11.07.2015 Views

Mixing and stirring in the ocean…. The diffusion equation Molecular ...

Mixing and stirring in the ocean…. The diffusion equation Molecular ...

Mixing and stirring in the ocean…. The diffusion equation Molecular ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

OCEANOGRAPHY 510<strong>Mix<strong>in</strong>g</strong> <strong>and</strong> <strong>stirr<strong>in</strong>g</strong> <strong>in</strong> <strong>the</strong> ocean….<strong>The</strong> <strong>diffusion</strong> <strong>equation</strong><strong>Molecular</strong> <strong>diffusion</strong>: small scale mix<strong>in</strong>gDouble <strong>diffusion</strong>Eddy <strong>diffusion</strong>Large-scale ocean mix<strong>in</strong>g (<strong>stirr<strong>in</strong>g</strong>, actually)


Diffusion: basic questions….clear fluid + red dye = p<strong>in</strong>k waterForward problem: describe mix<strong>in</strong>gInverse problem: describe circulation[<strong>in</strong>itial value problem?]What is mix<strong>in</strong>g? What is <strong>stirr<strong>in</strong>g</strong>?


<strong>The</strong> <strong>diffusion</strong> <strong>equation</strong>….δzF x1F x2M[Flux <strong>in</strong>, x] [Flux out, x]δyδxzy∂M∂t= Flux <strong>in</strong> −Flux outx


<strong>The</strong> <strong>diffusion</strong> <strong>equation</strong>….∂M = [ F δx1 y δ z − F δx2 y δ z ] + [ F δy1 x δ z − F δy2x δ z ]∂t+ [ F δxδy−F δxδy]z1 z21 ∂M ( F (1 2)1 2)x− F Fx y− Fy( Fz1−Fz2)= + +δxδyδz ∂t δx δy δz1 ∂M ∂C= −∇ ⋅ F =V ∂t ∂t[C = concentration]


<strong>The</strong> <strong>diffusion</strong> <strong>equation</strong>….1 ∂M ∂C= −∇ ⋅ F =V ∂t ∂tchange of concentration of C <strong>in</strong>side <strong>the</strong> cubedivergence of <strong>the</strong> flux through <strong>the</strong> cubeIt is necessary to relate <strong>the</strong> concentration C to<strong>the</strong> flux F <strong>in</strong> order to make fur<strong>the</strong>r progress.


<strong>The</strong> <strong>diffusion</strong> <strong>equation</strong>….(i) Flux due to advection, F ASuppose <strong>the</strong> velocity vector at <strong>the</strong> center of <strong>the</strong>cube is u = (u, v, w). <strong>The</strong>n <strong>the</strong> advective flux of Cthrough <strong>the</strong> cube is uC .Check <strong>the</strong> units:⎡L⎤⎡amount of stuff ⎤ ⎡amount of stuff ⎤F A = uC ~ ⎢=3 2⎣T⎥⎢ ⎦⎣ L ⎥⎦⎢⎣ LT ⎥⎦[<strong>the</strong> units of a flux]


<strong>The</strong> <strong>diffusion</strong> <strong>equation</strong>….<strong>The</strong> complete <strong>diffusion</strong> <strong>equation</strong> becomes∂C∂t= −∇ ⋅ ( F + F ) = −∇ ⋅ ( uC)+ κ∇CA D or∂ C +∇⋅ ( uC)= κ ∇∂t2C2


<strong>The</strong> <strong>diffusion</strong> <strong>equation</strong>….Assum<strong>in</strong>g that <strong>the</strong> fluid is <strong>in</strong>compressible,∇⋅ ( uC) = C∇⋅ u+ ( u⋅∇ ) C = ( u⋅∇)C ∂C ∂C ∂C= u + v + w∂x ∂y ∂zSo <strong>the</strong> <strong>diffusion</strong> <strong>equation</strong> becomesdCdt2= κ∇ C + sources & s<strong>in</strong>ks


<strong>Molecular</strong> <strong>diffusion</strong>….Lam<strong>in</strong>ar motion: smooth <strong>and</strong> direct flow,weak <strong>in</strong>ertia, relatively viscousTurbulent motion: confused flow, <strong>in</strong>direct,strong <strong>in</strong>ertia, relatively <strong>in</strong>viscidLam<strong>in</strong>ar motion:molecular <strong>diffusion</strong>Diffusivities are known.(see tables)κ T = 10 -3 cm 2 /secκ s = 10 -5 cm 2 /secκ u = 10 -2 cm 2 /sec ≡ νA measure of <strong>the</strong> relative size of viscous <strong>and</strong> <strong>in</strong>ertialforces is <strong>the</strong> Reynolds number (Re), given byRe<strong>in</strong>ertial forcesviscous forces2⋅∇ ⎛U⎞ ⎛υU⎞ 2 ⎜ ⎟ ⎜ 2 ⎟u u UL= =υ∇ u ⎝ L ⎠ ⎝ L ⎠ υ


<strong>Molecular</strong> <strong>diffusion</strong>….Re = Reynolds number = <strong>in</strong>ertial/viscous = UL/υLam<strong>in</strong>ar flows: low ReTurbulent flows: high ReExperimentally, it has been found that <strong>the</strong> transitionbetween <strong>the</strong>se states occurs around Re ~ 3000.[ 2000 – 4000 ]Re ~ UL/υ ≤ 3000 → L ≤ (3000υ)/U = (3000)(0.01)/3L ≤ 10 cmcm 2 /secOn scales of a few centimeters or less, <strong>the</strong> flow is lam<strong>in</strong>ar,with property gradients smoo<strong>the</strong>d by molecular <strong>diffusion</strong>.On larger scales, <strong>the</strong> flow is turbulent, with propertygradients smoo<strong>the</strong>d by eddy <strong>diffusion</strong>.cm/sec


Example: molecular <strong>diffusion</strong> associated with <strong>the</strong>stratification of <strong>the</strong> ocean....<strong>The</strong> ocean is stratified <strong>in</strong> both temperature <strong>and</strong> sal<strong>in</strong>ity,which can lead to some unexpected difffusive effects.This is known as double <strong>diffusion</strong>.Consider 3 dist<strong>in</strong>ct cases:(i) Warm, fresh water overly<strong>in</strong>g cold, sal<strong>in</strong>e water.zIn <strong>the</strong> absence of any forc<strong>in</strong>g,T <strong>and</strong> S gradients will diffuseaway <strong>and</strong> <strong>the</strong> ocean will becomehomogenized (both gradientsare stable).ST


<strong>Molecular</strong> <strong>diffusion</strong>….(ii) Warm, sal<strong>in</strong>e water overly<strong>in</strong>g cold, fresh water.T is stabliz<strong>in</strong>g,S is destabiliz<strong>in</strong>g.If T stratification is <strong>in</strong>itiallystronger, no direct convectionis possible.Suppose <strong>the</strong>re is some length scale L associated with<strong>the</strong> stratification, <strong>and</strong> a diffusive time scale τ.2 2L L τTκSκ ⇒ τ ⇒ 10τ κ τ κSzTTS−2


<strong>Molecular</strong> <strong>diffusion</strong>….2 2L L τTκSκ ⇒ τ ⇒ τ κ τ κST10−2Result: T gradients will diffuse away <strong>in</strong> 1% of <strong>the</strong>time required to diffuse <strong>the</strong> S gradients. <strong>The</strong> rema<strong>in</strong><strong>in</strong>gS gradient will be unstable, <strong>and</strong> overturn<strong>in</strong>g will occur.This phenomenon is known as salt f<strong>in</strong>ger<strong>in</strong>g.


An example ofdouble <strong>diffusion</strong>(f<strong>in</strong>ger<strong>in</strong>g)produced <strong>in</strong> alaboratory, takenfrom Turner,Buoyancy Effects<strong>in</strong> Fluids.50 cm


F<strong>in</strong>ger<strong>in</strong>g on an <strong>in</strong>terface (from Turner)2.5 cm


<strong>The</strong> horizontal structureof laboratory salt f<strong>in</strong>gers,from Turner, BuoyancyEffects <strong>in</strong> Fluids.5 cm


(iii) Cold, fresh water overly<strong>in</strong>g warm, sal<strong>in</strong>e water.zS is stabiliz<strong>in</strong>g,T is destabiliz<strong>in</strong>g.S<strong>The</strong> T stratification will disappearfirst. If <strong>the</strong> T gradient is strongenough, overturn<strong>in</strong>g might occur.Eventually molecular <strong>diffusion</strong>will remove <strong>the</strong> sal<strong>in</strong>ity gradient.T


Turbulent <strong>diffusion</strong>….Turbulent flows are irregular <strong>and</strong> confused.<strong>The</strong> ocean is turbulent on all scales larger than a few cm.It is still possible to use <strong>the</strong> <strong>diffusion</strong> <strong>equation</strong>(flux/gradient arguments might still hold), but we canno longer use <strong>the</strong> molecular diffusivities.<strong>The</strong> concept of a turbulent diffusivity is only aparameterization of <strong>the</strong> turbulence; essentiallywe are replac<strong>in</strong>g <strong>the</strong> molecular value with a muchlarger one, but assum<strong>in</strong>g <strong>the</strong> process of <strong>diffusion</strong>generally rema<strong>in</strong>s <strong>the</strong> same.[<strong>the</strong> “eddy diffusivity”]


Turbulent <strong>diffusion</strong>….Eddy diffusivities are usually many orders ofmagnitude larger than <strong>the</strong>ir molecular counterparts.Example: temperature <strong>in</strong> water (molecular) ~ 10 -3 cm 2 /secVertical <strong>diffusion</strong> <strong>in</strong> <strong>the</strong> ocean, κ z ~ 0.01 – 1 cm 2 /secHorizontal <strong>diffusion</strong> <strong>in</strong> <strong>the</strong> ocean, κ x ~ 10 6 – 10 8 cm 2 /secNote: <strong>in</strong> <strong>the</strong> turbulent case <strong>the</strong> eddy diffusivities might bedifferent <strong>in</strong> different directions, s<strong>in</strong>ce <strong>the</strong> processesresponsible for <strong>the</strong> mix<strong>in</strong>g might differ along coord<strong>in</strong>ate axes.Example: stratification is different vertically <strong>and</strong> horizontally<strong>in</strong> <strong>the</strong> ocean.


Turbulent <strong>diffusion</strong>….[note: for variable κ x this is∂∂x⎛⎜κx⎝∂C∂x⎞⎟⎠etc.]dCdt=∂2∂2∂2κ∇ 2C → κ + κ + κx 2 y 2 z 2[lam<strong>in</strong>ar]C C C∂x ∂y ∂z[turbulent]<strong>The</strong> diffusivity is now a tensor <strong>in</strong>stead of a scalar.


Turbulent <strong>diffusion</strong>….<strong>The</strong> full time-dependent, nonl<strong>in</strong>ear, turbulent <strong>diffusion</strong><strong>equation</strong> has no general solution. Instead, considersome tractable problems that have been simplified.Example: Munk’s model of <strong>the</strong> oceanic <strong>the</strong>rmocl<strong>in</strong>e.Steady; only vertical <strong>diffusion</strong> is allowed; uniformupwell<strong>in</strong>g is present.upward advectionof cold waterfrom below∂T∂Tw∂ z= κz2z2∂>0 >0 >0 >0downward<strong>diffusion</strong> of heatfrom above[see Munk, “Abyssal recipes”, 1966]


Turbulent <strong>diffusion</strong>….∂T∂T2w∂ z= κzz2∂→2d T ⎛ w ⎞dT− ⎜ ⎟ =dz ⎝ ⎠02κ dzz[if w <strong>and</strong> κ z are constants]<strong>The</strong> solution to this ODE is of <strong>the</strong> formzT(z)( ) ( )e( w / κz) zT z = T − T + TS D DT Ssurface temperaturedeep temperatureT D


Turbulent <strong>diffusion</strong>….z/zoS D D oT( z) = ( T − T )e + T , z =κzwIn recent years κ z has been found to be ~ 0.1 cm 2 /secover much of <strong>the</strong> ocean <strong>in</strong>terior. For <strong>the</strong> N. Pacific,<strong>the</strong> scale height z o can be taken to be ~ 600 m.This suggests that w ~ (0.1)/(6x10 4 ) ~ 10 −6 cm/sec .[small <strong>and</strong> unmeasurable]


Measur<strong>in</strong>g turbulent <strong>diffusion</strong>….In 1993, Ledwell <strong>and</strong>colleagues releaseda small patch of dyeat a depth of 300 m <strong>in</strong><strong>the</strong> N. Atlantic<strong>the</strong>rmocl<strong>in</strong>e; <strong>the</strong>y wereable to follow this dyefor over half a year.231<strong>The</strong> degree of dispersion of <strong>the</strong> dye is related <strong>the</strong> turbulent diffusivity.


Turbulent <strong>diffusion</strong>….Vertical profiles through<strong>the</strong> dye show that <strong>the</strong> dyespreads vertically <strong>in</strong> time,as would be expected formix<strong>in</strong>g.<strong>The</strong> rate of spread<strong>in</strong>g isproportional to <strong>the</strong> verticaleddy diffusivity, κ z .


Turbulent <strong>diffusion</strong>….••<strong>The</strong> rate of verticalspread<strong>in</strong>g of <strong>the</strong> dyecan be used toestimate <strong>the</strong> eddydiffusivity from asimple model.••


Turbulent <strong>diffusion</strong>….Simple advection-<strong>diffusion</strong> models can also beused to exam<strong>in</strong>e horizontal diffusive processes.Example: <strong>the</strong> 3 He plume <strong>in</strong> <strong>the</strong> S. Pacific


Turbulent <strong>diffusion</strong>….• • •• •••∂H∂H2U∂ x= κ xx2∂Lupton <strong>and</strong> Craig, 1981


Turbulent <strong>diffusion</strong>….Float dispersionshows <strong>the</strong>character ofturbulence <strong>in</strong> <strong>the</strong>western N. Atlantic<strong>the</strong>rmocl<strong>in</strong>e700 m<strong>The</strong> plot shows <strong>the</strong> positions of 18 floats after one year.


Turbulent <strong>diffusion</strong>….Float dispersion atsub-<strong>the</strong>rmocl<strong>in</strong>elevels of <strong>the</strong> N.Atlantic1300 m18 floats after one year, 1300 m


AuWiEddy k<strong>in</strong>eticenergy by seasonat 900 m <strong>in</strong> <strong>the</strong>western N. Atlantic,<strong>in</strong>ferred from floatdispersion.Sp[units: (cm/sec) 2 ]Suκ xκ y[units: 10 7 cm 2 /sec]


1000 mPacific float dispersion: anisotropic


[units: ergs/g][ (cm/sec) 2 ]Eddy k<strong>in</strong>etic energy <strong>in</strong> <strong>the</strong> Pacific


Atlantic•<strong>in</strong>terior°•westernboundary°Pacific• ZONAL° MERIDIONALEddy diffusivity estimates scale roughly as EKE


Transient tracers <strong>and</strong> mix<strong>in</strong>g….Tracers can beused with aknowledge of<strong>the</strong>ir sources <strong>and</strong>s<strong>in</strong>ks todeterm<strong>in</strong>ecirculation <strong>and</strong>mix<strong>in</strong>g<strong>The</strong> history of CFC, 1930s - 2000


σ θ = 26.0Us<strong>in</strong>g <strong>the</strong> measuredvalues of CFC-11 <strong>and</strong>CFC-12, it is possibleto determ<strong>in</strong>e <strong>the</strong> ageof a water mass (ie,<strong>the</strong> time s<strong>in</strong>ce it left<strong>the</strong> sea surface) <strong>and</strong>to <strong>in</strong>fer pathways <strong>and</strong>strengths of mix<strong>in</strong>g<strong>and</strong> circulation.σ θ = 26.4[from Warner et al., 1996]


Oxygen <strong>in</strong> <strong>the</strong> ocean….Dissolved oxygen has a ubiquitous m<strong>in</strong>imum at mid-depth<strong>in</strong> <strong>the</strong> world ocean….why?


Diffusion of dissolved oxygen….biological consumptiondCdt=2 2 2∂ C ∂ C ∂ Cκ + κ + κ + Rz ( )x 2 y 2 z∂x ∂y ∂z2Note that <strong>the</strong> m<strong>in</strong>imum at mid-depth occursnearly everywhere. If we average <strong>the</strong> oxygen<strong>diffusion</strong> <strong>equation</strong> over <strong>the</strong> entire global ocean,<strong>and</strong> assume a steady state, we f<strong>in</strong>dw∂C∂ z=2Cκ ∂ + Rz ( )z∂z2O 2 : R(z) ∼ e αzRadioactive tracers:R(z) = −λC


Boundary conditions: C=C 1 at z=z 1 ; C=C 2 at z=z 2 ….[ Note: R(z) = R o e αz typically ]a typical solution

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!