

⋅ λ<br />

⋅ sinΘ<br />

a<br />

1+<br />

λ<br />

,


The inductance as calculated point by point by<br />

numerical integrati<strong>on</strong> <strong>of</strong> eq. 8 using MATHEMATICA ®<br />

is nicely fitted by <strong>the</strong> relati<strong>on</strong> (Fig. 6, bottom)<br />

L ≈ 3.3⋅10<br />

−7<br />

⋅ a<br />

2 3<br />

1 3 μ<br />

0<br />

⋅ λ ≈ ⋅ a<br />

4<br />

2 3<br />

1 3<br />

⋅ λ .<br />

(9)<br />

Figure 6: Magnetic inducti<strong>on</strong> B Φ (r/λ). The defect size is<br />

0.1·a (top). The inductance L divided by <strong>the</strong> third root <strong>of</strong><br />

<strong>the</strong> penetrati<strong>on</strong> depth λ vs. <strong>the</strong> defect radius a is<br />

described by eq. 9 (bottom).<br />

The magnetic inducti<strong>on</strong> B Φ (r/λ) is depicted in Fig. 6 in<br />

units <strong>of</strong> Tesla, as calculated <strong>for</strong> Θ = π/2 and μ 0·H 0 = 1 T.<br />

The stored energy E B is <strong>the</strong> sum <strong>of</strong> <strong>the</strong> stored energy<br />

inside and outside <strong>the</strong> defect (Fig. 6, top):<br />

E<br />

B<br />

π<br />

=<br />

2 ⋅ μ<br />

π<br />

+<br />

2 ⋅ μ<br />

0<br />

⋅<br />

⋅<br />

∫<br />

π<br />

∫<br />

0 0<br />

π<br />

dΘ ⋅ sin Θ<br />

dΘ ⋅ sin Θ<br />

∫<br />

0 0<br />

∞<br />

∫<br />

a<br />

a<br />

2<br />

dr ⋅ r B<br />

2<br />

dr ⋅ r B<br />

2<br />

Φ,i<br />

2<br />

Φ,o<br />

( H , r,<br />

θ )<br />

( H , r,<br />

θ )<br />

0<br />

0<br />

+<br />

. (8)<br />

With <strong>the</strong> current I passing through <strong>the</strong> defect, being<br />

composed <strong>of</strong> <strong>the</strong> product <strong>of</strong> <strong>the</strong> current density and <strong>the</strong><br />

cross secti<strong>on</strong> <strong>of</strong> <strong>the</strong> defect,<br />

B π ⋅ a<br />

I = ⋅<br />

μ ⋅ λ 2<br />

0<br />

<strong>the</strong> inductance L is<br />

2 ⋅ E<br />

L =<br />

I<br />

B<br />

2<br />

.<br />

2<br />

,<br />

REFERENCES<br />

[1] K. Hübner, Designing and building LEP, Physics<br />

Reports 403 – 404 (2004) 177.<br />

[2] G. Ciovati, Review <strong>of</strong> <strong>the</strong> fr<strong>on</strong>tier workshop and Q-<br />

slope result, Physica C 441 (2006) 44, Proceedings<br />

<strong>of</strong> <strong>the</strong> 12th Internati<strong>on</strong>al Workshop <strong>on</strong> RF<br />

Superc<strong>on</strong>ductivity, Cornell University, Ithaca New<br />

York, USA, July 10 – 15, 2005.<br />

[3] W. Weingarten, Flux<strong>on</strong>-induced losses in niobium<br />

thin-film cavities, Physica C 339 (2000) 231.<br />

[4] W. Weingarten, The <strong>dependence</strong> <strong>on</strong> <strong>the</strong> RF frequency<br />

<strong>of</strong> <strong>the</strong> field dependent part <strong>of</strong> <strong>the</strong> surface resistance <strong>of</strong><br />

niobium sputter coated copper cavities, Proc. <strong>of</strong> <strong>the</strong><br />

10th Workshop <strong>on</strong> RF Superc<strong>on</strong>ductivity, Tsukuba,<br />

Japan, 2001, p. 378.<br />

[5] C. Benvenuti, S. Calatr<strong>on</strong>i, I. E. Campisi, P.<br />

Darriulat; M.A. Peck, R. Russo; A.-M. Valente,<br />

Study <strong>of</strong> <strong>the</strong> surface resistance <strong>of</strong> superc<strong>on</strong>ducting<br />

niobium films at 1.5 GHz, Physica C 316 (1999) 153.<br />

[6] G. Ciovati, Effect <strong>of</strong> low-temperature baking <strong>on</strong> <strong>the</strong><br />

radio-frequency properties <strong>of</strong> niobium<br />

superc<strong>on</strong>ducting cavities <strong>for</strong> particle accelerators,<br />

Journ. Appl. Phys. 96 (2004) 1591.<br />

[7] L. Lilje, C. Antoine, C. Benvenuti, D. Bloess, J.-P.<br />

Charrier, E. Chiaveri, L. Ferreira, R. Losito, A.<br />

Ma<strong>the</strong>isen, H. Preis, D. Proch, D. Reschke, H. Safa,<br />

P. Schmüser, D. Trines, B. Visentin, H. Wenninger,<br />

Improved surface treatment <strong>of</strong> <strong>the</strong> superc<strong>on</strong>ducting<br />

TESLA cavities, Nucl. Instr. Meth. A 516 (2004) 213.<br />

[8] C. Benvenuti, S. Calatr<strong>on</strong>i, P. Darriulat, M.A. Peck,<br />

A.-M. Valente, and C. A. Van’t H<strong>of</strong>; Study <strong>of</strong> <strong>the</strong><br />

residual resistance <strong>of</strong> superc<strong>on</strong>ducting niobium films<br />

at 1.5 GHz , Physica C 351 (2001) 421.<br />

[9] e.g. M. Tinkham, Introducti<strong>on</strong> to Superc<strong>on</strong>ductivity,<br />

Malabar, FA, USA, 1980.<br />

[10] C. C. Koch, J. O. Scarbrough, and D. M. Kroeger,<br />

Effects <strong>of</strong> interstitial oxygen <strong>on</strong> <strong>the</strong> superc<strong>on</strong>ductivity<br />

<strong>of</strong> niobium, Phys. Rev. B 9 (1974) 888.<br />

[11] e.g. Jahnke-Emde-Loesch, 7 th editi<strong>on</strong> by F. Loesch,<br />

Tables <strong>of</strong> higher functi<strong>on</strong>s, Stuttgart 1966, p. 207.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!