12.06.2015 Views

Aust Workshops - TUFLOW Modelling Bends, Structures and ...

Aust Workshops - TUFLOW Modelling Bends, Structures and ...

Aust Workshops - TUFLOW Modelling Bends, Structures and ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Aust</strong>ralian 2011/2012 <strong>TUFLOW</strong> <strong>Workshops</strong><br />

1D <strong>and</strong> 2D <strong>Modelling</strong><br />

<strong>Bends</strong>, <strong>Structures</strong> <strong>and</strong> Obstructions<br />

Bill Syme<br />

1D vs 2D<br />

Underst<strong>and</strong>ing the Difference<br />

Form Losses<br />

• Energy dissipated as heat due to changes in velocity<br />

magnitude <strong>and</strong> direction<br />

• Pronounced at<br />

• <strong>Bends</strong><br />

• Flow constrictions (structures)<br />

• Form loss coefficient<br />

• Proportion of dynamic head (V 2 /2g) lost<br />

• V = 1m/s; Dynamic Head = 0.05m<br />

• V = 4m/s; Dynamic Head = 0.82m<br />

3<br />

Bill Syme, BMT WBM, support@tuflow.com<br />

1


<strong>Aust</strong>ralian 2011/2012 <strong>TUFLOW</strong> <strong>Workshops</strong><br />

Right-Angled Bend<br />

1D vs 2D<br />

4<br />

<br />

3<br />

3<br />

<br />

1<br />

<br />

<br />

<br />

1 2 2<br />

A<br />

0.5<br />

Water Surface Profiles (V = 2m/s)<br />

0.4<br />

Coarse 2D Model<br />

1D Model<br />

1D Model<br />

Water Level (m)<br />

0.3<br />

0.2<br />

0.1<br />

A<br />

0<br />

-0.1<br />

0 50 100 150 200 250 300 350 400 450<br />

Distance (m)<br />

4<br />

River<br />

<strong>Bends</strong><br />

23.2<br />

23.4<br />

23.2 23.2 23.2 23.2 23.2 23.2 23.2 23.2 23.2<br />

23.4 23.4 23.4 23.4 23.4 23.4 23.4 23.4 23.4<br />

23.6 23.6 23.6 23.6 23.6 23.6 23.6 23.6 23.6<br />

23.4 23.4 23.4 23.4 23.4 23.4 23.4 23.4<br />

23.2 23.2 23.2 23.2 23.2 23.2 23.2 23.2 23.2<br />

3<br />

• 4 m/s<br />

• 20 m deep<br />

23.6 23.6<br />

23.6<br />

• 0.4m<br />

superelevation<br />

23.8 23.8 23.8 23.8 23.8 23.8 23.8 23.8 23.8<br />

24 24 24 24 24 24 24 24 24<br />

• 1D:<br />

• Need additional<br />

losses<br />

(eg. higher n)<br />

• No superelevation<br />

24.4 24.4 24.4 24.4 24.4 24.4 24.4 24.4 24.4<br />

24.2<br />

23.8 23.8 23.8 23.8 23.8 23.8 23.8 23.8 23.8<br />

24<br />

23.8<br />

23.6 23.6 23.6 23.6 23.6 23.6 23.6 23.6 23.6<br />

23.4 23.4 23.4 23.4 23.4 23.4 23.4 23.4 23.4<br />

23 23 23 23 23 23 23 23 23<br />

23.2 23.2 23.2 23.2 23.2 23.2 23.2 23.2 23.2<br />

22.8 22.8 22.8 22.8 22.8 22.8 22.8 22.8 22.8<br />

22.6 22.6 22.6 22.6 22.6 22.6 22.6 22.6 22.6<br />

22<br />

4<br />

5<br />

2D vs 3D?<br />

2D<br />

3D<br />

23 cm 30 cm<br />

6<br />

6<br />

Bill Syme, BMT WBM, support@tuflow.com<br />

2


<strong>Aust</strong>ralian 2011/2012 <strong>TUFLOW</strong> <strong>Workshops</strong><br />

<strong>Bends</strong> - Conclusions<br />

1D <strong>and</strong> 2D Approaches<br />

• 1D<br />

• 2D<br />

• Apply extra losses by<br />

• Form loss coefficient, or<br />

• Increasing Manning’s n<br />

• Do not model superelevation<br />

• Form losses inherent / Models superelevation<br />

• However<br />

• Are model elements too coarse to simulate all losses?<br />

• Are there losses in the vertical plane? (Helicoidal circulations)<br />

• Additional form losses may be required<br />

7<br />

Hydraulic <strong>Structures</strong><br />

• Hydraulic <strong>Structures</strong><br />

• Bridges <strong>and</strong> Embankments<br />

• Large Culverts<br />

• Hydraulics is Complex (3D)<br />

• 1D: Traditional Approach<br />

• 2D: Looks impressive, but is it accurate?<br />

• 1D/2D: Best of both?<br />

8<br />

2D: Looks impressive, but is it accurate?<br />

?<br />

9<br />

Bill Syme, BMT WBM, support@tuflow.com<br />

3


<strong>Aust</strong>ralian 2011/2012 <strong>TUFLOW</strong> <strong>Workshops</strong><br />

1D: Traditional Approach<br />

Uses Contraction/Expansion Losses<br />

10<br />

1D Culvert Entrance <strong>and</strong><br />

Exit Loss Coefficients<br />

• Coefficients adjusted according to approach <strong>and</strong> departure velocities in a 1D<br />

network (n/a yet when connected to 2D)<br />

• Can fix losses (ie. no adjustment) if desired<br />

• Default unadjusted values typically 0.5 <strong>and</strong> 1.0<br />

• Energy loss is C*V s2 /2g<br />

V<br />

Centrance<br />

_ adjusted = Centrance<br />

<br />

1 <br />

V<br />

V <br />

_ 1 <br />

departure<br />

Cexit<br />

adjusted = Cexit<br />

<br />

Vstructure<br />

<br />

approach<br />

structure<br />

2<br />

<br />

<br />

<br />

11<br />

2D: No Contraction/Expansion Losses?<br />

12<br />

Bill Syme, BMT WBM, support@tuflow.com<br />

4


<strong>Aust</strong>ralian 2011/2012 <strong>TUFLOW</strong> <strong>Workshops</strong><br />

2D Scheme Modifications<br />

(2d_fc or 2d_fcsh layers)<br />

Cell Obvert<br />

Partially block cell sides<br />

Deck FLC<br />

Form Loss<br />

Coefficient<br />

13<br />

2D Layered Adjustments<br />

(2d_lfcsh layers)<br />

Blockage = 0%<br />

FLC = 0<br />

Blockage = 50%<br />

FLC = 0.5<br />

Blockage = 100%<br />

FLC = 0.8<br />

Blockage = 5%<br />

Form Loss Coeff = 0.1<br />

14<br />

2.88 m 1<br />

1<br />

2 2 3 <br />

3<br />

2.30 m<br />

4<br />

0.7 m/s<br />

2.86 m<br />

2.42 m<br />

2.9 m/s<br />

0.8 m/s<br />

3<br />

Water Surface Profiles - Outlet Controlled<br />

2.9<br />

2.8<br />

1D Model<br />

Water Level (m)<br />

2.7<br />

2.6<br />

2.5<br />

Upstream<br />

of Culvert<br />

Downstream<br />

of Culvert<br />

2.4<br />

2.3<br />

2.2<br />

0 50 100 150 200 250 300<br />

Distance (m)<br />

15<br />

Bill Syme, BMT WBM, support@tuflow.com<br />

5


<strong>Aust</strong>ralian 2011/2012 <strong>TUFLOW</strong> <strong>Workshops</strong><br />

<br />

Modify 2D Cells<br />

to represent<br />

culvert<br />

Water Surface Profiles - Outlet Controlled<br />

3<br />

2.9<br />

1D Model<br />

2.8<br />

2D Model (Culvert as 2D Cells)<br />

Water Level (m)<br />

2.7<br />

2.6<br />

2.5<br />

Upstream<br />

of Culvert<br />

Downstream<br />

of Culvert<br />

2.4<br />

2.3<br />

2.2<br />

0 50 100 150 200 250 300<br />

Distance (m)<br />

16<br />

So 2D isn’t perfect!<br />

What are our options?<br />

• Don’t use 2D!<br />

• Adapt 2D Solution<br />

• Insert 1D Solution<br />

17<br />

“Calibrating”<br />

2D <strong>Structures</strong><br />

• For example,<br />

if we apply a<br />

0.2 FLC,<br />

ie. add<br />

0.2*V 2 /2g<br />

energy loss<br />

<br />

Water Level (m)<br />

3<br />

2.9<br />

2.8<br />

2.7<br />

2.6<br />

2.5<br />

2.4<br />

2.3<br />

2.2<br />

Water Surface Water Profiles Surface - Outlet Profiles Controlled - Outlet - Controlled Adjusted Form Losses<br />

Upstream<br />

of Culvert<br />

Downstream<br />

of Culvert<br />

0 50 100 150 200 250 300<br />

Distance (m)<br />

1D 1D Model<br />

2D 2D Model (Culvert as as 2D 2D Cells)<br />

Bill Syme, BMT WBM, support@tuflow.com<br />

6


<strong>Aust</strong>ralian 2011/2012 <strong>TUFLOW</strong> <strong>Workshops</strong><br />

1D/2D<br />

Link<br />

Options<br />

2.88 m 1 <br />

1<br />

0.7 m/s<br />

2.86 m<br />

2.42 Modify m<br />

Block 2D Cells<br />

2 2 3 to <strong>and</strong> represent insert<br />

3<br />

2.9 m/s<br />

0.8 m/s<br />

culvert 1D element<br />

2.30 m<br />

4<br />

• SX Link<br />

• HX Link<br />

(Preserves<br />

momentum)<br />

Water Level (m)<br />

(m)<br />

3<br />

2.9<br />

2.9<br />

2.8<br />

2.8<br />

2.7<br />

2.7<br />

2.6<br />

2.6<br />

2.5<br />

2.5<br />

2.4<br />

2.4<br />

2.3<br />

2.3<br />

Water Surface Profiles - - Outlet Controlled<br />

1D 1D<br />

Model<br />

Model<br />

2D 2D Model Model (Culvert<br />

1D Model as as 2D 2D Cells)<br />

2D Model (Culvert as 1D Element)<br />

2D 2D Model Model (Culvert (Culvert as 1D as Element) 2D Cells)<br />

2D (1D Culvert & Momentum)<br />

Upstream<br />

Downstream<br />

Upstream Downstream<br />

of Culvert<br />

of of Culvert<br />

of Culvert of Culvert<br />

2.2<br />

2.2<br />

0 50 100 150 200 250 300<br />

0 50 100 150 200 250 300<br />

Distance (m)<br />

Distance (m)<br />

19<br />

“Calibrating”<br />

1D Culvert<br />

linked to 2D<br />

<br />

<br />

<br />

• Culvert as 1D<br />

Element<br />

• Reduce Outlet<br />

Loss<br />

Coefficient by<br />

0.2<br />

Water Level (m)<br />

Water Surface Profiles - Outlet Controlled - Adjusted Form Losses<br />

3<br />

1D Model<br />

2.9<br />

1D Model<br />

2D Model (Culvert 1D Model as 2D Cells)<br />

2.8<br />

2D Model (Culvert as 2D Cells)<br />

2D Model (Culvert as 1D Element)<br />

2.7<br />

2.6<br />

Upstream<br />

Downstream<br />

of Culvert<br />

of Culvert<br />

2.5<br />

2.4<br />

2.3<br />

2.2<br />

0 50 100 150 200 250 300<br />

Distance (m)<br />

20<br />

<strong>Modelling</strong> Culverts - Conclusions<br />

• Culvert as 2D Cell(s)<br />

• 2D solution models 70 to 80% of losses<br />

• Need 20 to 30% additional form losses<br />

• Culvert as 1D Element<br />

• Over predicts losses by 0 to 70%<br />

• Small – 0% over prediction<br />

• Large – up to 70% over prediction<br />

• Reduce inlet / outlet losses of 1D element(s)<br />

21 21<br />

Bill Syme, BMT WBM, support@tuflow.com<br />

7


<strong>Aust</strong>ralian 2011/2012 <strong>TUFLOW</strong> <strong>Workshops</strong><br />

Embankments / Levees<br />

(Weir Flow)<br />

• Approach<br />

• Test submergence<br />

across cell side<br />

• BC Weir equation if<br />

unsubmerged<br />

• No adjustment if<br />

submerged<br />

<br />

2.4<br />

2.2<br />

2<br />

Cell sides set to 1m high<br />

for 2D Model (Thin Weir)<br />

Comparison Upstream Water Level Hydrographs<br />

Unsubmerged<br />

Submerged<br />

400<br />

350<br />

300<br />

• Thin Weir Test<br />

Water Level (m)<br />

1.8<br />

1.6<br />

1.4<br />

1D<br />

1D<br />

Model<br />

Model<br />

& Theory<br />

Theory<br />

D/S Water Level<br />

2D Model (Thin Weir)<br />

D/S Water Level<br />

D/S Water Level<br />

Inflow Hydrograph<br />

Inflow<br />

Inflow<br />

Hydrograph<br />

Hydrograph<br />

250<br />

200<br />

150<br />

Inflow (m 3 /s)<br />

1.2<br />

100<br />

1<br />

Weir Crest Level<br />

50<br />

0.8<br />

0<br />

0:00 0:30 1:00 1:30 2:00 2:30 3:00 3:30<br />

Time (hh:mm)<br />

22<br />

Oblique Weirs<br />

• Flow oblique to<br />

grid<br />

• Weir at 45˚ test Unit Flow Across a Broad-Crested Weir - Upstream Controlled<br />

3.50<br />

• Correct using weir<br />

coefficient<br />

Unit Flow (m 2 /s)<br />

3.00<br />

2.50<br />

2.00<br />

1.50<br />

1.00<br />

BC Weir Formula<br />

BC Weir Formula<br />

2D Model BC (Weir Formula Coef = 1.0)<br />

2D Model (Weir Coef 1.0)<br />

2D Model (Weir Coef = 1.1)<br />

0.50<br />

0.00<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6<br />

Upstream Head above Sill (m)<br />

23<br />

Conclusions<br />

• 2D contracts <strong>and</strong> exp<strong>and</strong>s flow lines<br />

• Inherently models form losses<br />

• May not model 100% of losses<br />

• Need ability to add form losses (calibrate)<br />

• Need momentum <strong>and</strong> viscosity terms<br />

• Linking 1D structures into 2D<br />

• Useful when the structure is small<br />

• Large structures (relative to 2D cell size) may over predict losses<br />

• May need to reduce inlet / outlet losses (calibrate)<br />

• Check <strong>and</strong> UNDERSTAND your results<br />

24 24<br />

Bill Syme, BMT WBM, support@tuflow.com<br />

8


<strong>Aust</strong>ralian 2011/2012 <strong>TUFLOW</strong> <strong>Workshops</strong><br />

1D/2D Linking<br />

1D/2D Interface Linking<br />

1D Carved Through 2D<br />

• Define 1D/2D Interface<br />

(digitise along the top or crest of the bank)<br />

• Connect 1D nodes to<br />

1D/2D interface<br />

(digitise perpendicular to flow)<br />

10.0<br />

10.2<br />

10.1<br />

26 26<br />

1D/2D Interface Linking<br />

1D Carved Through 2D<br />

• If levee, digitise HX<br />

line along<br />

levee crest<br />

HX<br />

Thick Z Line needed<br />

HX<br />

• Use a Thick Z Line to<br />

ensure HX cell is set<br />

to levee crest height<br />

<strong>and</strong> overtopping<br />

occurs at correct<br />

height<br />

27 27<br />

Bill Syme, BMT WBM, support@tuflow.com<br />

9


<strong>Aust</strong>ralian 2011/2012 <strong>TUFLOW</strong> <strong>Workshops</strong><br />

1D/2D Interface Linking<br />

1D Carved Through 2D<br />

• Cross-sections must extend from<br />

HX line to HX line<br />

(ToB to ToB)<br />

• Use a Thick Z Line along<br />

HX lines to set ToB<br />

levels at HX cells<br />

28 28<br />

1D/2D Interface Troubleshooting<br />

• Ensure Cell elevations are representative of spill levels<br />

–use a Thick Z Line<br />

• Most common cause by far is bumpy HX cell elevations<br />

• Poor 1D resolution<br />

• Missing connections<br />

• Add additional FLC (energy loss) works well<br />

(2010 version can be added directly to HX line using “a” attribute)<br />

29<br />

29<br />

1D/2D Structure Linking<br />

Culvert Through an Embankment<br />

• 2D water levels define<br />

water level gradient<br />

across culvert<br />

• Flow through culvert<br />

applied as a sink/source<br />

to 2D cells<br />

• Make sure width of 2D SX<br />

cells EXCEEDS width of<br />

1D flow (at all elevations)<br />

30 30<br />

Bill Syme, BMT WBM, support@tuflow.com<br />

10


<strong>Aust</strong>ralian 2011/2012 <strong>TUFLOW</strong> <strong>Workshops</strong><br />

1D/2D Pipe Network Linking<br />

Underground Pipe Network<br />

• Use pits to connect<br />

pipe network with<br />

overl<strong>and</strong> 2D<br />

• 2D water level at<br />

cell drives 1D pipe<br />

hydraulics<br />

(unless pit is not full)<br />

• Net pipe flow in/out<br />

of pit applied as<br />

sink/source to 2D<br />

cell<br />

31 31<br />

<strong>Modelling</strong> Urban Areas<br />

Culvert Flow<br />

Inlet Control Regimes<br />

HW<br />

HW<br />

TW<br />

TW<br />

A: Unsubmerged Entrance,<br />

Supercritical Slope<br />

B: Submerged Entrance,<br />

Supercritical Slope<br />

HW<br />

TW<br />

HW<br />

TW<br />

K: Unsubmerged Entrance,<br />

Submerged Exit<br />

Critical at Entrance<br />

L: Submerged Entrance,<br />

Submerged Exit<br />

Orifice Flow at Entrance<br />

33 33<br />

Bill Syme, BMT WBM, support@tuflow.com<br />

11


<strong>Aust</strong>ralian 2011/2012 <strong>TUFLOW</strong> <strong>Workshops</strong><br />

Culvert Flow<br />

Outlet Control Regimes<br />

HW<br />

TW<br />

HW<br />

TW<br />

No Flow<br />

HW<br />

No Flow<br />

TW<br />

Gate Closed<br />

C: Unsubmerged Entrance,<br />

Critical Exit<br />

D: Unsubmerged Entrance,<br />

Subcritical Exit<br />

G: No Flow<br />

Dry or Flap-Gate Closed<br />

HW<br />

TW<br />

HW<br />

TW<br />

HW<br />

TW<br />

HW<br />

TW<br />

E: Submerged Entrance,<br />

Unsubmerged Exit<br />

F: Submerged Entrance,<br />

Submerged Exit<br />

H: Adverse Slope,<br />

Submerged Entrance<br />

J: Adverse Slope,<br />

Unsubmerged Entrance<br />

(Critical or Subcritical at Exit)<br />

34 34<br />

Pits<br />

(Drains / Gully Traps)<br />

• Convey the water between above ground<br />

<strong>and</strong> below ground<br />

• Recommendation is to use Q pits <strong>and</strong> y-Q curves<br />

• Apply appropriate curves!<br />

35<br />

35<br />

Pit Database<br />

• See Section 4.5.1.2 of 2008 Manual<br />

36<br />

36<br />

Bill Syme, BMT WBM, support@tuflow.com<br />

12


<strong>Aust</strong>ralian 2011/2012 <strong>TUFLOW</strong> <strong>Workshops</strong><br />

Manholes<br />

• Represent pipe junctions<br />

• Simulate energy losses at junctions<br />

• Must have at least one pipe in <strong>and</strong> one pipe out<br />

37<br />

37<br />

Junction Energy Losses<br />

Node or “NO” Manhole<br />

• “Structure Losses == ADJUST” (the default) or Channel “A” Flag<br />

• Inlet/Outlet Losses of pipes/manholes are adjusted based on<br />

approach/departure velocities<br />

(see Section 4.7.4.1 2008 Manual)<br />

• Adjusted down to zero if velocity unchanged through node<br />

• “Structure Losses == FIX” or Channel “F” Flag<br />

• Full pipe inlet/outlet losses are applied<br />

• Can significantly overestimate losses<br />

38<br />

38<br />

Junction Energy Losses<br />

“FX” <strong>and</strong> “EN” Manholes<br />

• For “FX” <strong>and</strong> “EN” Manholes<br />

• Exit loss coefficients of all inlet pipes ignored<br />

• Entrance loss coefficients of all outlet pipes ignored<br />

• Manhole approach applied instead<br />

• Any pipe Form_Loss (bend loss) values are applied<br />

39<br />

39<br />

Bill Syme, BMT WBM, support@tuflow.com<br />

13


<strong>Aust</strong>ralian 2011/2012 <strong>TUFLOW</strong> <strong>Workshops</strong><br />

Junction Energy Losses<br />

“FX” Manhole<br />

• K_Fixed attribute sets total losses for manhole<br />

(default = 0.0, ie. no losses)<br />

• Proportion/Multiplier of outlet pipe velocity head<br />

• Can exceed 1<br />

• User specified based on literature guidelines<br />

40<br />

40<br />

Junction Energy Losses<br />

“EN” Manhole<br />

• Based on following loss coefficients<br />

• K in – expansion from water flowing into manhole<br />

• K Ɵ – losses due to approach-departure angles of pipes<br />

• K drop – drop losses due to change in pipe inverts<br />

• K out – contraction losses into outlet pipe(s)<br />

• K f – Any user specified additional fixed losses<br />

• Loss coefficients recalculated every timestep<br />

• Equations in 2010 manual<br />

41<br />

41<br />

Pipe Network Tips<br />

• Converting GIS to 1d_nwk<br />

• Keep backward traceability<br />

• Append some/all GIS attributes to 1d_nwk attributes<br />

• Data Integrity<br />

(Snapping!)<br />

• Use 1d_nwk_N_check<br />

(Nodes colour coded based on snapped channels)<br />

42 42<br />

Bill Syme, BMT WBM, support@tuflow.com<br />

14


<strong>Aust</strong>ralian 2011/2012 <strong>TUFLOW</strong> <strong>Workshops</strong><br />

Pipe Network Stability Tips<br />

• 1D timestep for pipe models usually in range from 0.1s to 1.0s<br />

• Beware of very short/steep pipes<br />

• Sometimes additional storage added – sensitivity test!<br />

43<br />

43<br />

Modifying Networks<br />

• Can upgrade or modify existing pipe(s) by simply overriding with<br />

repeat pipe(s) in separate 1d_nwk layer<br />

• Select <strong>and</strong> save pipe(s) to be modified<br />

• Save as new 1d_nwk layer<br />

• Modify pipe(s)<br />

• Add in new “Read MI Network” line<br />

• Cross-check using 1d_nwk_check layer <strong>and</strong>/or viewing .eof file<br />

44<br />

44<br />

Detailed Urban Models<br />

45<br />

45<br />

Bill Syme, BMT WBM, support@tuflow.com<br />

15


<strong>Aust</strong>ralian 2011/2012 <strong>TUFLOW</strong> <strong>Workshops</strong><br />

Detailed Urban Models<br />

• 1,600 pipes / culverts<br />

• 900 pits (drains)<br />

• 600 manholes<br />

• 1.8 million wet cells at peak<br />

• 0% Mass Error<br />

46 46<br />

<strong>Modelling</strong> Buildings?<br />

47 47<br />

<strong>Modelling</strong> Buildings<br />

Block Cells Out<br />

100%<br />

0.137m<br />

0m/s<br />

1.9m/s<br />

48 48<br />

Bill Syme, BMT WBM, support@tuflow.com<br />

16


<strong>Aust</strong>ralian 2011/2012 <strong>TUFLOW</strong> <strong>Workshops</strong><br />

Building Walls Blocked<br />

Open Upstream<br />

100%<br />

0.145m<br />

0m/s<br />

1.93m/s<br />

49 49<br />

Roughened Up Scenario<br />

(n = 0.3)<br />

79%<br />

0.122m<br />

0.38m/s<br />

1.41m/s<br />

50 50<br />

Porous (Blockage = 90%)<br />

Energy Loss (0.1*V 2 /2g)<br />

93%<br />

0.107m<br />

1.28m/s<br />

1.78m/s<br />

51 51<br />

Bill Syme, BMT WBM, support@tuflow.com<br />

17


<strong>Aust</strong>ralian 2011/2012 <strong>TUFLOW</strong> <strong>Workshops</strong><br />

<strong>Modelling</strong> Fences!<br />

52 52<br />

Urban Areas – Buildings <strong>and</strong> Fences<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

53<br />

<strong>Modelling</strong> Fences!<br />

• Able to raise element sides<br />

• Element sides wet <strong>and</strong> dry<br />

• Layered parameters<br />

• eg. vary blockage<br />

<strong>and</strong> losses with height<br />

• Collapse element sides<br />

• Switch between u/s <strong>and</strong> d/s controlled<br />

weir flow<br />

54<br />

Bill Syme, BMT WBM, support@tuflow.com<br />

18


<strong>Aust</strong>ralian 2011/2012 <strong>TUFLOW</strong> <strong>Workshops</strong><br />

Collapsible Fences Animation<br />

55<br />

<strong>Modelling</strong> Blockages!?<br />

56<br />

2D Layered Adjustments<br />

Blockage = 0%<br />

FLC = 0<br />

Blockage = 50%<br />

FLC = 0.5<br />

Blockage = 100%<br />

FLC = 0.8<br />

Blockage = 5%<br />

Form Loss Coeff = 0.1<br />

57<br />

Bill Syme, BMT WBM, support@tuflow.com<br />

19


<strong>Aust</strong>ralian 2011/2012 <strong>TUFLOW</strong> <strong>Workshops</strong><br />

58 58<br />

Bill Syme, BMT WBM, support@tuflow.com<br />

20

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!