26.11.2012 Views

Hilmi Volkan Demir - KTH

Hilmi Volkan Demir - KTH

Hilmi Volkan Demir - KTH

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Nanophotonics to Combat Climate Change and<br />

Energy Problem<br />

ADOPT<br />

Winter School 2010<br />

Romme Romme, , Sweden<br />

March 11 11-14, 14, 20 2010 10<br />

Nanophotonic Solutions for High-Quality Solid State Lighting<br />

<strong>Hilmi</strong> <strong>Volkan</strong> <strong>Demir</strong><br />

Department of Electrical and Electronics Engineering<br />

Department of Physics<br />

National Institute of Materials Science and Nanotechnology<br />

Bilkent University, Ankara<br />

Semiconductor Lighting Research Center<br />

Nanyang Technological University University, Singapore<br />

volkan@bilkent.edu.tr | hvdemir@ntu.edu.sg<br />

volkan@stanfordalumni.org<br />

TÜBA


Outline<br />

• Climate change, greenhouse gases<br />

• Solid So d state lighting g t geenabled abedby by nanophotonics<br />

a op oto cs<br />

– White LEDs involving nanophosphors<br />

– for indoors lighting (warm color temperature, high color rendering index)<br />

– for tuned color chromatictiy operation (tuned tristimulus coordinates)<br />

– Nonradiative energy transfer in nanophosphors<br />

– FRET enhanced color converted LEDs<br />

– FRET converted light emitting structures<br />

– color tuning with FRET<br />

– Plasmonic nanophosphors<br />

– plasmon coupling using metal nanoparticles<br />

– selective plasmon coupling of white luminophors<br />

• Conclusion<br />

<strong>Hilmi</strong> <strong>Volkan</strong> <strong>Demir</strong>


… a very unfortunate unfortunate, upsetting fact<br />

Our World is being POLLUTED POLLUTED…<br />

[1] IPCC Climate Change 2007 2007, Human and Natural Drivers of Climate Change, Change Summary for Policymakers Policymakers, pp pp. 2 (2007). (2007)<br />

[2] Donald Kennedy, Climate Change and Climate Science, Science, 304, 1565 (2004).<br />

<strong>Hilmi</strong> <strong>Volkan</strong> <strong>Demir</strong>


Global warming?, climate change<br />

IPCC Climate Change 2007, “Is the Current Climate<br />

Ch Change UUnusual l CCompared d tto EEarlier li Ch Changes iin<br />

Earth’s History?,” (2007),<br />

<strong>Hilmi</strong> <strong>Volkan</strong> <strong>Demir</strong>


What factors determine earth’s climate?<br />

[1] J. T. Kiehl and K. E. Trenberth,” Earth’s Annual Global Mean Energy Budget,” Bulletin of the American Meteorological Society, 78, pp. 206 (1997).<br />

[2] Also in IPCC Climate Change 2007, “What Factors Determine Earth’s Climate?,” chapter 1, pp. 96 (2007),<br />

<strong>Hilmi</strong> <strong>Volkan</strong> <strong>Demir</strong>


• Natural causes<br />

Greenhouse gases<br />

– Natural greenhouse gas effect (water vapor)<br />

– Radiative forcing and forcing variability from natural changes (i.e., solar<br />

changes)<br />

• Anthropogenic (human‐related) causes<br />

– Increase of greenhouse gases<br />

• Carbon dioxide<br />

• Nitrous oxide<br />

• Methane<br />

• Halocarbon (a group of gases containing fluorine, chlorine and bromine)<br />

• Ozone<br />

Anthropogenic causes must be taken under control …<br />

IPCC Climate Change 2007, “How do Human Activities Contribute to Climate Change and How do They Compare with Natural Influences?,”<br />

FAQ chapter, pp. 100 (2007).<br />

<strong>Hilmi</strong> <strong>Volkan</strong> <strong>Demir</strong>


Carbon dioxide<br />

IPCC Climate Change 2007, “How Do Glacial-Interglacial Variations in the Greenhouse Gases Carbon Dioxide, Methane and Nitrous Oxide<br />

Compare with the Industrial Era Greenhouse Gas Increase?,” Chapter 6, pp. 448 (2007).<br />

<strong>Hilmi</strong> <strong>Volkan</strong> <strong>Demir</strong>


Climate change<br />

Drought Acid rain<br />

Flood<br />

Global Warming<br />

Ice melt


CO 2, temperature change, and<br />

sea level<br />

Relation between estimated atmospheric<br />

CO2 and the ice contribution to sea level<br />

[1]<br />

An example: Changes in key global climate parameters since<br />

1973, compared with the scenarios of IPCC (shown as<br />

dashed lines and gray ranges) [2]<br />

Measurements taken at Mauna Loa (Hawaii)<br />

[1] R. B. Alley, et al., “Ice-Sheet and Sea-Level Changes,” Science, 310, 456 (2005).<br />

[2] S. Rahmstorf, et al., “Recent Climate Observations Compared to Projections,” Science 316, 709 (2007).<br />

<strong>Hilmi</strong> <strong>Volkan</strong> <strong>Demir</strong>


Changes in snow, ice, and frozen ground and rising sea level<br />

Rate of ice mass loss from all<br />

GIC (glaciers & ice caps) since<br />

1995.<br />

“This acceleration of glacier<br />

melt may cause 010to 0.10 to 025 0.25<br />

meter of additional sea‐<br />

level rise by 2100.”<br />

Ma. F. Meier et al., l “ “Glaciers l Dominate Eustatic Sea‐Level l Rise in the h 21st Century,” ” Science, 317, 1064‐1066 ( (2007).<br />

)<br />

<strong>Hilmi</strong> <strong>Volkan</strong> <strong>Demir</strong>


Problems in ecology<br />

• According to Thomas’ work, some species<br />

have the risk of becoming extinct due to the<br />

effects of global warming. Between 15% ‐<br />

37% of known species will be extinct by<br />

2050. [1]<br />

• “The synergism of rapid temperature rise<br />

and other stresses, in particular habitat<br />

destruction, could easily disrupt the<br />

connectedness among species and lead to a<br />

reformulation of species communities,<br />

reflecting differential changes in species,<br />

and to numerous extirpations and possibly<br />

extinctions.” [2]<br />

[1] C. D.Thomas et al., Extinction risk from climate change, Nature, 427, 145-148 (2004)<br />

[2] T. L. Root et al., ‘Fingerprints’ of global warming <strong>Hilmi</strong> on wild <strong>Volkan</strong> animals <strong>Demir</strong> and plants,” Nature, 421, 57-59 (2003).


Why do we produce so much CO 2?<br />

• The largest source of CO2<br />

emission is globally the<br />

combustion of fossil fuels (e.g.,<br />

coal, oil, and gas in power plants<br />

and industrial facilities).<br />

• The main reason of CO2<br />

emission is the need for energy.<br />

• Lighting uses ~19% of global<br />

electricity generation.<br />

• In homes and offices, up to 50%<br />

of total energy consumption is<br />

due to lighting.<br />

References: EPA (U.S. Environmental Protection Agency) U.S.<br />

Greenhouse Gas Inventory Reports 1990 – 2005, Carbon Dioxide<br />

Emissions, Executive Summary, pp. 6-7, 2007<br />

<strong>Hilmi</strong> <strong>Volkan</strong> <strong>Demir</strong>


1997<br />

2009<br />

How are we doing?<br />

Kyoto Protocol (United Nations Framework Convention on Climate Change)


Let’s Let s Combat Climate Change…<br />

• Decisions made to halt<br />

climate change<br />

• e.g., European Union<br />

Göteborg agreement<br />

8 Sustainable healthy life<br />

� Reduction in energy consumption<br />

� Increase in alternative energy sources<br />

� Decrease in polluting emission<br />

<strong>Hilmi</strong> <strong>Volkan</strong> <strong>Demir</strong>


Can nanotechnology help to combat climate change?<br />

• … the answer is YES (but a cautious yes).<br />

• For example,<br />

– Spectrally p yppure lighting g g<br />

– Photovoltaic technology<br />

– Batteries and supercapacitors<br />

– IImproved di insulation l ti ffor houses h and d offices ffi<br />

– Fuel additives to increase the efficiency of diesel engines<br />

– …<br />

• Nanoparticles already in use<br />

– Functional nanocomposite coatings (e.g., (e g Innovnano Innovnano, Innovcoat)<br />

Nature Nanotechnology, “Combating Climate Change”, 2(6), 325 (2007).<br />

<strong>Hilmi</strong> <strong>Volkan</strong> <strong>Demir</strong>


How can we combat climate change using<br />

NANOPHOTONICS?<br />

• Can we help to reduce global energy<br />

consumption by high high‐quality quality<br />

semiconductor lighting?<br />

• Can we seek ways to improve efficiency in<br />

solar energy conversion?<br />

• Can we help to reduce the amount of<br />

greenhouse gases?<br />

<strong>Hilmi</strong> <strong>Volkan</strong> <strong>Demir</strong>


How can we combat climate change<br />

using NANOPHOTONICS?<br />

• Can we help to reduce global energy<br />

consumption?<br />

– Light generation<br />

• Solid state lighting using nanophosphors<br />

– for the generation of high‐quality white light<br />

– using nonradiative energy transfer<br />

• Can we help to convert solar energy more<br />

efficiently?<br />

– Light harvesting<br />

• Quantum dot integrated solar cells<br />

– for the extension of spectral response<br />

– also using nonradiative energy transfer<br />

• C Can we help h l t to reduce d the th amount t of f<br />

greenhouse gases?<br />

– Photocatalytic nanoparticle integrated systems<br />

• ffor massive i environmental i t ld decontamination<br />

t i ti<br />

<strong>Hilmi</strong> <strong>Volkan</strong> <strong>Demir</strong><br />

GREEN<br />

NANOPHOTONICS<br />

current (mA)<br />

* 2 patents pending<br />

voltage (V)<br />

0<br />

0 02 0.2 04 0.4 06 0.6 08 0.8 1 12 1.2 14 1.4 16 1.6 18 1.8 2<br />

-2<br />

-4<br />

-6<br />

-8<br />

PL Intensity (a.u.)<br />

* 1 patent p<br />

* 3 patents<br />

350 400 450 500 550 600 650 700<br />

λ (nm)<br />

wihout nanocrystals<br />

with 3.42 nanomol/cm2 nanocrystals<br />

with 10.40 nanomol/cm2 nanocrystals y<br />

with 20.80 nanomol/cm2 nanocrystals<br />

with 52.00 nanomol/cm2 nanocrystals<br />

with 67.60 nanomol/cm2 nanocrystals


Outline<br />

• Climate change, greenhouse gases<br />

• Solid state lighting enabled by nanophotonics<br />

– White LEDs involving nanophosphors<br />

– for indoors lighting (warm color temperature, high color rendering index)<br />

– for tuned color chromatictiy operation (tuned tristimulus coordinates)<br />

– Nonradiative energy transfer in nanophosphors<br />

– FRET enhanced color converted LEDs<br />

– FRET converted light emitting structures<br />

– color tuning with FRET<br />

– Plasmonic nanophosphors<br />

– plasmon coupling using metal nanoparticles<br />

– selective plasmon coupling of white luminophors<br />

• Conclusion<br />

<strong>Hilmi</strong> <strong>Volkan</strong> <strong>Demir</strong>


How does solid state lighting (SSL) help in combating<br />

climate change?<br />

• Artificial lighting uses about 19% of the global<br />

electricity generation worldwide.<br />

• Th The IInternational t ti lEEnergy A Agency (IEA) hhas<br />

estimated that the energy needed to produce<br />

lighting induces approximately 1900 Mt CO2 emission per p yyear, which is equivalent q to 70% of the<br />

emissions from the world’s passenger vehicles.<br />

•The energy consumption used for LEDs lighting<br />

could be reduced by 50%, if the target performance<br />

is met met.<br />

•This is equivalent to carbon emission reduction of<br />

many hundreds of million tons per year.<br />

LED‐based luminescence system will<br />

be the next generation of lighting<br />

source!<br />

Source: International Energy Agency, “Light’s labour lost: Policies for<br />

energy‐efficient lighting, in support of the G8 plan of action,” p.558<br />

(2006).


Luminous efficacy e<br />

η (lm/We) 10 3<br />

10 2<br />

10 1<br />

1<br />

10 ‐1<br />

10 ‐2<br />

Efficiency of artificial lighting<br />

CoL ($/Mlmh) ≃ CoE/η<br />

1<br />

10 1<br />

10 2<br />

FSU 2000<br />

CN 2005<br />

CN 2006<br />

US 2001<br />

UK 2000<br />

AU+NZ 2005<br />

WRLD-NONGRID<br />

1999<br />

10 3<br />

10 1.5<br />

WRLD-GRID 2005<br />

JP+KR 2005<br />

OECD-EU 2005<br />

CN 1993<br />

10 4<br />

UK 1950<br />

UK 1900<br />

UK 1850<br />

10 5<br />

100%<br />

Efficiency<br />

1 101 102 103 104 105 1 101 102 103 104 105 CoE ($/MW eh)<br />

UK 1800<br />

UK 1750<br />

UK 1700<br />

10 2.8<br />

SSL<br />

HID<br />

Fluorescent<br />

Incandescent<br />

Gas<br />

Kerosene<br />

Candles<br />

Source: Tsao and Waide, “The World’s Appetite for Light: Empirical Data and Trends Spanning Three<br />

Centuries and Six Continents,” Sandia National Labs, USA<br />

Artificial lighting has made an incredible<br />

progress from candles, gas and kerosene<br />

lamps to incandescent, fluoroscent and<br />

high‐intensity discharge electric lighting.<br />

• 28 2.8 orders d of f magnitude it d decrease d in i the th<br />

generation 2.8 orders cost of light.<br />

•1.5 orders of magnitude decrease in cost of<br />

energy. 1.5 orders<br />

• Th The overall ll operating ti cost t of f light li ht has h been b<br />

reduced by 4.3 orders of magnitude since<br />

1700s. 4.3 orders


Motivation for white LEDs (WLEDs) inSSL<br />

For developed and developing countries<br />

TODAY<br />

Current lighting g g technologies g consume:<br />

19% of the global electricity production<br />

WLEDs provide:<br />

For under-developed part of the world<br />

FUTURE<br />

TODAY FUTURE<br />

Fuel based lighting provides<br />

>1B people who does not have access to<br />

electricity:<br />

Unhealthy<br />

Costly<br />

Low light quality<br />

<strong>Hilmi</strong> <strong>Volkan</strong> <strong>Demir</strong><br />

50% reduction in electricity consumption<br />

Reduction in carbon emission by 100s M tons<br />

per year<br />

WLEDs provide:<br />

Healthy<br />

Affordable<br />

High-light quality


The Earth at night from a satellite<br />

• We consume lots of light!<br />

• And this h costs us llots of f energy …<br />

Source: C. Mayhew and R. Simmon (NASA/GSFC), NOAA/ NGDC, DMSP


Potential market of LED‐based products<br />

The market size of LED‐related business is<br />

expected to be about USD USD 4 billion 4 billion for 2015,<br />

with the annual demand growth of of 14%


White LEDs<br />

Two most common methods for WLEDs<br />

� RGB LEDs: using 3 different<br />

(red-green-blue) LEDs<br />

� Color conversion LEDs: using<br />

luminescent materials (luminophor)<br />

on LEDs<br />

typically phosphors: EL of LED and<br />

PL of luminophors collectively generate<br />

white light<br />

<strong>Hilmi</strong> <strong>Volkan</strong> <strong>Demir</strong><br />

Thin-Film Flip Chip (TFFC)


Phosphors vs. Nanophosphors<br />

Broad emitters, difficult to control precisely<br />

Yellow phosphors, color rendering index (CRI) ~ 70<br />

Cool white appearance due to high correlated color<br />

temperature (CCT)~4000 -8000 K<br />

Red-green phosphors, CRI / CCT can be improved, but<br />

this comes at the cost of reduced luminous efficacy of<br />

optical radiation.<br />

Problems: stability, granularity, source of rare earth<br />

elements<br />

<strong>Hilmi</strong> <strong>Volkan</strong> <strong>Demir</strong><br />

Narrow emitters, possible to control precisely<br />

PL Intensity(a.u)<br />

I<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

500 550 600 650<br />

wavelength(nm)<br />

Cyan<br />

Green<br />

Yellow<br />

Red<br />

Using combinations of semiconductor<br />

quantum dot nanophosphors, It is<br />

possible to achieve warm white light<br />

CCT300 lm/W. l /W<br />

Superior photometric performance.<br />

Problem: Quantum efficiency is being<br />

improved. Further improvements required.<br />

Our focus: high optical quality WLEDs using quantum dot<br />

nanophosphors with specific spectral content of emission


White light generation<br />

Color matching function<br />

Color-rendering index (CRI)<br />

<strong>Hilmi</strong> <strong>Volkan</strong> <strong>Demir</strong><br />

[1] E. F. Schubert, Light Emitting Diodes, [2] Audi<br />

C.I.E. chromaticity diagram<br />

Correlated color<br />

temperature p (CCT) ( )


Important photometric properties<br />

Figure of merit Explanation Unit<br />

Chromaticity locus of the perceived color<br />

coordinates<br />

(x,y)<br />

Color rendering<br />

index (CRI)<br />

on the chromaticity<br />

diagram<br />

ability to render true colors<br />

from illuminated objects<br />

index (CRI) from illuminated objects -<br />

Correlated color<br />

ttemperature t<br />

(CCT)<br />

Luminous efficacy<br />

of optical<br />

radiation (LER)<br />

temperature of the planckian<br />

bl blackbody kb d radiator di t K<br />

closest in color<br />

usable radiation for human<br />

eye per optical power<br />

-<br />

lm/W<br />

<strong>Hilmi</strong> <strong>Volkan</strong> <strong>Demir</strong>


Color chromaticity<br />

• Colors are defined using color matching functions and chromaticity<br />

diagram diagram.<br />

E. F. Schubert, “Light Emitting Diodes,”<br />

Cambridge University Press (2006) 28


Luminous efficacy (LE<br />

Luminous<br />

(LE or LER)<br />

• Optical efficiency of the light source perceived by the human eye<br />

Incandescent sources: 1 16 lm/W<br />

Fluorescent lamps: 1 Fluorescent lamps: 71 lm/W<br />

Phosphor based WLEDs: 2 274 lm/W<br />

1: Navigant, U.S. Lighting Market Characterization Volume I:<br />

National Lighting Inventory and Energy Consumption (2002).<br />

Estimate<br />

2: M. R. Krames et al., J. Disp. Technol. 3, 2 (2007).<br />

www.theoremeinnovation.com/revo<br />

lution-en.html<br />

29


Color rendering index (CRI)<br />

• A measure of how good the light source can render the real colors of the<br />

illuminated objects<br />

• Maximum value is 100, minimum value is ‐100<br />

• Developed by International Commission on Illumination (CIE)<br />

• The calculation is based on<br />

� The reflection of the test light from test samples<br />

�� Th The reflection fl ti of f the th reference f light li ht from f test t tsamples l<br />

� Reference light is in general a blackbody radiator<br />

� A good source should have a CRI >80 to start competing with other conventional<br />

sources<br />

http://www1.eere.energy.gov<br />

/buildings/ssl/measuring_cri.<br />

html<br />

30


Correlated color olor temperature (CCT)<br />

• Illustrates the temperature of the closest Planckian black black‐body body radiator to<br />

the operating point on the chromaticity diagram.<br />

• As opposed to common usage in thermodynamics<br />

• High CCT → bluish light → cold white<br />

• Lower CCT → reddish light → warm white<br />

• Warm white light is more desirable<br />

• CCT < 3000 K<br />

http://www.answers.com/topic/colorttemperature<br />

t<br />

Warm<br />

white<br />

31


Conventional white light sources<br />

Incandescent lamp spectrum<br />

http://www.gelighting.com/na/business_lighting/education<br />

_resources/learn_about_light/distribution_curves.htm<br />

Fluorescent<br />

lamp spectrum<br />

32


Nanocrystal quantum dot emitters<br />

525 585 605 655<br />

nm nm nm nm<br />

increasing size<br />

• Narrow emission (spectral purity)<br />

• Size tuneability (quantum size effect)<br />

• Broad absorption<br />

• Reasonable quantum yield in collaboration<br />

<strong>Hilmi</strong> <strong>Volkan</strong> <strong>Demir</strong><br />

co abo at o<br />

with A. Eychmüller<br />

TU Dresden


PLL<br />

Intensity (a.u.)<br />

Principles of QD nanophosphor embedded<br />

WLED WLEDs<br />

350 400 450 500 550 600 650 700<br />

λ (nm)<br />

�Quantum efficiency<br />

>90% in solution, >70% in film demonstrated by<br />

other groups (and further improvements are in<br />

progress)<br />

�Adjustable optical spectrum, easy to tune<br />

�High quality white light:<br />

high CRI, high LER, low CCT<br />

34


Working principle<br />

energy transfer<br />

Physical mechanisms:<br />

Optical absorption<br />

Reabsorption<br />

Photoluminescence<br />

Dipole-dipole interaction<br />

(Förster-type energy<br />

transfer)


Design, epigrowth and fabrication<br />

– Epidesign p g<br />

– Epigrowth<br />

– Standard semiconductor fabrication<br />

• Photolithography<br />

• Thin film coating<br />

• Reactive ion etching<br />

• Rapid thermal annealing<br />

<strong>Hilmi</strong> <strong>Volkan</strong> <strong>Demir</strong>


Experimental achievement<br />

• Successful demonstration of<br />

– High ihquality li of f white hi light li h generation i tuneable bl<br />

by design<br />

• using multiple (e (e.g., g triple, triple quadruple) combinations<br />

of nanophosphors<br />

<strong>Hilmi</strong> <strong>Volkan</strong> <strong>Demir</strong>


White light generation tuned with nnano<br />

anocrystals crystals<br />

<strong>Hilmi</strong> <strong>Volkan</strong> <strong>Demir</strong><br />

S. Nizamoglu, T. Ozel, E. Mutlugün, H. V. <strong>Demir</strong><br />

Nanotechnology 18, 065709 (2007)


High‐quality, warm white LEDs integrated with<br />

nanocrystal y emitters<br />

• Warm white light (CCT< 3500 K)<br />

• Color rendering index (CRI~ (CRI 80)<br />

Indoors lighting (homes, offices, schools …),<br />

S. Nizamoglu, G. Zengin, H. V. <strong>Demir</strong>, Applied Physics Letters, 92, 031102 (2008).<br />

<strong>Hilmi</strong> <strong>Volkan</strong> <strong>Demir</strong><br />

x= 0.4625<br />

y= 0.3255<br />

CCT= CCT 1982 K<br />

CRI= 79.55<br />

x=0.3881<br />

y=0.3177<br />

CCT= 3190 K<br />

CRI =81.00<br />

x=0.3799<br />

y=0.3018 03018<br />

CCT= 3228 K<br />

CRI=82.38


High High-quality, quality, warm white LEDs integrated<br />

with nanocrystal y emitters<br />

Sample # x y LER (lm/W) CRI CCT (K)<br />

1 0.37 0.30 307 82.4 3228<br />

2 0.38 0.31 323 81.0 3190<br />

3 046 0.46 032 0.32 303 79 79.66 1982<br />

<strong>Hilmi</strong> <strong>Volkan</strong> <strong>Demir</strong><br />

S. Nizamoglu, G. Zengin, H. V. <strong>Demir</strong>,<br />

Applied Physics Letters, 92, 031102<br />

(2008).


Photometric modeling<br />

• Aim: What is the maximum feasible photometric performance achievable<br />

with nanophosphor‐integrated WLEDs?<br />

• NCs emission spectra and blue LED spectrum: Gaussian<br />

• 4 colors –blue – green – yellow – red<br />

• Parameters:<br />

� Peak emission wavelength<br />

� Full width at half‐maximum (FWHM)<br />

� Factors of Gaussians<br />

Total number of cases: 237,109,375<br />

•High g quality: q y CRI ≥ 90, , LER ≥ 380 lm/W, , CCT < 4000 K<br />

�Only 0.001% of the spectra satisfied these conditions<br />

•Obtaining highly efficient white light sources requires spectra<br />

that are controlled and tuned very carefully.<br />

41


• CRI vs. CCT relation:<br />

� Boundary behavior between<br />

1500 K and 2200 K is due to LER<br />

≥ 300 lm/W restriction.<br />

�� BBoundary d bbehavior h i after ft 2200<br />

K is fundamental behavior.<br />

• CRI vs. LER relation:<br />

� Boundary behavior is<br />

generated by combination<br />

of the trade-off between<br />

CRI vs. LER at different<br />

CCT values.<br />

Parametric study<br />

• LER vs. CCT relation:<br />

� Cooler white light sources<br />

are required to obtain<br />

optically efficient white<br />

light.<br />

� Boundary is shaped by the<br />

CRI ≥ 80 restriction.<br />

T. Erdem , S. Nizamoglu, X. W. Sun, H.V. <strong>Demir</strong>, Optics Express 18, 340 (2010).<br />

42


Photometric trade‐offs<br />

T. Erdem , S. Nizamoglu, X. W. Sun, H.V. <strong>Demir</strong>, Optics Express<br />

18, 340 (2010).<br />

CRI vs. LER at CCTs<br />

a) between 2450 and 2550 K<br />

b) between 2950 and 3050 K<br />

c) between 3450 and 3550 K<br />

• CRI vs. LER relations:<br />

� High CRI comes with the cost of reduced<br />

LER at all correlated color temperatures<br />

� Increasing CCT permits obtaining higher<br />

CRIs<br />

� Increasing CCT allows higher LER values<br />

�� Change of CRI with respect ot LER slows<br />

down at high CCTs<br />

43


• Full width at half-maximum<br />

(CRI ≥ 90 and LER ≥ 380 lm/W)<br />

� Blue: Average: 44.4 nm, St.<br />

DDev: 88.3 3 nm<br />

� Green: Average: 43.3 nm, St.<br />

Dev: 8.4 nm<br />

�� Yellow: Average: 44.0 440nm nm,<br />

St. Dev: 8.3 nm<br />

� Red: Average: 32.1 nm, St.<br />

Dev: 3.5 nm<br />

Parametric study<br />

Intensity (a.u. .)<br />

14000<br />

12000<br />

10000<br />

8000<br />

6000<br />

4000<br />

2000<br />

0<br />

CRI=91.3<br />

LER=386 lm/W<br />

CCT=3041 CCT 3041 K<br />

400 450 500 550 600 650 700<br />

Wavelength (nm)<br />

T. Erdem , S. Nizamoglu, X. W. Sun, H.V. <strong>Demir</strong>, Optics<br />

Express 18, 340 (2010).<br />

44


Multilayered heteronanocrystals<br />

1<br />

0<br />

1<br />

0<br />

1<br />

0<br />

1-1<br />

1-2 1-3<br />

2-1 2-2 2-3<br />

S. Nizamoglu and H. V. <strong>Demir</strong>, "Onion-like (CdSe)ZnS/CdSe/ZnS quantum-dot-quantum-well heteronanocrystals<br />

for investigation of multi-color emission," Optics Express 16(6),3515-3526 (2008).<br />

<strong>Hilmi</strong> <strong>Volkan</strong> <strong>Demir</strong><br />

3-1<br />

1<br />

0<br />

3-2<br />

r<br />

1<br />

0<br />

3-3


Optical Poower<br />

(a.u)<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

WLEDs integrated with onion‐like heteronanocrystals<br />

In solution<br />

Photoluminescence<br />

450 500 550 600 650 700<br />

wavelength (nm)<br />

S. Sapra, S. Mayilo, T. A. Klar, A. L. Rogach, and<br />

J. Feldmann, Adv. Mater. 19, 569 (2007).<br />

S. Nizamoglu, E. Mutlugun, T. Özel, H.<br />

V. <strong>Demir</strong>, S. Sapra, N. Gaponik, A. Eychmüller<br />

Applied Physics Letters 92, 113110 (2008).<br />

<strong>Hilmi</strong> <strong>Volkan</strong> <strong>Demir</strong><br />

White light emitting diode<br />

(x, y)=(0.36, 0.30), CRI=75.1, and CCT=3929 K<br />

in collaboration<br />

with A. Eychmüller<br />

TU Dresden


WLEDs tuned with onion‐like heteronanocrystals<br />

H. V. <strong>Demir</strong>, , S. Nizamoglu, g , E.<br />

Mutlugun, T. Özel, S. Sapra, N.<br />

Gaponik, A. Eychmüller<br />

Nanotechnology, 19, 335203 (2008).<br />

<strong>Hilmi</strong> <strong>Volkan</strong> <strong>Demir</strong><br />

WLED x y<br />

1 0.26 0.23<br />

2 0.31 0.29<br />

3 0.34 0.30<br />

4 0.37 0.36<br />

Applications: spectral‐content<br />

specific illumination, e.g., shop<br />

lighting, museum lighting, green<br />

house lighting, refrigerator long‐ long<br />

term storage, algea growing for<br />

bio‐fuel, etc.


White nano‐luminophor surface state emitting<br />

CdS nanocrystals l<br />

CB<br />

VB<br />

Intensity (a.u.)<br />

Absorption<br />

Emission<br />

350 400 450 500 550 600 650<br />

λ (nm)<br />

S. Nizamoglu, E. Mutlugun, O. Akyuz, N. Kosku Perkgoz, H. V.<br />

<strong>Demir</strong>, L. Liebscher, S. Sapra, N. Gaponik, A.<br />

Eychmüller, New Journal of Physics<br />

10, 023026 (2008).


Optical Power P (a.uu)<br />

Surface state emitting CdS nanocrystals hybridized on n‐<br />

UV InGaN/GaN LEDs<br />

• Tuning white light properties<br />

1 8<br />

0<br />

1 7<br />

0<br />

1 6<br />

0<br />

1 5<br />

0<br />

1 4<br />

0<br />

1<br />

3<br />

0<br />

1<br />

2<br />

0<br />

1 1<br />

0<br />

400 500 600 700<br />

wavelength (nm)<br />

<strong>Hilmi</strong> <strong>Volkan</strong> <strong>Demir</strong>


Outline<br />

• Climate change, greenhouse gases<br />

• Solid state lighting enabled by nanophotonics<br />

– White LEDs involving nanophosphors<br />

– for indoors lighting (warm color temperature, high color rendering index)<br />

– for tuned color chromatictiy operation (tuned tristimulus coordinates)<br />

– Nonradiative energy transfer in nanophosphors<br />

– FRET enhanced color converted LEDs<br />

– FRET converted light emitting structures<br />

– color tuning with FRET<br />

– Plasmonic nanophosphors<br />

– plasmon coupling using metal nanoparticles<br />

– selective plasmon coupling of white luminophors<br />

• Conclusion<br />

<strong>Hilmi</strong> <strong>Volkan</strong> <strong>Demir</strong>


Förster‐type energy transfer (FRET)<br />

• FRET: nonradiative transfer of excitation energy from an<br />

excited molecule (donor) ( ) to a gground‐state<br />

molecule<br />

(acceptor)<br />

0.8<br />

R<br />

(a.u)<br />

Absorbance<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

400 500 600 700<br />

wavelength (nm)<br />

2 − 4<br />

R 0 = 0 . 211 ( κ n Q D J ( λ<br />

k<br />

ηη<br />

6<br />

1 ⎛ R0<br />

⎞<br />

T ( r)<br />

= ⎜ ⎟<br />

τ D ⎝ r ⎠<br />

ET<br />

= 1− τ<br />

1<br />

τ<br />

<strong>Hilmi</strong> <strong>Volkan</strong> <strong>Demir</strong><br />

DA_<br />

amp−ave<br />

D _ amp−ave<br />

))<br />

1 / 6<br />

Energy transfer<br />

rate<br />

Energy transfer<br />

efficiency ffi i<br />

Förster<br />

radius<br />

T. Förster, Ann. Phys. VI 2, 55 (1948).


Recycling of trapped‐excitons<br />

Photoluuminescencce<br />

1.0<br />

0.8<br />

R 0.6<br />

0.4<br />

0.2<br />

00 0.0<br />

500 550 600 650<br />

wavelength (nm)<br />

Absorbance (aa.u)<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

00 0.0<br />

400 500 600 700<br />

wavelength (nm)<br />

Spontaneous Spo ta eous emission e ss o<br />

enhancement using recycling<br />

of trapped-excitons<br />

<strong>Hilmi</strong> <strong>Volkan</strong> <strong>Demir</strong>


Hybrid WLEDs enhanced enhancedwith with nonradiative energy<br />

transfer in CdSe CdSe/ZnS ZnS core/shell nanocrystal solids<br />

Energy transfer between nanocrystal emitters (exciton funneling): e.g., see<br />

S. A. Crooker, J. A. Hollingsworth, S. Tretiak, and V. I. Klimov, Phys. Rev. Lett. 89, 186802 (2002).<br />

TA T. A. Klar Klar, TT. Franzl Franzl, AA. L. L Rogach Rogach, and JJ. Feldmann Feldmann, Adv Adv. Mat. Mat 17 17, 769 (2005) (2005).<br />

WLEDs enhanced with energy transfer between nanocrystal emitters:<br />

u.)<br />

l power (a.<br />

Optica<br />

energy gradient ~ 160 meV


Relative quantum efficieny enhancement by<br />

recycling y gtrapped pp excitons<br />

S. Nizamoglu, O. Akin, and H. V. <strong>Demir</strong>, Applied Physics Letters 94, 243107 (2009).


Time‐resolved kinetics at donor emission<br />

<strong>Hilmi</strong> <strong>Volkan</strong> <strong>Demir</strong>


Phooton<br />

count<br />

Time‐resolved kinetics at acceptor emission<br />

10000 10000 @ 612 nm<br />

1000<br />

100<br />

Photoon<br />

count<br />

1000<br />

100<br />

0 10 20 30 40 50<br />

time (ns)<br />

0 100 200<br />

ti time (ns)<br />

( )<br />

300 400<br />

E<br />

1 τ<br />

= 1 −<br />

τ<br />

amp _ av _ DA<br />

amp _ av _ D<br />

Förster Energy<br />

transfer efficiency<br />

=<br />

55.58 %


Kinetics of energy transfer<br />

S. Nizamoglu and H. V. <strong>Demir</strong>, "Resonant nonradiative energy transfer in CdSe/ZnS core/shell nanocrystal solids<br />

enhances hybrid white light emitting diodes," Optics Express 16, 13961-13968 (2008).


Energy transfer enhanced WLED<br />

Emission enhancement of large dots residing in the mixed energy gradient assembly<br />

with respect to the emission of only large dots: 46%<br />

Enhancement in the quantum efficiency of large dots in the presence of the small<br />

dots, compared to the large dots alone: 13.2%<br />

(because of recycled excitons)<br />

(x,y) = (0.44,0.40)<br />

CCT= 2872 K


Green gap: green/yellow range<br />

J. M. Phillips et al., Laser & Photon. Rev., 1, 307–333 (2007).<br />

M. R. Krames et al., IEEE Journal of Display Technology 3, 2 (2007).


(mW)<br />

Opttical<br />

power p<br />

3<br />

2<br />

1<br />

0<br />

Color‐Converted LED<br />

Optical poweer<br />

Relative<br />

800<br />

600<br />

400<br />

200<br />

30 mA<br />

20 mA<br />

10 mA<br />

0<br />

525 550 575 600 625 650<br />

wavelength (nm)<br />

LE<br />

Optical<br />

⎛ lm ⎞<br />

= ⎜683<br />

⎟<br />

⎝ W ⎠<br />

⎛ lm ⎞<br />

LE Electrical = ⎜ ⎜683<br />

⎟<br />

⎝ W ⎠<br />

0 10 20 30 40 50<br />

Current (mA)<br />

∫ P<br />

∫<br />

∫<br />

optical<br />

P<br />

optical<br />

( λ)<br />

v(<br />

λ)<br />

dλ<br />

( λ)<br />

dλ<br />

Poptical(<br />

λ ) v(<br />

λ)<br />

dλ<br />

VI<br />

S. Nizamoglu … H.V.<br />

<strong>Demir</strong>, IEEE Journal of<br />

Selected Topics in Quntum<br />

Electronics Electronics, 15, 15 4, 4 July/August<br />

2009.


Phhoton<br />

Count C<br />

1000<br />

100<br />

10<br />

Time‐resolved dynamics y at acceptor p emission<br />

Intensity<br />

PL<br />

0.020<br />

0.016<br />

0.012<br />

0008 0.008<br />

0.004<br />

• 3.4 nmol cyan-emitting NCs<br />

• 4.9 nmol green-emitting NCs<br />

I ( t)<br />

∝<br />

kA<br />

25 50 75 100<br />

Time (ns)<br />

Green-emitting NCs<br />

Mixed cyan- and green-emitting NCs<br />

0 50 100 150 200<br />

time (ns)<br />

k FRET ⎛ ( k + k ) t k t<br />

⎜⎛<br />

e<br />

−(<br />

kD<br />

+ k FRET ) t<br />

− e<br />

−kAt<br />

⎞⎟<br />

⎞<br />

− kD<br />

−k<br />

FRET ⎝<br />


powerr<br />

(a.u)<br />

Optical O<br />

4<br />

3<br />

2<br />

1<br />

Color‐converted FRET‐enhanced LED<br />

Relativve<br />

optical powwer<br />

(a.u)<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

30 mA<br />

20 mA A<br />

10 mA<br />

540 560 580 600 620<br />

wavelength (nm)<br />

0<br />

0 10 20 30 40 50<br />

current (mA)


FRET LEDs<br />

Color converted LED FRET-enhanced color converted LED<br />

In our FRET-NC-LED, NCs reach a quantum efficiency level as high as 55%.<br />

By using a near-UV LED with an external quantum efficiency of 40%,<br />

this implies that it is possible to obtain color-converted color converted FRET FRET-enhanced enhanced LEDs<br />

with an expected external quantum efficiency of 22% and<br />

a predicted luminous efficiency of 94 lm/W.<br />

<strong>Hilmi</strong> <strong>Volkan</strong> <strong>Demir</strong><br />

S. Nizamoglu … H.V. <strong>Demir</strong>,<br />

IEEE Journal of Special Topics<br />

Quantum Electronics<br />

15, 4, July/August 2009.


2 nm<br />

FRET‐converted light‐emitting structures


White light generating rresonant<br />

esonant nonradiative energy transfer<br />

from epitaxial InGaN InGaN/GaN GaN quantum wells to colloidal CdSe CdSe/ZnS ZnS<br />

core/shell core/shell quantum quantum dots<br />

dots<br />

Photon P count c<br />

4000 QWs+QDs<br />

3500<br />

only y QDs<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

450 500 550 600 650 700<br />

wavelength (nm)<br />

The white light is generated by the luminescence of quantum wells and quantum dots,<br />

where the dot emission is further increased by 63% with nonradiative energy transfer,<br />

while setting the operating point in the white region of CIE chromaticity diagram.<br />

S. Nizamoglu … H.V. <strong>Demir</strong>,<br />

New Journal of Physics (2008).


PDDA (+)<br />

Layer by layer assembly of quantum dots<br />

Water<br />

CdTe<br />

NC (-)<br />

Corniing Glass (-)<br />

Water<br />

These steps are the basic<br />

construction sequence q for the<br />

simplest film architecture<br />

<strong>Demir</strong> Lab, Bilkent University


Architectural tuning of color chromaticity with Förster<br />

resonance energy ttransfer f (FRET)<br />

Modified donor emission Modified acceptor emission<br />

N. Cicek … H.V. <strong>Demir</strong>, Applied Physics Letters, 061105 (2009)<br />

modified emission<br />

kinetics<br />

by y controlling g FRET<br />

in layer layer-by by-layer layer assembled<br />

CdTe nanocrystals<br />

in collaboration<br />

with A. Eychmüller<br />

TU Dresden


Inter<br />

spacing<br />

(MLs)<br />

Average decay lifetime<br />

(ns)<br />

@ 595<br />

nm<br />

donor<br />

emission<br />

@ 645 nm<br />

acceptor<br />

emission<br />

FRET analysis<br />

Total relative emission<br />

(eV)<br />

Donors Acceptors<br />

η<br />

Using PL intensities<br />

FRET<br />

= 1<br />

FRET efficiency (η FRET )<br />

−<br />

F<br />

F<br />

DA<br />

D<br />

UUsing i lif lifetimes ti<br />

η = 1 −<br />

5 881 8.81 824 8.24 260 260.11 11 63 63.09 09 027 0.27 032 0.32<br />

3 7.41 10.63 219.69 346.02 0.39 0.43<br />

1 2.96 14.57 164.75 447.44 0.75 0.57<br />

Control 12.05 3.68 384.44 59.67 -- --<br />

FRET<br />

τ<br />

τ<br />

DA<br />

D


Precise tuning of color with FRET<br />

Color tuning by FRET efficiency tuning<br />

x(η)= 0.086 η+ 0.573,<br />

y (η)= ‐ 0.085 η+ 0.426


Broad tuning of color with cascaded FRET<br />

Cascaded FRET<br />

with one set of starting<br />

power distribution<br />

Cascaded FRET<br />

including different<br />

power distributions<br />

N. Cicek et al. (2009)<br />

<strong>Demir</strong> Group


Ph.D. – Piled Higher and Deeper<br />

3/17/2010 <strong>Hilmi</strong> <strong>Volkan</strong> <strong>Demir</strong> 71


Outline<br />

• Climate change, greenhouse gases<br />

• Solid state lighting enabled by nanophotonics<br />

– White LEDs involving nanophosphors<br />

– for indoors lighting (warm color temperature, high color rendering index)<br />

– for spectrally enhanced lighting (high S/P ratio, high color rendering index)<br />

– for tuned color chromatictiy operation (tuned tristimulus coordinates)<br />

– Nonradiative energy transfer in nanophosphors<br />

– FRET enhanced color converted LEDs<br />

– FRET converted light emitting structures<br />

– color tuning with FRET<br />

– Plasmonic nanophosphors<br />

– plasmon coupling using metal nanoparticles<br />

– selective plasmon coupling of white luminophors<br />

– plasmonic nanocomposites of nanophospors<br />

– Targeted self‐assembly of nanophosphors on LEDs using<br />

smart linkers<br />

– with specific binding<br />

• Conclusion<br />

<strong>Hilmi</strong> <strong>Volkan</strong> <strong>Demir</strong>


Localized plasmons<br />

• Collective ll i oscillations ill i of f<br />

conduction band electrons<br />

in metal particles and<br />

metal structures<br />

– with dimensions much smaller<br />

th than the th wavelength l thof f optical ti l<br />

excitation<br />

<strong>Hilmi</strong> <strong>Volkan</strong> <strong>Demir</strong>


Physical explanation of localized plasmons<br />

• Mie theory (1908):<br />

– complete electromagnetic<br />

solution<br />

• Quasi‐static approximation:<br />

– Particle size comparable to the<br />

penetration depth<br />

– E‐field is formed along the<br />

particle<br />

– Electrons are transported with E‐<br />

field<br />

– Dipole formation<br />

– RRestoring i fforces<br />

– If restoring frequency matches<br />

excitation frequency =><br />

resonance condition<br />

<strong>Hilmi</strong> <strong>Volkan</strong> <strong>Demir</strong><br />

Source: K. Sönnichsen, Plasmons in Metal Nanostructures,<br />

Ludwig-Maximilians University of Munich, 2001.


Physical explanation of localized plasmons (cont’d)<br />

• Extinction cross section of spherical metal nanoparticles<br />

according to Mie Theory (neglecting higher order modes)<br />

σ<br />

ext<br />

=<br />

9Vε<br />

3 /<br />

m<br />

c<br />

where V is the spherical particle volume,<br />

ε = + i<br />

2<br />

( )<br />

[ ( ) ] ( ) 2<br />

ωε 2 ω<br />

[ 2<br />

εε<br />

( ωω<br />

) + 2 2εε ] + εε<br />

( 2 2ωω<br />

)<br />

1<br />

+ m<br />

ε i ε , ε metal 1 2 m is the dielectric constant of the<br />

medium,cis the speed of light in free space and ω is the angular<br />

frequency<br />

<strong>Hilmi</strong> <strong>Volkan</strong> <strong>Demir</strong><br />

2


Use of localized plasmons<br />

<strong>Hilmi</strong> <strong>Volkan</strong> <strong>Demir</strong><br />

Lycurgus cup (4th Century AD),<br />

British Museum


Dependence of resonance wavelength on<br />

different particle p and medium pproperties p<br />

• NNanoparticlesize ti l i => > Rd Red shift hift<br />

• Dielectric constant of the medium => Red shift<br />

Blue shift<br />

<strong>Hilmi</strong> <strong>Volkan</strong> <strong>Demir</strong><br />

Red shift


Metal‐enhanced luminescence<br />

• Emission of materials in the close vicinity of<br />

metal nanoparticles, metal nanostructures or metal<br />

films<br />

QD<br />

<strong>Hilmi</strong> <strong>Volkan</strong> <strong>Demir</strong><br />

Source: http://www.nanoigert.umn.edu


Plasmon‐coupled nanocrystals<br />

• Previous work on plasmon‐coupled emission of nanocrystals<br />

– Using flat films<br />

• emission of CdSe/ZnS nanocrystals could not be enhanced 1<br />

– Using gold colloids<br />

• emission of CdSe/ZnS nanocrystals enhanced 5 times2 emission of CdSe/ZnS nanocrystals enhanced 5 times<br />

– Using patterned metal nanostructures<br />

• emission of CdSe/ZnS nanocrystals enhanced 30‐50 times 3,4<br />

– Using metal island films<br />

• emission of CdTe nanocrystals enhanced 5 times 5<br />

• Previous literature focuses only on plasmon‐enhanced<br />

luminescence<br />

– However, there are other important features of luminescence<br />

• including emission linewidth and emission peak<br />

1 Ok Okamoto, K., K et al., l JJ. OOpt. Soc. S Am. A B. B 2006 2006, 23 23, no. 88. 4 SSong, JJ-H., H et t al., l NNano LLett. tt 2005 2005, 55, no. 88.<br />

2 Kulakovich, O., et al., Nano Lett. 2002, 2 , no. 12. 5 Ray, K., et al., J. Am. Chem. Soc. 2006, 128.<br />

3 Pompa, P. P., et al., Nature Nanotech. 2006, 1.<br />

<strong>Hilmi</strong> <strong>Volkan</strong> <strong>Demir</strong>


Metal Enhanced Fluorescence


Metal Enhanced Fluorescence<br />

Pompa et al. Nature Nanotechnology 1, 126 ‐ 130 (2006)


Scanning electron microscope (SEM) images<br />

of our silver island films<br />

Evaporation rate: 0.1-0.2 Å/sec<br />

20 nm, not t annealed l d<br />

20 nm, annealed at 300 ºC for 10 min.<br />

<strong>Hilmi</strong> <strong>Volkan</strong> <strong>Demir</strong>


Scanning electron microscope (SEM) images of<br />

our silver il il island dfil films ( (cont’d) ’d)<br />

6 nm, ,<br />

annealed at 150 ºC for 1 min.<br />

<strong>Hilmi</strong> <strong>Volkan</strong> <strong>Demir</strong>


Nanoisland formation<br />

AAg evaporation ti<br />

(0.1 A/s) on quartz<br />

Annealing at 300 0 Annealing at 300 C<br />

under N2 purge<br />

Nanocrystal<br />

integration<br />

<strong>Hilmi</strong> <strong>Volkan</strong> <strong>Demir</strong><br />

Plasmon resonance tuning<br />

with lateral vertical dimension


Our absorbance spectra of different silver island<br />

fil films<br />

Absorbance<br />

(a.uu.)<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

4 nm Ag, 300 0C, 20 min.<br />

2nmAg,1500 2 nm Ag, 150 C, 2 min.<br />

6 nm Ag, 150 0C, 2 min.<br />

6 nm Ag, 150 0C, 2 min.+10 nm Si O x y<br />

300 400 500 600 700<br />

Resonance wavelengths:<br />

426 nm<br />

452 nm<br />

488 nm<br />

515 nm<br />

Larger thickness => Red shift<br />

Annealing => Blue shift<br />

Larger dielectric constant<br />

at the interface => Red shift<br />

wavelength (nm)Tunable, controllable and reproducible<br />

llocalized li d plasmon l resonance bbehavior h i<br />

<strong>Hilmi</strong> <strong>Volkan</strong> <strong>Demir</strong>


Resonance wavelengths g of our metal island films<br />

<strong>Hilmi</strong> <strong>Volkan</strong> <strong>Demir</strong>


Interactions between plasmons p and luminescent materials<br />

• Physical mechanisms affecting metal‐ metal<br />

enhanced luminescence performance<br />

1. Local field enhancement close to plasmons<br />

2. Increased radiative recombination rate of luminescent<br />

material (Förster energy transfer)<br />

33. QQuenching hi<br />

<strong>Hilmi</strong> <strong>Volkan</strong> <strong>Demir</strong>


Quantitative expressions of metal enhanced luminescence<br />

2 ( ) QYmetal = L<br />

Z(<br />

) metal<br />

ω<br />

( ) 2<br />

ω ( ) and<br />

Y ω<br />

exc Z<br />

Γ<br />

Γ+<br />

k<br />

flu<br />

flu =<br />

QY<br />

QY<br />

Γ + Γ<br />

where and<br />

m<br />

QQY0<br />

=<br />

QYmetal<br />

=<br />

Γ + Γm<br />

+<br />

nr<br />

Γ iis the h radiative di i recombination bi i rate<br />

Γm is the radiative recombination rate due to the presence of metal<br />

knr is the nonradiative decay rate<br />

Also, the photon lifetime decreases by the factor<br />

<strong>Hilmi</strong> <strong>Volkan</strong> <strong>Demir</strong><br />

F<br />

P<br />

0<br />

k<br />

nr<br />

Γ + k nr + Γ<br />

=<br />

Γ + k<br />

nr<br />

m


Spectral design of plasmon‐coupled nanocrystals<br />

• Resonance wavelength<br />

matching<br />

0<br />

• λ(Ag)=457 nm<br />

λ(Ag+SixOy)=476 nm<br />

λ(Emission)=493 nm<br />

0.8<br />

• Red shift with the<br />

addition of nanocrystals y<br />

0.6<br />

taken into account<br />

0.4<br />

• Nanoisland size: avoided<br />

very small nanoislands<br />

(


Structural design of plasmon‐coupled nanocrystals<br />

Quenching: effective in 5 nm<br />

Increased field: effective in 15 nm<br />

Increased decay rate: effective in 25 nm<br />

Distance < 5 nm => quenching<br />

Di Distance t > 20 nm=> > almost l t iisolated l t d<br />

J. R. Lakowicz, “Radiative decay engineering: biophysical<br />

and biomedical applications,” Anal. Biochem., vol. 298, 2001, pp. 1-24.<br />

<strong>Hilmi</strong> <strong>Volkan</strong> <strong>Demir</strong>


Photoluminnescence<br />

(couunts)<br />

30000<br />

25000<br />

20000<br />

15000<br />

10000<br />

5000<br />

Localized plasmon coupled nanocrystal<br />

emitters<br />

NC+Si O +nanoAg<br />

x y<br />

control NC<br />

1.0<br />

control t l NC+nanoAg<br />

NC A 08 0.8<br />

NC+Si x O y +nanoAg: NC: NC+nanoAg<br />

15.1:1.0: 0.7<br />

0<br />

400 450 500 550 600 650 700<br />

wavelength (nm)<br />

Normalized photolumines<br />

p scence<br />

0.6<br />

04 0.4<br />

0.2<br />

492 nm 506 nm<br />

NC+Si x O y +nanoAg<br />

control t l NC<br />

NC NC+Si O +nanoAg<br />

x y<br />

λ : 492 nm<br />

PL<br />

FWHM: 45 nm<br />

506 nm<br />

35 nm<br />

00 0.0<br />

400 450 500 550 600 650 700<br />

wavelength (nm)<br />

CdSe CdSe/ZnS ZnS nanocrystals closely closely-packed packed in the proximity of Ag nanoisland films:<br />

1) 1)enhancing 1.) enhancing the PL intensity by 15 15.1 1 times compared to the same nanocrystals<br />

without nano-Ag nano Ag (no plasmonic resonance)<br />

and 21.6 times on the average compared to the same nanocrystals with nano-Ag nano Ag<br />

but no dielectric spacer (when quenched)<br />

2.) shifting peak emission wavelength (by 14 nm) and<br />

3.) reducing emission linewidth (by 10 nm FWHM, corresponding to >22 %)<br />

<strong>Hilmi</strong> <strong>Volkan</strong> <strong>Demir</strong><br />

I. M. Soganci, S. Nizamoglu, E. Mutlugun and H. V. <strong>Demir</strong>, Optics Express 15(22), 14289 (2007).


Plasmon coupled surface state emitting nanocrystals<br />

<strong>Hilmi</strong> <strong>Volkan</strong> <strong>Demir</strong><br />

Surface‐state emission is<br />

8.9 weaker than the<br />

bband‐edge d d emission. i i<br />

Plasmon resonance tuned<br />

to match the peak surface state emission:<br />

Vertical film thickness: 10 nm<br />

Lateral size distribution: 25‐75 nm


Material<br />

on quartz<br />

substrate<br />

Only SSE<br />

NC<br />

SSE NC<br />

with 10 nm<br />

Ag<br />

Selectively y plasmon p enhanced surface state emission<br />

Band-edge<br />

emission<br />

λ 1 (nm)<br />

Surface-state<br />

emission<br />

λ 2 (nm)<br />

λ 1 peak<br />

intensity<br />

(counts)<br />

λ 2 peak<br />

intensity<br />

(counts)<br />

Intensity<br />

ratio<br />

@λ 2 /<br />

@λ 1<br />

Highlighted in<br />

Introduction to Nanophotonics<br />

by Sergey V. Gaponenko,<br />

Cambridge University Press<br />

(2009)<br />

EEnhancement h tiin th the ratio ti of f<br />

surface‐state peak emission to<br />

band‐edge peak emission of<br />

plasmon‐coupled p p film sample p<br />

compared to that in solution:<br />

12.7 folds<br />

Total<br />

number of<br />

photons<br />

415 545 1388 290 0.21 67,885 , T. Ozel, I. M. Soganci, S. Nizamoglu, I.<br />

O. Huyal, E. Mutlugun, S.<br />

415 531 672 960 1.43 122,055<br />

Sapra, N. Gaponik, A. Eychmüller,<br />

H. V. <strong>Demir</strong>, New Journal of Physics<br />

<strong>Hilmi</strong> <strong>Volkan</strong> <strong>Demir</strong><br />

10, 083035 (2008).


Outline<br />

• Climate change, greenhouse gases<br />

• Solid state lighting enabled by nanophotonics<br />

– White LEDs involving nanophosphors<br />

– for indoors lighting (warm color temperature, high color rendering index)<br />

– for tuned color chromatictiy operation (tuned tristimulus coordinates)<br />

– Nonradiative energy transfer in nanophosphors<br />

– FRET enhanced color converted LEDs<br />

– FRET converted light emitting structures<br />

– color tuning with FRET<br />

– Plasmonic nanophosphors<br />

– plasmon coupling using metal nanoparticles<br />

– selective plasmon coupling of white luminophors<br />

• Conclusion<br />

<strong>Hilmi</strong> <strong>Volkan</strong> <strong>Demir</strong>


How can we combat climate change<br />

using NANOPHOTONICS?<br />

• Can we help to reduce global energy<br />

consumption?<br />

– Light generation<br />

• Solid state lighting using nanophosphors<br />

– for the generation of high‐quality white light<br />

– using nonradiative energy transfer<br />

• Can we help to convert solar energy more<br />

efficiently?<br />

– Light harvesting<br />

• Quantum dot integrated solar cells<br />

– for the extension of spectral response<br />

– also using nonradiative energy transfer<br />

• C Can we help h l t to reduce d the th amount t of f<br />

greenhouse gases?<br />

– Photocatalytic nanoparticle integrated systems<br />

• ffor massive i environmental i t ld decontamination<br />

t i ti<br />

<strong>Hilmi</strong> <strong>Volkan</strong> <strong>Demir</strong><br />

GREEN<br />

NANOPHOTONICS<br />

current (mA)<br />

*2 patents pending<br />

voltage (V)<br />

0<br />

0 02 0.2 04 0.4 06 0.6 08 0.8 1 12 1.2 14 1.4 16 1.6 18 1.8 2<br />

-2<br />

-4<br />

-6<br />

-8<br />

PL Intensity (a.u.)<br />

*1 patent p<br />

* 3 patents<br />

350 400 450 500 550 600 650 700<br />

λ (nm)<br />

wihout nanocrystals<br />

with 3.42 nanomol/cm2 nanocrystals<br />

with 10.40 nanomol/cm2 nanocrystals y<br />

with 20.80 nanomol/cm2 nanocrystals<br />

with 52.00 nanomol/cm2 nanocrystals<br />

with 67.60 nanomol/cm2 nanocrystals


Flashback – in 2005<br />

• Future perspective: We proposed and envisioned that these<br />

p p p p<br />

hybrid nanphosphor white LEDs are promising candidates for future<br />

solid-state lighting applications.


Today – in 2010<br />

• Nanocrystal based light emitting diodes are<br />

commercially y available today. y<br />

• However, high‐quality nanophosphor LEDs<br />

are not commercialized yet.


Single to few nanoparticle devices<br />

• Our on‐chip integration from macro to micro to nano scale:<br />

15 mm<br />

CC. UUran, EE. UUnal, l RR. Ki Kizil, il and d HH. VV.<br />

<strong>Demir</strong>, IEEE Journal of Selected Topics in<br />

Quantum Electronics Vol. 15, 5, 2009<br />

Fully integrated chip with macroprobes<br />

<strong>Hilmi</strong> <strong>Volkan</strong> <strong>Demir</strong><br />

Microfabricated electrode array<br />

20 nm<br />

Aligned and clamped<br />

nanowires<br />

Captured<br />

nanoparticles


Conclusions<br />

• Climate change is a major problem. Solid state lighting potentially offers<br />

substantial reduction in energy consumption and greenhouse gas<br />

emission.<br />

• Nanocrystal emitters outperform conventional phoshors in white light<br />

generation in certain optical aspects with<br />

• warm color temperature and high color rendering index<br />

– for day vision (indoors applications)<br />

• tuneable operating point (tuned tristimulus coordinates)<br />

– for application‐specific spectral illumination (niche applications)<br />

• Nanocrystall LEDs bbenefit fi ffrom<br />

– nonradiative energy transfer between nanocrystals<br />

– nonradiative energy transfer from epitaxial quantum wells to nanocrystals<br />

– plasmon coupling<br />

• Nanostructured white LEDs of nanocrystal emitters hold promise for high<br />

quality lighting.<br />

<strong>Hilmi</strong> <strong>Volkan</strong> <strong>Demir</strong>


Bilkent Devices and Sensors Group<br />

• Dr. Nihan Kosku Pekgöz (project coordinator)<br />

• Dr. Olga Samarska (postdoctoral fellow)<br />

• Dr. Mehmet Şahin Ş (visiting ( g scholar) )<br />

• R. Eng. Özgün Akyüz (lab manager engineer)<br />

• R. Eng. Müh. Emre Ünal (technıcal learder engıneer)<br />

• Rohat Melik (phd)<br />

• Evren Mutlugün (phd)<br />

• Sedat Nizamoğlu (phd)<br />

• Emre Sarı (phd)<br />

• Can Uran (phd)<br />

• Gulis Zengin (phd)<br />

• Aslı Ünlügedik (phd)<br />

• Akın Sefunç (phd)<br />

• Neslihan Çiçek (ms‐phd)<br />

• Onur Akın (ms‐phd)<br />

• Gürkan Polat (ms‐phd)<br />

• Tuncay Özel (ms)<br />

• Ilkem Özge Huyal (ms)<br />

• Sina Toru Refik (ms)<br />

• Talha Erdem (ms)<br />

• Burak Güzeltürk (ms)<br />

Previous members<br />

• Dr. Gülşah Yaman (postdoc)<br />

• Dr. Yang Zhang (postdoc)<br />

• Eng..Aslı Koç (research engıneer)<br />

• İbrahim Murat Soğancı (ms)<br />

• Sümeyra Tek (ms)<br />

• Mustafa Yorulmaz (ug)<br />

Acknowledgements<br />

Collaborators:<br />

• TU Dresden (N. Gaponik, S. Sapra, S. Hickey,<br />

A. Eychmüller) y )<br />

• Belarus National Academy of Science (S. Gaponenko, M.<br />

Artemyev)<br />

• KOPTI (I. Lee, J. Baek)<br />

• NTU (XW Sun, K. Pita)<br />

Funding and support:<br />

• ESF EURYI<br />

• EU Nanophotonics4Energy<br />

• EU MOON 021391<br />

• ESF COST MP0701<br />

• NIH 5R01EB010035-02<br />

• KRF- TUBITAK 1070297<br />

• NASB - TUBITAK 107E088<br />

• BMBF-TUBITAK 109E002<br />

• T UBITAK 106E020<br />

• INNOVNANO<br />

• NRF RF 2009-09<br />

<strong>Hilmi</strong> <strong>Volkan</strong> <strong>Demir</strong>


Device and Sensors Group<br />

<strong>Demir</strong> lab 2008-2009 SCI Publications:<br />

1. Applied Physics Letters 92, 031102 (2008).<br />

2. Applied Physics Letters 92, 201105 (2008).<br />

3. New Journal of Physics y 16(2), ( ), 1115 (2008). ( )<br />

4. Optics Express 16(6), 3515 (2008).<br />

5. Applied Physics Letters 92, 113110 (2008).<br />

6. Optics Express 16(6), 3537 (2008).<br />

7. J. Materials Chemistry 18, 3568-3574 (2008). <strong>Demir</strong> lab 2008-2009<br />

8. Optics Express 10, 023026 (2008).<br />

Patent Applications:<br />

99. EEuropean FFebs b JJournal l 275 275, 97 (2008) (2008).<br />

1. Zizgag InGaN quantum<br />

10. Nanotechnology 19, 335203 (2008).<br />

11. New Journal of Physics 10, 083035 (2008).<br />

modulators, pending.<br />

12. Optics Express 16, 13391-13397 (2008).<br />

2. LED-MOD-Detector diodes, pending.<br />

13. IEEE Trans. Electron Devices 55, 3459-3466(2008). 3. Photovoltaic nanocrystal<br />

14 14. JJ. Micromech Micromech. Microengineering 18 18, 115017 (2008) (2008). scintillators scintillators, pending pending.<br />

15. Optics Express 16, 13961-13968 (2008).<br />

4. PFA white emitters, pending.<br />

16. New Journal of Physics 10, 123001 (2008).<br />

5. High s/p solid state lighting, pending.<br />

17.Applied Physics Letters 95, 011106 (2009).<br />

6. Nanophosphors efficiency<br />

18. Applied Physics Letters 95, 033106 (2009).<br />

enhancement, pending.<br />

19. IEEE JSTQE , 15 4), ) 1163 (2009). ( )<br />

77. Bilkent DYO photocatalytic<br />

20. Journal of Applied Physics106, 043704 (2009)<br />

synergy, pending.<br />

21. Applied Physics Letters 94, 061105(2009)<br />

8. Bilkent DYO Arçelik photocatalytic<br />

22. Journal of Applied Physics 105, 083112(2009)<br />

nanocomposite, pending.<br />

23. IEEE Journal of Special Topics in Quantum<br />

Electronics15, 5, 1413 (2009).<br />

9. Bilkent Innovnano<br />

24 24. AApplied li d Ph Physics i Letters L tt 94 94, 211107 (2009)<br />

composite composite, pending. pending<br />

25. Applied Physics Letters 94, 243107 (2009)<br />

10. Bilkent Synthese<br />

26. Applied Physics Letters (in press)<br />

bioimplant, pending.<br />

27. IEEE Journal of Special<br />

<strong>Hilmi</strong><br />

Topics<br />

<strong>Volkan</strong><br />

in Quantum<br />

<strong>Demir</strong><br />

Electronics (special issue on Metamaterials) (in press).


Our research program<br />

• High‐quality light emitting diodes (LEDs)<br />

– Nanocrystal y hybridized y white LEDs ( (NC‐LED) )<br />

– Nonradiative energy transfer converted white LEDs (FRET‐LED) Plasmonically<br />

enhanced white LEDs (plasmon‐LED)<br />

– High‐brightness LEDs (InGaN/GaN HB‐LED)<br />

– Nanostructured LEDS (nano‐LED)<br />

• High High‐efficiency efficiency photovoltaic devices (PV)<br />

– Nanocrystal integrated photovoltaic devices (NC‐PV)<br />

– Plasmonically enhanced photovoltaic devices (plasmon‐PV)<br />

– Nanowire photovoltaic devices (NW‐PV)<br />

• Nanocrystal Nanocrystal, metal nanoparticle and nanowire embedded devices<br />

and systems<br />

– Field‐assisted self‐assembly (dielectorphoresis)<br />

– On‐chip integrated nanowire device platform<br />

– Single g nano‐particle p devices<br />

– Photocatalytic nanocomposite systems<br />

• Quantum modulators / Photonic switches<br />

– Visible quantum electroabsorption modulators (InGaN)<br />

– UV quantum electroabsorption modulators(InAlGaN)<br />

– Quantum dot luminescence modulators/photonic switches<br />

– Nanorod modulators<br />

<strong>Hilmi</strong> <strong>Volkan</strong> <strong>Demir</strong>


Our research program<br />

• Biomimetic optoelectronic devices<br />

– Peptide decorated nanocrystal emitters.<br />

– Targeted self‐assembly of nanocrystals/nanoparticles<br />

/<br />

– Layer‐by‐Layer templated nanocrystals using biomineralization<br />

– Nanohybrids assembled with genetically engineered peptides<br />

• Innovative RF and optoelectronic sensors<br />

– CCompact thi high‐Q h Q RF rezonators t<br />

– Wireless RF‐MEMS sensors<br />

– Bioimplant sensors<br />

• Novel nanophotonic devices<br />

– Polymer nanoparticles<br />

– Organic nanodevices<br />

– Novel nano‐device fabrication<br />

• Physics and applications of nano‐structures<br />

– Quantum structure modeling<br />

– Local plasmon modeling<br />

– FRET modeling<br />

– Modification of photoluminescence kinetics (modified time‐<br />

resolved fluorescence, modified lifetime)<br />

– RF characterization h t i ti of f nanostructure t t assemblies<br />

bli<br />

<strong>Hilmi</strong> <strong>Volkan</strong> <strong>Demir</strong>


Thanks…<br />

<strong>Hilmi</strong> <strong>Volkan</strong> <strong>Demir</strong><br />

…. towards sustainable Earth<br />

semiconductor lighting for energy efficiency …<br />

<strong>Hilmi</strong> <strong>Volkan</strong> <strong>Demir</strong><br />

“Let our light shine!”

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!