02.07.2015 Views

Anaerobic Degradation of Chlorinated Ethenes in a Low-pH, High ...

Anaerobic Degradation of Chlorinated Ethenes in a Low-pH, High ...

Anaerobic Degradation of Chlorinated Ethenes in a Low-pH, High ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

F-102, <strong>in</strong>: T.C. Fox and H.V. Rectanus (Chairs). Remediation <strong>of</strong> <strong>Chlor<strong>in</strong>ated</strong> and Recalcitrant Compounds—2012.<br />

Eighth International Conference on Remediation <strong>of</strong> <strong>Chlor<strong>in</strong>ated</strong> and Recalcitrant Compounds (Monterey, CA; May 2012).<br />

ISBN 978-0-9819730-5-0, ©2012 Battelle Memorial Institute, Columbus, OH, www.battelle.org/chlorcon.<br />

<strong>Anaerobic</strong> <strong>Degradation</strong> <strong>of</strong> <strong>Chlor<strong>in</strong>ated</strong> <strong>Ethenes</strong> <strong>in</strong> a<br />

<strong>Low</strong>-<strong>pH</strong>, <strong>High</strong>-Sulfate, and Sal<strong>in</strong>e Environment<br />

Robert A. Kl<strong>in</strong>e (robert.a.kl<strong>in</strong>e@nasa.gov) and Michael J. Deliz<br />

(NASA, Kennedy Space Center, Florida, USA)<br />

Christopher A. Hook, Mark J. Jonnet, Boris Dynk<strong>in</strong>, and Christopher Pike<br />

(Tetra Tech, Pittsburgh, Pennsylvania, USA),<br />

Background/Objectives. Implement<strong>in</strong>g anaerobic biostimulation for chlor<strong>in</strong>ated ethene<br />

degradation <strong>in</strong> groundwater with low <strong>pH</strong> and high sulfate and chloride levels can be challeng<strong>in</strong>g,<br />

even unsuccessful <strong>in</strong> many cases. An anaerobic biostimulation <strong>in</strong>terim measure<br />

is currently under implementation and optimization at the NASA Former Drum Storage<br />

Area (FDSA) at Kennedy Space Center under these conditions. The site is situated <strong>in</strong> a<br />

remote area conta<strong>in</strong><strong>in</strong>g marshes and scrub-brush cover and is adjacent to a brackish surface<br />

water body classified as Outstand<strong>in</strong>g Florida Water (OFW). Under this<br />

classification, no degradation <strong>of</strong> surface water may occur; therefore no detectable level <strong>of</strong><br />

any contam<strong>in</strong>ant is allowed. The horizontal extent <strong>of</strong> a chlor<strong>in</strong>ated ethene plume is approach<strong>in</strong>g<br />

the OFW, and an <strong>in</strong>terim measure was implemented at the plume front via a<br />

biological treatment zone. The treatment zone consists <strong>of</strong> extraction and <strong>in</strong>jection wells,<br />

electron donor addition, and a solar-powered recirculation system.<br />

Approach/Activities. Data gathered dur<strong>in</strong>g the first 6 months <strong>of</strong> <strong>in</strong>terim measure activities<br />

<strong>in</strong>dicated favorable trichloroethene and cis-1,2-dichloroethene reduction <strong>in</strong> plume<br />

front concentrations. Interest<strong>in</strong>gly, v<strong>in</strong>yl chloride was not detected at treatment zone<br />

monitor<strong>in</strong>g locations. <strong>High</strong>ly reduc<strong>in</strong>g conditions were created with<strong>in</strong> the entire treatment<br />

zone as a result <strong>of</strong> electron donor addition and recirculation. Groundwater with<strong>in</strong> the<br />

treatment zone was brackish with concentrations <strong>of</strong> sulfates and chlorides with<strong>in</strong> a several<br />

grams per liter range. Stoichiometric parent/daughter relationships and site geochemistry<br />

suggest that degradation mechanisms were complex <strong>in</strong> nature compared to<br />

classic reductive dechlor<strong>in</strong>ation by the ethenogen Dehalococoides spp. (DHC). Populations<br />

<strong>of</strong> DHC were present, but activity is suspected to be fairly <strong>in</strong>hibited because<br />

chloride and sulfate levels, low <strong>pH</strong> , and iron and manganese may be limited for coprecipitation.<br />

Molecular biological tools (MBTs) <strong>in</strong>dicated a robust consortia <strong>of</strong> vary<strong>in</strong>g<br />

microbial populations, primarily eubacteria, sulfate-reduc<strong>in</strong>g bacteria, methanogens, and<br />

DHC. Based on this <strong>in</strong>formation, a dynamic microcosm test<strong>in</strong>g protocol was developed<br />

and will be executed to provide a better understand<strong>in</strong>g <strong>of</strong> the degradation mechanisms<br />

operat<strong>in</strong>g at the site.<br />

Results/Lessons Learned. The microcosm test<strong>in</strong>g exam<strong>in</strong>ed microbial electron donor<br />

competition, biological mechanisms, specialized bioaugmentation acclimation, and abiotic<br />

<strong>in</strong>fluences. As a result <strong>of</strong> microcosm test<strong>in</strong>g, potential modifications currently under<br />

evaluation <strong>in</strong>clude specialized nutrient/vitam<strong>in</strong> supplementation, <strong>pH</strong> adjustment, and bioaugmentation<br />

with a low-<strong>pH</strong> and chloride-tolerant DHC stra<strong>in</strong>. Additionally, the


feasibility <strong>of</strong> cultur<strong>in</strong>g <strong>in</strong>digenous microbial populations acclimated to the site’s geochemical<br />

conditions is be<strong>in</strong>g considered.


<strong>Anaerobic</strong> <strong>Degradation</strong> <strong>of</strong> <strong>Chlor<strong>in</strong>ated</strong> <strong>Ethenes</strong> <strong>in</strong> a<br />

<strong>Low</strong>-<strong>pH</strong>, <strong>High</strong>-Sulfate, and Sal<strong>in</strong>e Environment<br />

FDSA<br />

NASA, Kennedy Space Center – Michael J. Deliz, PG, Robert A. Kl<strong>in</strong>e, PE<br />

Tetra Tech - Chris 1 Hook, PE, Mark Jonnet, Boris Dynk<strong>in</strong>, PE, Chris Pike, PE


Objectives<br />

•Site overview<br />

•IM pilot study summary<br />

• Design<br />

• Geochemical data<br />

• Biological data<br />

• Pilot study modifications<br />

• Contam<strong>in</strong>ant data<br />

•Path forward<br />

2


Site Location<br />

FDSA<br />

3


Pilot Study Introduction<br />

•ISB Pilot Study at Outstand<strong>in</strong>g Florida Water (OFW) Area<br />

•CMS prescribed remedy – DPT ISB<br />

•Basis for future treatments<br />

•Supplemental <strong>in</strong>vestigation<br />

fidelity resulted <strong>in</strong> changed<br />

site conditions<br />

•Acceptable basel<strong>in</strong>e biological<br />

and geochemical conditions<br />

• <strong>Low</strong> sulfate/sulfide<br />

• <strong>Low</strong> chloride<br />

• Neutral <strong>pH</strong><br />

4


Pilot Study Objectives<br />

•Prevent discharge <strong>of</strong> CVOCs to OFW<br />

•Create a zone <strong>of</strong> groundwater treatment as plume<br />

approaches OFW<br />

•Collect data to determ<strong>in</strong>e the technology effectiveness<br />

•Ma<strong>in</strong>ta<strong>in</strong> cont<strong>in</strong>uous recirculation utiliz<strong>in</strong>g solar power<br />

•Develop basis for expansion upgradient<br />

5


Pilot Study Design<br />

• 3 recovery wells (3 gpm/well)<br />

• 8 Injection wells (~1 gpm/well)<br />

• Treatment zone:<br />

• ~150’ wide by ~100’ long by ~25’ deep<br />

• ~54 day pore volume exchange time<br />

• 24-hours operation via solar power<br />

• Designed to allow use <strong>of</strong> different<br />

substrates and amendments<br />

• Flexible manifold for active plume<br />

management<br />

• Monitor<strong>in</strong>g zones:<br />

• Shallow (5 – 15 feet bls)<br />

• Intermediate (15 to 25 feet bls)<br />

FDSA<br />

6


Pilot Study Equipment<br />

•Use<br />

System Trailer (view from South)<br />

System Trailer (view from North East)<br />

FDSA<br />

Substrate & Meter<strong>in</strong>g Pumps<br />

System Stub-outs (view from West)<br />

Manifolds & Meter<strong>in</strong>g Pumps<br />

7


Pilot Study Injection/Extraction Layout<br />

•Use<br />

Extraction Well (RW03)<br />

8<br />

Injection Well Transect


Pilot Study Data - Chloride<br />

18<br />

Chloride - Shallow Wells<br />

Near Injection Transect (MW08S) Center Treatment Cell (MW25S)<br />

Center Treatment Cell (MW27S)<br />

Downgradient (MW22S)<br />

18<br />

Chloride - Intermediate Wells<br />

Near Injection Transect (MW08I) Center Treatment Cell (MW26I)<br />

Center Treatment Cell (MW28I)<br />

Downgradient (MW24I)<br />

16<br />

16<br />

14<br />

14<br />

12<br />

12<br />

Concentration (g/L)<br />

10<br />

8<br />

6<br />

Concentration (g/L)<br />

10<br />

8<br />

6<br />

4<br />

4<br />

2<br />

2<br />

0<br />

10/10/2010 4/8/2011 10/5/2011 4/2/2012<br />

0<br />

10/10/2010 4/8/2011 10/5/2011 4/2/2012<br />

9


Pilot Study Data - Sulfate<br />

2.5<br />

Sulfate - Shallow Wells<br />

Near Injection Transect (MW08S) Center Treatment Cell (MW25S)<br />

Center Treatment Cell (MW27S)<br />

Downgradient (MW22S)<br />

2.5<br />

Sulfate - Intermediate Wells<br />

Near Injection Transect (MW08I) Center Treatment Cell (MW26I)<br />

Center Treatment Cell (MW28I)<br />

Downgradient (MW24I)<br />

2<br />

2<br />

Concentration (g/L)<br />

1.5<br />

1<br />

Concentrato<strong>in</strong> (g/L)<br />

1.5<br />

1<br />

0.5<br />

0.5<br />

0<br />

10/10/2010 4/8/2011 10/5/2011 4/2/2012<br />

0<br />

10/10/2010 4/8/2011 10/5/2011 4/2/2012<br />

10<br />

*Sulfide historically ranges from 40-100 mg/L (magnitudes


Pilot Study Data – <strong>pH</strong><br />

<strong>pH</strong> - Shallow Wells<br />

<strong>pH</strong> - Intermediate Wells<br />

7.5<br />

7.0<br />

Near Injection Transect (MW08S)<br />

Center Treatment Cell (MW25S)<br />

Center Treatment Cell (MW27S)<br />

Downgradient (MW22S)<br />

<strong>pH</strong> buffer<strong>in</strong>g<br />

pilot<br />

7.5<br />

7.0<br />

Near Injection Transect (MW08I)<br />

Center Treatment Cell (MW26I)<br />

Center Treatment Cell (MW28I)<br />

6.5<br />

6.5<br />

<strong>pH</strong> (SU)<br />

6.0<br />

<strong>pH</strong> (SU)<br />

6.0<br />

5.5<br />

5.0<br />

5.5<br />

5.0<br />

<strong>pH</strong> buffer<strong>in</strong>g<br />

pilot<br />

4.5<br />

09/19/10 03/18/11 09/14/11 03/12/12<br />

4.5<br />

09/19/10 03/18/11 09/14/11 03/12/12<br />

11


Passive Buffer Test<strong>in</strong>g<br />

12


Additional Geochemical/Dissolved Gas Data<br />

• ORP – – 200 to – 300 mV<br />

• TOC – 20 mg/L (near <strong>in</strong>jection) gradient down to 5 mg/L (near<br />

extraction)<br />

• Alkal<strong>in</strong>ity – 350 mg/L (site average)<br />

• Acidity – 120 mg/L (site average)<br />

• Dissolved iron (total) – 30 mg/L (site average)<br />

• Ferrous/ferric iron speciation variable spatially<br />

• Dissolved Gases<br />

• Methane – 530 mg/L (site average)<br />

• Ethane – Generally ND<br />

• Ethene – <strong>Low</strong>/negligible detections<br />

• Carbon Dioxide – Initially 3 mg/L; now 234 mg/L (average)<br />

13


Microcosm Analysis<br />

6.0<br />

4.0<br />

µM<br />

2.0<br />

Test #1: Killed control<br />

DCE<br />

TCE<br />

6.0<br />

4.0<br />

µM<br />

2.0<br />

Test #2: Lactoil & m<strong>in</strong>eral amended, B12, <strong>pH</strong> 7,<br />

<strong>in</strong>digenous population<br />

ppm<br />

SO4<br />

TCE<br />

DCE<br />

2000 6.0<br />

1600<br />

4.0<br />

1200<br />

ppm µM<br />

SO4<br />

800<br />

2.0<br />

400<br />

Test #3. Lactoil & m<strong>in</strong>eral amended B12, <strong>pH</strong> 7<br />

Bioaug days w/<strong>High</strong> Salt Culture<br />

bio<br />

aug<br />

day 19<br />

|<br />

ppm<br />

SO4<br />

TCE<br />

|<br />

bio<br />

aug<br />

day 56<br />

|<br />

DCE<br />

VC<br />

2000<br />

1600<br />

1200<br />

ppm<br />

SO4<br />

800<br />

400<br />

0.0<br />

VC<br />

0 20 40 days 60 80 100<br />

0.0<br />

VC<br />

FDSA<br />

0 20 40 days 60 80 100<br />

0<br />

0.0<br />

Ethene<br />

0 20 40 days 60 80 100<br />

0<br />

6.0<br />

4.0<br />

µM<br />

2.0<br />

ppm SO4<br />

DCE<br />

Test #4. Lactoil & m<strong>in</strong>eral amended<br />

Accelerite, <strong>pH</strong> 6.1, <strong>in</strong>digenous population<br />

TCE<br />

2000 6.0<br />

1600<br />

4.0<br />

1200<br />

µM<br />

ppm<br />

SO4<br />

800<br />

2.0<br />

400<br />

DCE<br />

Test #5. Lactoil & m<strong>in</strong>eral amended B12, <strong>pH</strong> 6.1.<br />

low <strong>pH</strong> culture & high salt culture<br />

bioaug<br />

day 19<br />

|<br />

ppm<br />

SO4<br />

TCE<br />

bioaug<br />

day 56<br />

|<br />

2000<br />

1600<br />

1200<br />

ppm<br />

SO4<br />

800<br />

400<br />

0.0<br />

14<br />

VC<br />

0 20 40 days 60 80 100<br />

0<br />

0.0<br />

VC<br />

0 20 40 days 60 80 100<br />

0


Biological Activity<br />

• Complex mechanisms (e.g., cometabolism/beta-elim<strong>in</strong>ations/etc.)<br />

• CaCO 3 addition affected microbial activity (Feb 2012)<br />

• Geochemical shifts from buffer<strong>in</strong>g affected IRB/SRB activity<br />

• Reduced competition from preferential sulfate reduction<br />

• TCEr detected for the first time after buffer<strong>in</strong>g (substrate “peck<strong>in</strong>g order”)<br />

• VCr/BVC historically nondetect<br />

• Sharp TCE concentration reductions; VC consistently detected for first time<br />

FDSA<br />

Buffer Test<br />

Buffer Test<br />

15


Concentration Data<br />

FDSA<br />

16


MW25S MOLAR CONCENTRATIONS<br />

20<br />

Concentration TCE cDCE Data<br />

VC<br />

Molar Concentration (µmol/L)<br />

16<br />

12<br />

8<br />

4<br />

0<br />

10/10/2010 4/8/2011 10/5/2011 4/2/2012<br />

Molar Concentration (µmol/L)<br />

10<br />

8<br />

6<br />

4<br />

2<br />

MW26I MOLAR CONCENTRATIONS<br />

TCE cDCE VC<br />

0<br />

10/10/2010 4/8/2011 10/5/2011 4/2/2012<br />

FDSA<br />

Molar Concentration (µmol/L)<br />

20<br />

16<br />

12<br />

8<br />

4<br />

MW14S MOLAR CONCENTRATIONS<br />

TCE cDCE VC<br />

0<br />

10/10/2010 4/8/2011 10/5/2011 4/2/2012<br />

17<br />

Molar Concentration (µmol/L)<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

MW28I MOLAR CONCENTRATIONS<br />

TCE cDCE VC<br />

0<br />

10/10/2010 4/8/2011 10/5/2011 4/2/2012<br />

Molar Concentration (µmol/L)<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

MW27S MOLAR CONCENTRATIONS<br />

TCE cDCE VC<br />

0<br />

10/10/2010 4/8/2011 10/5/2011 4/2/2012


Path Forward<br />

•Cont<strong>in</strong>ue to evaluate <strong>in</strong>fluence <strong>of</strong> CaCO 3 buffer<strong>in</strong>g<br />

• Consider <strong>in</strong>tegration <strong>in</strong>to pilot study/IM<br />

•Cont<strong>in</strong>ue to monitor biological and geochemical<br />

parameters<br />

• Development <strong>of</strong> TCEr and VCr/BVC functional genes<br />

• Sulfate reduction and SRB activity<br />

•Monitor degradation performance<br />

•If functional genes not present, evaluate augmentation<br />

with chloride-tolerant culture from microcosm<br />

•Pend<strong>in</strong>g additional data, expand upgradient as an IM<br />

18


Acknowledgements<br />

•NASA, Kennedy Space Center (site management lead)<br />

•Tetra Tech (site assessment, CMS, pilot test<strong>in</strong>g)<br />

•BCI Laboratories (Microcosm Test<strong>in</strong>g, Data Evaluation)<br />

•Microbial Insights (CENSUS Analysis)<br />

•JRW Remediation (Pilot Test<strong>in</strong>g Support, Data<br />

Evaluation)<br />

19

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!