24.11.2012 Views

The effect of the dominant polychaete Scolelepis squamata on ...

The effect of the dominant polychaete Scolelepis squamata on ...

The effect of the dominant polychaete Scolelepis squamata on ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>dominant</str<strong>on</strong>g> <str<strong>on</strong>g>polychaete</str<strong>on</strong>g> <str<strong>on</strong>g>Scolelepis</str<strong>on</strong>g> <str<strong>on</strong>g>squamata</str<strong>on</strong>g> <strong>on</strong> nematode<br />

col<strong>on</strong>isati<strong>on</strong> in sandy beach sediments: An experimental approach<br />

Tatiana F. Maria a,b, *, André M. Esteves b , Jan Vanaverbeke a , Ann Vanreusel a<br />

a Biology Department, Marine Biology Research Group, Ghent University, Krijgslaan 281 S8, B-9000 Ghent, Belgium<br />

b Universidade Federal de Pernambuco, Av. Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. Moraes Rêgo, S/N, Departamento de Zoologia, Cidade Universitária, Recife, Pernambuco 50670-901, Brazil<br />

article info<br />

Article history:<br />

Received 7 March 2011<br />

Accepted 10 July 2011<br />

Available <strong>on</strong>line 20 July 2011<br />

Keywords:<br />

biological interacti<strong>on</strong>s<br />

col<strong>on</strong>isati<strong>on</strong><br />

nematodes<br />

<str<strong>on</strong>g>Scolelepis</str<strong>on</strong>g> <str<strong>on</strong>g>squamata</str<strong>on</strong>g><br />

microcosm experiment<br />

North Sea<br />

1. Introducti<strong>on</strong><br />

abstract<br />

Col<strong>on</strong>isati<strong>on</strong> experiments are widely used to evaluate <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>effect</str<strong>on</strong>g>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> disturbance <strong>on</strong> benthic community structure (Al<strong>on</strong>gi et al., 1983;<br />

Decker and Fleeger, 1984; Colangelo et al., 1996; Zhou, 2001). Some<br />

studies have reported <str<strong>on</strong>g>the</str<strong>on</strong>g> ability <str<strong>on</strong>g>of</str<strong>on</strong>g> mei<str<strong>on</strong>g>of</str<strong>on</strong>g>auna, more particularly<br />

nematodes, to col<strong>on</strong>ise sediments via lateral migrati<strong>on</strong> (Chandler<br />

and Fleeger, 1983; Schratzberger et al., 2004; Gallucci et al.,<br />

2008). <str<strong>on</strong>g>The</str<strong>on</strong>g>y suggested that dispersal through <str<strong>on</strong>g>the</str<strong>on</strong>g> water column is<br />

resp<strong>on</strong>sible for <str<strong>on</strong>g>the</str<strong>on</strong>g> col<strong>on</strong>isati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> large-scale defaunated areas,<br />

whereas small-scale col<strong>on</strong>isati<strong>on</strong> events are determined by active<br />

infaunal migrati<strong>on</strong>. Because <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> str<strong>on</strong>g hydrodynamic forces <strong>on</strong><br />

sandy beaches, both processes (passive migrati<strong>on</strong> through <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

water column and active infaunal migrati<strong>on</strong>) may be important in<br />

establishing <str<strong>on</strong>g>the</str<strong>on</strong>g> nematode assemblages during a col<strong>on</strong>isati<strong>on</strong><br />

event, but at different spatial scales. Col<strong>on</strong>isati<strong>on</strong> in sandy beaches<br />

is an important ecological process, and is investigated here to<br />

* Corresp<strong>on</strong>ding author. Biology Department, Marine Biology research group,<br />

Ghent University, Krijgslaan 281 S8, B-9000 Ghent, Belgium.<br />

E-mail address: tatiana.maria@ugent.be (T.F. Maria).<br />

0272-7714/$ e see fr<strong>on</strong>t matter Ó 2011 Elsevier Ltd. All rights reserved.<br />

doi:10.1016/j.ecss.2011.07.006<br />

Estuarine, Coastal and Shelf Science 94 (2011) 272e280<br />

C<strong>on</strong>tents lists available at ScienceDirect<br />

Estuarine, Coastal and Shelf Science<br />

journal homepage: www.elsevier.com/locate/ecss<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> an abundant sandy beach <str<strong>on</strong>g>polychaete</str<strong>on</strong>g>, <str<strong>on</strong>g>Scolelepis</str<strong>on</strong>g> <str<strong>on</strong>g>squamata</str<strong>on</strong>g>, <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> col<strong>on</strong>isati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> defaunated<br />

sediments by marine nematodes indicates that sandy beach fauna can be partially c<strong>on</strong>trolled by biological<br />

interacti<strong>on</strong>s within and across size groups. Experimental cores, equipped with windows allowing<br />

infaunal col<strong>on</strong>isati<strong>on</strong>, were filled with defaunated sandy beach sediment c<strong>on</strong>taining two different<br />

treatments with and without S. <str<strong>on</strong>g>squamata</str<strong>on</strong>g>. <str<strong>on</strong>g>The</str<strong>on</strong>g>se cores were inserted into microcosms filled with sediment<br />

with indigenous mei<str<strong>on</strong>g>of</str<strong>on</strong>g>auna collected from <str<strong>on</strong>g>the</str<strong>on</strong>g> field. <str<strong>on</strong>g>The</str<strong>on</strong>g> treatments were incubated in <str<strong>on</strong>g>the</str<strong>on</strong>g> laboratory<br />

at ambient temperature and salinity for 2, 7, 14 and 21 days, in order to follow <str<strong>on</strong>g>the</str<strong>on</strong>g> col<strong>on</strong>isati<strong>on</strong><br />

process <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> defaunated sediments by <str<strong>on</strong>g>the</str<strong>on</strong>g> indigenous nematode fauna over time. Nematodes initially<br />

col<strong>on</strong>ised both treatments, with abundances <str<strong>on</strong>g>of</str<strong>on</strong>g> up to 10% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> densities in <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>trol; after 2 weeks,<br />

nematode densities in <str<strong>on</strong>g>the</str<strong>on</strong>g> cores without S. <str<strong>on</strong>g>squamata</str<strong>on</strong>g> surpassed <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>trol densities. Nematode<br />

assemblages in both treatments were not species rich, and also differed in compositi<strong>on</strong> from <str<strong>on</strong>g>the</str<strong>on</strong>g> natural<br />

assemblages. <str<strong>on</strong>g>The</str<strong>on</strong>g> most successful col<strong>on</strong>ising species, Enoplolaimus litoralis, was rare in <str<strong>on</strong>g>the</str<strong>on</strong>g> surrounding<br />

sediment, suggesting that col<strong>on</strong>isati<strong>on</strong> was determined by species-specific characteristics such as body<br />

size, motility and feeding strategy. Initially <str<strong>on</strong>g>the</str<strong>on</strong>g> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> macr<str<strong>on</strong>g>of</str<strong>on</strong>g>auna did not affect <str<strong>on</strong>g>the</str<strong>on</strong>g> nematode<br />

community compositi<strong>on</strong>, but after 2 weeks <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> experiment, <str<strong>on</strong>g>the</str<strong>on</strong>g> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>polychaete</str<strong>on</strong>g> seemed to<br />

facilitate <str<strong>on</strong>g>the</str<strong>on</strong>g> earlier establishment <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-opportunistic species.<br />

Ó 2011 Elsevier Ltd. All rights reserved.<br />

understand how diversity and community structure <str<strong>on</strong>g>of</str<strong>on</strong>g> nematodes,<br />

a <str<strong>on</strong>g>dominant</str<strong>on</strong>g> sandy beach group, re-establish after a disturbance<br />

event. Natural disturbances occur daily in sandy beaches. <str<strong>on</strong>g>The</str<strong>on</strong>g>y are<br />

driven by wave-acti<strong>on</strong>, which erode and deposit part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> intertidal<br />

sediments, or <str<strong>on</strong>g>the</str<strong>on</strong>g>y can be caused by human-activity, such as<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> recreati<strong>on</strong>al use <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> intertidal areas, or beach nourishment<br />

which is widely applied coastal defence technique al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> coast<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> North America and Europe (Speybroeck et al., 2006). Beach recol<strong>on</strong>isati<strong>on</strong><br />

processes occur after both small- and large-scale<br />

defaunating events. This is a successi<strong>on</strong>al process, and different<br />

organisms may not have <str<strong>on</strong>g>the</str<strong>on</strong>g> same ability to col<strong>on</strong>ise <str<strong>on</strong>g>the</str<strong>on</strong>g> newly<br />

available niches (Horn, 1981).<br />

Most experimental studies have investigated <str<strong>on</strong>g>the</str<strong>on</strong>g> col<strong>on</strong>isati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

defaunated sediments under <str<strong>on</strong>g>the</str<strong>on</strong>g> absence <str<strong>on</strong>g>of</str<strong>on</strong>g> macr<str<strong>on</strong>g>of</str<strong>on</strong>g>auna (Sun and<br />

Fleeger, 1994; Zhou, 2001; Schratzberger et al., 2004; Gallucci<br />

et al., 2008). Macr<str<strong>on</strong>g>of</str<strong>on</strong>g>aunal organisms influence mei<str<strong>on</strong>g>of</str<strong>on</strong>g>aunal col<strong>on</strong>isati<strong>on</strong><br />

directly through competiti<strong>on</strong>, predati<strong>on</strong> or bioturbati<strong>on</strong><br />

(Sandnes et al., 2000), or indirectly through changing <str<strong>on</strong>g>the</str<strong>on</strong>g> physical<br />

and chemical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sediment by <str<strong>on</strong>g>the</str<strong>on</strong>g>ir activity<br />

(Rosenberg et al., 2001; Van Colen et al., 2009). In additi<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> tidal<br />

regime <str<strong>on</strong>g>of</str<strong>on</strong>g> sandy beaches might also influence nematode


col<strong>on</strong>isati<strong>on</strong> processes, since sandy beaches are essentially<br />

physically-driven ecosystems (Defeo and McLachlan, 2005).<br />

Although it is assumed that biological interacti<strong>on</strong>s may be more<br />

influential in structuring small-scale benthic communities in<br />

dissipative beaches than in reflective <strong>on</strong>es (Defeo and McLachlan,<br />

2005), <str<strong>on</strong>g>the</str<strong>on</strong>g> importance <str<strong>on</strong>g>of</str<strong>on</strong>g> biotic interacti<strong>on</strong>s versus physical<br />

drivers in sandy beaches is still unclear (Schlacher et al., 2008).<br />

<str<strong>on</strong>g>Scolelepis</str<strong>on</strong>g> <str<strong>on</strong>g>squamata</str<strong>on</strong>g> is <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>dominant</str<strong>on</strong>g> <str<strong>on</strong>g>polychaete</str<strong>on</strong>g> in <str<strong>on</strong>g>the</str<strong>on</strong>g> upper to<br />

middle intertidal sediments <str<strong>on</strong>g>of</str<strong>on</strong>g> De Panne beach (Belgian coast, North<br />

Sea). This species is a cosmopolitan <str<strong>on</strong>g>polychaete</str<strong>on</strong>g> significantly abundant<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> macrobenthos from sandy beaches <str<strong>on</strong>g>of</str<strong>on</strong>g> North and South<br />

Atlantic, North Pacific, Indian Ocean and Mediterranean Sea (Souza<br />

and Borz<strong>on</strong>e, 2000). It is a deposit-feeding species and reaches<br />

abundances higher than 100 ind. m 2 in <str<strong>on</strong>g>the</str<strong>on</strong>g> studied beach (Degraer<br />

et al., 2003) and is known to be <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> few species least affected<br />

by beach nourishment and rapidly recovering <str<strong>on</strong>g>the</str<strong>on</strong>g>ir densities after<br />

disturbance (Peters<strong>on</strong> et al., 2006). Through its burrowing and<br />

deposit-feeding activity and by producing pseud<str<strong>on</strong>g>of</str<strong>on</strong>g>aeces, this macrobenthic<br />

organism can modify <str<strong>on</strong>g>the</str<strong>on</strong>g> envir<strong>on</strong>ment and, as shown for<br />

many o<str<strong>on</strong>g>the</str<strong>on</strong>g>r <str<strong>on</strong>g>polychaete</str<strong>on</strong>g> species, this species is also expected to<br />

interact negatively or positively with nematodes through its overall<br />

activities in <str<strong>on</strong>g>the</str<strong>on</strong>g> sediment (see Ólafss<strong>on</strong>, 2003 for a review;<br />

Braeckman et al., 2010). Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, <str<strong>on</strong>g>the</str<strong>on</strong>g> occasi<strong>on</strong>al predati<strong>on</strong> by<br />

S. <str<strong>on</strong>g>squamata</str<strong>on</strong>g> <strong>on</strong> larvae and juveniles <str<strong>on</strong>g>of</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r macrobenthic species<br />

and <strong>on</strong> meiobenthic harpacticoid copepods and ostracods (Dauer,<br />

1983) may also affect nematodes although <str<strong>on</strong>g>the</str<strong>on</strong>g>y were so far not<br />

recorded as a food source for S. <str<strong>on</strong>g>squamata</str<strong>on</strong>g> (Scholz et al., 1991).<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> aim <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> present study was to investigate <str<strong>on</strong>g>the</str<strong>on</strong>g> process <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

col<strong>on</strong>isati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sandy beach sediments by nematode assemblages<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> presence or absence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Scolelepis</str<strong>on</strong>g> <str<strong>on</strong>g>squamata</str<strong>on</strong>g>. A laboratory<br />

microcosm experiment was set up to test two hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>ses. Despite<br />

some limitati<strong>on</strong>s, this microcosm experiment can unravel biological<br />

interacti<strong>on</strong>s between a <str<strong>on</strong>g>dominant</str<strong>on</strong>g> <str<strong>on</strong>g>polychaete</str<strong>on</strong>g> and nematodes,<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g> results can provide an initial understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> how interacti<strong>on</strong>s<br />

occur in nature. Our first model states that col<strong>on</strong>isati<strong>on</strong> is<br />

a species-specific successi<strong>on</strong>al process, i. e. some nematodes are<br />

more capable than o<str<strong>on</strong>g>the</str<strong>on</strong>g>rs <str<strong>on</strong>g>of</str<strong>on</strong>g> col<strong>on</strong>ising a newly available envir<strong>on</strong>ment<br />

based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> body-size dependency <str<strong>on</strong>g>of</str<strong>on</strong>g> nematode communities<br />

in col<strong>on</strong>ising defaunated patches (Schratzberger et al., 2004;<br />

Gallucci et al., 2008). We stated a null hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>sis that <str<strong>on</strong>g>the</str<strong>on</strong>g> nematode<br />

communities do not change between sampling dates; <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

alternative hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>sis is that <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a directi<strong>on</strong>al change in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

nematode community. Our sec<strong>on</strong>d model asserts that <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>dominant</str<strong>on</strong>g><br />

<str<strong>on</strong>g>polychaete</str<strong>on</strong>g> S. <str<strong>on</strong>g>squamata</str<strong>on</strong>g> can facilitate <str<strong>on</strong>g>the</str<strong>on</strong>g> nematode col<strong>on</strong>isati<strong>on</strong> by<br />

its overall activities. Here, we test <str<strong>on</strong>g>the</str<strong>on</strong>g> null hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>sis that <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

nematode community in newly col<strong>on</strong>ised sediments is unaffected<br />

by <str<strong>on</strong>g>the</str<strong>on</strong>g> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> S. <str<strong>on</strong>g>squamata</str<strong>on</strong>g>, and <str<strong>on</strong>g>the</str<strong>on</strong>g> alternative hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>sis is<br />

that S. <str<strong>on</strong>g>squamata</str<strong>on</strong>g> affects <str<strong>on</strong>g>the</str<strong>on</strong>g> nematode col<strong>on</strong>isati<strong>on</strong>.<br />

T.F. Maria et al. / Estuarine, Coastal and Shelf Science 94 (2011) 272e280 273<br />

2. Material and methods<br />

2.1. Study area and sediment sampling<br />

Sediment from <str<strong>on</strong>g>the</str<strong>on</strong>g> upper 10 cm was collected in <str<strong>on</strong>g>the</str<strong>on</strong>g> upper<br />

intertidal level <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ultradissipative sandy beach <str<strong>on</strong>g>of</str<strong>on</strong>g> De Panne<br />

(51 05 0 30 00 N, 02 34 0 01 00 E) in fr<strong>on</strong>t <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> nature reserve “Westhoek<br />

reservaat”, four weeks prior to <str<strong>on</strong>g>the</str<strong>on</strong>g> experimental set up (8 October<br />

2007). <str<strong>on</strong>g>The</str<strong>on</strong>g> intertidal area is approximately 440 m wide and has four<br />

runnels parallel to <str<strong>on</strong>g>the</str<strong>on</strong>g> water line. <str<strong>on</strong>g>The</str<strong>on</strong>g> sampling area was restricted<br />

to sandbars in order to avoid areas with a different community<br />

compositi<strong>on</strong>, since runnels and sandbars are assumed to have<br />

dissimilar nematode communities (Gingold et al., 2010). <str<strong>on</strong>g>The</str<strong>on</strong>g> mean<br />

spring and neap tide ranges are 5 m and 3 m, respectively; modal<br />

breaker height is 0.5 m and modal wave period is 3 s (Department<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Waterways and Coast, unpublished data). <str<strong>on</strong>g>The</str<strong>on</strong>g> beach slope is<br />

about 1:90 to 1:100 (Gheskiere et al., 2004). In <str<strong>on</strong>g>the</str<strong>on</strong>g> sampling area,<br />

<str<strong>on</strong>g>Scolelepis</str<strong>on</strong>g> <str<strong>on</strong>g>squamata</str<strong>on</strong>g> reaches maximum densities <str<strong>on</strong>g>of</str<strong>on</strong>g> 700 ind. m 2 in<br />

summer and 1100 ind. m 2 in winter (Degraer et al., 1999).<br />

2.2. Experimental set-up<br />

Sediment previously collected was defaunated and <str<strong>on</strong>g>the</str<strong>on</strong>g> organicmatter<br />

removed by burning to 500 C for 4 h, using a muffle furnace<br />

(Zhou, 2001). One day before <str<strong>on</strong>g>the</str<strong>on</strong>g> experimental set up (5 November<br />

2007), triplicate field c<strong>on</strong>trol (FC) samples were collected by means<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Perspex cores (10 cm 2 ) to a depth <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 cm, in order to collect<br />

baseline informati<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> resident nematode community, from<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> same sandbar area that was visited <strong>on</strong> October 8. Large volumes<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> sand were also collected from <str<strong>on</strong>g>the</str<strong>on</strong>g> beach surface (to a depth <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

10 cm). This sediment was homogenised in <str<strong>on</strong>g>the</str<strong>on</strong>g> field. Individuals <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Scolelepis</str<strong>on</strong>g> <str<strong>on</strong>g>squamata</str<strong>on</strong>g> were collected by sieving sediment from <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

upper intertidal level <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> beach, where it is <str<strong>on</strong>g>the</str<strong>on</strong>g> most abundant<br />

macr<str<strong>on</strong>g>of</str<strong>on</strong>g>aunal organism (Degraer et al., 1999). Until <str<strong>on</strong>g>the</str<strong>on</strong>g> experiment<br />

was set up, <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>polychaete</str<strong>on</strong>g>s were kept in an aquarium filled with<br />

sand and oxygenated seawater.<br />

Six microcosms, each c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> a plastic aquarium (72 l) were<br />

filled with homogenised sediment inhabited by natural mei<str<strong>on</strong>g>of</str<strong>on</strong>g>aunal<br />

and macr<str<strong>on</strong>g>of</str<strong>on</strong>g>aunal sandy beach communities, to a depth <str<strong>on</strong>g>of</str<strong>on</strong>g> 12 cm. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

microcosms were left untouched for <strong>on</strong>e day to allow <str<strong>on</strong>g>the</str<strong>on</strong>g> community<br />

to stabilise. One corner <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> aquarium (96 cm 2 ) was reserved<br />

for <str<strong>on</strong>g>the</str<strong>on</strong>g> placement <str<strong>on</strong>g>of</str<strong>on</strong>g> a water pump, silic<strong>on</strong>e tubes and air st<strong>on</strong>es in<br />

an individual plastic c<strong>on</strong>tainer, avoiding any disturbance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

sediment. Thirty-six experimental cores (10 cm 2 ) were allocated to<br />

three types <str<strong>on</strong>g>of</str<strong>on</strong>g> treatment (see below) and were randomly pushed<br />

into <str<strong>on</strong>g>the</str<strong>on</strong>g> sediment <str<strong>on</strong>g>of</str<strong>on</strong>g> different aquaria at a fixed distance <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 cm<br />

(Fig. 1A). Before <str<strong>on</strong>g>the</str<strong>on</strong>g> experimental cores were added (pushed in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

sediment), a similarly sized core sample <str<strong>on</strong>g>of</str<strong>on</strong>g> sediment was removed<br />

Fig. 1. Schematic drawing <str<strong>on</strong>g>of</str<strong>on</strong>g> experimental set up: A: aerated microcosms (57 37 31 cm), B: syringes with windows <str<strong>on</strong>g>of</str<strong>on</strong>g> 5 cm 2.6 cm filled with different kind <str<strong>on</strong>g>of</str<strong>on</strong>g> treatments.


274<br />

from <str<strong>on</strong>g>the</str<strong>on</strong>g> aquarium, in order to reduce disturbance when introducing<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> experimental cores. <str<strong>on</strong>g>The</str<strong>on</strong>g> experimental cores had two<br />

opposite lateral windows, each measuring 5.3 cm 2.6 cm and<br />

covered by gauze with a mesh size <str<strong>on</strong>g>of</str<strong>on</strong>g> 1 mm (Fig. 1B). <str<strong>on</strong>g>The</str<strong>on</strong>g>se lateral<br />

windows allowed <str<strong>on</strong>g>the</str<strong>on</strong>g> mei<str<strong>on</strong>g>of</str<strong>on</strong>g>auna to migrate from <str<strong>on</strong>g>the</str<strong>on</strong>g> adjacent<br />

sediment. <str<strong>on</strong>g>The</str<strong>on</strong>g> upper 2 cm <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> gauze was in c<strong>on</strong>tact with <str<strong>on</strong>g>the</str<strong>on</strong>g> water<br />

column, in order to allow mimicking <str<strong>on</strong>g>of</str<strong>on</strong>g> tides inside <str<strong>on</strong>g>the</str<strong>on</strong>g>se cores, but<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> edge <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> cores was never surpassed by <str<strong>on</strong>g>the</str<strong>on</strong>g> water column.<br />

Three types <str<strong>on</strong>g>of</str<strong>on</strong>g> treatments in <str<strong>on</strong>g>the</str<strong>on</strong>g> experimental cores, distributed<br />

randomly am<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> 6 aquaria, were:<br />

(1) Indigenous c<strong>on</strong>trol (IC): natural sediment with indigenous<br />

community, collected simultaneously with <str<strong>on</strong>g>the</str<strong>on</strong>g> sediment that<br />

was used to fill <str<strong>on</strong>g>the</str<strong>on</strong>g> aquarium. This type <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>trol was used to<br />

check for a possible enclosure <str<strong>on</strong>g>effect</str<strong>on</strong>g> caused by <str<strong>on</strong>g>the</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> core;<br />

(2) Azoic treatment (AT): defaunated sediment;<br />

(3) <str<strong>on</strong>g>Scolelepis</str<strong>on</strong>g> treatment (ST): defaunated sediment þ 1 specimen<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Scolelepis</str<strong>on</strong>g> <str<strong>on</strong>g>squamata</str<strong>on</strong>g>, which corresp<strong>on</strong>ded to its natural<br />

density.<br />

Immediately after <str<strong>on</strong>g>the</str<strong>on</strong>g> experiment was set up, <str<strong>on</strong>g>the</str<strong>on</strong>g> sediment in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> aquarium was covered with 3.5 cm filtered seawater <str<strong>on</strong>g>of</str<strong>on</strong>g> natural<br />

salinity (30). <str<strong>on</strong>g>The</str<strong>on</strong>g> experiment ran in a temperature-c<strong>on</strong>trolled room<br />

at a day and night light regime <str<strong>on</strong>g>of</str<strong>on</strong>g> 12:12 h and a c<strong>on</strong>stant temperature<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 15 C. Tides were simulated twice a day, forming a water<br />

column <str<strong>on</strong>g>of</str<strong>on</strong>g> 3.5 cm above <str<strong>on</strong>g>the</str<strong>on</strong>g> sediment layer. <str<strong>on</strong>g>The</str<strong>on</strong>g> water entered <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

experimental cores through <str<strong>on</strong>g>the</str<strong>on</strong>g> upper 2 cm <str<strong>on</strong>g>of</str<strong>on</strong>g> gauze, covering <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

lateral windows <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> core. Sediments were submerged for 2 h and<br />

exposed to <str<strong>on</strong>g>the</str<strong>on</strong>g> air for 10 h. Changes in salinity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> seawater were<br />

m<strong>on</strong>itored daily, and increases due to evaporati<strong>on</strong> were avoided by<br />

adding dei<strong>on</strong>ised water to <str<strong>on</strong>g>the</str<strong>on</strong>g> aquaria, <str<strong>on</strong>g>the</str<strong>on</strong>g>reby maintaining <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

natural salinity <str<strong>on</strong>g>of</str<strong>on</strong>g> 30. Three replicates <str<strong>on</strong>g>of</str<strong>on</strong>g> each treatment were<br />

removed from different aquaria and transferred to a plastic<br />

c<strong>on</strong>tainer at 2, 7, 14 and 21 days post-placement, during <str<strong>on</strong>g>the</str<strong>on</strong>g> period<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> simulated low tide. At <str<strong>on</strong>g>the</str<strong>on</strong>g> same time, c<strong>on</strong>trol samples (AQ) were<br />

randomly collected from <str<strong>on</strong>g>the</str<strong>on</strong>g> aquarium sediment, with a 10 cm 2<br />

core. Immediately after <str<strong>on</strong>g>the</str<strong>on</strong>g> removal <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> experimental cores, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

holes were filled with o<str<strong>on</strong>g>the</str<strong>on</strong>g>r cores <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> same size, to prevent <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

surrounding sediment from collapsing. All samples were preserved<br />

in a 10% formaldehyde soluti<strong>on</strong> until sample processing.<br />

2.3. Sample processing in <str<strong>on</strong>g>the</str<strong>on</strong>g> laboratory<br />

Nematodes were extracted from <str<strong>on</strong>g>the</str<strong>on</strong>g> sediment by centrifugati<strong>on</strong><br />

with Ludox (Heip et al., 1985). Macr<str<strong>on</strong>g>of</str<strong>on</strong>g>auna was excluded by means<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a 1-mm sieve. All organisms retained <strong>on</strong> a 38-mm sieve were<br />

stained with Rose Bengal, identified and counted under a dissecting<br />

microscope. A random subsample <str<strong>on</strong>g>of</str<strong>on</strong>g> 100 nematodes was transferred<br />

to De Grisse soluti<strong>on</strong> (De Grisse, 1969) and mounted <strong>on</strong><br />

slides for fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r identificati<strong>on</strong> to genus and species. Cores from <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Scolelepis</str<strong>on</strong>g> treatment were checked to assess if <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Scolelepis</str<strong>on</strong>g> specimens<br />

were still alive <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> day <str<strong>on</strong>g>of</str<strong>on</strong>g> sampling. If this was not <str<strong>on</strong>g>the</str<strong>on</strong>g> case,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> sample was excluded from <str<strong>on</strong>g>the</str<strong>on</strong>g> analyses.<br />

2.4. Data analyses<br />

Nematode assemblages from all <str<strong>on</strong>g>the</str<strong>on</strong>g> treatments and sampling<br />

dates were analysed by means <str<strong>on</strong>g>of</str<strong>on</strong>g> univariate and multivariate<br />

techniques. Total densities per 10 cm 2 , richness (S), and diversity<br />

(Shann<strong>on</strong> diversity index e H 0 loge) were calculated for each treatment.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> differences between nematode densities <str<strong>on</strong>g>of</str<strong>on</strong>g> FC and AQ,<br />

and between FC and IC were analysed by t-tests. Differences in<br />

nematode densities am<strong>on</strong>g sampling times in AQ and IC were<br />

analysed by <strong>on</strong>e-way ANOVA, after checking for assumpti<strong>on</strong>s.<br />

T.F. Maria et al. / Estuarine, Coastal and Shelf Science 94 (2011) 272e280<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> experimental <str<strong>on</strong>g>effect</str<strong>on</strong>g>s <strong>on</strong> total nematode density per 10 cm 2 ,<br />

densities <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> successful col<strong>on</strong>ising nematode species, species<br />

richness (S), and diversity (H 0 ) were tested by two-way analysis <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

variance (two-way ANOVA). When significant differences were<br />

detected, Tukey HSD tests for unequal N were applied to test for<br />

pairwise differences, since <str<strong>on</strong>g>the</str<strong>on</strong>g> design was unbalanced due to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

death <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>polychaete</str<strong>on</strong>g> in <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> replicates <str<strong>on</strong>g>of</str<strong>on</strong>g> day 7. Data were<br />

log(x þ 1) transformed in order to meet <str<strong>on</strong>g>the</str<strong>on</strong>g> assumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> homogeneity<br />

(Cochran’s test). Differences in nematode community<br />

structure were analysed by n<strong>on</strong>-metric Multi-Dimensi<strong>on</strong>al Scaling<br />

(MDS) using <str<strong>on</strong>g>the</str<strong>on</strong>g> BrayeCurtis Similarity <strong>on</strong> fourth-root transformed<br />

data for each sample. A <strong>on</strong>e-way PERMANOVA was performed to<br />

analyse differences in <str<strong>on</strong>g>the</str<strong>on</strong>g> community structure am<strong>on</strong>g FC, AQ and<br />

IC whereas a two-way design was applied to check for differences<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> community structure am<strong>on</strong>g treatments (AQ, IC, AT and ST)<br />

and times over <str<strong>on</strong>g>the</str<strong>on</strong>g> course <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> experiment (Anders<strong>on</strong> et al.,<br />

2008). Since a PERMANOVA test can show significant differences<br />

between groups, but does not distinguish between a difference due<br />

to factor <str<strong>on</strong>g>effect</str<strong>on</strong>g>s or dispersi<strong>on</strong> (variance), <str<strong>on</strong>g>the</str<strong>on</strong>g> homogeneity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

multivariate dispersi<strong>on</strong> was tested with PERMDISP, using distances<br />

am<strong>on</strong>g centroids calculated in treatment x time group. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

PERMDISP test was never significant, indicating equally dispersed<br />

distances to centroids. In <str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g> a significant result in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

PERMANOVA design, pairwise tests for <str<strong>on</strong>g>the</str<strong>on</strong>g> significant term were<br />

performed. In cases <str<strong>on</strong>g>of</str<strong>on</strong>g> a restricted number <str<strong>on</strong>g>of</str<strong>on</strong>g> possible permutati<strong>on</strong>s<br />

in pairwise tests, p-values were obtained from M<strong>on</strong>te Carlo<br />

samplings (Anders<strong>on</strong> and Robins<strong>on</strong>, 2003). <str<strong>on</strong>g>The</str<strong>on</strong>g> species c<strong>on</strong>tributing<br />

most to within-group similarity were identified by <str<strong>on</strong>g>the</str<strong>on</strong>g> twoway<br />

crossed SIMPER analysis. All <str<strong>on</strong>g>the</str<strong>on</strong>g> multivariate analyses and<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> S and H 0 were performed using <str<strong>on</strong>g>the</str<strong>on</strong>g> PRIMER v6<br />

with PERMANOVA þ add-<strong>on</strong> s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware package (Anders<strong>on</strong> et al.,<br />

2008); <str<strong>on</strong>g>the</str<strong>on</strong>g> t-test and ANOVA were d<strong>on</strong>e using STATISTICA 7.0.<br />

3. Results<br />

3.1. Univariate measurements<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> densities recorded in AQ samples were significantly<br />

different from <str<strong>on</strong>g>the</str<strong>on</strong>g> values recorded from <str<strong>on</strong>g>the</str<strong>on</strong>g> field samples (time<br />

zero) (Fig. 2; t-test, t ¼ 4.52, p ¼ 0.01) and corresp<strong>on</strong>ded to<br />

approximately 50% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> in situ values. <str<strong>on</strong>g>The</str<strong>on</strong>g> densities in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

aquarium c<strong>on</strong>trols appeared to change significantly over <str<strong>on</strong>g>the</str<strong>on</strong>g> course<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> experiment (Fig. 3; <strong>on</strong>e-way ANOVA, F3,8 ¼ 4.21, p ¼ 0.04),<br />

but a post-hoc test did not show differences in aquarium densities<br />

between <str<strong>on</strong>g>the</str<strong>on</strong>g> different incubati<strong>on</strong> times (Tukey HSD, all p > 0.05). In<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> indigenous c<strong>on</strong>trols, <str<strong>on</strong>g>the</str<strong>on</strong>g> density also corresp<strong>on</strong>ded<br />

to less than 50% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> values recorded from <str<strong>on</strong>g>the</str<strong>on</strong>g> field samples<br />

(Fig. 2; t-test, t ¼ 4.52, p ¼ 0.01). <str<strong>on</strong>g>The</str<strong>on</strong>g>re was no significant change<br />

Fig. 2. Mean total nematode density in <str<strong>on</strong>g>the</str<strong>on</strong>g> field c<strong>on</strong>trol (t ¼ 0) and in <str<strong>on</strong>g>the</str<strong>on</strong>g> initial stages<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> experiments (t ¼ 2). FC: field c<strong>on</strong>trol, AQ: aquarium c<strong>on</strong>trol, IC: indigenous<br />

c<strong>on</strong>trol. Error bar represents SE (n ¼ 3).


Fig. 3. Mean total nematode density in <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>trols over <str<strong>on</strong>g>the</str<strong>on</strong>g> 21 days <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> experiment.<br />

Black bars represent AQ (aquarium c<strong>on</strong>trol) and grew bars represent IC (indigenous<br />

c<strong>on</strong>trol). Error bar shows SE (n ¼ 3).<br />

over time in <str<strong>on</strong>g>the</str<strong>on</strong>g> densities <str<strong>on</strong>g>of</str<strong>on</strong>g> IC over <str<strong>on</strong>g>the</str<strong>on</strong>g> course <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> experiment<br />

(Fig. 3; <strong>on</strong>e-way ANOVA, F3,8 ¼ 0.75, p ¼ 0.55).<br />

Since <str<strong>on</strong>g>the</str<strong>on</strong>g> nematode species Enoplolaimus litoralis was <str<strong>on</strong>g>dominant</str<strong>on</strong>g><br />

in both AT and ST treatments after 1 week <str<strong>on</strong>g>of</str<strong>on</strong>g> incubati<strong>on</strong>, it was<br />

fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r analysed separately. Fig. 4A and B represent total nematode<br />

densities and E. litoralis densities, respectively, in all treatments<br />

over time. It illustrates that besides <str<strong>on</strong>g>the</str<strong>on</strong>g> high densities <str<strong>on</strong>g>of</str<strong>on</strong>g> this<br />

species in <str<strong>on</strong>g>the</str<strong>on</strong>g> treatments AT and ST, it was <strong>on</strong>ly sporadically present<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>trol treatments (AQ and IC). Nematode densities, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

diversity index H 0 , and E. litoralis densities were significantly<br />

affected by <str<strong>on</strong>g>the</str<strong>on</strong>g> time treatment interacti<strong>on</strong> in a two-way ANOVA<br />

(Table 1, Fig. 4). Tukey HSD for unequal N (Table 1) indicated that<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>re was no difference between AQ c<strong>on</strong>trols and IC, and no<br />

difference in <str<strong>on</strong>g>the</str<strong>on</strong>g> nematode densities between AT and ST. Total<br />

nematode densities were initially higher in AQ samples compared<br />

to ST and AT samples; however, this pattern was significantly<br />

reversed from 2 (AT) or 3 (ST) weeks <strong>on</strong>wards (Fig. 4A). From 7 days<br />

<strong>on</strong>wards, H 0 values in AQ cores were always significantly higher<br />

than in AT and ST (Fig. 4D). However, at day 14 a significant<br />

difference was recorded for diversity H 0 and E. litoralis density<br />

T.F. Maria et al. / Estuarine, Coastal and Shelf Science 94 (2011) 272e280 275<br />

between <str<strong>on</strong>g>the</str<strong>on</strong>g> defaunated treatments with (ST) and without <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<str<strong>on</strong>g>polychaete</str<strong>on</strong>g> (AT), with H 0 being higher in ST compared to AT and<br />

E. litoralis less abundant in ST (Table 1).<br />

Species richness (S) was not significantly affected by <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

time treatment interacti<strong>on</strong>. However, significant differences were<br />

observed for both treatment and time separately (Table 1, Fig. 4C).<br />

Tukey HSD for unequal N indicated that <str<strong>on</strong>g>the</str<strong>on</strong>g>re was no difference<br />

between AQ c<strong>on</strong>trol and IC, and between AT and ST and day-2 was<br />

significantly different <str<strong>on</strong>g>of</str<strong>on</strong>g> day-7.<br />

3.2. Community structure<br />

A mean <str<strong>on</strong>g>of</str<strong>on</strong>g> 11.284 individuals were found in this study, bel<strong>on</strong>g to<br />

53 species and 4 unidentified genera (Appendix). No significant<br />

differences in nematode community compositi<strong>on</strong> were observed<br />

between FC, AQ, and IC treatments at <str<strong>on</strong>g>the</str<strong>on</strong>g> beginning <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> experiment<br />

(<strong>on</strong>e-way PERMANOVA: Pseudo-F2,8 ¼ 1.65, p ¼ 0.056). In<br />

additi<strong>on</strong>, nematode communities from both AQ and IC changed<br />

significantly over time (<strong>on</strong>e-way PERMANOVA; Pseudo-F3,8 ¼ 1.996,<br />

p ¼ 0.004 and Pseudo-F3,8 ¼ 1.48, p ¼ 0.03, respectively) (Fig. 5),<br />

although pairwise comparis<strong>on</strong>s were not able to detect at which<br />

time <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> experiment this difference occurred (Table 2B).<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> nematode community was significantly affected by <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

time treatment interacti<strong>on</strong> in two-way PERMANOVA (Table 2A).<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> pairwise test showed that <str<strong>on</strong>g>the</str<strong>on</strong>g> nematode communities from AQ<br />

and IC were significantly different from <str<strong>on</strong>g>the</str<strong>on</strong>g> communities encountered<br />

in AT and ST treatments at day 2. On <str<strong>on</strong>g>the</str<strong>on</strong>g> following sampling<br />

days, nematode communities from AQ differed significantly <strong>on</strong>ly<br />

from those in <str<strong>on</strong>g>the</str<strong>on</strong>g> AT treatment (Fig. 4, Table 2B). <str<strong>on</strong>g>The</str<strong>on</strong>g>re were no<br />

significant differences in nematode communities from <str<strong>on</strong>g>the</str<strong>on</strong>g> AT and<br />

ST treatments.<br />

Sigmophoranema rufumwas <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>dominant</str<strong>on</strong>g> species in <str<strong>on</strong>g>the</str<strong>on</strong>g> AQ and IC<br />

treatments, with mean densities ranging from 54 to 109 ind.10 cm 2<br />

and 36 to 62 ind. 10 cm 2 , respectively. In AT and ST, Enoplolaimus<br />

litoralis was <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>dominant</str<strong>on</strong>g> species, with 22e1967 ind. 10 cm 2 in AT<br />

and 21-887 ind.10 cm 2 in ST (Appendix). <str<strong>on</strong>g>The</str<strong>on</strong>g>se two species showed<br />

a mean density <str<strong>on</strong>g>of</str<strong>on</strong>g> 207 and 152 ind. 10 cm 2 , respectively, in <str<strong>on</strong>g>the</str<strong>on</strong>g> field<br />

Fig. 4. Univariate indices for nematode assemblages over <str<strong>on</strong>g>the</str<strong>on</strong>g> 21 days <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> experiment. Treatment results (black symbols) were plotted against data obtained for <str<strong>on</strong>g>the</str<strong>on</strong>g> aquarium<br />

c<strong>on</strong>trols (open symbols) that served as potential species pool for col<strong>on</strong>isati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> defaunated sediment. A: mean total nematode density, B: E. litoralis density, C: species richness<br />

(S), D: Shann<strong>on</strong> diversity index (H 0 ). Error bar represents SE (n ¼ 3; except day 7 for ST, n ¼ 2). AQ: triangles, IC: diam<strong>on</strong>ds, AT: squares, ST: circles.


276<br />

c<strong>on</strong>trol. High densities <str<strong>on</strong>g>of</str<strong>on</strong>g> particular species, such as Dapt<strong>on</strong>ema<br />

normandicus (63 ind. 10 cm 2 ) and Metadesmolaimus sp.1<br />

(24 ind. 10 cm 2 ) at day 14, were found in <str<strong>on</strong>g>the</str<strong>on</strong>g> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Scolelepis</str<strong>on</strong>g><br />

(ST); both species <strong>on</strong>ly reached high comparable densities at day 21<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> treatment without <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>polychaete</str<strong>on</strong>g> (AT) (Appendix).<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> species c<strong>on</strong>tributing to <str<strong>on</strong>g>the</str<strong>on</strong>g> similarity within each treatment<br />

indicated by two-way crossed SIMPER are listed in Table 3. Withingroup<br />

similarity in AQ and IC was mainly determined by Sigmophoranema<br />

rufum, whereas Enoplolaimus litoralis was much more<br />

important in <str<strong>on</strong>g>the</str<strong>on</strong>g> AT and ST (Table 3).<br />

4. Discussi<strong>on</strong><br />

4.1. Experimental set-up<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> manipulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sediment (sampling, homogenisati<strong>on</strong>,<br />

transport to <str<strong>on</strong>g>the</str<strong>on</strong>g> laboratory and setting up <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> microcosms) clearly<br />

influenced <str<strong>on</strong>g>the</str<strong>on</strong>g> nematode communities in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> density, but not in<br />

terms <str<strong>on</strong>g>of</str<strong>on</strong>g> community structure since most <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> species recorded<br />

from <str<strong>on</strong>g>the</str<strong>on</strong>g> field were also found in <str<strong>on</strong>g>the</str<strong>on</strong>g> AQ samples during <str<strong>on</strong>g>the</str<strong>on</strong>g> entire<br />

durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> experiment. <str<strong>on</strong>g>The</str<strong>on</strong>g> slight reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nematode<br />

densities over <str<strong>on</strong>g>the</str<strong>on</strong>g> course <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> experiment in <str<strong>on</strong>g>the</str<strong>on</strong>g> AQ samples may<br />

be due to <str<strong>on</strong>g>the</str<strong>on</strong>g> col<strong>on</strong>isati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> cores, as <str<strong>on</strong>g>the</str<strong>on</strong>g> timing <str<strong>on</strong>g>of</str<strong>on</strong>g> this decrease<br />

Fig. 5. N<strong>on</strong>-parametric multi-dimensi<strong>on</strong>al scaling ordinati<strong>on</strong> based <strong>on</strong> fourth-root<br />

transformed species density using BrayeCurtis similarity comparing nematode<br />

community am<strong>on</strong>g lab c<strong>on</strong>trols (open symbols) and treatments (AQ: triangles, IC:<br />

diam<strong>on</strong>ds, AT: squares, ST: circles) over time (day-2: light grey, day-7: dark grey, day-<br />

14: medium grey; day-21: black).<br />

T.F. Maria et al. / Estuarine, Coastal and Shelf Science 94 (2011) 272e280<br />

Table 1<br />

Results from two-way ANOVA for <str<strong>on</strong>g>the</str<strong>on</strong>g> treatment and time <str<strong>on</strong>g>effect</str<strong>on</strong>g>s <strong>on</strong> nematodes univariate measurements (Field c<strong>on</strong>trols were omitted in <str<strong>on</strong>g>the</str<strong>on</strong>g> analysis), and Tukey HSD unequal<br />

N for nematode total density, Shann<strong>on</strong> diversity and S. <str<strong>on</strong>g>squamata</str<strong>on</strong>g> density.<br />

Two-way ANOVA Treatment Time Treatment time<br />

F(3,31) p F(3,31) p F(9,31) p<br />

Density 4.95 0.006 32.06


Table 2B<br />

Pairwise tests showing differences between treatments at each time interval and<br />

between times at each treatment. Abbreviati<strong>on</strong>s as used in Table 1.<br />

Pair-wise 2-day 7-day 14-day 21-day<br />

t p(MC) t p(MC) t p(MC) t p(MC)<br />

AQ IC 0.92 0.517 1.10 0.333 1.34 0.177 0.89 0.543<br />

AQ AT 2.33 0.020 3.04 0.010 2.57 0.020 2.46 0.015<br />

AQ ST 2.13 0.025 2.10 0.060 1.84 0.052 1.85 0.054<br />

IC AT 2.17 0.023 2.99 0.007 2.36 0.025 2.35 0.024<br />

IC ST 2.00 0.036 2.15 0.051 1.67 0.066 1.72 0.073<br />

AT ST 0.70 0.728 0.82 0.576 1.55 0.108 1.19 0.263<br />

AQ IC AT ST<br />

t p(MC) t p(MC) t p(MC) t p(MC)<br />

2 7 1.41 0.152 1.34 0.177 2.50 0.018 1.69 0.118<br />

7 14 1.69 0.091 1.10 0.346 1.79 0.070 1.09 0.375<br />

14 21 1.10 0.312 0.96 0.499 1.58 0.115 1.23 0.241<br />

observed indicating a sec<strong>on</strong>d step <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> col<strong>on</strong>isati<strong>on</strong> process.<br />

Possibly <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical unattractiveness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sediment had become<br />

a barrier for <str<strong>on</strong>g>the</str<strong>on</strong>g> survival or maintenance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> initially rapidcol<strong>on</strong>ising<br />

species, so that now new col<strong>on</strong>isers were arriving and<br />

replacing <str<strong>on</strong>g>the</str<strong>on</strong>g>m. At this time, <str<strong>on</strong>g>the</str<strong>on</strong>g> species, Enoplolaimus litoralis,<br />

showed high densities (92% and 87% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> total density in <str<strong>on</strong>g>the</str<strong>on</strong>g> azoic<br />

and <str<strong>on</strong>g>Scolelepis</str<strong>on</strong>g> treatments, respectively). Although E. litoralis is an<br />

opportunistic species (B<strong>on</strong>gers et al., 1991) and a successful col<strong>on</strong>iser<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> oil-spill disturbed sediments (Giere, 1979), it is initially<br />

difficult to explain its success. Reproducti<strong>on</strong> could be a possible<br />

explanati<strong>on</strong>, but since <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> juveniles to <str<strong>on</strong>g>the</str<strong>on</strong>g> populati<strong>on</strong><br />

structure was less than 40%, it is unlikely that <str<strong>on</strong>g>the</str<strong>on</strong>g> success <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

E. litoralis can be attributed solely to its reproductive activities.<br />

Enoplolaimus litoralis is assumed to be a predacious nematode,<br />

because <str<strong>on</strong>g>of</str<strong>on</strong>g> its large buccal cavity and associated teeth and mandibles,<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g>refore may be less dependent <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> biochemistry <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

sediment, compared to detritivorous or microvorous species. Hence,<br />

it seems to be less hampered in col<strong>on</strong>ising <str<strong>on</strong>g>the</str<strong>on</strong>g> available sediments<br />

than are o<str<strong>on</strong>g>the</str<strong>on</strong>g>r species. <str<strong>on</strong>g>The</str<strong>on</strong>g>refore, <str<strong>on</strong>g>the</str<strong>on</strong>g> col<strong>on</strong>isati<strong>on</strong> success <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

E. litoralis likely results from <str<strong>on</strong>g>the</str<strong>on</strong>g> combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> its high mobility and<br />

feeding activity. This species may also be resp<strong>on</strong>sible for <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

reducti<strong>on</strong> in diversity, by preying <strong>on</strong> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r n<strong>on</strong>-predatory species<br />

(i.e., a top-down <str<strong>on</strong>g>effect</str<strong>on</strong>g>). Top-down <str<strong>on</strong>g>effect</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> predatory nematodes<br />

have been shown to c<strong>on</strong>trol <str<strong>on</strong>g>the</str<strong>on</strong>g> density and species compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

nematode communities (Moens et al., 2000; Steyaert et al., 2001;<br />

Gallucci et al., 2005; Dos Santos and Moens, 2011).<br />

From day 14 <strong>on</strong>wards, <str<strong>on</strong>g>the</str<strong>on</strong>g>re was a slight increase in richness and<br />

diversity in both treatments. This could indicate better sediment<br />

c<strong>on</strong>diti<strong>on</strong>s developed through col<strong>on</strong>isati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sediment by<br />

microbes and diatoms from <str<strong>on</strong>g>the</str<strong>on</strong>g> water column. Although <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

recovery <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> initial compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> bacterial community may<br />

occur 25 days after defaunati<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> highest density <str<strong>on</strong>g>of</str<strong>on</strong>g> microbial<br />

cells may be found <strong>on</strong> around <str<strong>on</strong>g>the</str<strong>on</strong>g> tenth day <str<strong>on</strong>g>of</str<strong>on</strong>g> a microbial col<strong>on</strong>isati<strong>on</strong><br />

process (Stocum and Plante, 2006).<br />

Table 3<br />

Output <str<strong>on</strong>g>of</str<strong>on</strong>g> two-way crossed SIMPER analysis showing <str<strong>on</strong>g>the</str<strong>on</strong>g> top 50% typical species for<br />

each treatment. Overall similarity <str<strong>on</strong>g>of</str<strong>on</strong>g> each treatment is shown between brackets.<br />

Abbreviati<strong>on</strong>s as used in Table 1.<br />

Species AQ (72%) IC (69%) AT (63%) ST (63%)<br />

Sigmophoranema rufum 10 9<br />

Enoplolaimus litoralis 8 8 32 20<br />

Mesacanthi<strong>on</strong> sp. 1 7 8 10 10<br />

Oncholaimellus calvadosicus 7 6 7<br />

Ascolaimus el<strong>on</strong>gatus 6 10 9<br />

Chromadora axi 6 6<br />

Metadesmolaimus sp. 1 6 6<br />

Neochromadora munita 6 5<br />

Dapt<strong>on</strong>ema normandicus 5 10<br />

T.F. Maria et al. / Estuarine, Coastal and Shelf Science 94 (2011) 272e280 277<br />

4.3. Community shifts in <str<strong>on</strong>g>the</str<strong>on</strong>g> presence and absence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Scolelepis</str<strong>on</strong>g><br />

<str<strong>on</strong>g>squamata</str<strong>on</strong>g> after 2 weeks <str<strong>on</strong>g>of</str<strong>on</strong>g> col<strong>on</strong>isati<strong>on</strong><br />

Significant differences in nematode diversity and <str<strong>on</strong>g>the</str<strong>on</strong>g> density <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Enoplolaimus litoralis between <str<strong>on</strong>g>the</str<strong>on</strong>g> azoic treatment and <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Scolelepis</str<strong>on</strong>g><br />

treatment occurred at day 14, and indeed PERMANOVA indicated<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> lowest n<strong>on</strong>-significant difference in nematode<br />

community compositi<strong>on</strong> between <str<strong>on</strong>g>the</str<strong>on</strong>g>se treatments at this time.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>se results indicate that <str<strong>on</strong>g>the</str<strong>on</strong>g> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> S. <str<strong>on</strong>g>squamata</str<strong>on</strong>g> affects <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

col<strong>on</strong>isati<strong>on</strong>, rejecting our sec<strong>on</strong>d null hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>sis (H2).<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>polychaete</str<strong>on</strong>g>, Enoplolaimus litoralis<br />

appeared in lower densities, from day 14 compared to when <str<strong>on</strong>g>Scolelepis</str<strong>on</strong>g><br />

<str<strong>on</strong>g>squamata</str<strong>on</strong>g> was absent. <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>polychaete</str<strong>on</strong>g> seem to reduce <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

top-down <str<strong>on</strong>g>effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> predatory nematode, favouring earlier<br />

establishment <str<strong>on</strong>g>of</str<strong>on</strong>g> additi<strong>on</strong>al n<strong>on</strong>-predatory species (i.e., Dapt<strong>on</strong>ema<br />

normandicus), which in turn led to an increase in diversity (H 0 ). In<br />

additi<strong>on</strong> to delaying/inhibiting <str<strong>on</strong>g>the</str<strong>on</strong>g> col<strong>on</strong>isati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> E. litoralis, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<str<strong>on</strong>g>polychaete</str<strong>on</strong>g> may also help in enhancing <str<strong>on</strong>g>the</str<strong>on</strong>g> envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s,<br />

again c<strong>on</strong>tributing to <str<strong>on</strong>g>the</str<strong>on</strong>g> higher nematode diversity in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Scolelepis</str<strong>on</strong>g> treatment. Better envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s can result<br />

from <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>polychaete</str<strong>on</strong>g>’s activities, which change <str<strong>on</strong>g>the</str<strong>on</strong>g> sediment<br />

chemistry through bioturbati<strong>on</strong> and/or increase microbial metabolism<br />

by depositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> pseud<str<strong>on</strong>g>of</str<strong>on</strong>g>aeces (Dauer, 1983; Hartmann-<br />

Schröeder, 1996; Pardo and Amaral, 2004; Van Hoey et al., 2004).<br />

On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r hand, <str<strong>on</strong>g>polychaete</str<strong>on</strong>g> bioturbati<strong>on</strong> stimulates organicmatter<br />

mineralizati<strong>on</strong> via microbial degradati<strong>on</strong>, by increasing<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> oxygen supply from its burrow c<strong>on</strong>structi<strong>on</strong> and irrigati<strong>on</strong><br />

(Mermillod-Bl<strong>on</strong>din et al., 2004; Papaspyrou et al., 2007;<br />

Timmermann et al., 2008; Braeckman et al., 2010). <str<strong>on</strong>g>The</str<strong>on</strong>g> individuals<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> S. <str<strong>on</strong>g>squamata</str<strong>on</strong>g> built temporary vertical tubes and occasi<strong>on</strong>ally<br />

burrow to a depth <str<strong>on</strong>g>of</str<strong>on</strong>g> 40 cm below <str<strong>on</strong>g>the</str<strong>on</strong>g> sediment surface (Hartmann-<br />

Schröeder, 1996; Van Hoey et al., 2004). Indeed, during <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

sampling times, some burrows were found at <str<strong>on</strong>g>the</str<strong>on</strong>g> bottom <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

cores, indicating activity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>polychaete</str<strong>on</strong>g>.<br />

4.4. Successi<strong>on</strong> patterns in c<strong>on</strong>trasting envir<strong>on</strong>ments<br />

Three generalized models <str<strong>on</strong>g>of</str<strong>on</strong>g> community recovery were<br />

proposed by C<strong>on</strong>nell and Slatyer (1977), based <strong>on</strong> interacti<strong>on</strong>s<br />

between pi<strong>on</strong>eering species and later col<strong>on</strong>ists: 1- Facilitati<strong>on</strong><br />

model: early col<strong>on</strong>ists (i.e., pi<strong>on</strong>eering) can promote <str<strong>on</strong>g>the</str<strong>on</strong>g> establishment<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> later col<strong>on</strong>ists; 2- Inhibiti<strong>on</strong> model: early col<strong>on</strong>ists<br />

reduce <str<strong>on</strong>g>the</str<strong>on</strong>g> establishment <str<strong>on</strong>g>of</str<strong>on</strong>g> later col<strong>on</strong>ists; and 3- Tolerance<br />

model: early col<strong>on</strong>ists have little or no <str<strong>on</strong>g>effect</str<strong>on</strong>g> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> establishment<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> later col<strong>on</strong>ists. In mudflats, an envir<strong>on</strong>ment with low hydrodynamic<br />

stress, very fine sediment and naturally high abundance <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

microphytobenthos (Reise, 1985), opportunistic epistrate-feeding<br />

nematode species dominate in <str<strong>on</strong>g>the</str<strong>on</strong>g> absence <str<strong>on</strong>g>of</str<strong>on</strong>g> macr<str<strong>on</strong>g>of</str<strong>on</strong>g>auna. This is<br />

explained by <str<strong>on</strong>g>the</str<strong>on</strong>g> high availability <str<strong>on</strong>g>of</str<strong>on</strong>g> microphytobenthos in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

absence <str<strong>on</strong>g>of</str<strong>on</strong>g> grazing macr<str<strong>on</strong>g>of</str<strong>on</strong>g>auna (Van Colen et al., 2009). In this case,<br />

early-col<strong>on</strong>ising nematodes c<strong>on</strong>tributed to a delay in <str<strong>on</strong>g>the</str<strong>on</strong>g> nematode<br />

community recovery, and for that reas<strong>on</strong> an inhibiti<strong>on</strong> model was<br />

recognized. But in plots where macr<str<strong>on</strong>g>of</str<strong>on</strong>g>auna was still present, epistrate<br />

nematodes did not reach high densities, suggesting that <str<strong>on</strong>g>the</str<strong>on</strong>g>ir<br />

low densities provide stability for <str<strong>on</strong>g>the</str<strong>on</strong>g> nematode community (Van<br />

Colen et al., 2009).<br />

In sandy beaches, an envir<strong>on</strong>ment that sharply diverges from<br />

a mudflat because <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> str<strong>on</strong>ger hydrodynamics, coarse sediments<br />

and low abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> microphytobenthos (McLachlan and<br />

Brown, 2006), <str<strong>on</strong>g>the</str<strong>on</strong>g> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> macrobenthos seems to lead to<br />

a delay/inhibiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> establishment <str<strong>on</strong>g>of</str<strong>on</strong>g> high densities <str<strong>on</strong>g>of</str<strong>on</strong>g> opportunistic<br />

species, here represented by Enoplolaimus litoralis. <str<strong>on</strong>g>The</str<strong>on</strong>g> low<br />

density <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>dominant</str<strong>on</strong>g> predatory nematode species favours <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

earlier establishment <str<strong>on</strong>g>of</str<strong>on</strong>g> sec<strong>on</strong>dary species (Vanaverbeke et al.,<br />

2007). In our experiment, in <str<strong>on</strong>g>the</str<strong>on</strong>g> absence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>polychaete</str<strong>on</strong>g>, <str<strong>on</strong>g>the</str<strong>on</strong>g>


278<br />

establishment <str<strong>on</strong>g>of</str<strong>on</strong>g> sec<strong>on</strong>dary species occurred <strong>on</strong>e week later than in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>polychaete</str<strong>on</strong>g>. <str<strong>on</strong>g>The</str<strong>on</strong>g>refore, in sandy beaches,<br />

a facilitati<strong>on</strong> model <str<strong>on</strong>g>of</str<strong>on</strong>g> successi<strong>on</strong> seems to occur in <str<strong>on</strong>g>the</str<strong>on</strong>g> presence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

macr<str<strong>on</strong>g>of</str<strong>on</strong>g>auna; whereas an inhibiti<strong>on</strong> model may occur in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

absence <str<strong>on</strong>g>of</str<strong>on</strong>g> macr<str<strong>on</strong>g>of</str<strong>on</strong>g>auna, like in mudflats. <str<strong>on</strong>g>The</str<strong>on</strong>g> comparis<strong>on</strong> between<br />

mudflats and sandy beaches shows that mei<str<strong>on</strong>g>of</str<strong>on</strong>g>auna successi<strong>on</strong> can<br />

be similar in <str<strong>on</strong>g>the</str<strong>on</strong>g>se two c<strong>on</strong>trasting envir<strong>on</strong>ments.<br />

5. C<strong>on</strong>clusi<strong>on</strong><br />

Rejecting both null-hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>ses proposed in this study, we<br />

dem<strong>on</strong>strate that col<strong>on</strong>isati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> defaunated sandy beach sediments<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>dominant</str<strong>on</strong>g>, cosmopolitan <str<strong>on</strong>g>polychaete</str<strong>on</strong>g>,<br />

<str<strong>on</strong>g>Scolelepis</str<strong>on</strong>g> <str<strong>on</strong>g>squamata</str<strong>on</strong>g>, is a species-specific process which is governed<br />

by interacti<strong>on</strong>s within and across size groups. <str<strong>on</strong>g>The</str<strong>on</strong>g>se two kinds <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Appendix<br />

T.F. Maria et al. / Estuarine, Coastal and Shelf Science 94 (2011) 272e280<br />

biological c<strong>on</strong>trols highlight an initial shift in <str<strong>on</strong>g>the</str<strong>on</strong>g> paradigm <str<strong>on</strong>g>of</str<strong>on</strong>g> sandy<br />

beaches as an ecosystem str<strong>on</strong>gly driven by physical disturbances.<br />

Acknowledgements<br />

We thank Tania Nara and Giovanni dos Santos for <str<strong>on</strong>g>the</str<strong>on</strong>g>ir support<br />

during <str<strong>on</strong>g>the</str<strong>on</strong>g> sampling, as well as Annick Van Kenhove for her assistance<br />

in setting up <str<strong>on</strong>g>the</str<strong>on</strong>g> experiment and Jürgen Verstraeten for<br />

designing <str<strong>on</strong>g>the</str<strong>on</strong>g> cores. Dr. Steven Degraer is also acknowledged for his<br />

suggesti<strong>on</strong>s during <str<strong>on</strong>g>the</str<strong>on</strong>g> set up <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> experiment. Dr. Janet W. Reid,<br />

JWR Associates is acknowledged for her critical revisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

English. <str<strong>on</strong>g>The</str<strong>on</strong>g> three an<strong>on</strong>ymous referees are also acknowledged for<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>ir c<strong>on</strong>structive comments <strong>on</strong> an earlier versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> manuscript.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> first author is sp<strong>on</strong>sored by a Ph.D. scholarship from<br />

Vlaamse Interuniversitaire Raad e VLIR-UOS. This paper c<strong>on</strong>tributes<br />

to FWO project G.0041.08N.<br />

Mean nematode species density within each treatment at each specific sampling time. FC: field c<strong>on</strong>trol, AQ: aquarium c<strong>on</strong>trol, IC: indigenous<br />

c<strong>on</strong>trol, AT: azoic treatment, ST: <str<strong>on</strong>g>Scolelepis</str<strong>on</strong>g> treatment.<br />

Day-2 Day-7 Day-14 Day-21<br />

FC AQ IC AT ST AQ IC AT ST AQ IC AT ST AQ IC AT ST<br />

Apod<strong>on</strong>tium sp. 1 0 0 4 1 0 1 0 0 2 0 0 0 5 1 0 18 2<br />

Ascolaimus el<strong>on</strong>gatus 7 22 15 1 1 17 10 13 16 7 13 35 10 7 6 33 18<br />

Bathylaimus sp. 1 19 2 5 3 3 14 4 6 6 4 2 9 15 4 3 35 10<br />

Bolbolaimus crassiceps 44 10 14 0 2 6 4 0 0 2 5 0 1 9 7 0 2<br />

Bolbolaimus sp. 2 0 0 3 0 0 0 0 0 0 1 0 0 0 0 0 0 0<br />

Chromadora axi 25 15 16 1 2 21 18 0 0 15 5 6 1 11 15 8 16<br />

Chromadorita sp. 1 8 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0<br />

Chromaspirina p<strong>on</strong>tica 6 9 4 1 2 0 0 0 0 4 0 0 0 3 3 0 4<br />

Chromaspirina inglisi 0 3 1 0 2 1 1 0 0 3 0 0 3 2 1 0 0<br />

COMESOMATIDAE type 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0<br />

Dapt<strong>on</strong>ema normandicus 51 25 14 1 1 11 5 9 20 8 9 9 63 12 11 132 78<br />

DORYLAIMIDAE type 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0<br />

Dorylaimopsis sp. 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Enoploides spiculohamatus 0 0 0 0 0 0 0 0 0 0 0 13 0 1 0 0 0<br />

Enoplolaimus litoralis 152 52 46 22 21 52 31 505 503 14 70 1967 380 26 36 1594 887<br />

Enoplolaimus sp. 2 0 2 1 1 2 8 1 0 4 5 8 6 5 2 1 22 23<br />

Eumorpholaimus sp. 1 0 0 0 0 0 0 0 2 0 1 0 0 0 0 0 10 0<br />

Gammanema sp. 1 5 1 0 0 0 2 6 0 0 0 2 0 0 2 0 0 0<br />

Hypod<strong>on</strong>tolaimus sp. 1 5 5 4 0 1 5 2 0 0 5 3 0 1 7 10 0 2<br />

Lept<strong>on</strong>emella sp. 1 3 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0<br />

LEPTOLAIMIDAE type 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Leptolaimus sp. 1 6 4 0 0 0 0 0 0 2 2 5 0 3 0 0 0 4<br />

Mesacanthi<strong>on</strong> sp. 1 43 30 36 3 5 45 57 3 4 21 61 84 36 20 54 71 64<br />

Metadesmolaimus cor<strong>on</strong>atus 23 7 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0<br />

Metadesmolaimus sp. 1 39 25 32 1 4 25 19 2 0 14 10 0 24 12 12 24 13<br />

Microlaimus sp. 1 0 5 3 0 1 3 1 0 0 1 3 6 2 2 3 0 2<br />

M<strong>on</strong>oposthia mirabilis 18 5 1 0 0 6 1 0 0 1 1 0 0 4 2 0 0<br />

Neochromadora munita 29 14 16 1 1 22 4 0 5 19 38 22 17 21 11 33 45<br />

Od<strong>on</strong>tophora sp. 1 3 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0<br />

Od<strong>on</strong>tophoroides sp. 1 6 3 1 0 0 7 7 0 0 3 5 0 3 2 7 0 6<br />

Oncholaimellus calvadosicus 168 76 48 3 7 64 13 0 4 18 11 19 17 10 4 48 22<br />

ONCHOLAIMIDAE type 1 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Oncholaimus dujardini 0 4 4 0 0 2 8 0 0 2 9 0 3 2 4 4 17<br />

Paracanth<strong>on</strong>chus thaumasius 13 0 0 0 0 6 4 1 0 0 0 0 0 1 2 0 0<br />

Paracyatholaimus sp. 1 20 19 5 1 0 2 5 0 2 8 14 19 3 11 10 8 0<br />

Param<strong>on</strong>ohystera sp. 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0<br />

Pomp<strong>on</strong>ema sp. 1 6 2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0<br />

Pomp<strong>on</strong>ema sp. 2 13 0 0 2 1 6 3 0 0 1 4 0 0 5 5 10 0<br />

Prom<strong>on</strong>hystera faber 12 14 16 2 2 4 0 0 2 0 2 0 3 0 0 4 0<br />

Pseud<strong>on</strong>chus sp. 1 0 0 0 0 0 2 0 1 0 0 0 0 0 1 1 0 0<br />

Rhabditis sp. 1 0 1 0 0 0 0 0 0 4 0 4 0 0 3 2 8 0<br />

Rynch<strong>on</strong>ema sp. 1 15 0 1 0 0 6 7 0 0 0 2 0 0 3 3 0 4<br />

Sabatieria sp. 1 12 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Setostephanolaimus sp. 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 7 0<br />

Sigmophoranema rufum 207 84 62 2 3 59 41 1 0 54 36 12 4 109 51 31 13<br />

Sou<str<strong>on</strong>g>the</str<strong>on</strong>g>rnia sp. 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0


(c<strong>on</strong>tinued )<br />

References<br />

Al<strong>on</strong>gi, D.M., Boesch, D.F., Diaz, R.J., 1983. Col<strong>on</strong>izati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> meiobenthos in oilc<strong>on</strong>taminated<br />

subtidal sands in <str<strong>on</strong>g>the</str<strong>on</strong>g> lower Chesapeake bay. Marine Biology 72,<br />

325e335.<br />

Anders<strong>on</strong>, M.J., Robins<strong>on</strong>, J., 2003. Generalized discriminant analysis based <strong>on</strong><br />

distances. Australian & New Zealand Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Statistics 45, 301e318.<br />

Anders<strong>on</strong>, M.J., Gorley, R.N., Clarke, K.R., 2008. PERMANOVAþ for PRIMER: Guide to<br />

S<str<strong>on</strong>g>of</str<strong>on</strong>g>tware and Statistical Methods. PRIMER-E, Plymouth, 274 pp.<br />

B<strong>on</strong>gers, T., Alkemade, R., Yeates, G.W., 1991. Interpretati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> disturbance-induced<br />

maturity decrease in marine nematode assemblages by means <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> maturity<br />

index. Marine Ecology Progress Series 76, 135e142.<br />

Braeckman, U., Provoost, P., Gribsholt, B., Van Gansbeke, D., Middelburg, J.J.,<br />

Soetaert, K., Vincx, M., Vanaverbeke, J., 2010. Role <str<strong>on</strong>g>of</str<strong>on</strong>g> macr<str<strong>on</strong>g>of</str<strong>on</strong>g>auna functi<strong>on</strong>al<br />

traits and density in <str<strong>on</strong>g>the</str<strong>on</strong>g> biogeochemical fluxes and bioturbati<strong>on</strong>. Marine<br />

Ecology Progress Series 399, 173e186.<br />

Chandler, G.T., Fleeger, J.W., 1983. Mei<str<strong>on</strong>g>of</str<strong>on</strong>g>aunal col<strong>on</strong>izati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> azoic estuarine sediments<br />

in Louisiana: mechanisms <str<strong>on</strong>g>of</str<strong>on</strong>g> dispersal. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Experimental Marine<br />

Biology and Ecology 69, 175e188.<br />

Colangelo, M.A., Macrí, T., Ceccherelli, V.U., 1996. A field experiment <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

two types <str<strong>on</strong>g>of</str<strong>on</strong>g> sediment disturbance <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> recovery <str<strong>on</strong>g>of</str<strong>on</strong>g> a meiobenthic<br />

community in a eutrophicated lago<strong>on</strong>. Hydrobiologia 329, 57e67.<br />

C<strong>on</strong>nell, J.H., Slatyer, R.B., 1977. Mechanisms <str<strong>on</strong>g>of</str<strong>on</strong>g> successi<strong>on</strong> in natural communities<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir role in community stability and organizati<strong>on</strong>. American Naturalist 111,<br />

1119e1144.<br />

Dauer, D.M., 1983. Functi<strong>on</strong>al morphology and feeding behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Scolelepis</str<strong>on</strong>g><br />

<str<strong>on</strong>g>squamata</str<strong>on</strong>g> (Polychaeta: Spi<strong>on</strong>idae). Marine Biology 77, 279e285.<br />

Decker, C.J., Fleeger, J.W., 1984. <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> crude oil <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> col<strong>on</strong>izati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

mei<str<strong>on</strong>g>of</str<strong>on</strong>g>auna into salt marsh sediments. Hydrobiologia 118, 49e58.<br />

De Grisse, A.T., 1969. Redescripti<strong>on</strong> ou modificati<strong>on</strong> de quelques techniques utilisés<br />

dans l’études dês nématodes phytoparaires. Mededelingen Rijksfakulteit<br />

Landbouwwetenschappen Gent 34, 351e369.<br />

Defeo, O., McLachlan, A., 2005. Patterns, processes and regulatory mechanisms in<br />

sandy beach macr<str<strong>on</strong>g>of</str<strong>on</strong>g>auna: a multi-scale analysis. Marine Ecology Progress Series<br />

295, 1e20.<br />

Degraer, S., Mout<strong>on</strong>, I., De Neve, L., Vincx, M., 1999. Community structure and<br />

intertidal z<strong>on</strong>ati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> macrobenthos <strong>on</strong> a macrotidal, ultra-dissipative<br />

sandy beach: summerewinter comparis<strong>on</strong>. Estuaries 22, 742e752.<br />

Degraer, S., Volckaert, A., Vincx, M., 2003. Macrobenthic z<strong>on</strong>ati<strong>on</strong> patterns al<strong>on</strong>g<br />

a morphodynamical c<strong>on</strong>tinuum <str<strong>on</strong>g>of</str<strong>on</strong>g> macrotidal, low tide bar/rip and ultradissipative<br />

sandy beaches. Estuarine, Coastal and Shelf Science 56, 459e468.<br />

Dos Santos, G.A.P., Moens, T., 2011. Populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> two prey nematodes and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir<br />

interacti<strong>on</strong> are c<strong>on</strong>trolled by a predatory nematode. Marine Ecology Progress<br />

Series 427, 117e131.<br />

Gallucci, F., Steyaert, M., Moens, T., 2005. Can field distributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> marine predacious<br />

nematodes be explained by sediment c<strong>on</strong>straints <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir foraging<br />

success? Marine Ecology Progress Series 304, 167e178.<br />

Gallucci, F., Moens, T., Vanreusel, A., F<strong>on</strong>seca, G., 2008. Active col<strong>on</strong>isati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

disturbed sediments by deep-sea nematodes: evidence for <str<strong>on</strong>g>the</str<strong>on</strong>g> patch mosaic<br />

model. Marine Ecology Progress Series 367, 173e183.<br />

Gheskiere, T., Hoste, E., Vanaverbeke, J., Vincx, M., Degraer, S., 2004. Horiz<strong>on</strong>tal<br />

z<strong>on</strong>ati<strong>on</strong> patterns and feeding structure <str<strong>on</strong>g>of</str<strong>on</strong>g> marine nematode assemblages <strong>on</strong><br />

a macrotidal, ultra-dissipative sandy beach (De Panne, Belgium). Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Sea<br />

Research 52, 211e226.<br />

Giere, O., 1979. <str<strong>on</strong>g>The</str<strong>on</strong>g> impact <str<strong>on</strong>g>of</str<strong>on</strong>g> oil polluti<strong>on</strong> <strong>on</strong> intertidal mei<str<strong>on</strong>g>of</str<strong>on</strong>g>auna. Field<br />

studies after <str<strong>on</strong>g>the</str<strong>on</strong>g> la Coruna-spill, May 1976. Cahiers de Biologie Marine 20,<br />

231e251.<br />

Gingold, R., Mundo-Ocampo, M., Holovachov, O., Rocha-Olivares, A., 2010. <str<strong>on</strong>g>The</str<strong>on</strong>g> role<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> habitat heterogeneity in structuring <str<strong>on</strong>g>the</str<strong>on</strong>g> community <str<strong>on</strong>g>of</str<strong>on</strong>g> intertidal free-living<br />

marine nematodes. Marine Biology 157, 1741e1753.<br />

Hartmann-Schröeder, G., 1996. Annelida. Borstenwürmer, Polychaeta e Tierwelt<br />

Deutschlands Teil, vol. 58. Gustav Fischer Verlag, Jena, 648 pp.<br />

T.F. Maria et al. / Estuarine, Coastal and Shelf Science 94 (2011) 272e280 279<br />

Day-2 Day-7 Day-14 Day-21<br />

FC AQ IC AT ST AQ IC AT ST AQ IC AT ST AQ IC AT ST<br />

Spilophorella sp. 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0<br />

Stephanolaimus sp. 1 3 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0<br />

Terschellingia sp. 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Thalassir<strong>on</strong>us sp. 1 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>ristus sp. 2 15 6 5 1 2 6 4 0 2 10 2 0 0 10 5 0 17<br />

Trefusia sp. 1 6 3 3 0 0 0 1 0 0 0 1 0 0 2 2 0 5<br />

Tricho<str<strong>on</strong>g>the</str<strong>on</strong>g>ristus mirabilis 25 21 9 0 1 16 8 4 2 8 3 0 6 4 4 8 2<br />

Tricho<str<strong>on</strong>g>the</str<strong>on</strong>g>ristus sp. 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0<br />

Tripyloides sp. 1 0 0 0 0 0 0 0 0 0 1 2 0 0 0 3 0 2<br />

Triss<strong>on</strong>chulus sp. 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0<br />

Xyala striata 45 12 13 0 0 2 13 0 2 7 4 0 1 2 10 43 9<br />

Heip, C., Vincx, M., Vranken, G., 1985. <str<strong>on</strong>g>The</str<strong>on</strong>g> ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> marine nematodes. Oceanography<br />

and Marine Biology: An Annual Review 23, 399e489.<br />

Horn, H.S., 1981. Successi<strong>on</strong>. In: May, R.M. (Ed.), <str<strong>on</strong>g>The</str<strong>on</strong>g>oretical Ecology: Principles<br />

and Applicati<strong>on</strong>s. Blackwell Scientific Publicati<strong>on</strong>s, Oxford,<br />

pp. 253e271.<br />

Langezaal, A.M., Van Berger, R., Van der Zwaan, G.J., 2004. <str<strong>on</strong>g>The</str<strong>on</strong>g> recovery <str<strong>on</strong>g>of</str<strong>on</strong>g> benthic<br />

foramnifera and bacteria after disturbance: experimental evidence. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Experimental Marine Biology and Ecology 312, 137e170.<br />

McLachlan, A., Brown, A., 2006. <str<strong>on</strong>g>The</str<strong>on</strong>g> Ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> Sandy Shores. Elsevier, USA, 373 pp.<br />

Mermillod-Bl<strong>on</strong>din, F., Rosenberg, R., Francois-Carcaillet, F., Norling, K.,<br />

Mauclaire, L., 2004. Influence <str<strong>on</strong>g>of</str<strong>on</strong>g> bioturbati<strong>on</strong> by three benthic infaunal species<br />

<strong>on</strong> microbial communities and biogeochemical process in marine sediments.<br />

Aquatic Microbial Ecology 36, 271e284.<br />

Moens, T., Herman, P.M.J., Verbeeck, L., Steyaert, M., Vincx, M., 2000. Predati<strong>on</strong> rates<br />

and prey selectivity in two predacious estuarine nematode species. Marine<br />

Ecology Progress Series 205, 185e193.<br />

Ólafss<strong>on</strong>, E., 2003. Do macr<str<strong>on</strong>g>of</str<strong>on</strong>g>auna structure mei<str<strong>on</strong>g>of</str<strong>on</strong>g>auna assemblages in marine s<str<strong>on</strong>g>of</str<strong>on</strong>g>tbottoms?<br />

A review <str<strong>on</strong>g>of</str<strong>on</strong>g> experimental studies. Vie Milleu 53, 249e265.<br />

Pardo, E.V., Amaral, A.C.Z., 2004. Feeding behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Scolelepis</str<strong>on</strong>g> sp. (Polychaeta:<br />

Spi<strong>on</strong>idae). Brazilian Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Oceanography 52, 75e79.<br />

Papaspyrou, S., Kristensen, E., Christensen, B., 2007. Arenicola marina (Polychaeta)<br />

and organic matter mineralisati<strong>on</strong> in sandy marine sediments: in<br />

situ and microcosm comparis<strong>on</strong>. Estuarine, Coastal and Shelf Science 72,<br />

213e222.<br />

Peters<strong>on</strong>, C.H., Bishop, M.J., Johns<strong>on</strong>, G.A., D’Anna, L.M., Manning, L.M., 2006.<br />

Exploiting beach filling as an unaffordable experiment: benthic intertidal<br />

impacts propagating upwards shorebirds. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Experimental Marine<br />

Biology and Ecology 338, 205e221.<br />

Reise, K., 1985. Tidal Flat Ecology e An Experimental Approach to Species Interacti<strong>on</strong>s.<br />

Springer-Verlag, Berlin, 191 pp.<br />

Rosenberg, R., Nilss<strong>on</strong>, H.C., Dias, R.J., 2001. Resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> benthic fauna and changing<br />

sediment redox pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles over a hypoxic gradient. Estuarine, Coastal and Shelf<br />

Science 53, 343e350.<br />

Sandnes, J., Forbes, T., Hansen, R., Sandnes, B., Rygg, B., 2000. Bioturbati<strong>on</strong> and<br />

irrigati<strong>on</strong> in natural sediments, described by animal-community parameters.<br />

Marine Ecology Progress Series 197, 169e179.<br />

Schlacher, T.A., Schoeman, D.S., Dugan, J., Lastra, M., J<strong>on</strong>es, A., Scapini, F.,<br />

McLachlan, A., 2008. Sandy beach ecosystems: key feature, sampling issues,<br />

management challenges and climate change impacts. Marine Ecology 29S,<br />

70e90.<br />

Scholz, D.S., Mat<str<strong>on</strong>g>the</str<strong>on</strong>g>ws, L.L., Feller, R.J., 1991. Detecting selective digesti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> meiobenthic<br />

prey by juvenile spot Leiostomus xanthurus (PISCES) using immunoassays.<br />

Marine Ecology Progress Series 72, 59e67.<br />

Schratzberger, M., Warwick, R.M., 1999. Differential <str<strong>on</strong>g>effect</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> various types <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

disturbances <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> structure <str<strong>on</strong>g>of</str<strong>on</strong>g> nematode assemblages: an experimental<br />

approach. Marine Ecology Progress Series 181, 227e236.<br />

Schratzberger, M., Whomersley, P., Warr, K., Bolam, S.G., Ress, H.L., 2004. Col<strong>on</strong>isati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> various types <str<strong>on</strong>g>of</str<strong>on</strong>g> sediment by estuarine nematodes via lateral infaunal<br />

migrati<strong>on</strong>: a laboratory study. Marine Biology 145, 69e78.<br />

Sherman, K.M., Coull, B.C., 1980. <str<strong>on</strong>g>The</str<strong>on</strong>g> resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> mei<str<strong>on</strong>g>of</str<strong>on</strong>g>auna to sediment disturbance.<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Experimental Marine Biology and Ecology 46, 59e71.<br />

Souza, J.R.R., Borz<strong>on</strong>e, C.A., 2000. Populati<strong>on</strong> dynamics and sec<strong>on</strong>dary producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Scolelepis</str<strong>on</strong>g> <str<strong>on</strong>g>squamata</str<strong>on</strong>g> (Polychaeta: Spi<strong>on</strong>idae) in an exposed sandy beach <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

sou<str<strong>on</strong>g>the</str<strong>on</strong>g>rn Brazil. Bulletin <str<strong>on</strong>g>of</str<strong>on</strong>g> Marine Science 67, 221e233.<br />

Speybroeck, J., B<strong>on</strong>te, D., Courtens, W., Gheskiere, T., Grootaert, P., Maelfait, J.P.,<br />

Mathys, M., Provoost, S., Sabbe, K., Stienen, E.W.M., Van Lancker, V., Vincx, M.,<br />

Degraer, S., 2006. Beach nourishment: an ecologically sound coastal defence<br />

alternative? a review. Aquatic C<strong>on</strong>servati<strong>on</strong>: Marine and Freshwater Ecosystem<br />

16, 419e435.<br />

Stocum, E.T., Plante, C.J., 2006. <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> artificial defaunati<strong>on</strong> <strong>on</strong> bacterial<br />

assemblages <str<strong>on</strong>g>of</str<strong>on</strong>g> intertidal sediments. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Experimental Marine Biology<br />

and Ecology 337, 147e158.


280<br />

Steyaert, M., Herman, P.M.J., Moens, T., Widdows, J., Vincx, M., 2001. Tidal migrati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> nematodes <strong>on</strong> an estuarine tidal flat (<str<strong>on</strong>g>the</str<strong>on</strong>g> Molenplaat, Schelde Estuary, SW<br />

Ne<str<strong>on</strong>g>the</str<strong>on</strong>g>rlands). Marine Ecology Progress Series 224, 299e304.<br />

Sun, B., Fleeger, J.W., 1994. Field experiments <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> col<strong>on</strong>izati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> mei<str<strong>on</strong>g>of</str<strong>on</strong>g>auna<br />

into sediment depressi<strong>on</strong>s. Marine Ecology Progress Series 110,<br />

167e175.<br />

Timmermann, K., Banta, G.T., Johnsen, R., Andersen, O., 2008. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>polychaete</str<strong>on</strong>g>s<br />

Arenicola marina and Nereis diversicolor <strong>on</strong> microbial pyrene mineralizati<strong>on</strong>.<br />

Aquatic Microbial Ecology 50, 197e207.<br />

Van Colen, C., M<strong>on</strong>tserrat, F., Verbist, K., Vincx, M., Steyaert, M., Vanaverbeke, J.,<br />

Herman, P.M.J., Degraer, S., Ysebaert, T., 2009. Tidal flat nematode resp<strong>on</strong>ses to<br />

T.F. Maria et al. / Estuarine, Coastal and Shelf Science 94 (2011) 272e280<br />

hypoxia and subsequent macr<str<strong>on</strong>g>of</str<strong>on</strong>g>auna-mediated alterati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> sediment properties.<br />

Marine Ecology Progress Series 381, 189e197.<br />

Van Hoey, G., Degraer, S., Vincx, M., 2004. Macrobenthic community structure <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

s<str<strong>on</strong>g>of</str<strong>on</strong>g>t-bottom sediments at <str<strong>on</strong>g>the</str<strong>on</strong>g> Belgian C<strong>on</strong>tinental Shelf. Estuarine, Coastal and<br />

Shelf Science 59, 599e613.<br />

Vanaverbeke, J., Deprez, T., Vincx, M., 2007. Changes in nematode communities at<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> l<strong>on</strong>g-term sand extracti<strong>on</strong> site <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Kwintebank (Sou<str<strong>on</strong>g>the</str<strong>on</strong>g>rn Bight <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

North Sea). Marine Polluti<strong>on</strong> Bulletin 54, 1351e1360.<br />

Zhou, H., 2001. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> leaf litter additi<strong>on</strong> <strong>on</strong> mei<str<strong>on</strong>g>of</str<strong>on</strong>g>aunal col<strong>on</strong>izati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> azoic<br />

sediments in a subtropical mangrove in H<strong>on</strong>g-K<strong>on</strong>g. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Experimental<br />

Marine Biology and Ecology 256, 99e121.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!