11.07.2015 Views

Dissertation for the Degree of Master of Science in Engineering

Dissertation for the Degree of Master of Science in Engineering

Dissertation for the Degree of Master of Science in Engineering

SHOW MORE
SHOW LESS
  • No tags were found...

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Dissertation</strong> <strong>for</strong> <strong>the</strong> <strong>Degree</strong> <strong>of</strong> <strong>Master</strong> <strong>of</strong> <strong>Science</strong><strong>in</strong> Eng<strong>in</strong>eer<strong>in</strong>gClif<strong>for</strong>d Leonard van DykA dissertation submitted to <strong>the</strong> Department <strong>of</strong> Electrical Eng<strong>in</strong>eer<strong>in</strong>g,University <strong>of</strong> Cape Town, <strong>in</strong> fulfilment <strong>of</strong> <strong>the</strong> requirements<strong>for</strong> <strong>the</strong> degree <strong>of</strong> <strong>Master</strong> <strong>of</strong> <strong>Science</strong> <strong>in</strong> Eng<strong>in</strong>eer<strong>in</strong>g.Cape Town, 28 March 2002


DeclarationI declare that this dissertation is my own, unaided work. It is be<strong>in</strong>g submitted <strong>for</strong> <strong>the</strong>degree <strong>of</strong> <strong>Master</strong> <strong>of</strong> <strong>Science</strong> <strong>in</strong> Eng<strong>in</strong>eer<strong>in</strong>g at <strong>the</strong> University <strong>of</strong> Cape Town. It has notbeen submitted be<strong>for</strong>e <strong>for</strong> any degree or exam<strong>in</strong>ation at any o<strong>the</strong>r university.Signature <strong>of</strong> Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Cape Town28 March 2002i


AbstractHistorically radio has been implemented us<strong>in</strong>g largely analogue circuitry. Improvements<strong>in</strong> mixed signal and digital signal process<strong>in</strong>g technology are rapidly lead<strong>in</strong>gtowards a largely digital approach, with down-conversion and filter<strong>in</strong>g mov<strong>in</strong>g to <strong>the</strong>digital signal process<strong>in</strong>g doma<strong>in</strong>. Advantages <strong>of</strong> this technology <strong>in</strong>clude <strong>in</strong>creasedper<strong>for</strong>mance and functionality, as well as reduced cost.Wideband receivers place <strong>the</strong> heaviest demands on both mixed signal and digital signalprocess<strong>in</strong>g technology, requir<strong>in</strong>g high spurious free dynamic range (SFDR) andsignal process<strong>in</strong>g bandwidths. This dissertation <strong>in</strong>vestigates <strong>the</strong> extent to which currentdigital technology is able to meet <strong>the</strong>se demands and compete with <strong>the</strong> provenarchitectures <strong>of</strong> analogue receivers. A scalable generalised digital radio receiver capable<strong>of</strong> operat<strong>in</strong>g <strong>in</strong> <strong>the</strong> HF and VHF bands was designed, implemented and tested,yield<strong>in</strong>g <strong>in</strong>stantaneous bandwidths <strong>in</strong> excess <strong>of</strong> 10 MHz with a spurious-free dynamicrange exceed<strong>in</strong>g 80 decibels below carrier (dBc).The results achieved reflect favourably on <strong>the</strong> digital receiver architecture. While <strong>the</strong>necessity <strong>for</strong> m<strong>in</strong>imal analogue circuitry will possibly always exist, digital radio architecturesare currently able to compete with analogue counterparts. The digital receiveris simple to manufacture, based on <strong>the</strong> use <strong>of</strong> largely commercial <strong>of</strong>f-<strong>the</strong>-shelf (COTS)components, and exhibits extreme flexibility and high per<strong>for</strong>mance when comparedwith comparably priced analogue receivers.ii


AcknowledgementsI wish to acknowledge and thank Peralex Electronics (Pty) Ltd. <strong>for</strong> <strong>the</strong> opportunity <strong>of</strong>present<strong>in</strong>g this project as a dissertation. In particular, <strong>the</strong> contributions <strong>of</strong> Glen Thiele,who has <strong>of</strong>fered unparalleled guidance, support and expertise are appreciated. I wouldalso like to thank Per Karlsen and Alex Bassios <strong>for</strong> <strong>the</strong>ir support and encouragement.I would like to thank Mark Cammidge <strong>for</strong> his assistance <strong>in</strong> pro<strong>of</strong>-read<strong>in</strong>g this dissertation.F<strong>in</strong>ally, I wish to thank my supervisor, Associate Pr<strong>of</strong>essor Michael Inggs, <strong>for</strong> hisguidance and support.iii


ContentsDeclarationAbstractAcknowledgementsContentsList <strong>of</strong> FiguresList <strong>of</strong> TablesList <strong>of</strong> AbbreviationsNomenclatureiiiiiiivviiixixiixiv1 Introduction 11.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.2 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.3 System Specification . . . . . . . . . . . . . . . . . . . . . . . . . . 41.4 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 51.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61.6 Document Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Wideband Signal Digitisation 82.1 Dynamic Range Restrictions <strong>in</strong> Wideband Digitisation . . . . . . . . 82.2 Bandpass Sampl<strong>in</strong>g Theory . . . . . . . . . . . . . . . . . . . . . . . 112.2.1 Nyquist’s Criterion . . . . . . . . . . . . . . . . . . . . . . . 112.2.2 Bandpass Sampl<strong>in</strong>g . . . . . . . . . . . . . . . . . . . . . . . 112.2.3 Spectral Inversion <strong>in</strong> Bandpass Sampl<strong>in</strong>g . . . . . . . . . . . 142.2.4 Apply<strong>in</strong>g Bandpass Sampl<strong>in</strong>g to Wideband Reception . . . . 142.2.5 Quadrature Sampl<strong>in</strong>g and Complex Signal Representation . . 15iv


2.3 Sources <strong>of</strong> Error <strong>in</strong> Wideband Digitisation . . . . . . . . . . . . . . . 162.3.1 Quantisation Error . . . . . . . . . . . . . . . . . . . . . . . 172.3.2 Static Errors <strong>in</strong> <strong>the</strong> A-D Transfer Function . . . . . . . . . . . 172.3.3 Sampl<strong>in</strong>g Jitter . . . . . . . . . . . . . . . . . . . . . . . . . 192.3.4 Relative Noise Contributions <strong>in</strong> Wideband Digitisation . . . . 212.4 Oversampl<strong>in</strong>g . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222.4.1 Relaxation <strong>of</strong> Anti-alias<strong>in</strong>g Filter Requirements . . . . . . . . 232.4.2 Signal-to-Noise Ratio Improvement Through Oversampl<strong>in</strong>g . 232.4.3 Spurious Harmonic Placement . . . . . . . . . . . . . . . . . 242.5 Signal Di<strong>the</strong>r<strong>in</strong>g . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242.5.1 Subtractive and Non-subtractive Di<strong>the</strong>r<strong>in</strong>g Techniques . . . . 252.5.2 Small- and Large-scale Di<strong>the</strong>r<strong>in</strong>g . . . . . . . . . . . . . . . 272.6 A-D Converter Input Level Match<strong>in</strong>g . . . . . . . . . . . . . . . . . . 292.6.1 Characteristics <strong>of</strong> an Analogue Receiver Cha<strong>in</strong> . . . . . . . . 292.6.2 Comb<strong>in</strong>ed Analogue and A-D Converter Noise Figure . . . . 312.6.3 Optimal Analogue and A-D Converter Interfac<strong>in</strong>g . . . . . . . 312.7 Selection <strong>of</strong> a Wideband A-D Converter . . . . . . . . . . . . . . . . 322.7.1 A-D Converter Architectures . . . . . . . . . . . . . . . . . . 332.7.2 Survey <strong>of</strong> Commercially Available Wideband A-D Converters 332.7.3 Comparison <strong>of</strong> AD6644 and CLC5958 . . . . . . . . . . . . 343 Digital Down-conversion and Multirate Signal Process<strong>in</strong>g 373.1 A Generalised IF Sampl<strong>in</strong>g Receiver Architecture . . . . . . . . . . . 383.2 Spectral Translation <strong>of</strong> IFs to Baseband . . . . . . . . . . . . . . . . 383.2.1 Spectral translation through quadrature digital mix<strong>in</strong>g . . . . 393.2.2 Hardware-Efficient Frequency Translation . . . . . . . . . . . 403.2.3 Per<strong>for</strong>mance Advantages <strong>of</strong> Digital Spectral Translation . . . 403.3 Digital Resampl<strong>in</strong>g and Multirate Signal Process<strong>in</strong>g . . . . . . . . . . 413.3.1 Decimation by Integer Factors . . . . . . . . . . . . . . . . . 413.3.2 Interpolation by Integer Factors . . . . . . . . . . . . . . . . 423.3.3 Resampl<strong>in</strong>g by Non-Integer Factors . . . . . . . . . . . . . . 433.3.4 Efficient Architectures <strong>for</strong> Integer Decimation . . . . . . . . . 443.3.5 Enhanced Signal-to-Noise Ratio through Decimation Filter<strong>in</strong>g 483.4 Enhanced Signal-to-Noise Ratio us<strong>in</strong>g <strong>the</strong> Discrete Fourier Trans<strong>for</strong>m 484 Wideband Digital Receiver Architecture and Design 504.1 Overview <strong>of</strong> System Architecture . . . . . . . . . . . . . . . . . . . . 504.2 Digital Receiver Channel Architecture . . . . . . . . . . . . . . . . . 514.2.1 A Review <strong>of</strong> <strong>the</strong> Digital Receiver Requirements . . . . . . . . 524.2.2 Commercially Available Digital Down-conversion Hardware . 534.2.3 A Scalable Digital Receiver based on COTS components . . . 55v


4.2.4 A Description <strong>of</strong> <strong>the</strong> ADC-DDC Board Architecture . . . . . 594.2.5 A Description <strong>of</strong> <strong>the</strong> ISA DSP Board Architecture . . . . . . 645 Digital Receiver Implementation 675.1 A-D Converter Input Level Match<strong>in</strong>g . . . . . . . . . . . . . . . . . . 675.2 A-D Converter Input Signal Di<strong>the</strong>r<strong>in</strong>g . . . . . . . . . . . . . . . . . 685.3 Selection <strong>of</strong> a Sampl<strong>in</strong>g Oscillator . . . . . . . . . . . . . . . . . . . 695.4 Analogue Power Supply Filter<strong>in</strong>g . . . . . . . . . . . . . . . . . . . . 705.5 Ground<strong>in</strong>g . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 715.6 EMI Shield<strong>in</strong>g . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 715.7 GC4016 Decimat<strong>in</strong>g Filter Coefficients . . . . . . . . . . . . . . . . 725.8 Problems Encountered dur<strong>in</strong>g Receiver Design . . . . . . . . . . . . 735.8.1 Insufficient EMI Suppression . . . . . . . . . . . . . . . . . 735.8.2 Problems due to Faulty Silicon . . . . . . . . . . . . . . . . . 746 Per<strong>for</strong>mance Measurements 756.1 Empirical Test<strong>in</strong>g <strong>of</strong> A-D Converter and Analogue Front-End Circuitry 756.1.1 Non-harmonic Spurious Free Dynamic Range . . . . . . . . . 756.1.2 Harmonic Spurious Free Dynamic Range . . . . . . . . . . . 766.1.3 Effect <strong>of</strong> Band-limited Di<strong>the</strong>r Noise on A-D Converter L<strong>in</strong>earity 776.2 Empirical Test<strong>in</strong>g <strong>of</strong> <strong>the</strong> Digital Receiver at 5 MHz IF . . . . . . . . . 776.2.1 Non-harmonic Spurious-free Dynamic Range . . . . . . . . . 786.2.2 Harmonic Spurious-free Dynamic Range . . . . . . . . . . . 786.2.3 Two-tone Third-order Intermodulation Distortion Measurement 786.3 Empirical Test<strong>in</strong>g <strong>of</strong> <strong>the</strong> Digital Receiver at 12.8 MHz IF . . . . . . . 806.3.1 Non-Harmonic Spurious-free Dynamic Range . . . . . . . . . 806.3.2 Harmonic Spurious-free Dynamic Range . . . . . . . . . . . 816.3.3 Two-tone Third-order Intermodulation Distortion Measurement 827 Conclusion 84Bibliography 87A Derivations 90A.1 Signal-to-Noise Ratio result<strong>in</strong>g from Encode Jitter . . . . . . . . . . . 90B GC4016 Wideband Decimation Filter<strong>in</strong>g Frequency Response 92C Digital Receiver Per<strong>for</strong>mance Plots 99C.1 AD6644 A-D Converter Output Plots . . . . . . . . . . . . . . . . . . 99C.2 Wideband 5 MHz IF 800 kHz Bandwidth Receiver Output Plots . . . 99C.3 Wideband 12.8 MHz IF 10 MHz Bandwidth Receiver Output Plots . . 100vi


D System and Board Physical Construction and Layout 114vii


List <strong>of</strong> Figures1.1 The progression <strong>of</strong> receivers from analogue to digital . . . . . . . . . 32.1 An example plot <strong>of</strong> maximum bandwidth versus number <strong>of</strong> bits. . . . 102.2 A typical bandpass sampl<strong>in</strong>g scheme . . . . . . . . . . . . . . . . . . 122.3 The allowed regions <strong>for</strong> bandpass sampl<strong>in</strong>g . . . . . . . . . . . . . . 132.4 Illustration <strong>of</strong> quadrature sampl<strong>in</strong>g scheme. . . . . . . . . . . . . . . 152.5 The voltage error result<strong>in</strong>g from encode signal jitter . . . . . . . . . . 202.6 Signal-to-noise ratio versus analogue <strong>in</strong>put frequency <strong>for</strong> <strong>the</strong> AD6644. 222.7 Anti-alias<strong>in</strong>g filter transition width requirements . . . . . . . . . . . . 232.8 Band placement such that harmonics do not fall <strong>in</strong>-band after digitisation.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242.9 Subtractive and non-subtractive di<strong>the</strong>r<strong>in</strong>g schemes . . . . . . . . . . . 263.1 A generalised IF-sampl<strong>in</strong>g digital receiver. . . . . . . . . . . . . . . . 383.2 The quadrature digital mix<strong>in</strong>g process. . . . . . . . . . . . . . . . . . 393.3 Decimation by an <strong>in</strong>teger factor M=4. . . . . . . . . . . . . . . . . . 423.4 Interpolation by an <strong>in</strong>teger factor M=4. . . . . . . . . . . . . . . . . . 443.5 Resampl<strong>in</strong>g by a rational factorM L . . . . . . . . . . . . . . . . . . . . 453.6 Halfband filter frequency response. . . . . . . . . . . . . . . . . . . . 453.7 Structure <strong>of</strong> a CIC decimat<strong>in</strong>g filter. . . . . . . . . . . . . . . . . . . 463.8 Structure <strong>of</strong> a CIC decimat<strong>in</strong>g filter. . . . . . . . . . . . . . . . . . . 47viii


4.1 Typical wideband surveillance receiver system configuration. . . . . . 504.2 Block diagram <strong>of</strong> <strong>the</strong> GC4016 quad digital down-converter . . . . . . 554.3 Adjacent narrowband channels used to <strong>for</strong>m a wideband output. . . . 584.4 Block diagram <strong>of</strong> <strong>the</strong> A-D Converter board. . . . . . . . . . . . . . . 604.5 Block diagram <strong>of</strong> <strong>the</strong> digital down-converter board. . . . . . . . . . . 614.6 Block diagram <strong>of</strong> <strong>the</strong> general purpose ISA-based DSP card. . . . . . . 666.1 Test setup <strong>for</strong> harmonic spurious per<strong>for</strong>mance measurement. . . . . . 776.2 Intermodulation distortion test setup. . . . . . . . . . . . . . . . . . . 806.3 S<strong>in</strong>gle-tone harmonic spurious-free dynamic range versus frequency. . 816.4 S<strong>in</strong>gle-tone harmonic spurious-free dynamic range versus <strong>in</strong>put amplitude.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82B.1 Magnitude and phase response <strong>of</strong> 5th order CIC decimation filter (decimateby 8). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93B.2 Magnitude and phase response <strong>of</strong> 21-tap CFIR FIR filter. . . . . . . . 94B.3 Comb<strong>in</strong>ed magnitude and phase response <strong>of</strong> CIC and CFIR. . . . . . 95B.4 Magnitude and phase response <strong>of</strong> 63-tap PFIR FIR filter. . . . . . . . 96B.5 Comb<strong>in</strong>ed magnitude and phase response <strong>of</strong> CFIR and PFIR filters. . 97B.6 Comb<strong>in</strong>ed magnitude and phase response <strong>of</strong> CIC, CFIR and PFIR filters. 98C.1 Receiver analogue <strong>in</strong>put term<strong>in</strong>ated <strong>in</strong> 50 Ω. . . . . . . . . . . . . . . 100C.2 7.6 MHz, -1 dBFS tone at receiver analogue <strong>in</strong>put. . . . . . . . . . . 101C.3 7.6 MHz, -30 dBFS tone at receiver analogue <strong>in</strong>put with no di<strong>the</strong>r. . . 102C.4 7.6 MHz, -30 dBFS tone at receiver analogue <strong>in</strong>put with di<strong>the</strong>r. . . . . 103C.5 S<strong>in</strong>gle tone at 5.15 MHz <strong>of</strong> amplitude -1 dBFS (averaged). . . . . . . 104C.6 S<strong>in</strong>gle tone at 5.15 MHz <strong>of</strong> amplitude -1 dBFS (peak hold). . . . . . . 105C.7 Two-tone <strong>in</strong>termodulation test results at 5 MHz IF (averaged). . . . . 106ix


C.8 Two-tone <strong>in</strong>termodulation test results at 5 MHz IF(peak hold) . . . . . 107C.9 Receiver <strong>in</strong>put term<strong>in</strong>ated <strong>in</strong> 50 Ω (averaged). . . . . . . . . . . . . . 108C.10 Receiver <strong>in</strong>put term<strong>in</strong>ated <strong>in</strong> 50 Ω (peak hold). . . . . . . . . . . . . 109C.11 S<strong>in</strong>gle tone at 12.64 MHz, -1 dBFS (averaged). . . . . . . . . . . . . 110C.12 S<strong>in</strong>gle tone at 12.64 MHz, -1 dBFS (peak hold). . . . . . . . . . . . . 111C.13 Two-tone <strong>in</strong>termodulation test results at 12.8 MHz IF (averaged). . . . 112C.14 Two-tone <strong>in</strong>termodulation test results at 12.8 MHz IF (peak hold). . . 113D.1 6-Antenna wideband receiver <strong>in</strong>corporat<strong>in</strong>g <strong>the</strong> digital receiver. . . . . 114D.2 6-Channel wideband digital receiver. . . . . . . . . . . . . . . . . . . 116D.3 Physical layout <strong>of</strong> <strong>the</strong> digital receiver adapter card and mezzan<strong>in</strong>emodule. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117D.4 Physical layout <strong>of</strong> <strong>the</strong> ADC and DDC boards. . . . . . . . . . . . . . 118D.5 Assembled digital receiver card (no shield<strong>in</strong>g cover). . . . . . . . . . 118x


List <strong>of</strong> Tables1.1 Wideband receiver operat<strong>in</strong>g mode requirements . . . . . . . . . . . 52.1 Parameters used <strong>in</strong> <strong>the</strong> calculation <strong>of</strong> maximum sampled bandwidth . 102.2 A comparison <strong>of</strong> <strong>the</strong> AD6644 and CLC5958 A-D converters . . . . . 364.1 Commercially available ASICs <strong>for</strong> digital down-conversion . . . . . . 545.1 Parameters used <strong>in</strong> <strong>the</strong> calculation <strong>of</strong> oscillator jitter. . . . . . . . . . 70D.1 Key <strong>for</strong> figure D.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115D.2 Key <strong>for</strong> figure D.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115D.3 Key <strong>for</strong> figure D.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115D.4 Key <strong>for</strong> figure D.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117xi


List <strong>of</strong> AbbreviationsADC— Analogue-to-digital converterAGC— Automatic ga<strong>in</strong> controlASIC— Application-specific <strong>in</strong>tegrated circuitcf— Characteristic functionCIC— Cascaded <strong>in</strong>tegrator-combCOTS— Commercial <strong>of</strong>f-<strong>the</strong>-shelfCPLD— Complex programmable logic deviceDAC— Digital-to-analogue converterdBc— Decibels relative to carrierdBFS— Decibels relative to full-scaleDDC— Digital down-converterDDS— Digital signal syn<strong>the</strong>sisDF— Direction f<strong>in</strong>d<strong>in</strong>gDFT— Discrete Fourier Trans<strong>for</strong>mDMA— Direct memory accessDNL— Differential non-l<strong>in</strong>earityDUT— Device under testFFT— Fast Fourier Trans<strong>for</strong>mFIR— F<strong>in</strong>ite impulse responsexii


FPGA— Field-programmable gate arrayFSR— Full-scale rangeIF— Intermediate frequencyIM3— Third-order <strong>in</strong>termodulation productsINL— Integral non-l<strong>in</strong>earityIP3— Third-order <strong>in</strong>tercept po<strong>in</strong>tISA— Industrial Standard ArchitectureLO— Local oscillatorLSB— Least significant bitMDS— M<strong>in</strong>imum discernable signalMGC— Manual ga<strong>in</strong> controlMSB— Most significant bitNCO— Numerically controlled oscillatorNSD— Non-subtractive di<strong>the</strong>rpdf— Probability density functionRPDF— Rectangular probability density functionSBC— S<strong>in</strong>gle board computerSD— Subtractive di<strong>the</strong>rSDR— S<strong>of</strong>tware def<strong>in</strong>ed radioSIMD— S<strong>in</strong>gle <strong>in</strong>struction multiple dataSINAD— Signal-to-noise-and-distortionSFDR— Spurious-free dynamic rangeSNR— Signal-to-noise ratioSSB— S<strong>in</strong>gle side bandTDOA— Time difference <strong>of</strong> arrivalxiii


NomenclatureBand Occupancy— The band occupancy is usually expressed as a percentage andis def<strong>in</strong>ed as <strong>the</strong> ratio <strong>of</strong> <strong>the</strong> number <strong>of</strong> signals present with<strong>in</strong> a particular band-<strong>of</strong><strong>in</strong>terestto <strong>the</strong> number <strong>of</strong> available channels allocated to <strong>the</strong> band.Noise Factor— The noise factor (NF) provides a measure <strong>of</strong> <strong>the</strong> contribution <strong>of</strong> <strong>in</strong>herent(<strong>in</strong>ternal) device noise on total system noise. It is def<strong>in</strong>ed as <strong>the</strong> ratio <strong>of</strong> <strong>the</strong>signal-to-noise ratio (SNR) measured at <strong>the</strong> device output and <strong>the</strong> SNR ratio measuredat <strong>the</strong> device <strong>in</strong>put under normal operat<strong>in</strong>g conditions. By convention, it is expressed<strong>in</strong> a dB scale.Selectivity—The property <strong>of</strong> a receiver that allows it to dist<strong>in</strong>guish between signals atdifferent frequencies.Sensitivity—For sufficiently high levels <strong>of</strong> receiver ga<strong>in</strong>, <strong>the</strong> weakest signal powerthat may be acceptably processed is limited by noise. This signal level is referred toas <strong>the</strong> sensitivity <strong>of</strong> <strong>the</strong> system and varies with external noise level.Spurious Free Dynamic Range (SFDR)—The ratio <strong>of</strong> <strong>the</strong> peak RMS signal amplitudeto <strong>the</strong> RMS value <strong>of</strong> <strong>the</strong> peak spurious spectral component. This may or may notbe a harmonic. It is usually expressed <strong>in</strong> decibels relative to carrier (dBc) or decibelsrelative to full scale (dBFS), and it is <strong>the</strong>re<strong>for</strong>e important to pay attention to <strong>the</strong> units<strong>of</strong> measurement.xiv


Chapter 1IntroductionDigital radio implementations are <strong>in</strong>creas<strong>in</strong>gly be<strong>in</strong>g adopted. Analogue circuitry israpidly be<strong>in</strong>g replaced by digital signal process<strong>in</strong>g (DSP), analogue-to-digital (A-D)and digital-to-analogue (D-A) conversion. Advantages <strong>of</strong> this technology <strong>in</strong>clude <strong>in</strong>creasedper<strong>for</strong>mance and functionality, and reduced cost. Dedicated analogue circuitrymay be replaced by flexible, robust DSP application-specific <strong>in</strong>tegrated circuits(ASICs) and s<strong>of</strong>tware.Analogue-to-digital conversion technology currently limits <strong>the</strong> <strong>in</strong>stantaneous energythat may be received, as a result <strong>of</strong> limited A-D converter dynamic range. If <strong>the</strong>received energy is widely distributed over <strong>the</strong> received spectrum (usually a valid assumptiongiven <strong>the</strong> typical energy spread <strong>in</strong> <strong>the</strong> bands <strong>of</strong> <strong>in</strong>terest), <strong>the</strong> bandwidth thatmay be received at any given level <strong>of</strong> available dynamic range is limited. Cont<strong>in</strong>uoustechnological advances move closer to <strong>the</strong> ideal <strong>of</strong> connect<strong>in</strong>g an A-D converter(ADC) directly to a bandwidth-limited antenna, and directly sampl<strong>in</strong>g wide RF spectrawith sufficient dynamic range to permit <strong>the</strong> demodulation <strong>of</strong> narrowband channelsus<strong>in</strong>g digital signal process<strong>in</strong>g hardware and s<strong>of</strong>tware. Digitisation <strong>of</strong> <strong>the</strong> entire HFspectrum (2-30 MHz) has recently become feasible, with state-<strong>of</strong>-<strong>the</strong>-art A-D converterscurrently capable <strong>of</strong> sampl<strong>in</strong>g rates <strong>of</strong> up to 105 MSPS at 14 bit resolution. Digitalsignal process<strong>in</strong>g hardware and algorithm speeds, once considered an impediment to<strong>the</strong> digitisation <strong>of</strong> wideband data, cont<strong>in</strong>ue to advance and are currently capable <strong>of</strong>per<strong>for</strong>m<strong>in</strong>g advanced signal process<strong>in</strong>g tasks, such as adaptive equalisation, which aredifficult or impossible to implement <strong>in</strong> <strong>the</strong> analogue doma<strong>in</strong>.This dissertation explores <strong>the</strong> digitisation and frontend digital signal process<strong>in</strong>g <strong>of</strong> <strong>the</strong>HF and VHF spectra <strong>for</strong> <strong>the</strong> purposes <strong>of</strong> wideband radio reception.1


1.1 BackgroundA well-documented history <strong>of</strong> communications receivers can be found <strong>in</strong> Rohde etal. [23]. The development <strong>of</strong> <strong>the</strong> superheterodyne-type receivers revolutionised receiverdesign, relegat<strong>in</strong>g previous receiver architectures to occasional, special-purposeuse. The superheterodyne architecture is not without problems, however. The use <strong>of</strong>mixers to per<strong>for</strong>m frequency translation <strong>in</strong>troduces <strong>the</strong> associated problems <strong>of</strong> imagefrequency rejection, IF leak-through and high order non-l<strong>in</strong>earities. Local oscillator(LO) noise sidebands may be translated to <strong>the</strong> IF by a strong out-<strong>of</strong>-band signal(usually a strong adjacent channel), a process termed reciprocal mix<strong>in</strong>g[23]. Phaseimbalance between <strong>in</strong>-phase and quadrature channels significantly limits per<strong>for</strong>mance<strong>in</strong> analogue quadrature channel conversion[27].The advantages <strong>of</strong> a digital receiver solution are significant, and <strong>in</strong>clude reduced systemcost, <strong>in</strong>creased temperature stability, f<strong>in</strong>er tun<strong>in</strong>g resolution, faster tun<strong>in</strong>g speed,excellent quadrature channel phase balance, <strong>in</strong>creased filter selectivity, robustness <strong>in</strong>terms <strong>of</strong> both hardware and s<strong>of</strong>tware signal process<strong>in</strong>g algorithms, reconfigurability,advanced signal process<strong>in</strong>g techniques and <strong>the</strong> ability to store signals <strong>for</strong> subsequent<strong>of</strong>f-l<strong>in</strong>e process<strong>in</strong>g.These benefits have resulted <strong>in</strong> <strong>the</strong> digitisation process mov<strong>in</strong>g closer to <strong>the</strong> RF frontend,with <strong>the</strong> ultimate goal <strong>of</strong> directly digitis<strong>in</strong>g <strong>the</strong> antenna output. The “S<strong>of</strong>twareDef<strong>in</strong>ed Radio” (SDR) has recently been realised, allow<strong>in</strong>g reconfiguration <strong>of</strong> signalprocess<strong>in</strong>g functions through s<strong>of</strong>tware, and result<strong>in</strong>g <strong>in</strong> reconfigurable radios capable<strong>of</strong> operat<strong>in</strong>g over multiple air <strong>in</strong>terfaces.Figure 1.1 illustrates <strong>the</strong> progression <strong>of</strong> receivers <strong>in</strong> recent years. Initially, <strong>the</strong> limitedsample rates <strong>of</strong> A-D converters and limited digital signal process<strong>in</strong>g power precluded<strong>the</strong> use <strong>of</strong> digital hardware beyond baseband signals. With recent improvements <strong>in</strong>A-D conversion and digital signal process<strong>in</strong>g hardware, sampl<strong>in</strong>g and process<strong>in</strong>g <strong>of</strong>wideband IF signals has become a reality. Digital down-conversion has facilitated<strong>the</strong> elim<strong>in</strong>ation <strong>of</strong> analogue down-conversion and quadrature conversion stages. It islikely that future digital and mixed signal technology will soon supersede <strong>the</strong> superheterodynearchitecture completely, directly sampl<strong>in</strong>g bandlimited RF signals.1.2 ScopeThis dissertation is an <strong>in</strong>vestigation and evaluation <strong>of</strong> state-<strong>of</strong>-<strong>the</strong>-art wideband digitalradio receiver hardware through <strong>the</strong> design, implementation and qualification <strong>of</strong> ascalable multi-channel IF-<strong>in</strong>put wideband digital radio receiver. A survey <strong>of</strong> digital2


Analog ReceiverAudioSpectralAnalysisDFetc.BasebandAnalog Down-converterfDigitalReceiverAudioSpectralAnalysisDFetc.IFAnalog Down-converterfDigitalReceiverAudioSpectralAnalysisDFetc.Digital ReceiverAudioSpectralAnalysisDFetc. ?Figure 1.1: The progression <strong>of</strong> receivers from analogue to digital3


adio receiver architectures and relevant <strong>the</strong>ory is conducted. Simulations and empirical<strong>in</strong>vestigations are per<strong>for</strong>med. A general-purpose wideband digital receiver capable<strong>of</strong> operat<strong>in</strong>g <strong>in</strong> <strong>the</strong> HF and VHF bands is proposed and implemented. The receiver isquantitatively evaluated, after which conclusions on receiver per<strong>for</strong>mance and futuretrends <strong>in</strong> wideband digital radio architectures are drawn.The design, implementation and qualification <strong>of</strong> <strong>the</strong> general-purpose receiver spans atwo-year period dur<strong>in</strong>g which <strong>the</strong> author was solely responsible <strong>for</strong> <strong>the</strong> design, test<strong>in</strong>gand <strong>in</strong>tegration <strong>of</strong> digital receiver hardware and driver-level s<strong>of</strong>tware <strong>in</strong> numeroussystems.1.3 System SpecificationThe design goal <strong>for</strong> <strong>the</strong> system is to realise a highly reconfigurable digital receiverus<strong>in</strong>g commercial-<strong>of</strong>f-<strong>the</strong>-shelf (COTS) components where possible.• The receiver should be capable <strong>of</strong> function<strong>in</strong>g as a backend to wideband andnarrowband analogue down-converters.• It should be capable <strong>of</strong> digitis<strong>in</strong>g <strong>the</strong> <strong>in</strong>termediate frequency (IF) output <strong>of</strong> analoguedown-converters with output bandwidths <strong>of</strong> up to 10 MHz, at IF’s <strong>in</strong> <strong>the</strong>HF and VHF bands.• The receiver should accept full scale s<strong>in</strong>gle-ended analogue <strong>in</strong>put signal levels<strong>of</strong> ca. 0 dBm, with allowance <strong>for</strong> fixed amplification <strong>of</strong> 20 dB. It is presumedthat any dynamic analogue receiver ga<strong>in</strong> (manual or automatic ga<strong>in</strong> control) thatmay exist is <strong>in</strong>cluded <strong>in</strong> <strong>the</strong> analogue down-converter.• The receiver is required to support wideband down-conversion, baseband filter<strong>in</strong>gand rate reduction <strong>in</strong> hardware.• It should fur<strong>the</strong>r support <strong>the</strong> extraction <strong>of</strong> narrowband signals from <strong>the</strong> wideband<strong>in</strong>put <strong>for</strong> <strong>the</strong> purpose <strong>of</strong> real-time demodulation.• The system should be scalable, support<strong>in</strong>g multiple receiver channels.• It should conta<strong>in</strong> flexible sampl<strong>in</strong>g and synchronisation circuitry to supportphase-synchronous data acquisition on multiple channels, a prerequisite <strong>in</strong> applicationssuch as wideband direction f<strong>in</strong>d<strong>in</strong>g (DF) and beam<strong>for</strong>m<strong>in</strong>g.The required modes <strong>of</strong> operation are presented <strong>in</strong> table 1.1.4


Sampl<strong>in</strong>g IF Input Output SFDR MaximumFrequency Bandwidth Bandwidth Channel Count51.2 MSPS 5.0 MHz 800 kHz 800 kHz 80 dBc 5 (synch)51.2 MSPS 12.8 MHz 10 MHz 10 MHz 75 dBc 6 (synch)51.2 MSPS 5.0 MHz 500 kHz 11 kHz 80 dBc 12 (asynch)Table 1.1: Wideband receiver operat<strong>in</strong>g mode requirements1.4 System ArchitectureThe receiver implementation consists <strong>of</strong> one (s<strong>in</strong>gle antenna) or more (multiple antenna)wideband receiver channels implemented on full-length PC ISA adapter cardsand mezzan<strong>in</strong>e modules and mounted <strong>in</strong> a ruggedised <strong>in</strong>dustrial comput<strong>in</strong>g rack. Acommercially available <strong>in</strong>dustrial S<strong>in</strong>gle Board Computer (SBC) hous<strong>in</strong>g s<strong>in</strong>gle ordual Intel Pentium processors with 100 Mbit e<strong>the</strong>rnet support <strong>for</strong>ms <strong>the</strong> ma<strong>in</strong> systemcontroller and high-per<strong>for</strong>mance back-end processor <strong>for</strong> <strong>the</strong> system. It fur<strong>the</strong>rallows <strong>the</strong> system to act as a networked data server sub-system on larger systems, support<strong>in</strong>gsystem growth. The implemented hardware facilitates multi-channel phasesynchronousdata acquisition.Each wideband receiver (ISA adapter card and mezzan<strong>in</strong>e boards) conta<strong>in</strong>s m<strong>in</strong>imalanalogue signal condition<strong>in</strong>g circuitry, a wideband 14 bit 65/80 MSPS A-D converter,dedicated digital down-conversion (DDC) signal process<strong>in</strong>g hardware, extensiveFIFO buffer<strong>in</strong>g and an Analog Devices ADSP-21160 Super Harvard Architecturefloat<strong>in</strong>g-po<strong>in</strong>t digital signal processor (DSP). The SBC communicates directlywith <strong>the</strong> DSP via <strong>the</strong> DSP’s host processor <strong>in</strong>terface which is accessible to <strong>the</strong> SBCon <strong>the</strong> ISA bus. Sample tim<strong>in</strong>g and synchronisation circuitry may be implementedon-board (asynchronous/stand-alone receivers) or generated externally (synchronousmulti-channel receivers).An important design decision is <strong>the</strong> approach taken to realise wide <strong>in</strong>stantaneousbandwidths necessary <strong>for</strong> fast scann<strong>in</strong>g receivers and wideband DF applications. Awide <strong>in</strong>stantaneous bandwidth is <strong>for</strong>med from multiple digital down-conversion channelstuned to adjacent bands. This approach provides a scalable solution to achiev<strong>in</strong>gboth narrow and wide output bandwidths while ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g efficient down-conversionstructures and <strong>in</strong>creased signal process<strong>in</strong>g ga<strong>in</strong>. A limitation <strong>of</strong> this approach is that<strong>the</strong> wideband data is channelised, mak<strong>in</strong>g subsequent narrowband time doma<strong>in</strong> process<strong>in</strong>g<strong>of</strong> <strong>the</strong> wideband data difficult.Each digital receiver board may <strong>for</strong>m <strong>the</strong> back-end to a wideband analogue receiveror may be configured to sample a bandwidth-limited antenna <strong>in</strong>put directly. The re-5


ceiver’s analogue <strong>in</strong>put bandwidth may extend to 250 MHz (sub-Nyquist sampl<strong>in</strong>g),allow<strong>in</strong>g <strong>the</strong> receiver to operate <strong>in</strong> <strong>the</strong> HF and VHF bands, while support<strong>in</strong>g <strong>in</strong>stantaneousoutput bandwidths <strong>in</strong> excess <strong>of</strong> 10 MHz.Much consideration was given to <strong>the</strong> qualification <strong>of</strong> receiver boards dur<strong>in</strong>g systemdesign. Test modes were <strong>in</strong>corporated <strong>in</strong>to <strong>the</strong> hardware design, such that <strong>the</strong> receiverper<strong>for</strong>mance could be fully evaluated.Firmware was written <strong>in</strong> VHDL and was compiled us<strong>in</strong>g Altera Max+Plus II s<strong>of</strong>tware.Test s<strong>of</strong>tware operat<strong>in</strong>g on <strong>the</strong> ADSP-21160 DSP was developed us<strong>in</strong>g <strong>the</strong> AnalogDevices Inc. VisualDSP++ C/C++ V1.0 compiler and development suite. Host CPUs<strong>of</strong>tware was developed us<strong>in</strong>g <strong>the</strong> Micros<strong>of</strong>t Visual C++ 6.0 compiler and developmentplat<strong>for</strong>m. W<strong>in</strong>DK DDK Development Library V2.7 was used <strong>in</strong> conjunctionwith <strong>the</strong> W<strong>in</strong>dows Plat<strong>for</strong>m SDK and W<strong>in</strong>dows NT4.0 DDK <strong>in</strong> <strong>the</strong> development <strong>of</strong>device driver s<strong>of</strong>tware <strong>for</strong> communicat<strong>in</strong>g with <strong>the</strong> ISA adapter cards. Simulationswere per<strong>for</strong>med under MATLAB 5.2.1.5 Related WorkCurrent research ef<strong>for</strong>ts focus on improv<strong>in</strong>g both converter speed and l<strong>in</strong>earity.Velazquez[29] decribes a technique that may improve <strong>the</strong> speed <strong>of</strong> conversion <strong>of</strong> highspeed,high resolution analog-to-digital converters <strong>in</strong> RF receiver applications by upto six times <strong>the</strong> state-<strong>of</strong>-<strong>the</strong>-art us<strong>in</strong>g a filter bank architecture.Sigma-delta techniques promise to provide high-resolution A-D converters capable <strong>of</strong>sampl<strong>in</strong>g narrowband signals at a sampl<strong>in</strong>g frequency range that extends to gigahertz[14].Post-digitisation error correction schemes aim to reduce <strong>the</strong> non-l<strong>in</strong>earities <strong>in</strong> <strong>the</strong> digitisationprocess by modell<strong>in</strong>g <strong>the</strong> error mechanisms <strong>in</strong>herent <strong>in</strong> A-D conversion. A-Dconversion error has been shown to be related to analogue <strong>in</strong>put frequency, and staticerror correction is giv<strong>in</strong>g way to dynamic correction schemes such as phase-planecompensation[9], s<strong>in</strong>ewave histogram compensation [15] and adaptive compensation[18]. A-D converter non-l<strong>in</strong>earities have been reduced by as much as 10 to 20 dBus<strong>in</strong>g <strong>the</strong>se techniques.6


1.6 Document OverviewChapter 1 provides an overview <strong>of</strong> this dissertation, motivat<strong>in</strong>g <strong>the</strong> digitisation <strong>of</strong>wideband spectra and describ<strong>in</strong>g <strong>the</strong> aim <strong>of</strong> <strong>the</strong> dissertation. The layout <strong>of</strong> <strong>the</strong> dissertationis also described.Chapter 2 explores <strong>the</strong> digitisation <strong>of</strong> wide spectral bandwidths at RF frequencies. Anad hoc estimation <strong>of</strong> <strong>the</strong> requirements necessary <strong>for</strong> <strong>the</strong> digitisation <strong>of</strong> wide bandwidthsis per<strong>for</strong>med. A-D converter architectures are discussed <strong>in</strong> light <strong>of</strong> <strong>the</strong> requirements<strong>for</strong> wideband digitisation <strong>of</strong> RF signals. Dynamic range requirements lay <strong>the</strong>foundation <strong>for</strong> a discussion <strong>of</strong> noise and distortion <strong>in</strong>troduced <strong>in</strong> <strong>the</strong> digitisation process.It is shown that sampl<strong>in</strong>g aperture jitter may be a significant contributor to noise<strong>in</strong>troduced <strong>in</strong> <strong>the</strong> digitisation process, lead<strong>in</strong>g to str<strong>in</strong>gent requirements on sampl<strong>in</strong>goscillator jitter per<strong>for</strong>mance. Distortion mechanisms are analysed, and methods <strong>of</strong>distortion reduction are reviewed. Di<strong>the</strong>r<strong>in</strong>g is <strong>in</strong>troduced as an efficient method <strong>of</strong>improv<strong>in</strong>g average A-D converter l<strong>in</strong>earity by reduc<strong>in</strong>g <strong>in</strong>put dependent errors. Theoptimal <strong>in</strong>terfac<strong>in</strong>g <strong>of</strong> an analogue receiver frontend and an A-D converter is discussed.Chapter 3 <strong>in</strong>vestigates digital signal process<strong>in</strong>g algorithms that may be used to per<strong>for</strong>mdown-conversion, rate reduction, bandwidth limit<strong>in</strong>g and spectral estimation. Efficientdown-conversion, filter<strong>in</strong>g and rate reduction hardware architectures are exam<strong>in</strong>ed.The FFT is <strong>in</strong>troduced as an efficient method <strong>of</strong> spectral analysis. The signal-to-noiseratio improvements <strong>in</strong>herent to decimation filter<strong>in</strong>g and FFT averag<strong>in</strong>g are explored.Chapter 4 presents <strong>the</strong> architecture <strong>of</strong> <strong>the</strong> generalised wideband digital receiver. The<strong>the</strong>ory presented <strong>in</strong> chapters 2 and 3 is applied to <strong>the</strong> design and specification <strong>of</strong> <strong>the</strong>digital receiver. The channelised filter bank approach used to realise wide outputbandwidths is described and justified.Chapter 5 discusses parts <strong>of</strong> <strong>the</strong> implementation <strong>of</strong> <strong>the</strong> digital receiver <strong>in</strong> fur<strong>the</strong>r detail.The problems encountered <strong>in</strong> <strong>the</strong> receiver design are described.Chapter 6 characterises <strong>the</strong> per<strong>for</strong>mance <strong>of</strong> <strong>the</strong> digital receiver. Signal-to-noise ratioand receiver l<strong>in</strong>earity measurements are per<strong>for</strong>med. The effect <strong>of</strong> add<strong>in</strong>g band-limiteddi<strong>the</strong>r noise is quantified.Chapter 7 concludes that <strong>the</strong> requirement <strong>of</strong> design<strong>in</strong>g a wideband digital receiverthat satisfies <strong>the</strong> requirements stipulated <strong>in</strong> section 1.3 was satisfied. The result<strong>in</strong>greceiver is shown to be flexible and scalable, us<strong>in</strong>g predom<strong>in</strong>antly COTS componentsand standard assembly methods. The use <strong>of</strong> di<strong>the</strong>r to improve receiver dynamic rangeis found to be justified, both <strong>the</strong>oretically and empirically. Suggestions on possibleimprovements to <strong>the</strong> receiver are discussed.7


Chapter 2Wideband Signal DigitisationTwo requirements are paramount <strong>in</strong> <strong>the</strong> digitisation <strong>of</strong> wideband signals, namely highsampl<strong>in</strong>g rates and high <strong>in</strong>stantaneous dynamic range. Bandpass sampl<strong>in</strong>g <strong>the</strong>oryplaces a restriction on <strong>the</strong> m<strong>in</strong>imum sampl<strong>in</strong>g rate that may be used to unambiguouslyrepresent a band-limited signal us<strong>in</strong>g discrete samples. This <strong>in</strong> turn places strict demandson A-D converters <strong>in</strong> terms <strong>of</strong> sampl<strong>in</strong>g rates. A high <strong>in</strong>stantaneous dynamicrange is required to reliably receive a weak signal <strong>in</strong> <strong>the</strong> presence <strong>of</strong> larger signals.2.1 Dynamic Range Restrictions <strong>in</strong> Wideband DigitisationThe maximum signal that may be presented to <strong>the</strong> <strong>in</strong>put <strong>of</strong> an A-D converter maybe considered to be a s<strong>in</strong>usoidal wave<strong>for</strong>m with a peak-to-peak amplitude that mapsto <strong>the</strong> full range <strong>of</strong> A-D output codes. A larger amplitude would result <strong>in</strong> outputwave<strong>for</strong>m clipp<strong>in</strong>g, while a smaller amplitude does not take full advantage <strong>of</strong> <strong>the</strong>resolution available <strong>in</strong> <strong>the</strong> converter. This wave<strong>for</strong>m is <strong>the</strong>re<strong>for</strong>e used to set an upperlimit on dynamic range. Assum<strong>in</strong>g no noise is present, <strong>the</strong> m<strong>in</strong>imum signal is onewhich would result <strong>in</strong> a change <strong>of</strong> <strong>the</strong> least significant bit (LSB) <strong>of</strong> <strong>the</strong> converter.Subject to <strong>the</strong>se criteria, <strong>the</strong> dynamic range <strong>of</strong> an ideal A-D converter may be def<strong>in</strong>ed8


as <strong>the</strong> logarithmic ratio <strong>of</strong> <strong>the</strong> powers <strong>of</strong> <strong>the</strong>se signals [27]:( )DR ADC = 10·log Pmax 10 P m<strong>in</strong>(2 2b Q 28= 10·log 10 Q 28)(2.1)= 20·b·log 10 (2)≈ 6·bwhere b refers to <strong>the</strong> number <strong>of</strong> bits and Q refers to <strong>the</strong> voltage per quantisation level.Equation 2.1 is <strong>the</strong> basis on which <strong>the</strong> familiar rule-<strong>of</strong>-thumb that <strong>the</strong> dynamic range<strong>of</strong> an A-D converter is “6 dB per bit” is <strong>for</strong>med. It will later be demonstrated that thismeasure <strong>of</strong> dynamic range is not applicable to di<strong>the</strong>red quantisation schemes, but itprovides a useful approximation <strong>for</strong> <strong>the</strong> discussion to follow 1 :If <strong>the</strong> full-scale s<strong>in</strong>usoid wave<strong>for</strong>m mentioned above were replaced by two equal amplitudes<strong>in</strong>usoidal wave<strong>for</strong>ms <strong>of</strong> uncorrelated phase and frequency, <strong>the</strong> maximum amplitude<strong>of</strong> each wave<strong>for</strong>m would have to be halved <strong>in</strong> order to prevent constructive<strong>in</strong>terference <strong>of</strong> <strong>the</strong> signals from overload<strong>in</strong>g <strong>the</strong> A-D converter. In general, <strong>for</strong> everydoubl<strong>in</strong>g <strong>of</strong> <strong>the</strong> number <strong>of</strong> equal-amplitude s<strong>in</strong>usoids, <strong>the</strong>ir amplitudes should be reducedby a factor <strong>of</strong> 2. This may be viewed as <strong>the</strong> dynamic range available to each<strong>of</strong> <strong>the</strong> s<strong>in</strong>usoidal signals <strong>in</strong> <strong>the</strong> presence <strong>of</strong> <strong>the</strong> o<strong>the</strong>r signals, and may be expressed <strong>in</strong>logarithmic <strong>for</strong>m as:DR avail = 20·b·log 10 (2) − 6·log 2 (N)[dB] (2.2)where b refers to <strong>the</strong> number <strong>of</strong> bits <strong>in</strong> <strong>the</strong> A-D converter and N refers to <strong>the</strong> number<strong>of</strong> channels. The number <strong>of</strong> channels, N, may be expressed as:N = B·O bS ch(2.3)where B refers to <strong>the</strong> bandwidth [Hz], O b <strong>the</strong> band occupancy and S ch <strong>the</strong> channelseparation [Hz].Equations 2.2 and 2.3 are comb<strong>in</strong>ed to <strong>for</strong>mulate an expression <strong>for</strong> B, <strong>the</strong> maximumbandwidth that may be sampled:B = 2 20·b·log 10 (2)−DR avail6 ·S chO b(2.4)1 This discussion should be viewed as an ad hoc estimation <strong>of</strong> <strong>the</strong> dynamic range required <strong>of</strong> aconverter <strong>in</strong> order to digitise a given bandwidth. It aims to give <strong>the</strong> reader an impression <strong>of</strong> <strong>the</strong> impact<strong>of</strong> converter resolution on maximum sampled bandwidth, as well as a method <strong>of</strong> broadly measur<strong>in</strong>g <strong>the</strong>usability <strong>of</strong> a wideband receiver <strong>in</strong> a given environment.9


18 x 106 Number <strong>of</strong> Bits (b)161412Maximum Bandwidth10864204 6 8 10 12 14 16Figure 2.1: An example plot <strong>of</strong> maximum bandwidth versus number <strong>of</strong> bits.By way <strong>of</strong> example, <strong>the</strong> assumptions listed <strong>in</strong> table 2.1 are made.Parameter Valueb4 to 16 bitsDR avail 50 dBS c h8 kHzO b 0.1Table 2.1: Parameters used <strong>in</strong> <strong>the</strong> calculation <strong>of</strong> maximum sampled bandwidthIt is fur<strong>the</strong>r noted that <strong>the</strong> above discussion is only a rough approximation, s<strong>in</strong>ce itwas based on equal-amplitude s<strong>in</strong>usoidal signals as opposed to modulated signals.The values stated <strong>in</strong> table 2.1 are substituted <strong>in</strong>to equation 2.4 and plotted <strong>in</strong> figure2.1. From this plot it is evident that converter resolution plays a dom<strong>in</strong>ant role <strong>in</strong> determ<strong>in</strong><strong>in</strong>ga maximum bandwidth that may be sampled <strong>for</strong> any level <strong>of</strong> desired usabledynamic range.It should be noted that <strong>the</strong> probability <strong>of</strong> all N signals constructively <strong>in</strong>terfer<strong>in</strong>g to agiven level <strong>in</strong> a given timespan decreases as N <strong>in</strong>creases, assum<strong>in</strong>g each signal hasrandom phase and frequency. With this <strong>in</strong> m<strong>in</strong>d, <strong>the</strong> above may be considered ananalysis <strong>of</strong> <strong>the</strong> worst-case.10


2.2 Bandpass Sampl<strong>in</strong>g TheoryThis section reviews <strong>the</strong> <strong>the</strong>ory related to <strong>the</strong> sampl<strong>in</strong>g <strong>of</strong> wideband signals. For practicalpurposes, <strong>the</strong> sampl<strong>in</strong>g discussion is restricted to uni<strong>for</strong>m sampl<strong>in</strong>g <strong>in</strong>tervals (periodicsampl<strong>in</strong>g). The fundamental sampl<strong>in</strong>g criterion, credited to Harry Nyquist,<strong>for</strong>ms <strong>the</strong> basis <strong>for</strong> <strong>the</strong> discussion on bandpass sampl<strong>in</strong>g <strong>the</strong>ory.2.2.1 Nyquist’s CriterionNyquist’s criterion stipulates <strong>the</strong> requirements <strong>for</strong> perfect reconstruction <strong>of</strong> a uni<strong>for</strong>mlysampled bandlimited signal [25]:T < 12B(2.5)where B refers to <strong>the</strong> upper frequency limit on <strong>the</strong> spectral components present <strong>in</strong> <strong>the</strong>signal and T refers to <strong>the</strong> uni<strong>for</strong>m sampl<strong>in</strong>g <strong>in</strong>terval. Restated <strong>in</strong> terms <strong>of</strong> sampl<strong>in</strong>gfrequency F s , this can be expressed as:F s > 2B (2.6)Equations 2.5 and 2.6 can be understood as a necessary condition to prevent overlap<strong>of</strong> spectral replications, periodically spaced by F s , that are <strong>in</strong>herent to <strong>the</strong> periodicsampl<strong>in</strong>g process [17]. This overlap causes ambiguity <strong>in</strong> signal reconstruction, and iscommonly referred to as alias<strong>in</strong>g. In practice, some level <strong>of</strong> alias<strong>in</strong>g does occur, andit is <strong>the</strong> function <strong>of</strong> an analogue anti-alias<strong>in</strong>g filter to reduce <strong>the</strong> alias<strong>in</strong>g to acceptablelevels. Due to <strong>the</strong> f<strong>in</strong>ite transition band slope that may be realised <strong>in</strong> practical analoguefilter<strong>in</strong>g, it is conventional to restrict <strong>the</strong> anti-alias<strong>in</strong>g filter passband to slightly lessthan that given by equation 2.5. This topic is covered <strong>in</strong> more detail <strong>in</strong> sections 2.2.2and 2.4.It is conventional to assume that analogue filter<strong>in</strong>g is low-pass, sufficiently attenuat<strong>in</strong>gsignals above F s2to prevent unacceptable alias<strong>in</strong>g.2.2.2 Bandpass Sampl<strong>in</strong>gFor a variety <strong>of</strong> applications, <strong>in</strong>clud<strong>in</strong>g digital receivers, bandpass sampl<strong>in</strong>g techniquesmay be preferable. Bandpass sampl<strong>in</strong>g reduces <strong>the</strong> speed requirement <strong>of</strong> A-D converters below that necessary with traditional low-pass sampl<strong>in</strong>g. The reduced11


BB/2 B/2n=1 n=2 n=3-F s0F s F lF cF ufrequencyn=1 n=2 n=3-F s0F sfrequencyFigure 2.2: A typical bandpass sampl<strong>in</strong>g schemebandwidth <strong>of</strong> <strong>the</strong> converter output reduces <strong>the</strong> memory required to store <strong>the</strong> signal <strong>in</strong>a digital <strong>for</strong>m and reduces <strong>the</strong> demand placed on subsequent process<strong>in</strong>g.Figure 2.2 demonstrates <strong>the</strong> technique <strong>of</strong> bandpass sampl<strong>in</strong>g, also referred to as IFsampl<strong>in</strong>g, harmonic sampl<strong>in</strong>g, sub-Nyquist sampl<strong>in</strong>g and undersampl<strong>in</strong>g. The sampl<strong>in</strong>grate is expressed as F s , and <strong>the</strong> sampled band, <strong>of</strong> bandwidth B, is located at(F l ,F u ). The sampl<strong>in</strong>g process results <strong>in</strong> <strong>the</strong> periodic replication <strong>of</strong> signals with<strong>in</strong><strong>the</strong> sampled spectrum, with period F s . The spectral replication is used to advantage<strong>in</strong> bandpass sampl<strong>in</strong>g, where it may be viewed as a sampl<strong>in</strong>g process with <strong>in</strong>herentfrequency translation <strong>in</strong>to <strong>the</strong> region ( − F s2 , F )s2 , commonly referred to as sampl<strong>in</strong>gtranslation[17].2.2.2.1 Preclud<strong>in</strong>g Ambiguities <strong>in</strong> Bandpass Sampl<strong>in</strong>gA bandpass signal may be sampled at an arbitrary frequency F s without <strong>in</strong>troduc<strong>in</strong>galias<strong>in</strong>g ambiguities, provided that <strong>the</strong> follow<strong>in</strong>g criteria are met:• The Nyquist criterion, as expressed <strong>in</strong> equation 2.5 is met. The def<strong>in</strong>ition <strong>of</strong> Bshould be redef<strong>in</strong>ed as <strong>the</strong> sampled bandwidth <strong>in</strong> <strong>the</strong> bandpass sampl<strong>in</strong>g case.• The passband does not cross an NF s2boundary, where N is <strong>in</strong>teger-valued.These requirements have been stated ma<strong>the</strong>matically as [28]:2F un≤ F s ≤ 2F ln − 1(2.7)12


8Allowed Zone7565n=1Nyquist rate: Fs = 2FuFs=Fun=243F sB4Fs=2/3Fu2B GTB3120Disallowed Zone101 2 3 4 5 6 7F uBFigure 2.3: The allowed regions <strong>for</strong> bandpass sampl<strong>in</strong>gwhere n is an <strong>in</strong>teger given by[ ]Fu1 ≤ n ≤ I gB(2.8)and I g [x] denotes <strong>the</strong> largest <strong>in</strong>teger with<strong>in</strong> x. Equations 2.7 is depicted graphically<strong>in</strong> figure 2.3 [28]. With reference to figure 2.3, <strong>the</strong> abscissa represents <strong>the</strong> band positionF u , while <strong>the</strong> ord<strong>in</strong>ate conta<strong>in</strong>s <strong>the</strong> sampl<strong>in</strong>g frequency F s . Both quantities arenormalised by B. The band is located at (F l ,F u ). The areas with<strong>in</strong> <strong>the</strong> wedges are <strong>the</strong>allowed zones <strong>for</strong> sampl<strong>in</strong>g without alias<strong>in</strong>g, while <strong>the</strong> shaded area represents thoseareas <strong>in</strong> which alias<strong>in</strong>g will occur. The lowpass case F s ≥ 2F u , result<strong>in</strong>g from n = 1,corresponds to <strong>the</strong> large wedge to <strong>the</strong> left <strong>in</strong> figure 2.3. Each adjacent wedge correspondsto a successive value <strong>of</strong> n, and may be referred to as n th zone Nyquist sampl<strong>in</strong>g.Vaughan et al. [28] propose <strong>the</strong> <strong>in</strong>clusion <strong>of</strong> “guard-bands” <strong>in</strong> practical bandpass sampl<strong>in</strong>gschemes. These assist <strong>in</strong> elim<strong>in</strong>at<strong>in</strong>g <strong>the</strong> pathological cases where <strong>the</strong> edge <strong>of</strong><strong>the</strong> band lies <strong>in</strong>f<strong>in</strong>itesimally close to an F s2boundary (depicted as <strong>the</strong> wedge borders <strong>in</strong>figure 2.3). In such pathological cases, m<strong>in</strong>imal deviations <strong>in</strong> sampl<strong>in</strong>g frequency andnon-ideal filter<strong>in</strong>g give rise to alias<strong>in</strong>g. The total guard band, given by B GT = F s −2B,13


is expressed on <strong>the</strong> right-hand ord<strong>in</strong>ate <strong>in</strong> figure 2.3.2.2.2.2 Sampl<strong>in</strong>g Frequency PrecisionVaughan et al.[28] demonstrates that, to prevent alias<strong>in</strong>g, <strong>the</strong> relative precision required<strong>of</strong> <strong>the</strong> sampl<strong>in</strong>g frequency F s may be expressed as∆F s(12B= Fun(n−1) B− n )( ) (2.9)≈ O 1n 2Equation 2.9 demonstrates that <strong>the</strong> relative precision required <strong>of</strong> <strong>the</strong> sampl<strong>in</strong>g frequencyF s <strong>in</strong>creases with separation from <strong>the</strong> orig<strong>in</strong>, and is approximately related to<strong>the</strong> <strong>in</strong>verse square <strong>of</strong> <strong>the</strong> separation <strong>of</strong> <strong>the</strong> band from <strong>the</strong> orig<strong>in</strong>. This fur<strong>the</strong>r demonstrates<strong>the</strong> necessity <strong>for</strong> adequate guard-bands as <strong>the</strong> bandwidth <strong>of</strong> <strong>in</strong>terest moves up<strong>in</strong> frequency relative to <strong>the</strong> sampl<strong>in</strong>g frequency.2.2.3 Spectral Inversion <strong>in</strong> Bandpass Sampl<strong>in</strong>gSpectral <strong>in</strong>version <strong>in</strong> <strong>the</strong> baseband alias <strong>of</strong> <strong>the</strong> band-<strong>of</strong>-<strong>in</strong>terest occurs when n is evenvalued[28]. This may be seen by exam<strong>in</strong><strong>in</strong>g <strong>the</strong> alias<strong>in</strong>g pattern <strong>in</strong> figure 2.2 When <strong>the</strong>positive spectral bandpass components are symmetrical about F c , spectral <strong>in</strong>versionpresents no problem. Spectral <strong>in</strong>version should be avoided when signals are asymmetricalwith respect to F c , as is <strong>the</strong> case <strong>in</strong> s<strong>in</strong>gle sideband (SSB) signals. This canbe achieved by restrict<strong>in</strong>g n to be<strong>in</strong>g odd-valued.It is possible to reverse <strong>the</strong> spectral <strong>in</strong>version with m<strong>in</strong>imal signal process<strong>in</strong>g overhead,so as to avoid this restriction on n. This is achieved by modulat<strong>in</strong>g <strong>the</strong> samplesequence with <strong>the</strong> sequence 1,−1,1,−1,... or (−1) n [17]. This effectively translates<strong>the</strong> sampled spectrum by F s2. It should fur<strong>the</strong>r be noted that <strong>the</strong> DC component will betranslated to both +F s2and −F s2 .2.2.4 Apply<strong>in</strong>g Bandpass Sampl<strong>in</strong>g to Wideband ReceptionBandpass sampl<strong>in</strong>g techniques may be used to advantage <strong>in</strong> wideband digital radio.As mentioned previously, A-D converter output rates may be lowered, reduc<strong>in</strong>g <strong>the</strong>burden on subsequent process<strong>in</strong>g stages.14


Fur<strong>the</strong>rmore, when undersampl<strong>in</strong>g is employed, <strong>the</strong> signals <strong>of</strong> <strong>in</strong>terest are aliased <strong>in</strong>to<strong>the</strong> region ( −F s2 , F s2). Restated, this <strong>in</strong>herent down-conversion may be used to translatebandwidths at higher IFs <strong>in</strong>to <strong>the</strong> a<strong>for</strong>ementioned region. The result<strong>in</strong>g spectrum,located <strong>in</strong> <strong>the</strong> first Nyquist zone, may be translated down to baseband through a variety<strong>of</strong> digital down-conversion schemes, as detailed <strong>in</strong> chapter 3. The use <strong>of</strong> ei<strong>the</strong>r orboth <strong>of</strong> <strong>the</strong>se techniques may result <strong>in</strong> a reduction <strong>in</strong> <strong>the</strong> number <strong>of</strong> analogue downconversionstages and <strong>the</strong> associated analogue circuitry (LO, mixer etc.).2.2.5 Quadrature Sampl<strong>in</strong>g and Complex Signal RepresentationIt is common <strong>for</strong> digital signal process<strong>in</strong>g applications to use a complex data representationwith real (“<strong>in</strong>-phase” or “I”) and imag<strong>in</strong>ary (“quadrature-phase” or “Q”) parts.A quadrature sampl<strong>in</strong>g scheme, as depicted <strong>in</strong> figure 2.4, may be used to achievecomplex or quadrature signal representation at baseband.cos(2π f c t s )x i(t)ADCx(t)-90degreesf si(n)q(n)i(n)+jq(n)s<strong>in</strong>(2π f c t s )x q(t)ADCPSfrag replacementsFigure 2.4: Illustration <strong>of</strong> quadrature sampl<strong>in</strong>g scheme.It may be shown that <strong>the</strong> multiplication <strong>of</strong> a signal with a complex exponential e j2π f ctresults <strong>in</strong> a translation or shift <strong>of</strong> <strong>the</strong> spectral content <strong>of</strong> <strong>the</strong> signal by f c Hz. Thequadrature sampl<strong>in</strong>g scheme implements this frequency translation through Euler’sidentity:e ± jθ = cos(θ) ± j s<strong>in</strong>(θ) (2.10)The analogue <strong>in</strong>put signal is mixed by means <strong>of</strong> analogue mixers with <strong>the</strong> constituents<strong>in</strong>usoidal components <strong>of</strong> <strong>the</strong> complex exponential e j2π f ct , result<strong>in</strong>g <strong>in</strong> a complexvaluedrepresentation <strong>of</strong> <strong>the</strong> <strong>in</strong>put signal that is translated <strong>in</strong> frequency by f c Hz and is15


separated <strong>in</strong>to its <strong>in</strong>-phase (real) and quadrature-phase (imag<strong>in</strong>ary) components. Thevalue <strong>of</strong> f c is conventionally chosen such that <strong>the</strong> <strong>in</strong>put signal is translated to DC(“baseband”). A detailed ma<strong>the</strong>matical account may be found <strong>in</strong> [16] or [17]. Thecomplex data <strong>for</strong>mat is useful <strong>in</strong> many applications <strong>for</strong> <strong>the</strong> follow<strong>in</strong>g reasons:1. Each A-D converter may sample at half <strong>the</strong> rate <strong>of</strong> conventional sampl<strong>in</strong>g, whileachiev<strong>in</strong>g <strong>the</strong> same output bandwidth. Restated, <strong>the</strong> digitised bandwidth mayfbe extended from <strong>the</strong> <strong>the</strong>oretical s2imposed by Nyquist’s criterion to f s , <strong>the</strong>sampl<strong>in</strong>g rate <strong>of</strong> <strong>the</strong> A-D converter.2. Quadrature sequences are easily described and manipulated ma<strong>the</strong>matically.3. Quadrature sequences make Fast Fourier Trans<strong>for</strong>m (FFT) process<strong>in</strong>g efficient,cover<strong>in</strong>g a wider frequency range than a conventional real FFT. Methods <strong>for</strong> <strong>in</strong>creas<strong>in</strong>greal FFT efficiency are known, but <strong>the</strong> complex FFT is usually simplerto use.4. Phase and amplitude <strong>in</strong><strong>for</strong>mation is easily extracted from <strong>the</strong> complex representation,facilitat<strong>in</strong>g efficient algorithms <strong>for</strong> demodulat<strong>in</strong>g amplitude or frequencymodulated signals.The phase preservation characteristic is particularly useful, and it is <strong>for</strong> this reasonthat complex signal representation has been widely adopted <strong>in</strong> high data rate digitalcommunications systems, radar systems, time difference <strong>of</strong> arrival (TDOA) process<strong>in</strong>g<strong>in</strong> radio direction-f<strong>in</strong>d<strong>in</strong>g schemes, coherent pulse measurement systems, antennabeam<strong>for</strong>m<strong>in</strong>g applications and s<strong>in</strong>gle-sideband (SSB) modulators.Despite <strong>the</strong> usefulness <strong>of</strong> quadrature sampl<strong>in</strong>g, imbalance <strong>in</strong> <strong>the</strong> I and Q channelsresult<strong>in</strong>g from amplitude or phase mismatch, mixer DC <strong>of</strong>fsets and 1 fnoise <strong>in</strong>troducedby active components <strong>of</strong>ten limits <strong>the</strong> dynamic range <strong>of</strong> a receiver [17] [27]. Complexcalibration may be used to improve <strong>the</strong> dynamic range, but this is undesirable dueto <strong>in</strong>creased system cost and complexity. Methods <strong>of</strong> realis<strong>in</strong>g complex basebandedsignals which do not suffer from <strong>the</strong>se problems will be presented <strong>in</strong> chapter 3.2.3 Sources <strong>of</strong> Error <strong>in</strong> Wideband DigitisationIt is conventional <strong>in</strong> receiver design to characterise <strong>the</strong> receiver per<strong>for</strong>mance <strong>in</strong> terms<strong>of</strong> noise and distortion measures. These per<strong>for</strong>mance measures dictate <strong>the</strong> ability <strong>of</strong> areceiver to detect small signals <strong>in</strong> <strong>the</strong> presence <strong>of</strong> larger signals, and place a limit on<strong>the</strong> m<strong>in</strong>imum discernable signal (MDS)[23].16


In this section, <strong>the</strong> sources <strong>of</strong> error <strong>in</strong> A-D conversion are identified and analysed.It will be shown that many <strong>of</strong> <strong>the</strong> errors result <strong>in</strong> noise or distortion <strong>of</strong> <strong>the</strong> digitisedsignal, which impact negatively on <strong>the</strong> sensitivity <strong>of</strong> a digital receiver.2.3.1 Quantisation ErrorThe quantisation <strong>of</strong> a signal <strong>in</strong>to one <strong>of</strong> l discrete levels, uni<strong>for</strong>mly spaced with spac<strong>in</strong>gq, results <strong>in</strong> a quantisation error ε, <strong>the</strong> difference between <strong>the</strong> signal level and <strong>the</strong>nearest quantisation level.Under <strong>the</strong> assumption that all values <strong>of</strong> ε <strong>in</strong> <strong>the</strong> range −q2 ≤ ε < q 2are equally probable,it may be shown that <strong>the</strong> quantisation error manifests itself as wideband noise,uni<strong>for</strong>mly distributed with<strong>in</strong> <strong>the</strong> Nyquist band ( −F s2 , F )s2 . The mean-square quantisationnoise power <strong>of</strong> an ideal n bit uni<strong>for</strong>m quantiser may <strong>the</strong>n be expressed as [25]:ε 2 = q212(2.11)The quantisation <strong>of</strong> a full scale s<strong>in</strong>usoid <strong>the</strong>n results <strong>in</strong> a signal-to-noise ratio <strong>of</strong> [27]:( ) S= 1.76 + 6.02n (2.12)NdBThe assumption that quantisation error is uni<strong>for</strong>mly distributed with<strong>in</strong> a quantum isgenerally only true <strong>for</strong> complex (non-trivial) signals that are large <strong>in</strong> comparison to<strong>the</strong> quantisation level [30], and uncorrelated to <strong>the</strong> sampl<strong>in</strong>g frequency [27]. Whenthis assumption fails, error manifests itself as spurious signals with<strong>in</strong> <strong>the</strong> A-D converteroutput bandwidth, which may limit <strong>the</strong> spurious-free dynamic range <strong>of</strong> a digitalreceiver. The spurious level may be reduced by sufficiently decorrelat<strong>in</strong>g <strong>the</strong> signalfrom <strong>the</strong> sampl<strong>in</strong>g frequency. This topic will be explored fur<strong>the</strong>r <strong>in</strong> section 2.5.2.3.2 Static Errors <strong>in</strong> <strong>the</strong> A-D Transfer FunctionThe transfer function <strong>of</strong> a practical A-D converter differs from <strong>the</strong> ideal n bit uni<strong>for</strong>mquantiser. The significant errors <strong>in</strong>clude ga<strong>in</strong> error, <strong>of</strong>fset error and <strong>in</strong>tegral and differentialnon-l<strong>in</strong>earity. The def<strong>in</strong>itions <strong>of</strong> <strong>the</strong> errors, as well as <strong>the</strong>ir manifestations, maybe briefly summarised as follows:17


2.3.2.1 Ga<strong>in</strong> and Offset ErrorGa<strong>in</strong> error refers to an error <strong>in</strong> <strong>the</strong> slope <strong>of</strong> <strong>the</strong> A-D transfer function, after <strong>of</strong>fset errorshave been elim<strong>in</strong>ated. It is def<strong>in</strong>ed as [24]:E ga<strong>in</strong> = (V FS − 2·LSB) − (V 11 −V sz ) (2.13)where V 11 is <strong>the</strong> last transition voltage (most positive signal), V sz is <strong>the</strong> first transitionvoltage (most negative signal) and (V FS − 2LSB) is <strong>the</strong> full-scale range m<strong>in</strong>us 2ideal LSBs. It is expressed as a percentage <strong>of</strong> full scale range (% FSR) or <strong>in</strong> leastsignificant-bits(LSBs).Offset error may be def<strong>in</strong>ed as a common deviation <strong>in</strong> transition voltage from <strong>the</strong>ideal transition voltage. It is conventionally measured as <strong>the</strong> deviation <strong>of</strong> <strong>the</strong> firsttransition from <strong>the</strong> ideal, after any ga<strong>in</strong> or l<strong>in</strong>earity error has been subtracted, and it isconventionally expressed <strong>in</strong> mV.Ga<strong>in</strong> and <strong>of</strong>fset errors manifest <strong>the</strong>mselves as DC <strong>of</strong>fsets <strong>in</strong> <strong>the</strong> digitised output, a(m<strong>in</strong>imal) reduction to converter dynamic range (<strong>in</strong>creased noise floor) and a frequency<strong>in</strong>dependentga<strong>in</strong> error <strong>in</strong> <strong>the</strong> digitised signal.DC <strong>of</strong>fsets are not <strong>of</strong> severe consequence <strong>in</strong> IF sampl<strong>in</strong>g converters, s<strong>in</strong>ce <strong>the</strong> band<strong>of</strong> <strong>in</strong>terest is located at an IF, and DC <strong>of</strong>fsets are typically filtered out <strong>in</strong> subsequentdigital signal process<strong>in</strong>g stages. Ga<strong>in</strong> errors <strong>in</strong> <strong>the</strong> digitised signal may be calibratedout by multiply<strong>in</strong>g each sample with <strong>the</strong> <strong>in</strong>verse <strong>of</strong> <strong>the</strong> ga<strong>in</strong> error. Ga<strong>in</strong> correctionusually does not place <strong>in</strong>creased demand on digital signal process<strong>in</strong>g, s<strong>in</strong>ce it may befactored <strong>in</strong>to subsequent digital filter<strong>in</strong>g or ga<strong>in</strong> stages. The reduction <strong>in</strong> A-D converterdynamic range as a result <strong>of</strong> ga<strong>in</strong> or <strong>of</strong>fset error is small. Ga<strong>in</strong> and <strong>of</strong>fset errorsare <strong>the</strong>re<strong>for</strong>e <strong>of</strong> m<strong>in</strong>imal impact on <strong>the</strong> per<strong>for</strong>mance <strong>of</strong> a wideband digital receiveremploy<strong>in</strong>g an IF sampl<strong>in</strong>g architecture.2.3.2.2 Differential and Integral Non-L<strong>in</strong>earityThe differential non-l<strong>in</strong>earity (DNL) <strong>of</strong> an A-D converter may be def<strong>in</strong>ed as <strong>the</strong> differencebetween an actual code width and <strong>the</strong> ideal value <strong>of</strong> one LSB. If <strong>the</strong> DNL exceeds1 LSB, <strong>the</strong> result<strong>in</strong>g transfer function may become non-monotonic, or miss<strong>in</strong>g codesmay result.Differential non-l<strong>in</strong>earity typically manifests itself as higher order non-l<strong>in</strong>earity <strong>in</strong> <strong>the</strong>transfer function <strong>of</strong> an A-D converter [10]. This results <strong>in</strong> higher order harmonics andmixed products be<strong>in</strong>g present <strong>in</strong> <strong>the</strong> digital spectrum, which may fall <strong>in</strong>-band due toalias<strong>in</strong>g, limit<strong>in</strong>g <strong>the</strong> spurious-free dynamic range <strong>of</strong> a digital receiver. The location18


and nature <strong>of</strong> higher-order harmonics are difficult to predict, and it is <strong>the</strong>re<strong>for</strong>e notpossible to place <strong>the</strong>m out-<strong>of</strong>-band.The effects <strong>of</strong> differential non-l<strong>in</strong>earity may be partially elim<strong>in</strong>ated through di<strong>the</strong>r<strong>in</strong>g,as discussed <strong>in</strong> section 2.5.Integral non-l<strong>in</strong>earity (INL) may be def<strong>in</strong>ed as <strong>the</strong> deviation <strong>of</strong> <strong>the</strong> A-D transfer functionfrom an ideal straight l<strong>in</strong>e. End-po<strong>in</strong>t INL is specified <strong>in</strong> terms <strong>of</strong> <strong>the</strong> deviationfrom a straight l<strong>in</strong>e between <strong>the</strong> end-po<strong>in</strong>ts <strong>of</strong> <strong>the</strong> transfer function, <strong>in</strong> terms <strong>of</strong> ei<strong>the</strong>r<strong>the</strong> transition po<strong>in</strong>ts or ideal code midpo<strong>in</strong>ts. Best-straight-l<strong>in</strong>e INL is def<strong>in</strong>edas <strong>the</strong> deviation <strong>of</strong> a code from a l<strong>in</strong>e calculated to m<strong>in</strong>imize <strong>the</strong> worst-case INL <strong>in</strong> amean-squared sense.INL results <strong>in</strong> low-order non-l<strong>in</strong>earity <strong>in</strong> <strong>the</strong> A-D transfer function. Lower order harmonicsand mixed products may result from signals placed at <strong>the</strong> A-D <strong>in</strong>put, result<strong>in</strong>g<strong>in</strong> reduced spurious-free dynamic range. The nature <strong>of</strong> <strong>the</strong> non-l<strong>in</strong>earities may varywith differ<strong>in</strong>g <strong>in</strong>put power levels, as <strong>the</strong> <strong>in</strong>tegral non-l<strong>in</strong>earities are exercised to differentextents.The effects <strong>of</strong> <strong>in</strong>tegral non-l<strong>in</strong>earity may be reduced through di<strong>the</strong>r<strong>in</strong>g, as discussed<strong>in</strong> section 2.5.Although DNL and INL contribute substantially to <strong>the</strong> degree <strong>of</strong> l<strong>in</strong>earity <strong>of</strong> a converter,<strong>the</strong>se measures are generally not sufficient to categorise an A-D converter <strong>for</strong>communications applications [7], s<strong>in</strong>ce <strong>the</strong> position <strong>of</strong> <strong>the</strong>se errors <strong>in</strong> <strong>the</strong> transfer function<strong>of</strong> <strong>the</strong> A-D converter may lead to <strong>the</strong>m rarely be<strong>in</strong>g exercised. An example <strong>of</strong> thismay be a large DNL error at close to full-scale range. It is unlikely that this wouldsubstantially degrade <strong>the</strong> l<strong>in</strong>earity, s<strong>in</strong>ce it would rarely be exercised. It is <strong>the</strong>re<strong>for</strong>e<strong>of</strong>ten more beneficial to consider dynamic error measurements, such as spurious-freedynamic range (SFDR) and signal-to-noise-and-distortion (SINAD).2.3.3 Sampl<strong>in</strong>g JitterThe process <strong>of</strong> sampl<strong>in</strong>g an analogue signal at a given <strong>in</strong>stant <strong>in</strong> time occurs as follows[24]:1. An <strong>in</strong>put buffer amplifier tracks <strong>the</strong> analogue signal. The amplifier output isused to place charge on an energy storage device, and requires a settl<strong>in</strong>g time <strong>in</strong>order to track <strong>the</strong> signal to with<strong>in</strong> a specified accuracy.2. The output <strong>of</strong> <strong>the</strong> amplifier is rapidly disconnected from <strong>the</strong> energy storage device<strong>in</strong> response to an encode command (sampl<strong>in</strong>g clock transition). The time19


Output VoltagedVEncode SignaldtFigure 2.5: The voltage error result<strong>in</strong>g from encode signal jittertaken to disconnect is referred to as <strong>the</strong> aperture time and is critical to sampl<strong>in</strong>gaccuracy.3. The charge held on <strong>the</strong> energy storage device is measured and used to determ<strong>in</strong>e<strong>the</strong> quantised output code.Noise <strong>in</strong> <strong>the</strong> A-D converter encode circuitry results <strong>in</strong> a variance <strong>in</strong> <strong>the</strong> exact <strong>in</strong>stantat which <strong>the</strong> aperture occurs. This time variance is referred to as aperture uncerta<strong>in</strong>tyor aperture jitter, and is usually expressed <strong>in</strong> seconds RMS. Jitter on <strong>the</strong> sampl<strong>in</strong>gclock adds fur<strong>the</strong>r variance to <strong>the</strong> aperture delay. The complete jitter contributionmay be found by tak<strong>in</strong>g <strong>the</strong> square root <strong>of</strong> <strong>the</strong> sum <strong>of</strong> <strong>the</strong> squares <strong>of</strong> <strong>the</strong> <strong>in</strong>dividualcontributions:√T jitter = Ta 2 + T clk 2(2.14)where T a refers to <strong>the</strong> aperture uncerta<strong>in</strong>ty and T clk refers to <strong>the</strong> encode clock jitter.The error <strong>in</strong> sampl<strong>in</strong>g time results <strong>in</strong> a voltage error that is proportional to <strong>the</strong> slope(slew rate) <strong>of</strong> <strong>the</strong> signal at <strong>the</strong> sampl<strong>in</strong>g <strong>in</strong>stant. This is illustrated <strong>in</strong> figure 2.5. Theerror contribution <strong>for</strong> a s<strong>in</strong>usoidal <strong>in</strong>put may be shown to result <strong>in</strong> a signal-to-noiseratio <strong>of</strong> 2 : ( )( )S 1= 20·log 10 (2.15)N 2π f a T jitterdBwhere f a refers to <strong>the</strong> frequency, <strong>in</strong> Hz, <strong>of</strong> <strong>the</strong> <strong>in</strong>put s<strong>in</strong>usoid and T jitter refers to <strong>the</strong>total jitter <strong>in</strong> <strong>the</strong> encode process, <strong>in</strong> seconds RMS.2 A complete derivation <strong>of</strong> equation 2.15 may be found <strong>in</strong> appendix A20


2.3.3.1 The Relationship between Oscillator Phase Noise and JitterThe time-doma<strong>in</strong> jitter content <strong>in</strong> an oscillator can be related to its frequency-doma<strong>in</strong>characteristic <strong>of</strong> phase noise. The relationship is explored <strong>in</strong> [22], a valuable referenceon oscillator phase noise. This relationship may be useful, s<strong>in</strong>ce many oscillator manufacturersdo not measure <strong>the</strong> oscillator jitter 3 , but <strong>in</strong>stead specify <strong>the</strong>ir oscillators accord<strong>in</strong>gto phase noise requirements. It is possible to estimate <strong>the</strong> time-doma<strong>in</strong> jitter<strong>in</strong> an oscillator source through its reciprocal relationship to phase noise, as demonstratedby [2]. It should be noted that this estimate is usually an under-estimate, unlessoscillator harmonics and sub-harmonics are <strong>in</strong>cluded <strong>in</strong> <strong>the</strong> estimate.2.3.3.2 Thermal NoiseNoise is generated <strong>in</strong> <strong>the</strong> analogue <strong>in</strong>put circuitry <strong>of</strong> an A-D converter, result<strong>in</strong>g <strong>in</strong> an<strong>in</strong>crease <strong>in</strong> <strong>the</strong> total receiver noise, and a subsequent reduction <strong>in</strong> <strong>the</strong> signal-to-noiseratio. The noise generated <strong>in</strong> analogue <strong>in</strong>put circuitry (sample-and-hold and amplifiers)can be translated <strong>in</strong>to an equivalent noise temperature, referred to <strong>the</strong> analogue<strong>in</strong>put. This provides a means by which A-D <strong>the</strong>rmal noise can be factored <strong>in</strong>to totalanalogue receiver noise.2.3.4 Relative Noise Contributions <strong>in</strong> Wideband DigitisationWideband noise has been shown to be <strong>in</strong>troduced <strong>in</strong>to <strong>the</strong> digitisation process <strong>in</strong> <strong>the</strong><strong>for</strong>m <strong>of</strong> quantisation noise, <strong>the</strong>rmal noise and noise as a result <strong>of</strong> encode clock jitter.The relative contributions <strong>of</strong> each <strong>of</strong> <strong>the</strong>se terms may be found by summ<strong>in</strong>g <strong>the</strong>mean-squared contributions <strong>of</strong> each <strong>of</strong> <strong>the</strong> terms. The follow<strong>in</strong>g <strong>for</strong>mula, given <strong>in</strong> [5],provides a reasonable <strong>in</strong>dication <strong>of</strong> <strong>the</strong> full-scale (maximum) signal-to-noise ratio thatmay be expected <strong>in</strong> a wideband A-D converter:⎡√SNR dB = −20·log 10⎣(2π fa t j) 2 +( 1 + ε2 N ) 2+(Vn2 N ) 2⎤⎦ (2.16)where f a is <strong>the</strong> analogue <strong>in</strong>put frequency, t j <strong>the</strong> RMS encode jitter, ε <strong>the</strong> average differentialnon-l<strong>in</strong>earity normalised to 1 LSB, V n <strong>the</strong> rms <strong>the</strong>rmal noise normalised to1 LSB and N <strong>the</strong> number <strong>of</strong> bits. The contributions from encode jitter, static transferfunction errors (quantisation noise and differential non-l<strong>in</strong>earity) and <strong>the</strong>rmal noise3 The specification <strong>of</strong> time-doma<strong>in</strong> jitter is becom<strong>in</strong>g more popular, as it is becom<strong>in</strong>g <strong>in</strong>creas<strong>in</strong>glyimportant <strong>in</strong> high-frequency applications.21


<strong>in</strong> <strong>the</strong> A-D analogue <strong>in</strong>put circuitry may be seen as each <strong>of</strong> <strong>the</strong> three terms with<strong>in</strong><strong>the</strong> square root respectively. Figure 2.6 plots <strong>the</strong> predicted signal-to-noise ratio versus<strong>the</strong> analogue <strong>in</strong>put frequency <strong>for</strong> <strong>the</strong> AD6644 65 MSPS 14-bit A-D converter, <strong>for</strong>1 pica-second RMS oscillator jitter. From this figure, it may be seen that oscillator105100SNR versus frequency <strong>for</strong> 1ps RMS oscillator jitter (AD6644)Total SNRContribution <strong>of</strong> oscillator jitter to SNR9590SNR [dB]8580757065600 10 20 30 40 50 60 70 80 90 100Frequency [MHz]Figure 2.6: Signal-to-noise ratio versus analogue <strong>in</strong>put frequency <strong>for</strong> <strong>the</strong> AD6644.jitter dom<strong>in</strong>ates <strong>the</strong> SNR at high frequencies, <strong>for</strong> very small levels <strong>of</strong> oscillator jitter.S<strong>in</strong>ce <strong>the</strong> jitter contribution to SNR is related to <strong>the</strong> analogue <strong>in</strong>put frequency,undersampl<strong>in</strong>g applications impose strict demands on oscillator jitter per<strong>for</strong>mance.2.4 Oversampl<strong>in</strong>gOversampl<strong>in</strong>g is <strong>the</strong> term used to describe sampl<strong>in</strong>g schemes where <strong>the</strong> Nyquist frequencyis greater than <strong>the</strong> signal bandwidth:F s2 > B (2.17)The ratio K = F s2Bis commonly referred to as <strong>the</strong> oversampl<strong>in</strong>g ratio. Oversampl<strong>in</strong>gmay be used to relax <strong>the</strong> requirements on anti-alias<strong>in</strong>g filters, as well as to improve<strong>the</strong> signal-to-noise ratio <strong>of</strong> a sampled signal. Harmonic spurious may be placed out-<strong>of</strong>22


and through oversampl<strong>in</strong>g and appropriate placement <strong>of</strong> <strong>the</strong> IF. Oversampl<strong>in</strong>g may beused <strong>in</strong> conjunction with bandpass sampl<strong>in</strong>g, realis<strong>in</strong>g <strong>the</strong> benefits <strong>of</strong> both techniquessimultaneously.2.4.1 Relaxation <strong>of</strong> Anti-alias<strong>in</strong>g Filter RequirementsS<strong>in</strong>ce analogue filters with <strong>in</strong>f<strong>in</strong>itely narrow transition regions are not realisable <strong>in</strong>practice, some degree <strong>of</strong> oversampl<strong>in</strong>g is necessary. By <strong>in</strong>creas<strong>in</strong>g <strong>the</strong> oversampl<strong>in</strong>gratio, <strong>the</strong> width <strong>of</strong> <strong>the</strong> transition region may be <strong>in</strong>creased, reduc<strong>in</strong>g <strong>the</strong> order <strong>of</strong> filter<strong>in</strong>grequired to meet alias<strong>in</strong>g requirements. This is illustrated <strong>in</strong> figure 2.7.BK = 1.333maximum level <strong>of</strong> alias<strong>in</strong>gf sW tBmaximum level <strong>of</strong> alias<strong>in</strong>gK = 2W tf sFigure 2.7: Anti-alias<strong>in</strong>g filter transition width requirements <strong>for</strong> oversampl<strong>in</strong>g ratios<strong>of</strong> 1.333 and 2 respectively.2.4.2 Signal-to-Noise Ratio Improvement Through Oversampl<strong>in</strong>gFor a given bandwidth B, <strong>in</strong>creas<strong>in</strong>g <strong>the</strong> oversampl<strong>in</strong>g ratio results <strong>in</strong> a uni<strong>for</strong>m spread<strong>in</strong>g<strong>of</strong> <strong>the</strong> quantisation noise power over <strong>the</strong> wider Nyquist bandwidth (0, F s new2). Digitalfilter<strong>in</strong>g may be employed subsequent to digitisation to filter out noise that fallsoutside <strong>of</strong> <strong>the</strong> bandwidth B, <strong>the</strong>reby reduc<strong>in</strong>g <strong>the</strong> quantisation noise power, and anyo<strong>the</strong>r noise fall<strong>in</strong>g outside <strong>of</strong> <strong>the</strong> bandwidth B, result<strong>in</strong>g <strong>in</strong> an improved signal-to-noiseratio. The signal-to-noise ratio improvement due to quantisation noise spread<strong>in</strong>g and23


©¨§¦subsequent filter<strong>in</strong>g may be computed us<strong>in</strong>g equation 2.18∆SNR = 10·log 10 (K) (2.18)where K refers to <strong>the</strong> oversampl<strong>in</strong>g ratio. It is noted that <strong>the</strong> signal-to-noise ratioimprovement is limited by <strong>the</strong> resolution at which <strong>the</strong> digital filter<strong>in</strong>g is per<strong>for</strong>med.For a reduction <strong>in</strong> quantisation noise, <strong>the</strong> digital filter<strong>in</strong>g resolution should exceed <strong>the</strong>resolution <strong>of</strong> <strong>the</strong> A-D converter.2.4.3 Spurious Harmonic PlacementLower order harmonics <strong>of</strong>ten impose a restriction on <strong>the</strong> spurious-free dynamic rangedue to lower order non-l<strong>in</strong>earity with<strong>in</strong> both <strong>the</strong> analogue receiver sections and <strong>the</strong>A-D converter. Through correct placement <strong>of</strong> <strong>the</strong> band-<strong>of</strong>-<strong>in</strong>terest B relative to <strong>the</strong>sampl<strong>in</strong>g frequency, lower order harmonics may be constra<strong>in</strong>ed to fall outside <strong>of</strong> <strong>the</strong>bandwidth-<strong>of</strong>-<strong>in</strong>terest. Figure 2.8 illustrates a placement <strong>of</strong> a band-<strong>of</strong>-<strong>in</strong>terest <strong>in</strong> <strong>the</strong>second nyquist zone, such that <strong>the</strong> second and third harmonics do not fall <strong>in</strong>-band afterdigitisation.Spectrum be<strong>for</strong>edigitisationband-<strong>of</strong>-<strong>in</strong>terest second harmonic third harmonic¡ ¢Spectrum afterdigitisationff s2f sff s2f s£ ¤¥Figure 2.8: Band placement such that harmonics do not fall <strong>in</strong>-band after digitisation.2.5 Signal Di<strong>the</strong>r<strong>in</strong>gSignal di<strong>the</strong>r<strong>in</strong>g is a technique that may be used to improve <strong>the</strong> dynamic range <strong>of</strong> anA-D converter. Di<strong>the</strong>r<strong>in</strong>g achieves this by controll<strong>in</strong>g <strong>the</strong> statistical properties <strong>of</strong> <strong>the</strong>24


errors <strong>in</strong>troduced <strong>in</strong> <strong>the</strong> quantisation process [30]. The <strong>in</strong>put signal is summed withan uncorrelated di<strong>the</strong>r signal which has suitable statistical properties prior to A-Dconversion, such that <strong>the</strong> result<strong>in</strong>g conversion error is uni<strong>for</strong>mly distributed.A common misconception is that <strong>the</strong> level <strong>of</strong> a sampled signal that may be detectedis limited by <strong>the</strong> converter resolution. In di<strong>the</strong>red architectures, it is usually possibleto extract signals well below <strong>the</strong> level <strong>of</strong> a quantum [10]. This is achieved bydi<strong>the</strong>r<strong>in</strong>g <strong>the</strong> signal prior to sampl<strong>in</strong>g (which ensures that quantisation noise is sufficientlydecorrelated), and us<strong>in</strong>g post-conversion digital filter<strong>in</strong>g to reduce <strong>the</strong> level<strong>of</strong> quantisation noise. Di<strong>the</strong>r<strong>in</strong>g ensures that <strong>the</strong> noise is randomly spread across <strong>the</strong>A-D converter output bandwidth. By sufficiently reduc<strong>in</strong>g <strong>the</strong> A-D output bandwidththrough digital filter<strong>in</strong>g, large signal-to-noise ratio improvements may be achieved.This is analogous to analogue receiver band limit<strong>in</strong>g, where received noise is proportionalto <strong>the</strong> receiver bandwidth. The digital filter<strong>in</strong>g should be per<strong>for</strong>med at a higherresolution than <strong>the</strong> converter resolution, such that quantisation noise may be reducedbelow <strong>the</strong> LSB <strong>of</strong> <strong>the</strong> converter through band limit<strong>in</strong>g.2.5.1 Subtractive and Non-subtractive Di<strong>the</strong>r<strong>in</strong>g TechniquesDi<strong>the</strong>r<strong>in</strong>g may be classified as subtractive di<strong>the</strong>r (SD) or non-subtractive di<strong>the</strong>r (NSD).The two techniques are detailed <strong>in</strong> figure 2.9.In SD, <strong>the</strong> di<strong>the</strong>r signal is added prior to quantisation, and subtracted prior to <strong>the</strong>output. The di<strong>the</strong>r noise does not reduce <strong>the</strong> signal-to-noise ratio on <strong>the</strong> output, s<strong>in</strong>ceit is subtracted. In NSD, <strong>the</strong> di<strong>the</strong>r signal is not subtracted, and <strong>the</strong>re<strong>for</strong>e results <strong>in</strong> anundesirable reduction <strong>of</strong> <strong>the</strong> output signal-to-noise ratio.2.5.1.1 Subtractive Di<strong>the</strong>r<strong>in</strong>gThe characteristic function (cf ) <strong>of</strong> a random variable is def<strong>in</strong>ed as[30]:P x (u) = E[e − j2πux ]=∞−∞ F(x)e − j2πux dx(2.19)In SD <strong>of</strong> an ideal converter, <strong>the</strong> total error can be rendered uni<strong>for</strong>mly distributed andstatistically <strong>in</strong>dependent <strong>of</strong> <strong>the</strong> system <strong>in</strong>put by choos<strong>in</strong>g a di<strong>the</strong>r such that <strong>the</strong> cf <strong>of</strong><strong>the</strong> di<strong>the</strong>r satisfies <strong>the</strong> condition [30]:P v( k∆)= 0 ∀ k ∈ Z0 (2.20)25


Subtractive di<strong>the</strong>rdi<strong>the</strong>rn(t)channelInput signalx(t)++Quantiser-+Output signaly(t)Non-subtractive di<strong>the</strong>rdi<strong>the</strong>rn(t)channelInput signalx(t)++QuantiserOutput signaly(t)Figure 2.9: Subtractive and non-subtractive di<strong>the</strong>r<strong>in</strong>g schemeswhere ∆ is <strong>the</strong> quantisation level and Z 0 is def<strong>in</strong>ed as <strong>the</strong> set <strong>of</strong> all <strong>in</strong>tegers exclud<strong>in</strong>g 0.A function that satisfies this condition is a function with a probability density functionor pdf <strong>of</strong> <strong>the</strong> <strong>for</strong>m:p(x) = Π ∆ (x) (2.21)where <strong>the</strong> rectangular w<strong>in</strong>dow function <strong>of</strong> width Γ, Π Γ , is def<strong>in</strong>ed as⎧1Γ⎪⎨, |x| < Γ 2 ,Π Γ (x) =12Γ , |x| = Γ 2 ,⎪⎩0, o<strong>the</strong>rwise.The cf <strong>of</strong> this pdf may be expressed asP x (u) = s<strong>in</strong>(π∆u)π∆uThis results <strong>in</strong> <strong>the</strong> nulls <strong>in</strong> <strong>the</strong> cf that satisfy <strong>the</strong> requirements <strong>of</strong> equation 2.20.26(2.22)(2.23)


Wannamaker [30] refers to this uni<strong>for</strong>mly distributed di<strong>the</strong>r <strong>of</strong> peak-to-peak amplitude∆ as rectangular pdf di<strong>the</strong>r or RPDF di<strong>the</strong>r. He fur<strong>the</strong>r def<strong>in</strong>es <strong>the</strong> summation <strong>of</strong> nsuch di<strong>the</strong>rs as rectangular pdf di<strong>the</strong>r <strong>of</strong> order n or nRPDF di<strong>the</strong>r. The pdf <strong>of</strong> <strong>the</strong> sum<strong>of</strong> n random variables may be found by convolv<strong>in</strong>g <strong>the</strong> n <strong>in</strong>dividual pdfs, while <strong>the</strong>cf is found by multiply<strong>in</strong>g <strong>the</strong> n cfs. Thus, <strong>the</strong> pdf <strong>of</strong> 2RPDF di<strong>the</strong>r is triangular, <strong>of</strong>peak-to-peak amplitude 2∆.Fur<strong>the</strong>rmore, <strong>the</strong> values <strong>of</strong> total error separated <strong>in</strong> time can be rendered statistically<strong>in</strong>dependent <strong>of</strong> one ano<strong>the</strong>r by ensur<strong>in</strong>g that <strong>the</strong> di<strong>the</strong>r values are statistically <strong>in</strong>dependent<strong>of</strong> one ano<strong>the</strong>r.2.5.1.2 Non-subtractive Di<strong>the</strong>r<strong>in</strong>gWhile subtractive di<strong>the</strong>r may be considered an optimal di<strong>the</strong>r, due to its statisticalproperties, its implementation may be prohibitively expensive (s<strong>in</strong>ce <strong>the</strong> analoguedi<strong>the</strong>r needs to be digitally subtracted after digitisation). Non-subtractive di<strong>the</strong>r is<strong>the</strong>re<strong>for</strong>e given consideration, due to its ease <strong>of</strong> implementation:Wannamaker demonstrates that <strong>in</strong> a non-subtractive di<strong>the</strong>r quantis<strong>in</strong>g system it is notpossible to render <strong>the</strong> total error statistically <strong>in</strong>dependent <strong>of</strong> <strong>the</strong> system <strong>in</strong>put or uni<strong>for</strong>mlydistributed <strong>for</strong> system <strong>in</strong>puts <strong>of</strong> arbitrary distribution. An nRPDF di<strong>the</strong>r does,however, render <strong>the</strong> first n moments <strong>of</strong> <strong>the</strong> total error process <strong>in</strong>dependent <strong>of</strong> <strong>the</strong> distribution<strong>of</strong> <strong>the</strong> system <strong>in</strong>put, and results <strong>in</strong> a total error variance <strong>of</strong> (n+1)∆212. Highermoments <strong>of</strong> <strong>the</strong> error signal will, however, rema<strong>in</strong> <strong>in</strong>put dependent. He fur<strong>the</strong>r provesthat <strong>the</strong> choice <strong>of</strong> zero-mean non-subtractive di<strong>the</strong>r pdf which renders <strong>the</strong> first andsecond moments <strong>of</strong> <strong>the</strong> total error <strong>in</strong>dependent <strong>of</strong> <strong>the</strong> <strong>in</strong>put, such that <strong>the</strong> first momentis zero and <strong>the</strong> second moment (<strong>the</strong> variance) is m<strong>in</strong>imized, is unique and is 2RPDF(triangular) di<strong>the</strong>r.Non-subtractive di<strong>the</strong>r<strong>in</strong>g cannot render total error values separated <strong>in</strong> time statistically<strong>in</strong>dependent <strong>of</strong> each o<strong>the</strong>r, but it can regulate <strong>the</strong> jo<strong>in</strong>t moments <strong>of</strong> such errors.Importantly, it can <strong>the</strong>re<strong>for</strong>e render <strong>the</strong> power spectrum <strong>of</strong> <strong>the</strong> total error white [30].2.5.2 Small- and Large-scale Di<strong>the</strong>r<strong>in</strong>gDi<strong>the</strong>r may be categorised as ei<strong>the</strong>r small-scale (<strong>of</strong> <strong>the</strong> order <strong>of</strong> a quantisation level<strong>in</strong> amplitude) or large-scale (<strong>in</strong> <strong>the</strong> order <strong>of</strong> full scale <strong>in</strong> amplitude)[10]. The discussionon di<strong>the</strong>r will be broken down accord<strong>in</strong>g to <strong>the</strong>se categories, demonstrat<strong>in</strong>g <strong>the</strong>usefulness <strong>of</strong> each <strong>of</strong> <strong>the</strong>m.27


2.5.2.1 Small-scale Di<strong>the</strong>r<strong>in</strong>gThe aim <strong>in</strong> small-scale di<strong>the</strong>r (<strong>the</strong> di<strong>the</strong>rs described above fall <strong>in</strong>to this category) is toreduce <strong>the</strong> level <strong>of</strong> fixed-frequency spurious content that is <strong>in</strong>troduced to a signal <strong>in</strong><strong>the</strong> A-D conversion process through quantisation error.Small-scale di<strong>the</strong>rs aim to ensure that <strong>the</strong> quantisation error <strong>in</strong> an o<strong>the</strong>rwise idealquantisation process results <strong>in</strong> white noise spread across <strong>the</strong> sampled spectrum, ra<strong>the</strong>rthan concentrated at specific frequencies.2.5.2.2 Large-scale Di<strong>the</strong>r<strong>in</strong>gThe aim <strong>of</strong> large-scale di<strong>the</strong>r is to average <strong>the</strong> high-order <strong>in</strong>tegral non-l<strong>in</strong>earities <strong>in</strong>an A-D transfer function, through <strong>the</strong> addition <strong>of</strong> large-scale (usually no more thanhalf <strong>of</strong> full-scale amplitude) noise followed by averag<strong>in</strong>g. This imposes restrictionson <strong>the</strong> usable dynamic range <strong>of</strong> <strong>the</strong> A-D converter [7], but may substantially improve<strong>the</strong> average l<strong>in</strong>earity <strong>of</strong> <strong>the</strong> converter [10]. A subtractive di<strong>the</strong>r scheme is used toelim<strong>in</strong>ate <strong>the</strong> high degradation <strong>in</strong> signal-to-noise ratio that results from <strong>the</strong> addition <strong>of</strong>high levels <strong>of</strong> noise prior to sampl<strong>in</strong>g.2.5.2.3 Mid-scale Di<strong>the</strong>r<strong>in</strong>g <strong>in</strong> Multi-Stage ConvertersPractical converter non-l<strong>in</strong>earities, such as DNL and INL discussed above will occurto various extents <strong>in</strong> regions <strong>of</strong> <strong>the</strong> transfer function. This is especially true <strong>of</strong> multistageA-D converters, as is described below.The total error result<strong>in</strong>g from DNL may be found by <strong>in</strong>tegrat<strong>in</strong>g <strong>the</strong> product <strong>of</strong> <strong>the</strong>pdf <strong>of</strong> <strong>the</strong> <strong>in</strong>put signal and <strong>the</strong> DNL errors over <strong>the</strong> <strong>in</strong>put signal range. The amount <strong>of</strong>non-l<strong>in</strong>earity <strong>in</strong>troduced by <strong>the</strong> conversion is <strong>the</strong>re<strong>for</strong>e dependant on <strong>the</strong> likelihood <strong>of</strong>samples occurr<strong>in</strong>g <strong>in</strong> code regions with poor differential or <strong>in</strong>tegral non-l<strong>in</strong>earity.In multi-stage sub-rang<strong>in</strong>g converters, <strong>the</strong> conversion is subdivided <strong>in</strong>to successiveconversion stages. A two-stage sub-rang<strong>in</strong>g converter, <strong>for</strong> example, uses two A-Dconverter stages. The first A-D converter per<strong>for</strong>ms a course conversion. The result<strong>in</strong>gdigitised sample is converted back to an analogue voltage and subtracted from <strong>the</strong>orig<strong>in</strong>al signal. The difference signal is scaled and fed <strong>in</strong>to <strong>the</strong> second A-D converterwhich per<strong>for</strong>ms a f<strong>in</strong>er-resolution conversion. The two A-D conversions are comb<strong>in</strong>edto <strong>for</strong>m <strong>the</strong> total output resolution <strong>of</strong> <strong>the</strong> A-D converter. S<strong>in</strong>ce <strong>the</strong> range <strong>of</strong> <strong>the</strong> secondA-D converter is used many times <strong>in</strong> <strong>the</strong> overall range <strong>of</strong> <strong>the</strong> A-D converter, any DNLerrors <strong>in</strong> <strong>the</strong> transfer function <strong>of</strong> <strong>the</strong> second A-D converter repeat at <strong>in</strong>tervals <strong>of</strong> 2 N ,28


where N is <strong>the</strong> number <strong>of</strong> bits <strong>in</strong> <strong>the</strong> first-stage A-D converter. S<strong>in</strong>ce <strong>the</strong>se errors arerepetitive, <strong>the</strong>ir likelihood <strong>of</strong> occurrence is <strong>in</strong>creased, result<strong>in</strong>g <strong>in</strong> a drastic decrease<strong>the</strong> average l<strong>in</strong>earity <strong>of</strong> <strong>the</strong> device[7].Add<strong>in</strong>g di<strong>the</strong>r noise <strong>of</strong> sufficient amplitude (<strong>of</strong> <strong>the</strong> order <strong>of</strong> <strong>the</strong> period <strong>of</strong> <strong>the</strong> repetitiveDNL errors <strong>in</strong> <strong>the</strong> transfer function) results <strong>in</strong> <strong>the</strong> error be<strong>in</strong>g sufficiently decorrelatedfrom <strong>the</strong> <strong>in</strong>put signal. The reduction <strong>in</strong> correlation between <strong>the</strong> <strong>in</strong>put signal and <strong>the</strong>DNL errors results <strong>in</strong> a reduction <strong>of</strong> <strong>the</strong> spurious harmonics <strong>of</strong> signals present at <strong>the</strong>converter <strong>in</strong>put.2.6 A-D Converter Input Level Match<strong>in</strong>gIn wideband digital receivers it is necessary to precede <strong>the</strong> A-D converter with analoguesignal condition<strong>in</strong>g.Analogue filter<strong>in</strong>g is necessary to limit <strong>the</strong> <strong>in</strong>put bandwidth and reduce alias<strong>in</strong>g toacceptable levels. Only energy with<strong>in</strong> <strong>the</strong> <strong>in</strong>put bandwidth is passed to <strong>the</strong> A-D converter,reduc<strong>in</strong>g <strong>the</strong> <strong>in</strong>put noise power and more importantly <strong>the</strong> signal energy at <strong>the</strong>A-D converter <strong>in</strong>put. In section 2.1 <strong>the</strong> relationship <strong>of</strong> signal energy to <strong>in</strong>stantaneousdynamic range was demonstrated.Analogue signal condition<strong>in</strong>g must also ensure that <strong>the</strong> received signal level is optimallymatched to <strong>the</strong> A-D converter <strong>in</strong>put voltage range. An optimal match is def<strong>in</strong>edas a match that achieves an optimal comb<strong>in</strong>ation <strong>of</strong> desired sensitivity and dynamicrange, with<strong>in</strong> <strong>the</strong> limits <strong>of</strong> analogue signal condition<strong>in</strong>g and A-D converter per<strong>for</strong>mance.This section discusses <strong>the</strong> optimal match<strong>in</strong>g <strong>of</strong> <strong>the</strong> analogue signal condition<strong>in</strong>g(<strong>in</strong> <strong>the</strong> <strong>for</strong>m <strong>of</strong> an analogue wideband receiver) and A-D converter <strong>in</strong>terface. Thediscussion is based on a similar discussion presented <strong>in</strong> [27].The follow<strong>in</strong>g section presents basic analogue receiver design <strong>the</strong>ory which will berequired <strong>for</strong> <strong>the</strong> discussion that follows.2.6.1 Characteristics <strong>of</strong> an Analogue Receiver Cha<strong>in</strong>For <strong>the</strong> purposes <strong>of</strong> ga<strong>in</strong>, noise and distortion analysis, a cascaded cha<strong>in</strong> <strong>of</strong> analoguecomponents may be modelled as a s<strong>in</strong>gle component, where:The overall ga<strong>in</strong> <strong>of</strong> <strong>the</strong> cascaded cha<strong>in</strong> is def<strong>in</strong>ed as[27]:G = G 1 G 2 ...G n (2.24)29


orG = G 1 + G 2 + ... + G n [dB] (2.25)where G 1 , G 2 , ... are <strong>the</strong> ga<strong>in</strong>s <strong>of</strong> <strong>the</strong> <strong>in</strong>dividual cascaded components.The overall noise figure F <strong>of</strong> <strong>the</strong> cascaded cha<strong>in</strong> is def<strong>in</strong>ed as[27]:F = F 1 + F 2 − 1+ F 3 − 1 F n − 1+ ... +(2.26)G 1 G 1 G 2 G 2 G 2 ...G n−1where F 1 , F 2 , ... are <strong>the</strong> noise figures <strong>of</strong> <strong>the</strong> <strong>in</strong>dividual cascaded components.The overall output third-order <strong>in</strong>tercept po<strong>in</strong>t <strong>of</strong> <strong>the</strong> cascade cha<strong>in</strong> is def<strong>in</strong>ed as[27]:GQ 3 =G 1Q 3,1+ G 1G 2Q 3,2+ ... + G (2.27)1G 2 ...G nQ 3,nwhere Q 3,1 , Q 3,2 , ... are <strong>the</strong> output third-order <strong>in</strong>tercept po<strong>in</strong>ts <strong>of</strong> each <strong>in</strong>dividualcomponent.The <strong>in</strong>tercept po<strong>in</strong>t may be used to determ<strong>in</strong>e <strong>the</strong> amplitude <strong>of</strong> <strong>the</strong> two-tone third-order<strong>in</strong>termodulation products by means <strong>of</strong> <strong>the</strong> follow<strong>in</strong>g equation[27]:(P 3 = 3 P o − 2 )3 Q 3 [dB] (2.28)where P o refers to <strong>the</strong> output power <strong>of</strong> <strong>the</strong> two signals.The third-order <strong>in</strong>tercept po<strong>in</strong>t may also be related to <strong>the</strong> two-tone dynamic range bymeans <strong>of</strong> <strong>the</strong> follow<strong>in</strong>g equation[13]:Q 3 = P o + R d(2.29)2where P o refers to <strong>the</strong> output power <strong>of</strong> <strong>the</strong> two signals and R d refers to <strong>the</strong> dynamicrange or difference <strong>in</strong> level between <strong>the</strong> test tones and <strong>the</strong> <strong>in</strong>termodulation products.In general, an analysis <strong>of</strong> <strong>the</strong> above equations leads to <strong>the</strong> follow<strong>in</strong>g guidel<strong>in</strong>es whichmay be followed <strong>in</strong> receiver design, <strong>in</strong> order to achieve ei<strong>the</strong>r high sensitivity or highl<strong>in</strong>earity:• Plac<strong>in</strong>g lossy elements at <strong>the</strong> front <strong>of</strong> an analogue cha<strong>in</strong> reduces <strong>the</strong> sensitivity<strong>of</strong> <strong>the</strong> receiver. A low noise figure amplifier may be placed <strong>in</strong> <strong>the</strong> front <strong>of</strong> <strong>the</strong>cha<strong>in</strong> to reduce <strong>the</strong> contribution <strong>of</strong> successive components to <strong>the</strong> overall noisefigure <strong>of</strong> <strong>the</strong> cha<strong>in</strong>.• Plac<strong>in</strong>g lossy elements at <strong>the</strong> end <strong>of</strong> <strong>the</strong> cha<strong>in</strong> <strong>in</strong>creases <strong>the</strong> third-order nonl<strong>in</strong>earity<strong>of</strong> <strong>the</strong> cascaded cha<strong>in</strong>. A high ga<strong>in</strong> amplifier placed at <strong>the</strong> end <strong>of</strong> <strong>the</strong>cha<strong>in</strong> may be used to reduce <strong>the</strong> contribution <strong>of</strong> preced<strong>in</strong>g elements with<strong>in</strong> <strong>the</strong>cha<strong>in</strong> on <strong>the</strong> overall third-order <strong>in</strong>tercept po<strong>in</strong>t.30


2.6.2 Comb<strong>in</strong>ed Analogue and A-D Converter Noise FigureUnder <strong>the</strong> assumption that <strong>the</strong> analogue <strong>in</strong>put circuitry may be modelled as a s<strong>in</strong>glecomponent as per <strong>the</strong> above discussion, Tsui[27] demonstrates that <strong>the</strong> noise figure <strong>of</strong><strong>the</strong> comb<strong>in</strong>ed analogue circuitry and A-D converter may be written as:F s = F + M ′ − M[dB] (2.30)where F refers to <strong>the</strong> overall noise figure <strong>of</strong> <strong>the</strong> analogue signal condition<strong>in</strong>g circuitryand M and M ′ are def<strong>in</strong>ed as follows:( )NoM = 10log 10 (2.31)N candM ′ = 10log 10 (M + 1) (2.32)where N o refers to <strong>the</strong> output noise power <strong>of</strong> <strong>the</strong> analogue circuitry and N c refers to<strong>the</strong> noise power <strong>of</strong> <strong>the</strong> A-D converter. In an ideal A-D converter, N c is <strong>the</strong> quantisationnoise power as def<strong>in</strong>ed <strong>in</strong> equation 2.11. M is thus <strong>the</strong> ratio <strong>of</strong> <strong>the</strong> analogue outputnoise power to <strong>the</strong> A-D converter noise power.2.6.3 Optimal Analogue and A-D Converter Interfac<strong>in</strong>gTsui[27] proposes to match <strong>the</strong> analogue <strong>in</strong>put circuitry to <strong>the</strong> A-D converter, wherematch<strong>in</strong>g is def<strong>in</strong>ed as follows:• At a certa<strong>in</strong> <strong>in</strong>put level, <strong>the</strong> level <strong>of</strong> third-order <strong>in</strong>termodulation products equals<strong>the</strong> output noise level.• The analogue circuitry amplifies this <strong>in</strong>put signal to <strong>the</strong> maximum allowable<strong>in</strong>put signal level <strong>of</strong> <strong>the</strong> A-D converter.From <strong>the</strong> above conditions, <strong>the</strong> required ga<strong>in</strong> and third-order <strong>in</strong>tercept po<strong>in</strong>t <strong>of</strong> <strong>the</strong>analogue <strong>in</strong>put circuitry can be obta<strong>in</strong>ed <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g manner:The <strong>in</strong>put power is chosen to be a particular level which will be referred to as P I . Thethird-order <strong>in</strong>tercept po<strong>in</strong>t may <strong>the</strong>n be calculated as[27]:Q 3 = 3P I − N 1 + 2G − F − B v − M ′ + M2(2.33)31


where Q 3 is <strong>the</strong> required overall third-order <strong>in</strong>tercept po<strong>in</strong>t <strong>of</strong> <strong>the</strong> analogue circuitrywith <strong>in</strong>put P I which produces <strong>the</strong> third-order <strong>in</strong>termodulation level which matches <strong>the</strong>noise <strong>in</strong> a bandwidth B v . N 1 refers to <strong>the</strong> noise level present at <strong>the</strong> amplifier <strong>in</strong>put atroom temperature (ca. -174 dBm) with unity bandwidth. B v is conventionally def<strong>in</strong>edas <strong>the</strong> process<strong>in</strong>g bandwidth <strong>of</strong> an N-po<strong>in</strong>t FFT whereB v = F sNand F s refers to <strong>the</strong> sample rate <strong>of</strong> <strong>the</strong> A-D converter.(2.34)The chosen <strong>in</strong>put power P I is related to <strong>the</strong> maximum A-D converter <strong>in</strong>put powerby[27]:PI + 6 + G = P sn [dBm] (2.35)whereP sn = 2(b−1) Q(2.36)2Rand b, Q and R refer to <strong>the</strong> number <strong>of</strong> bits, <strong>the</strong> quantisation level <strong>in</strong> volts and <strong>the</strong> <strong>in</strong>putimpedance <strong>of</strong> <strong>the</strong> A-D converter respectively. Noise present at <strong>the</strong> A-D converter <strong>in</strong>putmay require that <strong>the</strong> maximum <strong>in</strong>put power P sn be marg<strong>in</strong>ally reduced. The requiredga<strong>in</strong> can thus be determ<strong>in</strong>ed <strong>for</strong> <strong>the</strong> chosen <strong>in</strong>put power P I .The dynamic range can be found by[27]:DR = P I + G − P 3 (2.37)where <strong>the</strong> third order <strong>in</strong>termodulation product P 3 equals <strong>the</strong> noise floor. P 3 may becomputed as[27]:P 3 = N 1 + G + F + B v + M ′ − M[dBm] (2.38)Tsui demonstrates how <strong>the</strong> above equations may be used to tabulate G, Q 3 , P 3 , F 3and DR <strong>for</strong> various values <strong>of</strong> M, such that a designer may optimally choose a desiredcomb<strong>in</strong>ation <strong>of</strong> noise figure and dynamic range to meet <strong>the</strong> requirements <strong>of</strong> a particularapplication.2.7 Selection <strong>of</strong> a Wideband A-D ConverterMuch <strong>of</strong> chapter 2 has been devoted to identify<strong>in</strong>g <strong>the</strong> characteristics <strong>of</strong> an A-D converterthat are important to <strong>the</strong> wideband digitisation <strong>of</strong> RF signals. This sectionconsiders <strong>the</strong> selection <strong>of</strong> an A-D converter that meets <strong>the</strong>se characteristics.32


2.7.1 A-D Converter ArchitecturesA-D converters are largely based on one <strong>of</strong> five fundamental architectures: successiveapproximation(SAR), sigma-delta, flash, subrang<strong>in</strong>g (pipel<strong>in</strong>ed), and bit-per-stage (ripple).A useful description <strong>of</strong> <strong>the</strong> architectures and features <strong>of</strong> each converter type maybe found <strong>in</strong> [1]. In general, <strong>the</strong> follow<strong>in</strong>g is noted:• SAR A-D converters are limited <strong>in</strong> terms <strong>of</strong> both sampl<strong>in</strong>g rate and dynamicrange, and are primarily used <strong>in</strong> multiplexed data acquisition systems.• Sigma-delta converters <strong>of</strong>fer excellent dynamic range, but are limited <strong>in</strong> terms <strong>of</strong>bandwidth due to high oversampl<strong>in</strong>g ratios. Oversampl<strong>in</strong>g relaxes <strong>the</strong> requirementson <strong>the</strong> analogue anti-alias<strong>in</strong>g filter, however. Quantisation noise shap<strong>in</strong>gis used to improve signal-to-noise ratio. Bandpass sigma-delta techniques maybe used to sample IF (bandpass) signals. The A-D architecture must be designed<strong>for</strong> <strong>the</strong> specific frequencies required by <strong>the</strong> system application, limit<strong>in</strong>g<strong>the</strong> flexibility <strong>of</strong> this approach.• Flash converters provide extremely high sampl<strong>in</strong>g rates, but are limited <strong>in</strong> terms<strong>of</strong> resolution, due to <strong>the</strong>ir hardware-<strong>in</strong>tensive parallel architectures.• Subrang<strong>in</strong>g or pipel<strong>in</strong>ed A-D converters achieve sample rates close to those<strong>of</strong> flash converters, while ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g high resolution. A Gray-coded outputbit-per-stage, proposed by F.D. Waldhauer has been successfully used <strong>in</strong> highspeed ADC architectures [1]. In a pipel<strong>in</strong>ed architecture, <strong>the</strong> conversion is per<strong>for</strong>medby multiple pipel<strong>in</strong>ed high-speed, low resolution converters (flash orGray-coded bit-per-stage converters) which are partially overlapped to <strong>for</strong>m ahigh-resolution, high speed architecture. Current state-<strong>of</strong>-<strong>the</strong>-art allows sampl<strong>in</strong>grates <strong>of</strong> up to 105 MSPS at 14-bit resolution. It should be noted that manysubrang<strong>in</strong>g A-D converters are well-suited to bandpass sampl<strong>in</strong>g, with analogue<strong>in</strong>put bandwidths <strong>in</strong> excess <strong>of</strong> 250 MHz.2.7.2 Survey <strong>of</strong> Commercially Available Wideband A-D ConvertersThe previous section identified pipel<strong>in</strong>ed architectures as be<strong>in</strong>g <strong>the</strong> architecture <strong>of</strong>choice <strong>for</strong> wideband applications. A brief comparison <strong>of</strong> commercially available architecturesnow follows.The aim was to identify converters which could meet <strong>the</strong> system requirements as expressed<strong>in</strong> table 1.1, as well as sampl<strong>in</strong>g <strong>the</strong> HF spectrum (2-30 MHz) and bandwidths33


at higher IF’s (70 MHz), if <strong>the</strong>se were available. It is noted that <strong>in</strong> order to sample <strong>the</strong>HF spectrum, a converter would require a sample rate greater than 60 MSPS <strong>in</strong> orderto meet <strong>the</strong> Nyquist criterion. Cost was not a primary consideration <strong>in</strong> <strong>the</strong> choice <strong>of</strong>converter.• Analog Devices Inc. <strong>of</strong>fer a range <strong>of</strong> 12- and 14-bit pipel<strong>in</strong>ed converters, withsampl<strong>in</strong>g frequencies which extend to greater than 100 MSPS (<strong>in</strong> <strong>the</strong> case <strong>of</strong><strong>the</strong> 12-bit converters). The AD6644 was s<strong>in</strong>gled out as <strong>the</strong> converter <strong>of</strong> choice,<strong>of</strong>fer<strong>in</strong>g 14-bit resolution at a maximum sampl<strong>in</strong>g rate <strong>of</strong> 65 MSPS 4 . The devicewas <strong>of</strong>fered <strong>in</strong> sample quantities at <strong>the</strong> time that <strong>the</strong> choice was made.• Intersil <strong>of</strong>fers <strong>the</strong> HI5905, a 14-bit converter with a 5 MSPS sampl<strong>in</strong>g frequency.• Burr Brown/Texas Instruments <strong>of</strong>fer <strong>the</strong> ADS850 14-bit, 10 MSPS converter, aswell as <strong>the</strong> 12-bit, 80 MSPS ADS809. Prelim<strong>in</strong>ary data sheets were released <strong>for</strong><strong>the</strong> ADS852, a 14-bit, 65 MSPS device presumably <strong>in</strong> direct competition with<strong>the</strong> AD6644. At time <strong>of</strong> publish<strong>in</strong>g, <strong>the</strong> device is commercially unavailable.• National semiconductor <strong>of</strong>fer <strong>the</strong> CLC5958 14-bit, 52 MSPS A-D converter.Various o<strong>the</strong>r manufacturers were considered, but <strong>the</strong>ir products were limited <strong>in</strong> terms<strong>of</strong> ei<strong>the</strong>r resolution or sampl<strong>in</strong>g frequency.This concludes <strong>the</strong> survey <strong>of</strong> high-speed, high dynamic range A-D converters. It isevident that <strong>the</strong> Analog Devices AD6644 and <strong>the</strong> National Semiconductor CLC5958converters both satisfy <strong>the</strong> bandwidth requirements at 14-bit resolution.2.7.3 Comparison <strong>of</strong> AD6644 and CLC5958It is necessary to per<strong>for</strong>m a careful comparison <strong>of</strong> A-D converters, s<strong>in</strong>ce manufacturersmay specify converters <strong>in</strong> different ways. An example <strong>of</strong> this is that spurious levelsmay be def<strong>in</strong>ed relative to full scale (dBFS) or relative to <strong>the</strong> carrier (dBc). Whenconsider<strong>in</strong>g spurious levels, careful attention should be given to <strong>the</strong> analogue <strong>in</strong>putlevels and frequencies at which tests are per<strong>for</strong>med, as per<strong>for</strong>mance is generally notconsistent over <strong>the</strong> entire Nyquist band, and analogue <strong>in</strong>put levels contribute directlyto spurious level. In general, harmonic spurious per<strong>for</strong>mance may be seen to degradewith <strong>in</strong>creased frequency and <strong>in</strong>creased signal amplitude. The spurious per<strong>for</strong>mance<strong>of</strong> a pipel<strong>in</strong>ed A-D converter may not be a monotonic function <strong>of</strong> <strong>in</strong>put amplitude,however, due to <strong>the</strong> repetitive nature <strong>of</strong> its DNL errors, as described <strong>in</strong> section 2.5.2.1.4 The range has s<strong>in</strong>ce been extended to 80 MSPS and 105 MSPS devices.34


Table 2.2 provides a comparison <strong>of</strong> <strong>the</strong> per<strong>for</strong>mance <strong>of</strong> <strong>the</strong> AD6644 and <strong>the</strong> CLC5958A-D converters. Many <strong>of</strong> <strong>the</strong> comparative measurements were per<strong>for</strong>med at differentanalogue <strong>in</strong>put frequencies. Where <strong>the</strong> <strong>in</strong>put frequencies differed, <strong>the</strong> device with <strong>the</strong>lower per<strong>for</strong>mance was tested at lower frequencies than <strong>the</strong> device with <strong>the</strong> higher per<strong>for</strong>mance.S<strong>in</strong>ce per<strong>for</strong>mance may be seen to degrade with frequency, <strong>the</strong> comparisonfavours <strong>the</strong> lower per<strong>for</strong>m<strong>in</strong>g device and <strong>the</strong>re<strong>for</strong>e may be considered fair.The AD6644 has a higher analogue bandwidth than <strong>the</strong> CLC5958. It supports highersampl<strong>in</strong>g rates.The AD6644 has a 3 dB better SNR and a 5 dB better SINAD. The noise levels aresignificantly greater than <strong>the</strong> distortion levels, and it is <strong>the</strong>re<strong>for</strong>e expected that <strong>the</strong>SINAD measure is dom<strong>in</strong>ated by noise as opposed to distortion. The aperture jitter <strong>of</strong><strong>the</strong> AD6644 is lower than that <strong>of</strong> <strong>the</strong> CLC5958. These measures <strong>in</strong>dicate that <strong>the</strong> noise<strong>in</strong>troduced by <strong>the</strong> AD6644 is lower than that <strong>of</strong> <strong>the</strong> CLC5958 over <strong>the</strong> entire range <strong>of</strong><strong>in</strong>put frequencies, with <strong>the</strong> noise per<strong>for</strong>mance <strong>of</strong> <strong>the</strong> AD6644 <strong>in</strong>creas<strong>in</strong>g relative to<strong>the</strong> CLC5958 as <strong>the</strong> frequency <strong>of</strong> signals present at <strong>the</strong> analogue <strong>in</strong>put <strong>in</strong>creases, dueto <strong>the</strong> lower aperture jitter <strong>of</strong> <strong>the</strong> AD6644.The figures also <strong>in</strong>dicate that <strong>the</strong> harmonic distortion is lower <strong>in</strong> <strong>the</strong> AD6644 device.This is fur<strong>the</strong>r confirmed by <strong>the</strong> dynamic per<strong>for</strong>mance plots supplied <strong>in</strong> <strong>the</strong> data sheets<strong>of</strong> <strong>the</strong> respective devices, as well as <strong>the</strong> static INL and DNL measures.The ga<strong>in</strong> and <strong>of</strong>fset error per<strong>for</strong>mance measures favour <strong>the</strong> CLC5958 device. Thesemeasures do not, however, impact significantly on <strong>the</strong> per<strong>for</strong>mance <strong>in</strong> an IF sampl<strong>in</strong>garchitecture, as detailed <strong>in</strong> section 2.3.2.1.The AD6644 device was <strong>the</strong>re<strong>for</strong>e selected as <strong>the</strong> A-D converter <strong>for</strong> <strong>the</strong> implementedsystem.35


AD6644 CLC5958Maximum sampl<strong>in</strong>g rate 65 52 MSPSNumber <strong>of</strong> bits 14 14 bitsAnalogue <strong>in</strong>put bandwidth 250 210 MHzSignal-to-noise ratio 5 74.0 71.0 dBFSSINAD 5 74 69 dBWorst Harmonic Distortion 5 (2 nd or 3 rd ) -90 -89 dBcWorst Harmonic Distortion 5 (O<strong>the</strong>r) -92 -91 dBcTwo-tone IM Distortion 7 -100 -100 dBFSOffset Error (Typical) 3 2 mVGa<strong>in</strong> Error (Typical) -6 2 %FSDNL 0.25 0.3 LSBsINL 0.5 1.5 LSBsAperture Jitter 0.2 0.5 ps RMS5 Measured with a s<strong>in</strong>gle tone at -1 dBFS <strong>of</strong> frequency 15 MHz (AD6644) and 5 MHz (CLC5958)applied to <strong>the</strong> analogue <strong>in</strong>put6 Measured with signal A at 12 MHz (AD6644) and 15 MHz (CLC5958) respectively, and signal B at15 MHz (AD6644) and 15.5 MHz (CLC5958)respectively.Table 2.2: A comparison <strong>of</strong> <strong>the</strong> AD6644 and CLC5958 A-D converters36


Chapter 3Digital Down-conversion andMultirate Signal Process<strong>in</strong>gChapter 2 described <strong>the</strong> wideband digitisation <strong>of</strong> IF-sampled signals. After <strong>the</strong> receivedspectrum has been sampled, it is necessary <strong>for</strong> <strong>the</strong> signal to undergo fur<strong>the</strong>rprocess<strong>in</strong>g <strong>in</strong> order to achieve <strong>the</strong> desired receiver output. The digitised IF signalis typically translated to baseband after which demodulation or spectral analysis isper<strong>for</strong>med.The high sample rates required to digitise wide bandwidths at high IFs generally makeit ei<strong>the</strong>r <strong>in</strong>feasible or not economically viable to per<strong>for</strong>m all <strong>of</strong> <strong>the</strong> subsequent signalprocess<strong>in</strong>g at <strong>the</strong> full sample rate. The sample rate must be reduced early on <strong>in</strong> <strong>the</strong>digital signal process<strong>in</strong>g to <strong>the</strong> m<strong>in</strong>imum rate at which <strong>the</strong> required output bandwidthcan be unambiguously represented. The process <strong>of</strong> sample rate reduction, referredto as decimation, results <strong>in</strong> a reduction <strong>in</strong> <strong>the</strong> subsequent process<strong>in</strong>g requirements.Digital filter<strong>in</strong>g is required prior to sample rate reduction <strong>in</strong> order to prevent alias<strong>in</strong>gambiguities. It also serves to reduce quantisation noise, if additional resolution isavailable <strong>in</strong> <strong>the</strong> process<strong>in</strong>g stages.This chapter focuses on <strong>the</strong> techniques and efficient architectures used to per<strong>for</strong>mspectral translation to baseband, digital filter<strong>in</strong>g and sample rate reduction, which arecommonly referred to as digital down-conversion. The discussion is focussed aroundefficient hardware implementations, s<strong>in</strong>ce s<strong>of</strong>tware solutions are currently <strong>in</strong>feasibleat high sampl<strong>in</strong>g rates.37


3.1 A Generalised IF Sampl<strong>in</strong>g Receiver ArchitectureAntennaWidebandanalogue down-conversion to IF /signal condition<strong>in</strong>gWidebandanalogue-to-digitalconversionQuadraturedigital Digitaldown-Digitalconversion down- to toconversion basebandtobasebandDigitalfilter<strong>in</strong>gDigitalDigital anddecimationfilter<strong>in</strong>g anddecimationfilter<strong>in</strong>g anddecimationBasebandprocess<strong>in</strong>gBasebandBaseband(spectralprocess<strong>in</strong>gprocess<strong>in</strong>g analysis,demodulation,(spectral analysis,demodulation,(spectral analysis, DF,DF,demodulation, etc.)etc.)DF,etc.)Figure 3.1: A generalised IF-sampl<strong>in</strong>g digital receiver.Figure 3.1 shows a generalised architecture <strong>of</strong> an IF-sampl<strong>in</strong>g wideband digital receiver.While variations on <strong>the</strong> architecture exist, <strong>the</strong> functions <strong>of</strong> frequency translation,filter<strong>in</strong>g and decimation are common to most architectures. The architecture canbe seen to have evolved from <strong>the</strong> conventional analogue super-heterodyne architecture.The <strong>in</strong>put signal received by <strong>the</strong> antenna undergoes analogue signal process<strong>in</strong>g<strong>in</strong> order to reduce received bandwidth (reduc<strong>in</strong>g received energy and noise), regulate<strong>the</strong> received signal level us<strong>in</strong>g manual ga<strong>in</strong> control (MGC) or automatic ga<strong>in</strong> control(AGC), and translate <strong>the</strong> wideband spectrum to a suitable IF <strong>for</strong> A-D conversion,if necessary. The sampled IF signal is translated <strong>in</strong> frequency to baseband, conventionallyby means <strong>of</strong> multiply<strong>in</strong>g <strong>the</strong> signal with a local quadrature digital oscillator.Filter<strong>in</strong>g is <strong>the</strong>n employed <strong>in</strong> order to reduce or reject out-<strong>of</strong>-band signals, such that<strong>the</strong>y will not alias <strong>in</strong>to <strong>the</strong> band-<strong>of</strong>-<strong>in</strong>terest or negatively affect subsequent signal process<strong>in</strong>g.Decimation is used to reduce <strong>the</strong> signal rate <strong>in</strong> order to ease <strong>the</strong> burden onsubsequent signal process<strong>in</strong>g. The follow<strong>in</strong>g sections exam<strong>in</strong>e <strong>the</strong> digital signal process<strong>in</strong>gpath <strong>in</strong> more detail.3.2 Spectral Translation <strong>of</strong> IFs to BasebandSpectral translation is necessary <strong>in</strong> order to translate <strong>the</strong> bandwidth <strong>of</strong> <strong>in</strong>terest to baseband(DC) or a lower IF frequency. It is common to per<strong>for</strong>m <strong>the</strong> digital frequencytranslation <strong>in</strong> hardware, which is <strong>of</strong>ten required to operate at <strong>the</strong> full sampl<strong>in</strong>g rate <strong>of</strong><strong>the</strong> A-D converter.38


3.2.1 Spectral translation through quadrature digital mix<strong>in</strong>gThe conventional and most flexible approach to digital spectral translation is to multiply<strong>the</strong> digitised samples by <strong>the</strong> complex vector e j2π f cnt s +θ , where f c is <strong>the</strong> desiredspectral shift, n is a sample <strong>in</strong>dex<strong>in</strong>g variable, t s is <strong>the</strong> sampl<strong>in</strong>g period and θ is aconstant express<strong>in</strong>g <strong>the</strong> phase <strong>of</strong>fset.This is achieved by means <strong>of</strong> Euler’s identity, which is used to separate <strong>the</strong> complexexponential <strong>in</strong>to real or “<strong>in</strong>-phase” and imag<strong>in</strong>ary or “quadrature phase” s<strong>in</strong>usoidalconstituents. The sampled signal is separately multiplied by <strong>the</strong> <strong>in</strong>-phase andquadrature-phase s<strong>in</strong>usoids, as depicted <strong>in</strong> figure 3.2. Digital s<strong>in</strong>usoidal signal sourcesi(n)cos(2π f c nt s )x(n)x(t) ADC -90degreesi lp(n)i(n)+jq(n) {lp}q(n)q lp(n)f sPSfrag replacementss<strong>in</strong>(2π f c nt s )Figure 3.2: The quadrature digital mix<strong>in</strong>g process.<strong>of</strong> programmable frequency and phase, commonly referred to as a digital signal syn<strong>the</strong>sisers(DSS) or numerically controlled oscillators (NCOs) are commonly usedto create <strong>the</strong> quadrature signals. The result<strong>in</strong>g output signal is a spectrally translatedcomplex signal that is separated <strong>in</strong>to <strong>in</strong>-phase and quadrature-phase components.NCOs are typically implemented us<strong>in</strong>g programmable phase accumulators followedby s<strong>in</strong>ewave look-up tables, as described <strong>in</strong> [4]. NCO-related quantisation errors as aresult <strong>of</strong> low phase or amplitude resolution <strong>in</strong> <strong>the</strong> NCO circuitry may manifest <strong>the</strong>mselvesas spurious signals. [4] provides a quantitative analysis <strong>of</strong> <strong>the</strong> errors <strong>in</strong>volved<strong>in</strong> digital signal syn<strong>the</strong>sis.39


3.2.2 Hardware-Efficient Frequency TranslationIf <strong>the</strong> sampl<strong>in</strong>g frequency is related to <strong>the</strong> centre frequency <strong>of</strong> <strong>the</strong> spectrum by f s = 4 f c<strong>the</strong>n <strong>the</strong> hardware required to per<strong>for</strong>m quadrature down-conversion can be substantiallyreduced [17]. Down-conversion <strong>of</strong> bands at f s4, with θ = 0 require that <strong>the</strong> NCOgenerate sampless(n) = i(n) + jq(n)= cos ( ) (nπ2+ js<strong>in</strong>nπ2) (3.1)which may be reduced to <strong>the</strong> repetitive sequencesandi(0) = 1i(1) = 0i(2) = −1i(3) = 0i(n + 4) = i(n)q(0) = 0q(1) = 1q(2) = 0q(3) = −1q(n + 4) = q(n)(3.2)(3.3)The multiplication <strong>of</strong> a discrete signal by <strong>the</strong> above sequence can be implemented byhardware efficient circuitry which implements sign changes and zero<strong>in</strong>g <strong>of</strong> appropriatesamples <strong>in</strong> <strong>the</strong> discrete <strong>in</strong>put sequence, as opposed to hardware multipliers whichhave comparatively higher hardware complexity and <strong>the</strong>re<strong>for</strong>e reduced speed <strong>of</strong> operation.A memory-<strong>in</strong>tensive s<strong>in</strong>usoidal wave<strong>for</strong>m look-up table is also elim<strong>in</strong>ated <strong>in</strong>this scheme.3.2.3 Per<strong>for</strong>mance Advantages <strong>of</strong> Digital Spectral TranslationAt this stage it is important to note one <strong>of</strong> <strong>the</strong> key advantages <strong>of</strong> digital frequencytranslation over analogue mix<strong>in</strong>g: Analogue mixers are non-l<strong>in</strong>ear devices that relyon <strong>the</strong> second order (square) term to achieve frequency translation[27]. The outputcurrent <strong>of</strong> an analogue mixer may be related to <strong>the</strong> <strong>in</strong>put voltage by:I = a 0 + a 1 V + a 2 V 2 + a 3 V 3 + ... (3.4)where V represents <strong>the</strong> sum <strong>of</strong> <strong>the</strong> <strong>in</strong>put voltage and <strong>the</strong> local oscillator, a x <strong>the</strong> coefficient<strong>of</strong> <strong>the</strong> term <strong>of</strong> order x and I <strong>the</strong> output current. It is common <strong>for</strong> mixers to exhibit40


significant non-second order output. Both second order and non-second order termsresult <strong>in</strong> mixed products at frequencies o<strong>the</strong>r than f c + f lo and f c − f lo , where f c refersto <strong>the</strong> centre frequency <strong>of</strong> <strong>the</strong> signal passband and f lo is <strong>the</strong> frequency <strong>of</strong> <strong>the</strong> localoscillator. This is <strong>in</strong> contrast to a digital multiplier, s<strong>in</strong>ce <strong>the</strong> multiplication operatorresults <strong>in</strong> only <strong>the</strong> translated bands centred at f c − f l o and f c + f lo be<strong>in</strong>g present <strong>in</strong> <strong>the</strong>output. In <strong>the</strong> case <strong>of</strong> digital frequency translation, non-l<strong>in</strong>earity is <strong>in</strong>troduced throughquantisation errors, but <strong>the</strong>se may be reliably limited through appropriate choice <strong>of</strong>process<strong>in</strong>g resolution.3.3 Digital Resampl<strong>in</strong>g and Multirate Signal Process<strong>in</strong>gDigital resampl<strong>in</strong>g may be used to reduce <strong>the</strong> sample rate to <strong>the</strong> m<strong>in</strong>imum rate requiredto represent <strong>the</strong> <strong>in</strong><strong>for</strong>mation content <strong>of</strong> a signal, prior to per<strong>for</strong>m<strong>in</strong>g process<strong>in</strong>g on it.Digital resampl<strong>in</strong>g is used to convert <strong>the</strong> sampl<strong>in</strong>g rate <strong>of</strong> a discrete signal from a givenrate F = 1 T to a different rate F′ = 1 T ′ after <strong>the</strong> signal has been sampled. When <strong>the</strong> newsampl<strong>in</strong>g rate F ′ is higher than <strong>the</strong> orig<strong>in</strong>al sampl<strong>in</strong>g rate <strong>the</strong> process is referred to as<strong>in</strong>terpolation, while a reduction <strong>in</strong> <strong>the</strong> sampl<strong>in</strong>g rate is referred to as decimation. If<strong>the</strong> ratio <strong>of</strong> <strong>the</strong> orig<strong>in</strong>al and new sample rates is restricted such thatT ′T = M L(3.5)where M and L are <strong>in</strong>tegers, computational, storage and control efficiencies may berealised [8]. A thorough coverage <strong>of</strong> multirate signal process<strong>in</strong>g may be found <strong>in</strong>Crochiere et al.[8]. The processes <strong>of</strong> <strong>in</strong>teger decimation, <strong>in</strong>teger <strong>in</strong>terpolation anddecimation by non-<strong>in</strong>teger factors is briefly summarised below.3.3.1 Decimation by Integer FactorsDecimation by an <strong>in</strong>teger factor M <strong>in</strong>volves reduc<strong>in</strong>g <strong>the</strong> sampl<strong>in</strong>g rate <strong>of</strong> a signal,such thatT = M 1The resultant sampl<strong>in</strong>g rate may be expressed asT ′(3.6)F ′ = F M(3.7)41


The sample rate reduction is achieved by reta<strong>in</strong><strong>in</strong>g every Mth sample <strong>of</strong> <strong>the</strong> <strong>in</strong>putsignal x(n) to <strong>for</strong>m <strong>the</strong> sequence y(m). Lowpass digital filter<strong>in</strong>g is conventionallyper<strong>for</strong>med at <strong>the</strong> orig<strong>in</strong>al sample rate prior to sample rate reduction <strong>in</strong> order to limit<strong>the</strong> alias<strong>in</strong>g at <strong>the</strong> lower sampl<strong>in</strong>g rate. For unity ga<strong>in</strong> through <strong>the</strong> decimator, <strong>the</strong>lowpass filter should approximate <strong>the</strong> ideal characteristicH(e jω ) ={1, |ω| ≤2πF ′ T2= π M0, o<strong>the</strong>rwise(3.8)Figure 3.3 illustrates <strong>the</strong> process <strong>of</strong> decimation by an <strong>in</strong>teger factor M.a)x(n)h(n)x lp(n)My(m)|X(f)|b)f0F/2F|X lp (f)|c)f0F/2F|Y(f)|d)f0F'/2F'FFigure 3.3: Decimation by an <strong>in</strong>teger factor M=4.3.3.2 Interpolation by Integer FactorsFor a sampl<strong>in</strong>g rate <strong>in</strong>crease by a factor L, such thatT ′T = 1 L(3.9)42


<strong>the</strong> result<strong>in</strong>g sampl<strong>in</strong>g rate may be expressed asF ′ = LF (3.10)Increas<strong>in</strong>g <strong>the</strong> sampl<strong>in</strong>g rate by a factor L requires <strong>the</strong> <strong>in</strong>sertion <strong>of</strong> L − 1 zero-valuedsamples between each pair <strong>of</strong> adjacent samples <strong>in</strong> <strong>the</strong> orig<strong>in</strong>al sequence x(n), <strong>for</strong>m<strong>in</strong>g<strong>the</strong> <strong>in</strong>termediate signalw(m) ={ (xmL), m = 0,±L,±2L,...0, o<strong>the</strong>rwise(3.11)The spectrum <strong>of</strong> w(m) conta<strong>in</strong>s images <strong>of</strong> <strong>the</strong> baseband spectrum centred at harmonics<strong>of</strong> <strong>the</strong> orig<strong>in</strong>al sampl<strong>in</strong>g frequency, as illustrated <strong>in</strong> figure 3.4 (c). To recover <strong>the</strong>baseband signal <strong>of</strong> <strong>in</strong>terest and reject <strong>the</strong> unwanted image components, it is necessaryto filter <strong>the</strong> signal w(m) with a digital lowpass filter which approximates <strong>the</strong> idealcharacteristic{H(e jω L, |ω| ≤2πFT ′) =2= π L(3.12)0, o<strong>the</strong>rwiseA ga<strong>in</strong> factor L has been <strong>in</strong>cluded <strong>in</strong> <strong>the</strong> filter, <strong>in</strong> order to compensate <strong>for</strong> <strong>the</strong> lossresult<strong>in</strong>g from <strong>the</strong> <strong>in</strong>sertion <strong>of</strong> <strong>the</strong> zero-valued samples. The process <strong>of</strong> <strong>in</strong>teger <strong>in</strong>terpolationis depicted <strong>in</strong> figure 3.4.3.3.3 Resampl<strong>in</strong>g by Non-Integer FactorsDecimation or <strong>in</strong>terpolation by non-<strong>in</strong>teger factors can be achieved by cascad<strong>in</strong>g <strong>the</strong>processes <strong>of</strong> <strong>in</strong>teger <strong>in</strong>terpolation and <strong>in</strong>teger decimation. This results <strong>in</strong> resampl<strong>in</strong>gby rational factors that adhere to <strong>the</strong> restrictions expressed <strong>in</strong> equation 3.5, whichfavour a reduced complexity <strong>of</strong> implementation. The rate conversion is achieved byfirst <strong>in</strong>creas<strong>in</strong>g <strong>the</strong> sampl<strong>in</strong>g rate by an <strong>in</strong>teger factor L, and <strong>the</strong>n decreas<strong>in</strong>g it by<strong>the</strong> <strong>in</strong>teger factor M. It is imperative that <strong>the</strong> <strong>in</strong>terpolation precedes <strong>the</strong> decimation toprevent loss <strong>of</strong> <strong>in</strong><strong>for</strong>mation [8].In <strong>the</strong> a<strong>for</strong>ementioned structure, <strong>the</strong> digital filters required <strong>for</strong> <strong>the</strong> <strong>in</strong>teger <strong>in</strong>terpolationand decimation processes both run at <strong>the</strong> <strong>in</strong>terpolated sample rate, and may becomb<strong>in</strong>ed <strong>in</strong>to a s<strong>in</strong>gle filter. S<strong>in</strong>ce <strong>the</strong> filter must serve <strong>the</strong> purposes <strong>of</strong> both <strong>the</strong> <strong>in</strong>terpolationand <strong>the</strong> decimation filter<strong>in</strong>g, it should be designed to approximate <strong>the</strong> ideallowpass filter characteristic:H(e jω ) ={L, |ω ′′ | ≤ m<strong>in</strong>| π L , M π |0, o<strong>the</strong>rwise(3.13)43


a)x(n)Lw(m)h(m)y(m)F F' F'|X(f)|Ab)f0F/2F|W(f)|c)A/L0F'/2F'f|Y(f)|Ad)0F'/2F'fFigure 3.4: Interpolation by an <strong>in</strong>teger factor M=4.wherew ′′ = 2π f T L(3.14)Figure 3.5 serves as a block diagram <strong>of</strong> <strong>the</strong> rational resampl<strong>in</strong>g scheme. The <strong>in</strong>dividualprocesses <strong>of</strong> <strong>in</strong>teger <strong>in</strong>terpolation and decimation are shown <strong>in</strong> (a), while <strong>the</strong> efficientcomb<strong>in</strong>ed-filter implementation is shown <strong>in</strong> (b).3.3.4 Efficient Architectures <strong>for</strong> Integer DecimationThe high sampl<strong>in</strong>g rates at which decimation filter<strong>in</strong>g may be required to operate hascreated a need <strong>for</strong> hardware-efficient decimation filter<strong>in</strong>g. Two methods <strong>of</strong> comb<strong>in</strong>eddigital filter<strong>in</strong>g and decimation have ga<strong>in</strong>ed recognition due to <strong>the</strong>ir memory efficienciesand ability to operate at high speeds, namely half-band F<strong>in</strong>ite Impulse Response(FIR) filter<strong>in</strong>g and cascaded <strong>in</strong>tegrator-comb (CIC) filters. An explanation <strong>of</strong> bothschemes follows, motivat<strong>in</strong>g <strong>the</strong> usefulness <strong>of</strong> each <strong>in</strong> decimat<strong>in</strong>g applications.44


(a)x(n) s(k) y(m)Lh i (k)h d (k)MF F''=LF F'=LF/M(b)x(n)La(k)h(k)b(k)My(m)F F''=LF F'' F'=LF/MFigure 3.5: Resampl<strong>in</strong>g by a rational factor L M .3.3.4.1 Half-band FIR Decimation FiltersThe half-band FIR filter may be considered as a special case <strong>of</strong> FIR filter<strong>in</strong>g, where<strong>the</strong> filter characteristics are constra<strong>in</strong>ed as follows [8]:δ s = δ p = δω s = π − ω p(3.15)where δ s and δ p refer to <strong>the</strong> ripple <strong>in</strong> <strong>the</strong> stopband and passband respectively, as depicted<strong>in</strong> figure 3.6, and ω s and ω p refer to <strong>the</strong> stopband and passband cut-<strong>of</strong>f frequenciesrespectively.PSfrag replacements1 + δ pδ1∆ω∆ω0.5δ s00ω pπω s2πFigure 3.6: Halfband filter frequency response.45


The result<strong>in</strong>g equiripple optimal solution has <strong>the</strong> frequency doma<strong>in</strong> characteristic thatH(e jω ) = 1 − H(e j(π−ω) ) (3.16)The frequency response is thus symmetric about ω = π 2. Fur<strong>the</strong>rmore, <strong>the</strong> filter coefficientshave <strong>the</strong> property thath(k) ={ 1, k = 00, k = ±2,±4,...(3.17)This time-doma<strong>in</strong> property results <strong>in</strong> a substantial reduction <strong>in</strong> <strong>the</strong> number <strong>of</strong> multiplicationsrequired per output sample. For <strong>the</strong> general case <strong>of</strong> a T -tap half-bandfilter, T+12+ 1 multiplications are required per output sample. The half-band filtersfrequency and time doma<strong>in</strong> properties result <strong>in</strong> useful filter structures <strong>for</strong> per<strong>for</strong>m<strong>in</strong>gefficient decimation by a factor <strong>of</strong> two 1 .3.3.4.2 Cascaded Integrator-Comb FiltersHogenauer [12] proposed <strong>the</strong> structure <strong>for</strong> a multiplierless, m<strong>in</strong>imal storage decimat<strong>in</strong>gfilter that is well-suited to economical hardware implementations. The cascaded<strong>in</strong>tegrator-comb (CIC) filter consists <strong>of</strong> an <strong>in</strong>tegrator section which operates at <strong>the</strong>higher sampl<strong>in</strong>g rate and a comb section operat<strong>in</strong>g at <strong>the</strong> low sampl<strong>in</strong>g rate, as depicted<strong>in</strong> figure 3.7. The <strong>in</strong>tegrator section consists <strong>of</strong> N ideal digital <strong>in</strong>tegrator stagesComb SectionStage 1 Stage N Stage N+1 Stage 2NZ -1 Integrator SectionZ -1 Z -MZ -M-1-1fsfs fs/R fs/RFigure 3.7: Structure <strong>of</strong> a CIC decimat<strong>in</strong>g filter.operat<strong>in</strong>g at <strong>the</strong> higher sample rate f s . The comb section operates at <strong>the</strong> lower sampl<strong>in</strong>grate f sR, where R is <strong>the</strong> <strong>in</strong>teger decimation factor and is composed <strong>of</strong> N combstages with a differential delay <strong>of</strong> M samples per stage. The transfer function <strong>of</strong> <strong>the</strong>1 The restriction that δ p = δ s may result <strong>in</strong> <strong>in</strong>creased filter lengths, s<strong>in</strong>ce <strong>for</strong> most practical systemsδ s


CIC filter, referenced to <strong>the</strong> high sampl<strong>in</strong>g rate, f s , may be expressed as [12]:H(z) = (1 − z−RM ) N(1 − z −1 ) N (3.18)[ ] N RM−1= ∑ z −k (3.19)k=0The frequency response is lowpass, with nulls located at multiples <strong>of</strong> f =M 1 relative to<strong>the</strong> output sample rate. The region around every Mth null is folded <strong>in</strong>to <strong>the</strong> passbandresult<strong>in</strong>g <strong>in</strong> alias<strong>in</strong>g errors. The maximum alias<strong>in</strong>g usually occurs at a frequency <strong>of</strong>f a = 1 − f c (3.20)relative to <strong>the</strong> output sample rate, where f c refers to <strong>the</strong> lowpass output passband.The passband must <strong>the</strong>re<strong>for</strong>e be chosen such that levels <strong>of</strong> alias<strong>in</strong>g are acceptable.The amount <strong>of</strong> passband alias<strong>in</strong>g can also be brought with<strong>in</strong> prescribed bounds by<strong>in</strong>creas<strong>in</strong>g <strong>the</strong> number <strong>of</strong> stages <strong>in</strong> <strong>the</strong> filter. Figure 3.8 illustrates a typical CIC fil-PassbandAlias<strong>in</strong>g bands0−50fc 2fc 2fc 2fc 2fcMagnitude Response <strong>of</strong> CIC filter [dB]−100−150−200−250−300−3500 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5Frequency relative to Fs/Decimation RatioFigure 3.8: Structure <strong>of</strong> a CIC decimat<strong>in</strong>g filter.ter response, identify<strong>in</strong>g <strong>the</strong> bands that alias <strong>in</strong>to <strong>the</strong> passband. Conventional filters47


follow<strong>in</strong>g <strong>the</strong> CIC filters may be used to flatten <strong>the</strong> response <strong>in</strong> <strong>the</strong> passband, whichsuffers from droop<strong>in</strong>g, and to limit <strong>the</strong> transition band width and improve stopbandattenuation.CIC filters are well-suited to applications where high sample rates make multipliers anuneconomical choice or where large rate change factors would require large amounts<strong>of</strong> coefficient storage or fast impulse response generation. The frequency characteristics<strong>of</strong> <strong>the</strong> filter are severely limited. This is typically overcome by us<strong>in</strong>g CIC filtersto per<strong>for</strong>m decimation, usually by large factors, followed by conventional filters operat<strong>in</strong>gat <strong>the</strong> lower sampl<strong>in</strong>g rate to shape <strong>the</strong> frequency response.3.3.5 Enhanced Signal-to-Noise Ratio through Decimation Filter<strong>in</strong>gIt has been shown that filter<strong>in</strong>g is required prior to decimation <strong>in</strong> order to preventundesired alias<strong>in</strong>g. While <strong>the</strong> suppression <strong>of</strong> alias<strong>in</strong>g is <strong>the</strong> primary goal <strong>of</strong> decimationfilter<strong>in</strong>g, <strong>the</strong> filter<strong>in</strong>g has <strong>the</strong> added benefit <strong>of</strong> reduc<strong>in</strong>g <strong>the</strong> received bandwidth,<strong>the</strong>reby reduc<strong>in</strong>g <strong>the</strong> received noise. The signal-to-noise ratio is improved by:( )Bn∆SNR = 10·log 10 (3.21)B dwhere B n refers to <strong>the</strong> noise bandwidth (<strong>the</strong> noise is assumed to be uni<strong>for</strong>mly distributedwith<strong>in</strong> this band) and B d refers to <strong>the</strong> bandwidth <strong>of</strong> <strong>the</strong> decimation filter. Fordecimation filter<strong>in</strong>g which approaches <strong>the</strong> ideal characteristic <strong>of</strong> equation 3.8, under<strong>the</strong> assumption that noise present <strong>in</strong> <strong>the</strong> sampled signal is evenly distributed over <strong>the</strong>sampled bandwidth 2 , <strong>the</strong> signal-to-noise ratio improvement may be reduced to:∆SNR ≈ 10·log 10 (D) (3.22)Decimation may <strong>the</strong>re<strong>for</strong>e be viewed as a method <strong>of</strong> improv<strong>in</strong>g signal-to-noise ratioat <strong>the</strong> cost <strong>of</strong> reduced output bandwidth.3.4 Enhanced Signal-to-Noise Ratio us<strong>in</strong>g <strong>the</strong> DiscreteFourier Trans<strong>for</strong>mThe Discrete Fourier Trans<strong>for</strong>m (DFT) is commonly used to per<strong>for</strong>m spectral analysis.In 1965 Cooley and Tukey re-<strong>in</strong>troduced <strong>the</strong> Fast Fourier Trans<strong>for</strong>m 3 (FFT) as2 This is true <strong>for</strong> uni<strong>for</strong>mly distributed quantisation noise.3 Previously known to Gauss48


a computationally efficient implementation <strong>of</strong> <strong>the</strong> DFT. A complete coverage <strong>of</strong> <strong>the</strong>DFT and FFT may be found <strong>in</strong> many DSP texts, <strong>in</strong>clud<strong>in</strong>g [20] or [21], and it is assumedthat <strong>the</strong> reader is familiar with <strong>the</strong> frequency doma<strong>in</strong> decomposition which anappropriately w<strong>in</strong>dowed DFT will produce.In wideband scann<strong>in</strong>g receivers, it is common to use <strong>the</strong> FFT to per<strong>for</strong>m spectral powerestimation. The <strong>in</strong>herent time averag<strong>in</strong>g <strong>of</strong> <strong>the</strong> DFT computation results <strong>in</strong> a signal-tonoiseratio improvement <strong>in</strong> <strong>the</strong> observed output spectrum <strong>of</strong> a signal. For real-valuedsignals, <strong>the</strong> process<strong>in</strong>g ga<strong>in</strong> results <strong>in</strong> a SNR improvement <strong>of</strong> approximately∆SNR = 20·log 10(√(N))dB (3.23)= 10·log 10 (2)·log 2 (N) dB (3.24)≈ 3·log 2 (N) dB (3.25)where N refers to <strong>the</strong> number <strong>of</strong> po<strong>in</strong>ts <strong>in</strong> <strong>the</strong> DFT. The exact process<strong>in</strong>g ga<strong>in</strong> isaffected by factors such as <strong>the</strong> choice <strong>of</strong> w<strong>in</strong>dow<strong>in</strong>g function used. Equation 3.23serves as a useful approximation, however.49


Chapter 4Wideband Digital ReceiverArchitecture and DesignThis chapter details <strong>the</strong> implementation <strong>of</strong> digital receiver hardware capable <strong>of</strong> realis<strong>in</strong>g<strong>the</strong> specifications listed <strong>in</strong> table 1.1. The system architecture and requirementsare briefly described, with <strong>the</strong> <strong>in</strong>tention <strong>of</strong> provid<strong>in</strong>g <strong>the</strong> reader with a backgroundunderstand<strong>in</strong>g <strong>of</strong> <strong>the</strong> digital receiver application with<strong>in</strong> a receiver system.4.1 Overview <strong>of</strong> System ArchitectureN AntennaeN-Channel AnalogueWidebandReceiverIFN-Channel Wideband DigitalReceiver / ProcessorVideo Display Unit (VDU)Audio OutputNetworked ClientsReceiver controlFigure 4.1: Typical wideband surveillance receiver system configuration.Figure 4.1 demonstrates a typical wideband surveillance receiver system configuration.The system consists <strong>of</strong> N antennae which are fed <strong>in</strong>to N wideband analogue50


eceiver channels. The wideband analogue receivers limit <strong>the</strong> received bandwidth, allow<strong>for</strong> dynamic receiver ga<strong>in</strong> and are responsible <strong>for</strong> translat<strong>in</strong>g a wideband receivedspectrum to an output IF with<strong>in</strong> <strong>the</strong> <strong>in</strong>put frequency range <strong>of</strong> <strong>the</strong> A-D converter. Ina scann<strong>in</strong>g mode, <strong>the</strong> wideband analogue receiver sequentially translates successivebands with<strong>in</strong> <strong>the</strong> analogue receiver <strong>in</strong>put range to <strong>the</strong> output IF, under <strong>the</strong> control <strong>of</strong><strong>the</strong> digital receiver. The bands are merged to provide an output display that may beseveral gigahertz wide. Multiple antennae are necessary <strong>in</strong> wideband direction f<strong>in</strong>d<strong>in</strong>gor beam<strong>for</strong>m<strong>in</strong>g applications, where <strong>the</strong> relative phases <strong>of</strong> signals imp<strong>in</strong>g<strong>in</strong>g on<strong>the</strong> antennae is <strong>of</strong> primary importance. The output signal-to-noise ratio may also beenhanced through appropriate comb<strong>in</strong>ation <strong>of</strong> outputs from multiple receiver channelsobserv<strong>in</strong>g <strong>the</strong> same signal.Figure D.2 <strong>in</strong> appendix D provides an example <strong>of</strong> a typical digital receiver configuration.The digital receiver implementation consists <strong>of</strong> one (<strong>in</strong> <strong>the</strong> case <strong>of</strong> a s<strong>in</strong>gleantenna system) or more (<strong>in</strong> <strong>the</strong> case <strong>of</strong> a multi-antenna system) wideband digital receiversimplemented on full length ISA adapter cards and accompany<strong>in</strong>g mezzan<strong>in</strong>emodules. The system is housed <strong>in</strong> a n<strong>in</strong>eteen <strong>in</strong>ch, 4U, rack-mountable ruggedised<strong>in</strong>dustrial comput<strong>in</strong>g chassis. A commercially available s<strong>in</strong>gle board computer (SBC)featur<strong>in</strong>g s<strong>in</strong>gle or dual Intel Pentium processors and 100 Mbit e<strong>the</strong>rnet <strong>for</strong>ms <strong>the</strong>ma<strong>in</strong> system controller and high per<strong>for</strong>mance back-end processor <strong>for</strong> <strong>the</strong> digital receiverdesign. The SBC communicates with <strong>the</strong> adapter cards via a passive backplane.The SBC runs <strong>the</strong> Micros<strong>of</strong>t W<strong>in</strong>dows NT operat<strong>in</strong>g system.The rack may function as ei<strong>the</strong>r a stand-alone receiver or a networked data server subsystemwith<strong>in</strong> a larger system, facilitat<strong>in</strong>g system expansion. The system is capable<strong>of</strong> phase-synchronous data acquisition on multiple adapter cards, a prerequisite <strong>in</strong>direction f<strong>in</strong>d<strong>in</strong>g (DF) and beam<strong>for</strong>m<strong>in</strong>g applications.The follow<strong>in</strong>g sections focus on <strong>the</strong> implementation <strong>of</strong> <strong>the</strong> ISA adapter card based digitalreceiver, which is responsible <strong>for</strong> wideband digitisation, digital down-conversionand baseband process<strong>in</strong>g <strong>of</strong> HF and VHF signals.4.2 Digital Receiver Channel ArchitectureThis section reviews <strong>the</strong> digital receiver requirements, be<strong>for</strong>e present<strong>in</strong>g a scalablesolution based on commercial <strong>of</strong>f-<strong>the</strong>-shelf (COTS) components. The digital receiverchannel design is <strong>the</strong>n described. Detailed design decisions which are worthy <strong>of</strong> specialattention are explored <strong>in</strong> chapter 5.51


4.2.1 A Review <strong>of</strong> <strong>the</strong> Digital Receiver RequirementsThe digital receiver was required to be implemented on a full length ISA-based adaptercard and mezzan<strong>in</strong>e modules. The adapter card was required to function as a generalpurposedigital signal process<strong>in</strong>g board, with application-specific hardware resid<strong>in</strong>gon mezzan<strong>in</strong>e modules. The wideband digitisation and digital down-conversion circuitrywas required to reside on a 110 mm by 170 mm mezzan<strong>in</strong>e board, which willbe referred to as <strong>the</strong> ADC-DDC module from this po<strong>in</strong>t onwards.The digitised, basebanded output from <strong>the</strong> ADC-DDC mezzan<strong>in</strong>e module was requiredto <strong>in</strong>terface to a high per<strong>for</strong>mance general purpose digital signal processor on<strong>the</strong> ISA adapter card, which would per<strong>for</strong>m fur<strong>the</strong>r signal process<strong>in</strong>g such as spectralestimation and demodulation.The digital receiver design was required to operate <strong>in</strong> two modes:• A wideband surveillance receiver mode, <strong>in</strong> which <strong>the</strong> Discrete Fourier Trans<strong>for</strong>m(DFT) was to be used to per<strong>for</strong>m spectral analysis.• A narrowband signal extraction and demodulation mode.In <strong>the</strong> extreme case, <strong>the</strong> wideband surveillance receiver application required <strong>the</strong> digitisation<strong>of</strong> a 10 MHz <strong>in</strong>put bandwidth centred at an IF <strong>of</strong> 12.8 MHz, with an <strong>in</strong>stantaneousoutput bandwidth <strong>of</strong> 10 MHz at 12.5 kHz frequency resolution. Provisionwas required <strong>for</strong> octave reductions <strong>in</strong> <strong>the</strong> output bandwidth, down to one eighth <strong>of</strong> <strong>the</strong>orig<strong>in</strong>al bandwidth, with an appropriate output sample rate reduction. The narrowbandrequirements were to sample <strong>in</strong>put bandwidths up to 800 kHz, and produce abasebanded output <strong>of</strong> approximately 5 kHz bandwidth, with m<strong>in</strong>imal output rates toease <strong>the</strong> burden on subsequent demodulation process<strong>in</strong>g.These two operat<strong>in</strong>g modes generally result <strong>in</strong> conflict<strong>in</strong>g digital down-conversionhardware implementations:The <strong>for</strong>mer may be realised by a quadrature NCO and multipliers operat<strong>in</strong>g at <strong>the</strong>sampl<strong>in</strong>g rate, followed by FIR filter<strong>in</strong>g and appropriate decimation by small <strong>in</strong>tegerfactors. The FIR filter<strong>in</strong>g is required to operate at <strong>the</strong> full sampl<strong>in</strong>g rate. It is clearthat <strong>the</strong> process<strong>in</strong>g power required to per<strong>for</strong>m filter<strong>in</strong>g at high sampl<strong>in</strong>g rates is difficultto achieve us<strong>in</strong>g digital signal processors. By way <strong>of</strong> example, a 63-tap FIRfilter runn<strong>in</strong>g at a sampl<strong>in</strong>g rate <strong>of</strong> 50 MSPS would be required to per<strong>for</strong>m 3.15 × 10 9multiply-accumulates (MACs) per second. Decimation by non-<strong>in</strong>teger factors througha comb<strong>in</strong>ation <strong>of</strong> <strong>in</strong>teger <strong>in</strong>terpolation and decimation is difficult to achieve at highsample rates, s<strong>in</strong>ce <strong>the</strong> image reject/anti-alias<strong>in</strong>g filter is <strong>the</strong>n required to operate at52


<strong>the</strong> <strong>in</strong>terpolated rate which is even higher than <strong>the</strong> orig<strong>in</strong>al sampl<strong>in</strong>g frequency. Decimationis <strong>the</strong>re<strong>for</strong>e usually limited to <strong>in</strong>teger values.The latter is efficiently achieved by translat<strong>in</strong>g <strong>the</strong> signal to baseband by means <strong>of</strong> aquadrature NCO and multipliers operat<strong>in</strong>g at <strong>the</strong> full sample rate, followed by a largesample rate reduction by means <strong>of</strong> CIC decimation filters. FIR filter<strong>in</strong>g operat<strong>in</strong>g at<strong>the</strong> decimated rate may be used to shape <strong>the</strong> output spectrum, as described <strong>in</strong> section3.3.4 on page 46.4.2.2 Commercially Available Digital Down-conversion HardwareA survey <strong>of</strong> commercially available components <strong>for</strong> digital down-conversion was per<strong>for</strong>med.High-end general purpose digital signal processors, FPGA-based solutionsand commercially available ASICs were explored.The Analog Devices ADSP-21160 general purpose float<strong>in</strong>g-po<strong>in</strong>t DSP was consideredas a s<strong>of</strong>tware configurable solution. The ADSP-21160’s SIMD architecture, capable<strong>of</strong> per<strong>for</strong>m<strong>in</strong>g 6 float<strong>in</strong>g-po<strong>in</strong>t operations per clock cycle at a core clock rate<strong>of</strong> 80 MHz (480 MFLOPS) could not realise <strong>the</strong> solution <strong>in</strong> a s<strong>in</strong>gle processor. Amulti-processor solution was rejected due to cost, complexity and space constra<strong>in</strong>ts.FPGA-based solutions <strong>of</strong>fer <strong>the</strong> advantages <strong>of</strong> reconfigurability and parallel architectures.Prelim<strong>in</strong>ary experimentation with <strong>the</strong> Altera Max+plus II FPGA compiler andFIR filter design plug-<strong>in</strong> 1 demonstrated that an FPGA-based solution would requiremany devices due to limited memory capacity, and would require much optimisationto per<strong>for</strong>m signal process<strong>in</strong>g at sufficiently high rates with sufficient resolution. Thecost <strong>of</strong> an FPGA-based solution was found to be prohibitively expensive. The FPGAbasedsolution was <strong>the</strong>re<strong>for</strong>e rejected.A survey <strong>of</strong> commercially-available ASICs identified <strong>the</strong> components listed <strong>in</strong> table4.1.The GC1012A wideband digital down-converter was rejected due to its 12-bit resolution,which was <strong>in</strong>sufficient to take full advantage <strong>of</strong> <strong>the</strong> AD6644’s 14-bit resolution.The Intersil HSP45116 NCO and modulator is an ASIC solution <strong>for</strong> per<strong>for</strong>m<strong>in</strong>g quadraturedown-conversion. The HSP43220 is a 4th order CIC programmable decimationfilter followed by a decimat<strong>in</strong>g FIR filter. By plac<strong>in</strong>g <strong>the</strong> HSP45116 ahead <strong>of</strong> <strong>the</strong>HSP43220 (separate HSP43220s are required <strong>for</strong> <strong>the</strong> I and Q data paths, quadraturedown-conversion may be per<strong>for</strong>med from any IF, and <strong>the</strong> output may be filtered and1 Downloaded from <strong>the</strong> follow<strong>in</strong>g URL: http://www.altera.com/53


Part Manufacturer Maximum Resolution DescriptionNumberSample RateGC1012A Graychip 80 MSPS 12-bit Wideband digitaldown-converter.GC4016 Graychip 100 MSPS 16-bit 4-Channel narrowbanddigital down-converter.HSP45116 Intersil 52 MSPS 16-bit NCO/ModulatorHSP43216 Intersil 52 MSPS 16-bit Halfband filterHSP43220 Intersil 33 MSPS 16-bit CIC/FIR FilterHSP50214 Intersil 65 MSPS 14-bit Narrowband digitaldown-converter.HSP50216 Intersil 70 MSPS 16-bit 4-Channel narrowbanddigital down-converter.AD6624 Analog 80 MSPS 14-bit 4-Channel narrowbandDevicesdigital down-converter.Table 4.1: Commercially available ASICs <strong>for</strong> digital down-conversiondecimated by large factors. This solution is capable <strong>of</strong> achiev<strong>in</strong>g 96 dB SFDR <strong>for</strong>narrowband outputs. For small decimation factors, <strong>the</strong> FIR filter length is limited, result<strong>in</strong>g<strong>in</strong> poor stopband attenuation and subsequently poor SFDR. The sample rate islimited to 33 MHz. Both <strong>of</strong> <strong>the</strong>se factors exclude this architecture from achiev<strong>in</strong>g <strong>the</strong>10 MHz bandwidth at an IF <strong>of</strong> 12.8 MHz.The HSP43220 halfband decimate by 2 filter <strong>of</strong>fers 90 dB <strong>of</strong> stopband attenuation.The device supports f s4down-conversion, as described <strong>in</strong> section 3.2.2. By comb<strong>in</strong><strong>in</strong>gthree <strong>of</strong> <strong>the</strong>se devices <strong>in</strong> a two-tiered structure, one may per<strong>for</strong>m wideband downconversionon a signal that is centred at 12.8 MHz with a bandwidth <strong>of</strong> 10 MHz anda complex output rate <strong>of</strong> 12.8 MSPS. This architecture is restricted <strong>in</strong> terms <strong>of</strong> bothbandwidth and <strong>in</strong>put IFs. By preced<strong>in</strong>g <strong>the</strong> devices with an HSP45116, <strong>the</strong> restrictionon <strong>the</strong> IF is lifted. The architecture does not allow <strong>for</strong> decimation by large factors,s<strong>in</strong>ce each halfband filter may only decimate by a factor <strong>of</strong> two. Operat<strong>in</strong>g speedlimitations fur<strong>the</strong>r limited <strong>the</strong> use <strong>of</strong> this architecture.Narrowband digital down-converters, such as <strong>the</strong> GC4016, HSP50214, HSP50216 andAD6624 <strong>in</strong>corporate many <strong>of</strong> <strong>the</strong> build<strong>in</strong>g blocks required to per<strong>for</strong>m narrowband digitaldown-conversion <strong>in</strong> a s<strong>in</strong>gle package. The devices <strong>in</strong>clude a complex NCO andmultipliers, programmable CIC decimation and FIR filter<strong>in</strong>g. The devices supportdecimation by non-<strong>in</strong>teger factors through <strong>in</strong>teger <strong>in</strong>terpolation and decimation. Thedevices fur<strong>the</strong>r support AGC (exclud<strong>in</strong>g <strong>the</strong> AD6624), ei<strong>the</strong>r through <strong>in</strong>ternal digitalAGC or receive signal strength <strong>in</strong>dication (RSSI) which may be placed <strong>in</strong> a feedback54


loop with analogue ga<strong>in</strong> stages. Rectangular-to-polar conversion and frequency discrim<strong>in</strong>ationcircuitry is provided <strong>in</strong> <strong>the</strong> Intersil devices. The GC4016, AD6624 andHSP50216 provide 4 <strong>in</strong>dependent down-conversion channels. The GC4016 <strong>of</strong>fers <strong>the</strong>widest output bandwidth when operat<strong>in</strong>g at any particular <strong>in</strong>put sample rate, subjectto <strong>the</strong> constra<strong>in</strong>t <strong>of</strong> meet<strong>in</strong>g 90 dB SFDR requirements.4.2.3 A Scalable Digital Receiver based on COTS componentsASIC solutions <strong>for</strong> per<strong>for</strong>m<strong>in</strong>g digital down-conversion are well suited to ei<strong>the</strong>r widebandor narrowband outputs. A solution was not available which could cater <strong>for</strong> bo<strong>the</strong>xtremes. This section details <strong>the</strong> implementation <strong>of</strong> an ASIC-based architecture capable<strong>of</strong> realis<strong>in</strong>g both wideband and narrowband outputs, us<strong>in</strong>g <strong>the</strong> GC4016 narrowbanddigital down-converter. The GC4016 was selected based on its high outputbandwidth per channel, while meet<strong>in</strong>g <strong>the</strong> system SFDR requirements. It also featuresa parallel output bus, which facilitates high speed transfer <strong>of</strong> data to a DSP, aswell as operation up to 100 MSPS. Figure 4.2, extracted from <strong>the</strong> GC4016 datasheet[26], shows a block diagram <strong>of</strong> <strong>the</strong> <strong>in</strong>ternal architecture <strong>of</strong> <strong>the</strong> GC4016. An <strong>in</strong>-depthdiscussion <strong>of</strong> <strong>the</strong> GC4016 functionality can be found <strong>in</strong> <strong>the</strong> GC4016 data sheet[26].Figure 4.2: Block diagram <strong>of</strong> <strong>the</strong> GC4016 quad digital down-converter55


The narrowband requirements stipulated <strong>in</strong> table 1.1 are easily achieved us<strong>in</strong>g a narrowbanddigital down-converter, such as <strong>the</strong> GC4016. A s<strong>in</strong>gle A-D converter is usedto sample a wide <strong>in</strong>put bandwidth. The sampled spectrum is fed <strong>in</strong>to each <strong>of</strong> <strong>the</strong>down-conversion channels. Each channel may be <strong>in</strong>dependently programmed to per<strong>for</strong>mcomplex down-conversion, filter<strong>in</strong>g and rate reduction <strong>of</strong> a narrowband signalconta<strong>in</strong>ed with<strong>in</strong> <strong>the</strong> sampled wideband spectrum. The basebanded outputs are fedto a DSP <strong>for</strong> baseband process<strong>in</strong>g. Multiple GC4016 devices may be used to implementmore than 4 narrowband channels, by feed<strong>in</strong>g <strong>the</strong> outputs <strong>of</strong> <strong>the</strong> wideband A-Dconverter <strong>in</strong>to each <strong>of</strong> <strong>the</strong>ir channel <strong>in</strong>puts.The proposed architecture implementation realises a wideband receiver by process<strong>in</strong>g8 adjacent narrowband channels <strong>in</strong>dividually, us<strong>in</strong>g GC4016 narrowband downconverters.The digital down-converters are programmed to translate adjacent channelisedbandwidths with<strong>in</strong> <strong>the</strong> sampled wideband spectrum to baseband. FFT-basedspectral analysis is per<strong>for</strong>med <strong>in</strong>dividually on each <strong>of</strong> <strong>the</strong> narrowband basebanded outputsus<strong>in</strong>g a DSP. The result<strong>in</strong>g frequency-doma<strong>in</strong> spectra are concatenated to <strong>for</strong>m<strong>the</strong> f<strong>in</strong>al output bandwidth.This method <strong>of</strong> generat<strong>in</strong>g wide bandwidth outputs by means <strong>of</strong> concatenat<strong>in</strong>g narrowerbands may be <strong>in</strong>appropriate if subsequent narrowband time-doma<strong>in</strong> process<strong>in</strong>g(such as demodulation) is required to be per<strong>for</strong>med on <strong>the</strong> wideband output. The reason<strong>for</strong> this is that narrowband signals may lie across two adjacent wideband outputchannels, mak<strong>in</strong>g time-doma<strong>in</strong> process<strong>in</strong>g impossible. This could be overcome bysufficiently overlapp<strong>in</strong>g <strong>the</strong> output channels, at <strong>the</strong> expense <strong>of</strong> <strong>in</strong>creased storage andprocess<strong>in</strong>g requirements. In <strong>the</strong> wideband applications <strong>for</strong> which this receiver wastargetted, much <strong>of</strong> <strong>the</strong> process<strong>in</strong>g was per<strong>for</strong>med <strong>in</strong> <strong>the</strong> frequency doma<strong>in</strong>, and thislimitation was not a concern.While this method has <strong>the</strong> short-com<strong>in</strong>g described above, it also <strong>in</strong>troduces a number<strong>of</strong> advantages <strong>in</strong> spectral analysis applications:• To analyse a particular bandwidth B at a sample rate F s and a particular resolutionR, an FFT <strong>of</strong> length N whereN ≥ F s(4.1)RN ∈ Z (4.2)is required. The FFT is per<strong>for</strong>med, and P po<strong>in</strong>ts <strong>in</strong> <strong>the</strong> centre <strong>of</strong> <strong>the</strong> FFT conta<strong>in</strong><strong>the</strong> frequency content <strong>in</strong> <strong>the</strong> bandwidth B, where P may be found from:P = B·NF s(4.3)P ∈ Z (4.4)56


By divid<strong>in</strong>g <strong>the</strong> received bandwidth <strong>in</strong>to S subbands, <strong>the</strong> analysis is per<strong>for</strong>medus<strong>in</strong>g S FFTs <strong>of</strong> reduced length N S. This results <strong>in</strong> a marg<strong>in</strong>ally <strong>in</strong>creased computationalspeed, s<strong>in</strong>ce <strong>the</strong> FFT algorithm is <strong>of</strong> order N·log 2 (N). W<strong>in</strong>dow<strong>in</strong>gfunctions used to reduce FFT leakage are reduced <strong>in</strong> length by a factor <strong>of</strong> S,reduc<strong>in</strong>g <strong>the</strong> required storage capacity with<strong>in</strong> <strong>the</strong> DSP by <strong>the</strong> same factor. Thisis <strong>of</strong> particular advantage <strong>in</strong> applications where longer polyphase w<strong>in</strong>dow<strong>in</strong>g isused.• The highly parallel architecture allows <strong>the</strong> output bandwidth to be <strong>in</strong>creased upto <strong>the</strong> Nyquist bandwidth by <strong>in</strong>creas<strong>in</strong>g <strong>the</strong> number <strong>of</strong> narrowband channels.The solution is thus extremely scalable.• The reduced process<strong>in</strong>g ga<strong>in</strong> which arises from a reduced FFT length is negatedby <strong>the</strong> higher decimation, so <strong>the</strong> overall SNR improvement achieved throughprocess<strong>in</strong>g ga<strong>in</strong> is preserved.• The narrowband channels are perfectly matched <strong>in</strong> amplitude and phase, due to<strong>the</strong> repeatability <strong>of</strong> digital filter<strong>in</strong>g. The channels use <strong>the</strong> same clock, and do notdrift <strong>in</strong> frequency with respect to one ano<strong>the</strong>r. An analogue wideband receiverimplemented similarly would suffer from mismatch <strong>in</strong> adjacent channels andpossible frequency drift.The narrowband band merg<strong>in</strong>g technique <strong>for</strong> produc<strong>in</strong>g wide bandwidths is fur<strong>the</strong>rdescribed through <strong>the</strong> follow<strong>in</strong>g example, which demonstrates <strong>the</strong> realisation <strong>of</strong> a10 MHz output bandwidth at an IF <strong>of</strong> 12.8 MHz:The discussion proceeds by determ<strong>in</strong><strong>in</strong>g <strong>the</strong> maximum output bandwidth which <strong>the</strong>GC4016 may achieve, <strong>for</strong> a given <strong>in</strong>put sample rate. The GC4016 can operate at am<strong>in</strong>imum decimation <strong>of</strong> 32. The GC4016s FIR filter coefficients were optimised toachieve <strong>the</strong> widest bandwidth possible while ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g a passband ripple <strong>of</strong> lessthan 0.5 dB and a stopband attenuation and SFDR <strong>of</strong> greater than 90 dB through <strong>the</strong>down-converter. A maximum output bandwidth <strong>of</strong> 79.5 percent <strong>of</strong> <strong>the</strong> output samplerate was achieved.A sampl<strong>in</strong>g rate <strong>of</strong> 51.2 MSPS was chosen to sample <strong>the</strong> 10 MHz bandwidth at anIF <strong>of</strong> 12.8 MHz. This sampl<strong>in</strong>g rate is slightly reduced from <strong>the</strong> 65 MSPS that <strong>the</strong>AD6644 was designed to operate at, so similar per<strong>for</strong>mance is expected. The exactsampl<strong>in</strong>g frequency was chosen based on <strong>the</strong> shape factor <strong>of</strong> <strong>the</strong> digital filters with<strong>in</strong><strong>the</strong> GC4016 with m<strong>in</strong>imal decimation and a stopband attenuation <strong>of</strong> 90 dB, as well as<strong>the</strong> number <strong>of</strong> narrowband channels used. The 12.5 kHz frequency resolution required<strong>for</strong> <strong>the</strong> wideband spectral analysis <strong>of</strong> <strong>the</strong> 10 MHz band dictates <strong>the</strong> length <strong>of</strong> complexFFT, accord<strong>in</strong>g to equations 4.1 and 4.3. For an output bandwidth <strong>of</strong> 10 MHz and a57


12.5 kHz resolution, 800 po<strong>in</strong>ts are required <strong>in</strong> <strong>the</strong> passband. Assum<strong>in</strong>g a maximumoutput bandwidth <strong>of</strong> 79.5 percent <strong>of</strong> <strong>the</strong> sample rate, a m<strong>in</strong>imum FFT <strong>of</strong> length 1006correspond<strong>in</strong>g to an output sample rate <strong>of</strong> 12.57 MSPS would be required. This numberis rounded to <strong>the</strong> next power <strong>of</strong> 2 to ma<strong>in</strong>ta<strong>in</strong> an efficient length <strong>of</strong> 1024 <strong>for</strong> <strong>the</strong>FFT. The correspond<strong>in</strong>g sample rate required is:F s = 1024 ·10 MHz (4.5)800= 12.8 MSPS (4.6)Two GC4016 devices (8 narrowband channels) are used to implement <strong>the</strong> widebandoutput. The 10 MHz output bandwidth is broken <strong>in</strong>to 8 narrowband bandwidths <strong>of</strong>1.25 MHz, each with a sample rate <strong>of</strong> 1.6 MSPS. S<strong>in</strong>ce <strong>the</strong> m<strong>in</strong>imum decimation isfixed at 32, <strong>the</strong> sampl<strong>in</strong>g rate <strong>of</strong> <strong>the</strong> A-D converter should be 51.2 MSPS. 128 po<strong>in</strong>tFFTs must be per<strong>for</strong>med on each basebanded output, with <strong>the</strong> middle 100 po<strong>in</strong>ts <strong>of</strong>each FFT be<strong>in</strong>g concatenated to <strong>for</strong>m <strong>the</strong> 10 MHz band. The centre frequencies <strong>of</strong> <strong>the</strong>S adjacent channels may be computed as follows:wheref c (n) = F IF − B 2 + (n + 1 2 )· BS(4.7)n ∈ [0,S − 1] (4.8)n ∈ Z (4.9)and F IF and B refer to <strong>the</strong> IF centre frequency and IF bandwidth respectively.B = 10MHz1.25MHzf IF=12.8MHzfrequencyFigure 4.3: Adjacent narrowband channels used to <strong>for</strong>m a wideband output.Figure 4.3 demonstrates <strong>the</strong> method by which <strong>the</strong> wideband sampled spectrum is divided<strong>in</strong>to 8 adjacent narrowband spectra.58


4.2.4 A Description <strong>of</strong> <strong>the</strong> ADC-DDC Board ArchitectureThe ADC-DDC mezzan<strong>in</strong>e module design was separated <strong>in</strong>to two boards (figure D.4<strong>in</strong> appendix D should be consulted <strong>for</strong> <strong>the</strong> physical layout <strong>of</strong> <strong>the</strong> boards). The A-Dconverter and analogue circuitry was placed on a separate circuit board to <strong>the</strong> digitaldown-converter (DDC) circuitry. The reason<strong>in</strong>g beh<strong>in</strong>d this was tw<strong>of</strong>old:• The DDC board is capable <strong>of</strong> accept<strong>in</strong>g 16-bit <strong>in</strong>puts, while <strong>the</strong> AD6644 A-Dconverter has 14-bit resolution. By separat<strong>in</strong>g <strong>the</strong> two boards, <strong>the</strong> A-D convertercould be upgraded without affect<strong>in</strong>g <strong>the</strong> DDC circuitry. Essentially, <strong>the</strong> designis modular, allow<strong>in</strong>g <strong>in</strong>dividual modules to be upgraded.• Physical isolation <strong>of</strong> <strong>the</strong> digital and analogue circuitry is possible. This wasconsidered to be useful <strong>in</strong> trac<strong>in</strong>g <strong>the</strong> source <strong>of</strong> poor analogue per<strong>for</strong>mance <strong>in</strong><strong>the</strong> <strong>for</strong>m <strong>of</strong> spurious signals, should <strong>the</strong>y arise. Possible sources <strong>of</strong> spurious,such as ground-loops, power supply ripple and digital <strong>in</strong>terference could beidentified.A description <strong>of</strong> <strong>the</strong> A-D converter and digital down-converter boards follows:4.2.4.1 A-D Converter Board DescriptionA block diagram <strong>of</strong> <strong>the</strong> A-D converter board is shown <strong>in</strong> figure 4.4. The analogue <strong>in</strong>putsignal enters <strong>the</strong> board through <strong>the</strong> IF <strong>in</strong>put, which matches <strong>the</strong> source impedancewith a 50 Ω <strong>in</strong>put impedance <strong>for</strong> optimal power transfer and m<strong>in</strong>imal noise. An optionalmezzan<strong>in</strong>e filter module which may be mounted on <strong>the</strong> ADC board may beused to provide analogue signal condition<strong>in</strong>g <strong>in</strong> <strong>the</strong> <strong>for</strong>m <strong>of</strong> bandpass filter<strong>in</strong>g or fixedga<strong>in</strong> between <strong>the</strong> analogue receiver and <strong>the</strong> AD6644. Match<strong>in</strong>g <strong>of</strong> <strong>the</strong> analogue <strong>in</strong>putsignal level to <strong>the</strong> A-D converter is fur<strong>the</strong>r described <strong>in</strong> section 5.1. The signalis <strong>the</strong>n passed through a f<strong>in</strong>al anti-alias<strong>in</strong>g filter and resistive match<strong>in</strong>g pad, be<strong>for</strong>ebe<strong>in</strong>g comb<strong>in</strong>ed with a di<strong>the</strong>r signal. The di<strong>the</strong>r signal level may be dynamically adjustedvia an I 2 C serial <strong>in</strong>terface to a digital-to-analogue converter (DAC) controll<strong>in</strong>g<strong>the</strong> ga<strong>in</strong> <strong>of</strong> a programmable ga<strong>in</strong> amplifier. Section 5.2 provides fur<strong>the</strong>r details <strong>of</strong> <strong>the</strong>di<strong>the</strong>r circuit implementation. The comb<strong>in</strong>er output is routed to an RF trans<strong>for</strong>merwith a 1 : 16 impedance ratio, be<strong>for</strong>e be<strong>in</strong>g passed <strong>in</strong>to <strong>the</strong> AD6644 differential <strong>in</strong>put.The RF trans<strong>for</strong>mer accomplishes <strong>the</strong> follow<strong>in</strong>g:• It converts <strong>the</strong> s<strong>in</strong>gle-ended signal <strong>in</strong>to a differential signal that is required by<strong>the</strong> AD6644.59


On-board SMD/DIP8/DIP14 oscillatorExternal oscillatorLow Jitter Sampl<strong>in</strong>g ClockPSU Regulation andFilter<strong>in</strong>gIF InputOptionalMezzan<strong>in</strong>e BandpassFilter Board(Applicationdependent)Analog Noise SourceF<strong>in</strong>al Anti-alias<strong>in</strong>glow-pass filter (Applicationdependent)Match<strong>in</strong>g padProgrammable Ga<strong>in</strong> Amplifier80 dB range Low-pass filterComb<strong>in</strong>erMatch<strong>in</strong>gtrans<strong>for</strong>merADC14-bit 65MSPS ADCADC dataADC overload14Buffer14ADC/Digital Down-converter InterfaceADC clockDACI2C BusFigure 4.4: Block diagram <strong>of</strong> <strong>the</strong> A-D Converter board.• It matches <strong>the</strong> 50 Ω output <strong>of</strong> <strong>the</strong> comb<strong>in</strong>er to <strong>the</strong> high impedance (ca. 1kΩ)<strong>in</strong>put <strong>of</strong> <strong>the</strong> AD6644. The trans<strong>for</strong>mer impedance ratio is 1 : 16, and <strong>the</strong>re<strong>for</strong>eexpects an 800 Ω load on <strong>the</strong> secondary side. The <strong>in</strong>put impedance <strong>of</strong><strong>the</strong> AD6644 is reduced to 800 Ω through appropriately chosen resistors placedacross <strong>the</strong> differential <strong>in</strong>put.• It assists <strong>in</strong> bias<strong>in</strong>g <strong>the</strong> differential A-D converter analogue <strong>in</strong>put around 2.4 V.The A-D converter may receive its sampl<strong>in</strong>g clock from ei<strong>the</strong>r an external source oran on-board low jitter oscillator. A common external source is required when synchronoussampl<strong>in</strong>g on multiple boards is required. Fur<strong>the</strong>r detail <strong>of</strong> oscillator selectionis discussed <strong>in</strong> section 5.3. The two’s complement 14-bit digitised samples arebuffered be<strong>for</strong>e be<strong>in</strong>g passed to <strong>the</strong> DDC board, along with an A-D converter overloaddetect signal and A-D converter output clock.4.2.4.2 Digital Down-converter Board DescriptionFigure 4.5 illustrates <strong>the</strong> architecture <strong>of</strong> <strong>the</strong> digital down-converter board by means<strong>of</strong> a block diagram. The A-D converter data bus enters <strong>the</strong> board via <strong>the</strong> ADC/DDC<strong>in</strong>terface, and is aligned with <strong>the</strong> upper 14 bits <strong>of</strong> <strong>the</strong> 16-bit <strong>in</strong>put bus. The rema<strong>in</strong><strong>in</strong>g60


TemperaturesensorI2C serial busFPGAConfigurationCPLDPower SupplyRegulation andFilter<strong>in</strong>gADC/Digital Down-converter InterfaceADC OverloadADC ClockADC DataClockBuffer1616Quad-DigitalDown-converterQuad-DigitalDown-converter161616FPGA32 5 DSP data bus (32-bit)Synchronisation InputsDSP Interrupts16Status flags1622I FIFO(Up to128K*16)Q FIFO(Up to128K*16)161632Digital Down-converter/DSP Interface16Quad-DigitalDown-converterSerialInterfacecircuitryHeaderHeader4 Serial Narrowband(640kHz max) Channels(Independentbandwidths/tun<strong>in</strong>gfrequencies)Figure 4.5: Block diagram <strong>of</strong> <strong>the</strong> digital down-converter board.two least-significant bits are grounded on <strong>the</strong> ADC board 2 .The 16 bit <strong>in</strong>put bus is routed to three GC4016 four-channel digital down-converters.The GC4016s are used to per<strong>for</strong>m complex down-conversion, decimation by factors <strong>of</strong>32 to 16384, FIR filter<strong>in</strong>g and optional spectral <strong>in</strong>version. Two <strong>of</strong> <strong>the</strong> GC4016 devicesare configured to output <strong>the</strong> complex samples from all four <strong>in</strong>ternal down-conversionchannels on a parallel 16-bit bus, us<strong>in</strong>g time division multiplex<strong>in</strong>g. The parallel outputfacilitates high speed transfer <strong>of</strong> <strong>the</strong> samples to <strong>the</strong> DSP on <strong>the</strong> ISA baseboard. Therema<strong>in</strong><strong>in</strong>g GC4016 is configured to output each channel on a separate serial output,with a maximum bandwidth <strong>of</strong> 640 kHz per channel. The serial output is compatiblewith <strong>the</strong> ADSP-21160 DSP’s serial port, and <strong>the</strong> serial channels may run at differentoutput rates.The A-D converter’s wideband output may thus be used <strong>for</strong> wideband spectral analysis(up to 10 MHz), us<strong>in</strong>g <strong>the</strong> two parallel output GC4016 devices. The third GC4016 maysimultaneously extract narrowband signals from <strong>the</strong> wideband sampled output, andpass <strong>the</strong>m on to digital signal processors <strong>for</strong> subsequent demodulation at baseband.Alternatively, all twelve channel may be used <strong>for</strong> narrowband extraction <strong>of</strong> signals2 While it is permissible to <strong>in</strong>crease signal path resolution by ground<strong>in</strong>g <strong>the</strong> least significant bits on<strong>the</strong> wider bus, decreas<strong>in</strong>g signal path resolution by means <strong>of</strong> truncation results <strong>in</strong> signal distortion, anda round<strong>in</strong>g algorithm is necessary.61


sampled by <strong>the</strong> A-D converter.The digital down-converters are highly programmable, requir<strong>in</strong>g that over 1000 registersare appropriately configured. Configuration is per<strong>for</strong>med through a control bus(not illustrated) that is memory mapped on <strong>the</strong> DSP’s external bus. The DSP is thusable to reconfigure <strong>the</strong> digital down-converters on demand.The parallel outputs <strong>of</strong> <strong>the</strong> digital down-converters are routed <strong>in</strong>to an FPGA, where<strong>the</strong> samples are sorted <strong>in</strong>to I and Q streams. This allows <strong>for</strong> efficient process<strong>in</strong>g <strong>in</strong> <strong>the</strong>DSP, by tak<strong>in</strong>g advantage <strong>of</strong> its s<strong>in</strong>gle <strong>in</strong>struction multiple data (SIMD) mode. Thesorted 16-bit I and Q samples are written to separate 16-bit first-<strong>in</strong>-first-out (FIFO)memories, which vary <strong>in</strong> depth from 8 to 128 kWords. The FIFO memory facilitates<strong>the</strong> rate change between <strong>the</strong> GC4016 output rate and <strong>the</strong> DSP external bus and allows<strong>the</strong> DSP to efficiently process blocks <strong>of</strong> data at a time. In a s<strong>in</strong>gle-channel widebandreceiver, <strong>the</strong> FIFO status flags are routed to <strong>the</strong> DSP <strong>in</strong>terrupts to signal that sufficientsamples are available to per<strong>for</strong>m block process<strong>in</strong>g <strong>of</strong> data. The FIFO status flags maybe programmed to any required level, allow<strong>in</strong>g <strong>for</strong> flexibility <strong>in</strong> <strong>the</strong> block process<strong>in</strong>gsize.The 16-bit I and Q FIFO outputs are aligned to <strong>the</strong> upper and lower 16 bits <strong>of</strong> <strong>the</strong> 32-bitADSP-21160 processor’s external bus respectively. The DSP’s external bus is routedonto <strong>the</strong> digital down-converter board via <strong>the</strong> digital down-converter/DSP mezzan<strong>in</strong>e<strong>in</strong>terface. The FIFOs are memory mapped on <strong>the</strong> DSP’s external port. The DSP maythus read an I-Q pair out <strong>of</strong> <strong>the</strong> FIFO with each 32-bit access to <strong>the</strong> FIFO address.The DSP’s DMA controller allows <strong>the</strong> samples to be efficiently read <strong>in</strong>to <strong>the</strong> DSP’s<strong>in</strong>ternal SRAM memory while process<strong>in</strong>g cont<strong>in</strong>ues on a previous block <strong>of</strong> data. Theentire sample capture and process<strong>in</strong>g operation may thus be pipel<strong>in</strong>ed.A non-volatile CPLD is used to assist <strong>the</strong> DSP <strong>in</strong> configur<strong>in</strong>g <strong>the</strong> on-board FPGA, andprovides high speed comb<strong>in</strong>ational logic where necessary (such as high speed addressdecod<strong>in</strong>g <strong>for</strong> <strong>the</strong> high speed FIFO accesses).The follow<strong>in</strong>g logic was implemented <strong>in</strong> <strong>the</strong> volatile FPGA:• Sort<strong>in</strong>g <strong>of</strong> <strong>the</strong> GC4016 TDM outputs <strong>in</strong>to I and Q data streams.achieved with a two clock cycle pipel<strong>in</strong>e delay from <strong>in</strong>put to output.This was• Synchronisation <strong>of</strong> <strong>the</strong> I-Q sample streams, to ensure that <strong>the</strong>y are written <strong>in</strong>to<strong>the</strong> FIFO memory <strong>in</strong> such a manner that <strong>the</strong>y can be read out predictably. Although<strong>the</strong> I and Q samples from each <strong>of</strong> <strong>the</strong> eight channels follow a predictablesequence, no tagg<strong>in</strong>g or labell<strong>in</strong>g is used to dist<strong>in</strong>guish between <strong>the</strong> samples as<strong>the</strong>y are written <strong>in</strong>to <strong>the</strong> FIFOs. It is <strong>the</strong>re<strong>for</strong>e imperative that <strong>the</strong> first samplewritten <strong>in</strong>to <strong>the</strong> FIFO after it is reset or cleared is always <strong>the</strong> same sample from62


<strong>the</strong> same channel.• Selection <strong>of</strong> FIFO data source via a memory-mapped register on <strong>the</strong> DSP’s externalbus. The A-D converter output data bus is routed <strong>in</strong>to <strong>the</strong> FPGA. Thisallows <strong>the</strong> A-D samples to be written directly <strong>in</strong>to <strong>the</strong> FIFO buffers, bypass<strong>in</strong>g<strong>the</strong> digital down-converters. This is useful <strong>for</strong> evaluat<strong>in</strong>g A-D converter per<strong>for</strong>mance,as well as provid<strong>in</strong>g a method <strong>of</strong> diagnos<strong>in</strong>g board faults. A register isused to specify whe<strong>the</strong>r <strong>the</strong> FIFOs receive samples from <strong>the</strong> A-D converter, <strong>the</strong>digital down-converters, a FIFO flag programm<strong>in</strong>g register (used to configure<strong>the</strong> partially empty and partially full flags) or a constant valued source (useful<strong>for</strong> diagnos<strong>in</strong>g board faults).• Decod<strong>in</strong>g <strong>of</strong> external synchronisation pulses. In a multi-channel receiver, A-Dconverter sampl<strong>in</strong>g clocks and digital receiver synchronisation pulses are generatedon a s<strong>in</strong>gle tim<strong>in</strong>g distribution board. The sampl<strong>in</strong>g clock and synchronisationsignals are distributed to each <strong>of</strong> <strong>the</strong> digital receiver boards. Variouspulse types are transmitted through <strong>the</strong> same synchronisation l<strong>in</strong>e, and must bedecoded separately. The decoded pulses are used to synchronise <strong>the</strong> GC4016down-converter channels and FIFOs on multiple boards, provid<strong>in</strong>g support <strong>for</strong>phase-synchronous data acquisition.• Selection and enabl<strong>in</strong>g or disabl<strong>in</strong>g <strong>of</strong> a DSP <strong>in</strong>terrupt source via a memorymapped register on <strong>the</strong> DSP’s external bus. The DSP may be <strong>in</strong>terrupted bya decoded synchronisation pulse (multi-channel receiver) or one <strong>of</strong> <strong>the</strong> FIFOstatus flags, to <strong>in</strong>dicate that data is ready <strong>for</strong> process<strong>in</strong>g.• An I 2 C bus controller (master) <strong>in</strong>terface. This allows access to I 2 C devices, <strong>in</strong>particular <strong>the</strong> DAC used to set <strong>the</strong> di<strong>the</strong>r level, and an on-board temperaturesensor. The I 2 C bus controller control registers are memory-mapped on <strong>the</strong>DSP’s external port.• Address decod<strong>in</strong>g <strong>for</strong> <strong>the</strong> <strong>in</strong>ternal and external memory-mapped registers.Two switched-mode DC-DC converters were designed to generate <strong>the</strong> 5 V and 3.3 Vpower supplies <strong>for</strong> <strong>the</strong> analogue 3 and digital circuitry respectively. These were preferredover l<strong>in</strong>ear regulators due to <strong>the</strong>ir high efficiency, and <strong>the</strong>re<strong>for</strong>e lower powerdissipation. Power dissipation was <strong>of</strong> particular concern, s<strong>in</strong>ce <strong>the</strong> digital receiverboards are enclosed <strong>in</strong> shield<strong>in</strong>g to reduce electromagnetic <strong>in</strong>terference (EMI). Thisreduces <strong>the</strong> effectiveness <strong>of</strong> <strong>the</strong> <strong>for</strong>ced air cool<strong>in</strong>g that is provided <strong>in</strong> <strong>the</strong> enclosure.3 The AD6644 is considered an analogue component, despite <strong>the</strong> fact that it produces a digital output.63


4.2.5 A Description <strong>of</strong> <strong>the</strong> ISA DSP Board ArchitectureIn <strong>the</strong> digital receiver context, <strong>the</strong> processor on <strong>the</strong> ISA DSP board is responsible <strong>for</strong>process<strong>in</strong>g <strong>the</strong> digitised, basebanded received signal.Figure 4.6 is a block diagram <strong>of</strong> <strong>the</strong> ISA adapter board.The Analog Devices ADSP-21160 was selected as <strong>the</strong> general-purpose signal processorwhich would reside on <strong>the</strong> ISA adapter board. The ADSP-21160 is a 32-bitfloat<strong>in</strong>g po<strong>in</strong>t DSP which operates at an <strong>in</strong>ternal clock rate <strong>of</strong> 80 MHz and an externalbus clock rate <strong>of</strong> 40 MHz. The DSP conta<strong>in</strong>s two parallel process<strong>in</strong>g elements, whichallows it to execute up to three <strong>in</strong>structions on two separate data streams <strong>in</strong> parallel,when configured to operate <strong>in</strong> s<strong>in</strong>gle <strong>in</strong>struction multiple data or SIMD mode. Theprocessor features 4 Mbits <strong>of</strong> <strong>in</strong>ternal SRAM, 6 l<strong>in</strong>k ports <strong>for</strong> dedicated high-speed<strong>in</strong>ter-processor communication and two full-duplex serial ports. The processor supportsemulation via a JTAG-compliant <strong>in</strong>terface.The DSP’s external bus is routed to mezzan<strong>in</strong>e board sites, marked M0, M1 and M2<strong>in</strong> figure 4.6. The mezzan<strong>in</strong>e board sites allow <strong>for</strong> application-specific hardware tobe <strong>in</strong>terfaced to <strong>the</strong> processor’s external port. The ADC-DDC module is <strong>in</strong>terfaced to<strong>the</strong> processor via <strong>the</strong> M2 site. M0 and M1 are typically used to <strong>in</strong>terface to externalSRAM and SDRAM memories or application specific peripherals.Code is typically downloaded to <strong>the</strong> DSP from <strong>the</strong> host processor via <strong>the</strong> ISA bus,which is <strong>in</strong>terfaced to <strong>the</strong> DSP’s host port <strong>in</strong>terface. The ISA bus is <strong>in</strong>terfaced to<strong>the</strong> board via a CPLD, which is used to per<strong>for</strong>m signal buffer<strong>in</strong>g and board addressdecod<strong>in</strong>g. It fur<strong>the</strong>r aids <strong>in</strong> <strong>the</strong> <strong>in</strong>itialisation <strong>of</strong> <strong>the</strong> on-board FPGA.The ISA adapter board’s on-board FPGA acts as a general controller <strong>for</strong> <strong>the</strong> board. Itis responsible <strong>for</strong> per<strong>for</strong>m<strong>in</strong>g <strong>the</strong> follow<strong>in</strong>g functions:• Address decod<strong>in</strong>g.• Interfac<strong>in</strong>g <strong>of</strong> <strong>the</strong> ISA bus and <strong>the</strong> DSP’s external port.• Mapp<strong>in</strong>g <strong>of</strong> module site <strong>in</strong>terrupts to <strong>the</strong> DSP external <strong>in</strong>terrupts.• Rout<strong>in</strong>g <strong>of</strong> external synchronisation to mezzan<strong>in</strong>e module sites. (This is used toprovide <strong>the</strong> ADC-DDC module with external synchronisation.• Interfac<strong>in</strong>g <strong>the</strong> ISA bus to an I 2 C serial bus to support I 2 C devices, specificallya temperature sensor and serial flash device used to store board configurationdetails.64


• Doorbell registers which, when written to, allow <strong>the</strong> host processor to <strong>in</strong>terrupt<strong>the</strong> DSP or <strong>the</strong> DSP to <strong>in</strong>terrupt <strong>the</strong> host processor.The DSP is able to communicate with analogue receivers via two serial <strong>in</strong>terfaces thatare RS232 and SSI (serial synchronous <strong>in</strong>terface) compliant respectively.65


S1S2EXTERNALSYNCISA BUS16CPLD16FLASHFPGAI 2 C16M2ADC/DDC323232JTAGADSP - 21160M0 M1LP0 LP1 LP2 LP3 LP4 LP5 SP0 SP1LINK PORTSSPORTHEADERTEMPSENSORUARTLEVELTRANSLATIONLEVELTRANSLATIONRS232/SSIFigure 4.6: Block diagram <strong>of</strong> <strong>the</strong> general purpose ISA-based DSP card.66


Chapter 5Digital Receiver ImplementationThis chapter describes some <strong>of</strong> <strong>the</strong> issues that were taken <strong>in</strong>to consideration <strong>in</strong> <strong>the</strong>design <strong>of</strong> <strong>the</strong> wideband digital radio receiver. The chapter is not <strong>in</strong>tended to be acomplete account <strong>of</strong> <strong>the</strong> receiver design, but serves to highlight some <strong>of</strong> <strong>the</strong> key issuesand problems encountered.5.1 A-D Converter Input Level Match<strong>in</strong>gIn section 2.6 it was demonstrated that <strong>in</strong> order to design <strong>for</strong> an optimal comb<strong>in</strong>ation <strong>of</strong>receiver dynamic range and noise figure, <strong>the</strong> designer should treat <strong>the</strong> A-D converteras part <strong>of</strong> <strong>the</strong> analogue receiver cha<strong>in</strong>. The optimal comb<strong>in</strong>ation <strong>of</strong> sensitivity anddynamic range <strong>for</strong> a particular application may <strong>the</strong>n be used to specify <strong>the</strong> requiredper<strong>for</strong>mance <strong>of</strong> <strong>the</strong> analogue receiver cha<strong>in</strong>.The specifications <strong>of</strong> this project, <strong>in</strong> contrast, required that <strong>the</strong> digital receiver shouldbe <strong>in</strong>terfaced to exist<strong>in</strong>g analogue receivers. The <strong>in</strong>terface between <strong>the</strong> analogue receiverand <strong>the</strong> A-D converter could <strong>the</strong>re<strong>for</strong>e not be optimally designed. The m<strong>in</strong>imuml<strong>in</strong>earity required <strong>of</strong> <strong>the</strong> analogue receiver, however, was estimated as follows:The AD6644 requires a full scale <strong>in</strong>put power <strong>of</strong> 2.2 V peak-to-peak across an 800 Ω<strong>in</strong>put resistance. This translates to a power requirement <strong>of</strong> -1.63 dBm. After account<strong>in</strong>g<strong>for</strong> <strong>the</strong> losses <strong>in</strong>curred through <strong>the</strong> RF trans<strong>for</strong>mer, comb<strong>in</strong>er, anti-alias<strong>in</strong>g filterand match<strong>in</strong>g pad, <strong>the</strong> maximum <strong>in</strong>put power presented to <strong>the</strong> digital receiver wasfound to be +3.37 dBm.For two-tone third order <strong>in</strong>termodulation (IM3) measurement, <strong>the</strong> test tones are re-67


quired to be at -7 dBFS to prevent saturation <strong>of</strong> A-D converter. This translates to apower level <strong>of</strong> -3.63 dBm at <strong>the</strong> <strong>in</strong>put. Equation 2.29 is <strong>the</strong>n used to determ<strong>in</strong>e <strong>the</strong>third order <strong>in</strong>tercept required <strong>of</strong> <strong>the</strong> analogue receiver, such that a particular level <strong>of</strong>SFDR is met. By way <strong>of</strong> example, an 80 dB dynamic range at an output power <strong>of</strong>-3.63 dBm requires an output IP3 <strong>of</strong> +36.37 dBm from <strong>the</strong> analogue receiver.The IP3 <strong>of</strong> one <strong>of</strong> <strong>the</strong> analogue receivers did not meet <strong>the</strong> required <strong>in</strong>termodulationper<strong>for</strong>mance. A match<strong>in</strong>g module was developed, which consisted <strong>of</strong> a high l<strong>in</strong>earityamplifier (IP3 ≥ 45 dBm) with sufficient ga<strong>in</strong> (20 dB) to m<strong>in</strong>imise <strong>the</strong> contributions<strong>of</strong> <strong>the</strong> preced<strong>in</strong>g analogue circuitry to <strong>the</strong> overall third-order <strong>in</strong>tercept po<strong>in</strong>t <strong>of</strong> <strong>the</strong>analogue receiver, as discussed <strong>in</strong> section 2.6.1. The module was successful <strong>in</strong> improv<strong>in</strong>g<strong>the</strong> overall analogue receiver IP3 such that <strong>the</strong> required specification <strong>of</strong> 80 dBtwo-tone SFDR was met.5.2 A-D Converter Input Signal Di<strong>the</strong>r<strong>in</strong>gDi<strong>the</strong>r<strong>in</strong>g is implemented prior to A-D conversion. The AD6644 A-D converter has athree stage pipel<strong>in</strong>ed architecture, with converter stage resolutions <strong>of</strong> 5, 5 and 6 bits respectively.Poor l<strong>in</strong>earity is <strong>the</strong>re<strong>for</strong>e expected at levels <strong>of</strong> −20·log 10(25 ) = −30.1 dBFS,accord<strong>in</strong>g to <strong>the</strong> discussion <strong>in</strong> section 2.5.2.3, when a s<strong>in</strong>gle tone is applied to <strong>the</strong> A-Dconverter <strong>in</strong>put. This is confirmed by consult<strong>in</strong>g figures 15 and 21 <strong>in</strong> [3]. Accord<strong>in</strong>g t<strong>of</strong>igure 21, a region <strong>of</strong> poor l<strong>in</strong>earity exists <strong>for</strong> s<strong>in</strong>gle tone analogue <strong>in</strong>puts with a level<strong>of</strong> -20 dBFS to -30 dBFS. It is <strong>the</strong>re<strong>for</strong>e expected that di<strong>the</strong>r<strong>in</strong>g at a level <strong>of</strong> -20 dBFSwill improve <strong>the</strong> average l<strong>in</strong>earity <strong>of</strong> <strong>the</strong> A-D converter.The di<strong>the</strong>r circuit was implemented us<strong>in</strong>g an NC202 wideband noise diode, capable<strong>of</strong> generat<strong>in</strong>g wideband white gaussian noise at a level <strong>of</strong> 0.1 µV/ √ Hz. The di<strong>the</strong>rnoise was amplified by means <strong>of</strong> a programmable ga<strong>in</strong> amplifier to a maximum level<strong>of</strong> -20 dBFS. An amplifier capable <strong>of</strong> meet<strong>in</strong>g <strong>the</strong> 50 dB required amplification wasselected. A lowpass elliptic filter was designed <strong>in</strong> order to limit <strong>the</strong> noise bandwidthto 500 kHz. The noise was thus placed outside <strong>of</strong> <strong>the</strong> IF <strong>in</strong>put frequency range. Asa result, <strong>the</strong> di<strong>the</strong>r noise is subsequently filtered by <strong>the</strong> digital filter<strong>in</strong>g stages <strong>in</strong> <strong>the</strong>digital down-conversion process, and <strong>the</strong>re<strong>for</strong>e has a negligible effect on <strong>the</strong> receiversignal-to-noise ratio. The di<strong>the</strong>r noise is effectively subtracted (cf. subtractive di<strong>the</strong>r)through <strong>the</strong> digital filter<strong>in</strong>g.The added noise reduces <strong>the</strong> receiver’s dynamic range, and dynamic di<strong>the</strong>r level control(by means <strong>of</strong> PGA output level adjustment) may be used to reduce <strong>the</strong> di<strong>the</strong>r levelwhen appropriate.68


5.3 Selection <strong>of</strong> a Sampl<strong>in</strong>g OscillatorSampl<strong>in</strong>g oscillator per<strong>for</strong>mance is a critical factor <strong>in</strong> ensur<strong>in</strong>g that high-speed, highdynamic range A-D converters per<strong>for</strong>m well. Section 2.3.3 demonstrated <strong>the</strong> impact<strong>of</strong> oscillator time doma<strong>in</strong> jitter (or <strong>the</strong> related frequency measure <strong>of</strong> phase noise) on<strong>the</strong> SNR <strong>of</strong> <strong>the</strong> A-D converter.At this po<strong>in</strong>t it should be noted that jitter may be classified as random jitter, or patterndependentjitter (also referred to as flang<strong>in</strong>g)[2]. The equations mentioned <strong>in</strong> section2.3.3 apply to random jitter. The <strong>for</strong>mer usually results from random noise <strong>in</strong>ternal to<strong>the</strong> oscillator, while <strong>the</strong> latter usually results from oscillator sub-harmonics. Oscillatorsthat exhibit sub-harmonics should be avoided, s<strong>in</strong>ce <strong>the</strong> non-stochastic nature <strong>of</strong><strong>the</strong> sampl<strong>in</strong>g tim<strong>in</strong>g error may result <strong>in</strong> spurious content <strong>in</strong> <strong>the</strong> sampled signals.In a wideband scann<strong>in</strong>g receiver, <strong>the</strong> process<strong>in</strong>g ga<strong>in</strong>s achieved through decimationfilter<strong>in</strong>g and FFT result <strong>in</strong> an <strong>in</strong>crease <strong>in</strong> <strong>the</strong> SNR. This may be understood <strong>in</strong> terms <strong>of</strong>noise bandwidth as follows: The received bandwidth is effectively reduced to <strong>the</strong> b<strong>in</strong>resolution <strong>of</strong> <strong>the</strong> FFT (<strong>the</strong> decimation must be taken <strong>in</strong>to account when evaluat<strong>in</strong>g <strong>the</strong>FFT frequency resolution). The bandwidth reduction (through <strong>the</strong> filter<strong>in</strong>g actions <strong>of</strong><strong>the</strong> decimation and FFT) reduces <strong>the</strong> noise bandwidth, which results <strong>in</strong> a reduction <strong>in</strong>noise power. This is analogous to analogue receivers, where channelisation filter<strong>in</strong>greduces <strong>the</strong> noise bandwidth.The 10 MHz bandwidth receiver is used by way <strong>of</strong> example: A decimation factor<strong>of</strong> 32 <strong>in</strong> each channel was used to achieve <strong>the</strong> 10 MHz bandwidth. This translatesto a process<strong>in</strong>g ga<strong>in</strong> (SNR improvement) <strong>of</strong> approximately 15.05 dBm, accord<strong>in</strong>gto equation 3.22. The full process<strong>in</strong>g ga<strong>in</strong> may only be achieved if <strong>the</strong> reducednoise is greater than <strong>the</strong> quantisation noise <strong>in</strong> <strong>the</strong> decimated channel. The 128-po<strong>in</strong>tcomplex FFT per<strong>for</strong>med on each channel achieves a process<strong>in</strong>g ga<strong>in</strong> <strong>of</strong> 21.07 dB.The total process<strong>in</strong>g ga<strong>in</strong> is thus 36.12 dB. Under <strong>the</strong> assumption that <strong>the</strong> receivernoise is dom<strong>in</strong>ated by noise generated <strong>in</strong> <strong>the</strong> A-D converter, <strong>the</strong> maximum A-D converternoise that will ensure an 87 dBFS dynamic range (80 dB dynamic range undertwo-tone <strong>in</strong>termodulation test conditions, which requires that each tone has a maximumamplitude <strong>of</strong> -7 dBFS) is <strong>the</strong>re<strong>for</strong>e 36.12 − 87 = −50.88 dBFS. The maximumsignal frequency which may appear <strong>in</strong> <strong>the</strong> 10 MHz band centered at 12.8 MHz is12.8 + (10/2) = 17.8 MHz. Equations 2.16 and 2.14 may <strong>the</strong>n be used to f<strong>in</strong>d <strong>the</strong>correspond<strong>in</strong>g jitter, us<strong>in</strong>g <strong>the</strong> parameters listed <strong>in</strong> table 5.1. The parameters used <strong>in</strong>table 5.1, obta<strong>in</strong>ed from <strong>the</strong> AD6644 data sheet[3] and <strong>the</strong> above reason<strong>in</strong>g, result<strong>in</strong> an encode clock jitter value <strong>of</strong> 25.5 ps. This is thus <strong>the</strong> upper limit on oscillatorjitter that should be specified. It is fur<strong>the</strong>r noted that this is a ra<strong>the</strong>r relaxed speci-69


SNR dB 50.88 dBf a 17.8 MHzε 0.75 LSBN 14V n 2.5 LSBs0.2 psT aTable 5.1: Parameters used <strong>in</strong> <strong>the</strong> calculation <strong>of</strong> oscillator jitter.fication <strong>for</strong> clock jitter 1 , and it is <strong>the</strong>re<strong>for</strong>e likely that many commercially availableoscillators would meet this specification. It was not possible to obta<strong>in</strong> an oscillatorcharacterised with adequate jitter specifications due to poor availability <strong>in</strong> small quantities.Empirical test<strong>in</strong>g was <strong>the</strong>re<strong>for</strong>e used to verify that oscillators that were morereadily available, but were uncharacterised <strong>for</strong> jitter, would meet or exceed this (relaxed)jitter requirement. The empirically tested oscillators were found to meet <strong>the</strong>jitter requirements at <strong>the</strong>se analogue <strong>in</strong>put frequencies, as will be shown <strong>in</strong> chapter 6.As a fur<strong>the</strong>r note, <strong>the</strong> spurious and SNR per<strong>for</strong>mance <strong>of</strong> <strong>the</strong> AD6644 is related to sampl<strong>in</strong>gclock output power, as may be seen <strong>in</strong> figure 22 <strong>in</strong> <strong>the</strong> AD6644 datasheet[3]. Anoscillator that could supply 5 dBm was <strong>the</strong>re<strong>for</strong>e used to optimise <strong>the</strong> A-D converterper<strong>for</strong>mance.In synchronous multichannel system design, care should be taken <strong>in</strong> <strong>the</strong> design <strong>of</strong> asampl<strong>in</strong>g oscillator distributed to multiple A-D converters, s<strong>in</strong>ce buffers placed after<strong>the</strong> oscillator result <strong>in</strong> <strong>in</strong>creased jitter at <strong>the</strong> A-D encode <strong>in</strong>put.5.4 Analogue Power Supply Filter<strong>in</strong>gAs mentioned previously, a DC-DC converter was used to provide <strong>the</strong> analogue voltages<strong>for</strong> <strong>the</strong> A-D converter and analogue circuitry, <strong>in</strong> order to improve power efficiencyand reduce power dissipation that could result <strong>in</strong> overheat<strong>in</strong>g. Switch<strong>in</strong>g regulators <strong>in</strong>troduceswitch<strong>in</strong>g ripple <strong>in</strong>to <strong>the</strong> power supply, and care must be taken to ensure that<strong>the</strong> ripple noise generated by <strong>the</strong> system ATX power supply and <strong>the</strong> switch<strong>in</strong>g regulatordoes not negatively impact on <strong>the</strong> A-D converter per<strong>for</strong>mance. S<strong>in</strong>ce <strong>the</strong> switch<strong>in</strong>gripple is periodic, it may <strong>in</strong>troduce spurious signals <strong>in</strong> <strong>the</strong> A-D converter output. Thebuck mode switch<strong>in</strong>g regulator was selected to operate at a high switch<strong>in</strong>g frequency(500 kHz), generat<strong>in</strong>g a peak switch<strong>in</strong>g ripple <strong>of</strong> 65 mV. A high switch<strong>in</strong>g frequencywas deliberately chosen to reduce <strong>the</strong> physical size <strong>of</strong> components required to filter1 Low jitter oscillators under consideration boasted jitter specifications <strong>of</strong> 5 ps or less.70


<strong>the</strong> regulator output. The AD6644’s power supply rejection ratio (60 dB) was used asa basis to design a low-pass power supply filter which could provide sufficient attenuationsuch that switch<strong>in</strong>g ripple voltages <strong>of</strong> 100 mV peak-to-peak were attenuated tolevels smaller than -120 dBFS (2.2 µV) at frequencies greater than 100 kHz.5.5 Ground<strong>in</strong>gDue to <strong>the</strong> separation <strong>of</strong> <strong>the</strong> A-D converter and digital down-converter circuitry ontotwo separate PC boards, <strong>the</strong> analogue and digital circuitry was located on two separateground planes. Careful consideration was given to <strong>the</strong> physical layout <strong>of</strong> <strong>the</strong> board<strong>in</strong> order to m<strong>in</strong>imise <strong>the</strong> coupl<strong>in</strong>g <strong>of</strong> <strong>the</strong> sampl<strong>in</strong>g clock and digital signals to <strong>the</strong>analogue <strong>in</strong>put signal, which may <strong>in</strong>troduce fixed-frequency spurious signals that limit<strong>the</strong> receiver SFDR. This was achieved by:• Physical separation to improve isolation between sensitive signal traces and signalstraces that were considered aggressors.• Use <strong>of</strong> a ground plane as isolation between sensitive traces and aggressor traces.• Where possible, ground return current loops were physically separated betweensensitive and aggressor traces.• The high-speed digital <strong>in</strong>terface (A-D converter output bus) between <strong>the</strong> A-Dconverter and digital down-converter boards conta<strong>in</strong>ed sufficient low impedanceground connections to ensure that return currents flowed through <strong>the</strong> connectorra<strong>the</strong>r than through o<strong>the</strong>r ground return paths which may have resulted <strong>in</strong> groundloops.5.6 EMI Shield<strong>in</strong>gThe digital receiver circuitry resides <strong>in</strong> <strong>the</strong> non-ideal environment, <strong>in</strong> terms <strong>of</strong> electromagneticradiation, <strong>of</strong> <strong>the</strong> 19 <strong>in</strong>ch, 4U enclosure. Switch<strong>in</strong>g power supplies andprocessors runn<strong>in</strong>g at high frequency exhibit high levels <strong>of</strong> electromagnetic radiation,as was observed with a close-field probe connected to a spectrum analyser. Electromagneticshield<strong>in</strong>g, <strong>in</strong> <strong>the</strong> <strong>for</strong>m <strong>of</strong> metal shield<strong>in</strong>g covers, was <strong>the</strong>re<strong>for</strong>e used to reduce<strong>the</strong> susceptibility <strong>of</strong> <strong>the</strong> analogue circuitry to electromagnetic <strong>in</strong>terference (EMI).71


Due to <strong>the</strong> fairly high power dissipation <strong>of</strong> <strong>the</strong> AD6644 and GC4016 devices, it wasdecided that it was necessary <strong>for</strong> <strong>the</strong> shield<strong>in</strong>g cover to conta<strong>in</strong> holes <strong>in</strong> order to improve<strong>the</strong> air circulation over <strong>the</strong> digital receiver circuitry. The aperture <strong>of</strong> <strong>the</strong> holeswas designed to be less than20 λ <strong>of</strong> <strong>the</strong> highest frequency that should be prevented frompass<strong>in</strong>g through <strong>the</strong> shield<strong>in</strong>g, where λ refers to <strong>the</strong> wavelength correspond<strong>in</strong>g to thatfrequency. The highest frequency was chosen to be 1.5 GHz, substantially higher than<strong>the</strong> AD6644’s analogue <strong>in</strong>put bandwidth <strong>of</strong> 250 MHz [3].5.7 GC4016 Decimat<strong>in</strong>g Filter CoefficientsEach GC4016 digital down-converter consists <strong>of</strong> a quadrature NCO followed by a5th order CIC filter which may be programmed to decimate by factors <strong>of</strong> 8 to 4096,and two subsequent stages <strong>of</strong> programmable FIR filter<strong>in</strong>g with 21 and 63 filter tapsrespectively. Each filter stage decimates <strong>the</strong> complex signal by a fur<strong>the</strong>r factor <strong>of</strong> two.The coefficients <strong>for</strong> <strong>the</strong> first FIR filter (CFIR) stage were chosen to compensate <strong>for</strong> <strong>the</strong>droop <strong>in</strong> <strong>the</strong> CIC filter’s passband.In order to achieve a 90 dB SFDR, <strong>the</strong> digital down-conversion was required to ensurethat out-<strong>of</strong>-band signals would not alias <strong>in</strong>to <strong>the</strong> passband <strong>of</strong> a particular downconverterchannel at levels greater than -90 dBFS. The second FIR filter (PFIR) stagecoefficients were designed to achieve <strong>the</strong> widest passband possible, while ensur<strong>in</strong>gthat <strong>the</strong> filter attenuated all out-<strong>of</strong>-band signals and alias<strong>in</strong>g by greater than 90 dB.Alias<strong>in</strong>g results from <strong>the</strong> CIC and FIR decimation, as described <strong>in</strong> chapter 3. An optimiserwas developed under <strong>the</strong> MATLAB environment which achieved a maximumoutput bandwidth <strong>of</strong> 79.5% <strong>of</strong> <strong>the</strong> f<strong>in</strong>al output rate, while meet<strong>in</strong>g <strong>the</strong> attenuation andpassband ripple requirements. The motivation <strong>for</strong> optimis<strong>in</strong>g <strong>the</strong> filter coefficientswas <strong>the</strong> realisation that <strong>the</strong> 14-bit filter coefficients were not <strong>of</strong> sufficient resolutionto design a filter <strong>of</strong> desired output bandwidth us<strong>in</strong>g standard filter design techniques.Prelim<strong>in</strong>ary filter designs which used <strong>the</strong> Parks-McClellan optimal equiripple FIR filterdesign methodology resulted <strong>in</strong> <strong>in</strong>adequate per<strong>for</strong>mance when <strong>the</strong> filter coefficientswere rounded to 14 bits.Appendix B conta<strong>in</strong>s plots <strong>of</strong> <strong>the</strong> magnitude and phase response <strong>of</strong> <strong>the</strong> CIC and FIRfilters <strong>for</strong> each channel, <strong>for</strong> <strong>the</strong> 10 MHz wideband (decimate by 32) case with a sampl<strong>in</strong>gfrequency <strong>of</strong> 51.2 MHz.The magnitude and phase response <strong>of</strong> <strong>the</strong> CIC filter is shown <strong>in</strong> figure B.1. Alias<strong>in</strong>goccurs around each <strong>of</strong> <strong>the</strong> nulls, as described <strong>in</strong> section 3.3.4.2.Figure B.2 shows <strong>the</strong> magnitude and frequency response <strong>of</strong> <strong>the</strong> CFIR filter, <strong>in</strong>terpo-72


lated to <strong>the</strong> sampl<strong>in</strong>g rate. Careful exam<strong>in</strong>ation <strong>of</strong> <strong>the</strong> filter passband shows that <strong>the</strong>passband edge is emphasised. This emphasis compensates <strong>for</strong> <strong>the</strong> droop <strong>in</strong> <strong>the</strong> CICfilter’s passband. Figure B.3 shows <strong>the</strong> comb<strong>in</strong>ed response <strong>of</strong> <strong>the</strong> CIC and CFIR filter.The effect <strong>of</strong> <strong>the</strong> compensation may be seen <strong>in</strong> <strong>the</strong> filter passband, which is flat.Figure B.4 shows <strong>the</strong> magnitude and phase response <strong>of</strong> <strong>the</strong> PFIR filter, <strong>in</strong>terpolatedto <strong>the</strong> sampl<strong>in</strong>g rate. The 63-tap filter achieves a worst-case stopband attenuation<strong>of</strong> 88 dB. Figure B.5 shows <strong>the</strong> comb<strong>in</strong>ed response <strong>of</strong> <strong>the</strong> CFIR and PFIR filters,<strong>in</strong>terpolated to <strong>the</strong> sampl<strong>in</strong>g rate.Figure B.6 f<strong>in</strong>ally shows <strong>the</strong> comb<strong>in</strong>ed response <strong>of</strong> <strong>the</strong> CIC, CFIR and PFIR filters,<strong>in</strong>terpolated to <strong>the</strong> sampl<strong>in</strong>g frequency. The comb<strong>in</strong>ed response <strong>of</strong> <strong>the</strong> three filtersmay be seen to have suppressed all out-<strong>of</strong>-band signals by more than 90 dB.5.8 Problems Encountered dur<strong>in</strong>g Receiver DesignThis section briefly lists <strong>the</strong> problems encountered <strong>in</strong> <strong>the</strong> design <strong>of</strong> <strong>the</strong> digital radioreceiver.5.8.1 Insufficient EMI SuppressionCareful consideration was given to elim<strong>in</strong>at<strong>in</strong>g sources <strong>of</strong> electromagnetic <strong>in</strong>terferenceby means <strong>of</strong> metal shield<strong>in</strong>g covers, as described <strong>in</strong> section 5.6. Despite ef<strong>for</strong>ts<strong>in</strong> this regard, EMI was found to be a problem on boards placed <strong>in</strong> <strong>the</strong> slot adjacentto <strong>the</strong> SBC. A close-field probe was used to identify <strong>the</strong> source <strong>of</strong> <strong>the</strong> electromagneticradiation: extremely high levels <strong>of</strong> radiation emerg<strong>in</strong>g from <strong>the</strong> SBC’s on-boardswitch-mode power supply and Pentium processor. Both sources were <strong>in</strong> close proximityto <strong>the</strong> analogue section <strong>of</strong> <strong>the</strong> digital receiver and produced radiation <strong>of</strong> correctfrequency content to result <strong>in</strong> <strong>in</strong>-band spurious.An immediate solution to <strong>the</strong> problem was to <strong>in</strong>troduce fur<strong>the</strong>r isolation by physicalseparation <strong>of</strong> <strong>the</strong> SBC from <strong>the</strong> digital receiver boards. The slot adjacent to <strong>the</strong> SBCwas <strong>the</strong>re<strong>for</strong>e left vacant, and <strong>the</strong> problem was sufficiently reduced. It was noted thatif this slot were to be required <strong>in</strong> future systems, <strong>the</strong> EMI shield<strong>in</strong>g would need to beimproved.73


5.8.2 Problems due to Faulty SiliconThe design began at a time when some <strong>of</strong> <strong>the</strong> key devices were still <strong>in</strong> pre-releasestages. The AD6644, GC4016 and ADSP-21160 <strong>in</strong> particular were pre-productionsilicon. As a result, <strong>the</strong> silicon conta<strong>in</strong>ed more than 40 anomalies, some <strong>of</strong> which hadnot been identified by <strong>the</strong> manufacturers when <strong>the</strong> receiver design commenced. Inparticular, <strong>the</strong> follow<strong>in</strong>g silicon bugs were found to be most problematic:• The ADSP-21160 clock PLL is not guaranteed to reset correctly, lead<strong>in</strong>g to unpredictabledevice behaviour. A workaround was provided by <strong>the</strong> manufacturer,which required an awkward stopp<strong>in</strong>g and start<strong>in</strong>g <strong>of</strong> <strong>the</strong> clock with tim<strong>in</strong>g constra<strong>in</strong>tswhile hold<strong>in</strong>g <strong>the</strong> device <strong>in</strong> reset.• The ADSP-21160 asynchronous host writes fail if <strong>the</strong> ris<strong>in</strong>g edge <strong>of</strong> <strong>the</strong> writestrobe is relatively co<strong>in</strong>cident with <strong>the</strong> ris<strong>in</strong>g edge <strong>of</strong> <strong>the</strong> <strong>in</strong>ternal core clock.The data is written to <strong>the</strong> wrong address, which results <strong>in</strong> <strong>the</strong> DSP hang<strong>in</strong>g.The result was that <strong>the</strong> DSP could not be booted through its host <strong>in</strong>terface.The manufacturer was assisted to reproduce and characterise this problem anddesign workarounds were developed.• Numerous problems were encountered when runn<strong>in</strong>g <strong>the</strong> ADSP-21160 l<strong>in</strong>k portsat full speed due to silicon bugs. The l<strong>in</strong>k ports thus had to be operated at halfspeed to ensure reliable data transfer.• The GC4016 silicon had a bug <strong>in</strong> <strong>the</strong> NCO circuitry that resulted <strong>in</strong> poor SFDR(less than 60 dBFS) when down-conversion was per<strong>for</strong>med at any frequencyo<strong>the</strong>r than f s4. As a result, all test<strong>in</strong>g was per<strong>for</strong>med at 12.8 MHz until updatedsilicon became available.• The output synchronisation circuitry on <strong>the</strong> GC4016 did not function accord<strong>in</strong>gto <strong>the</strong> documentation. As a result, <strong>the</strong> start <strong>of</strong> frame strobe did not correctlyidentify <strong>the</strong> start <strong>of</strong> a frame <strong>of</strong> 4 complex sample pairs on <strong>the</strong> GC4016 paralleloutput. External logic was required <strong>in</strong> order to generate a valid start <strong>of</strong> framepulse. The manufacturer subsequently updated <strong>the</strong> documentation to more accuratelyreflect <strong>the</strong> actual device functionality.74


Chapter 6Per<strong>for</strong>mance MeasurementsThis chapter describes <strong>the</strong> methods and results <strong>of</strong> empirical test<strong>in</strong>g per<strong>for</strong>med on <strong>the</strong>digital receiver. The per<strong>for</strong>mance <strong>of</strong> <strong>the</strong> A-D converter and analogue circuitry was<strong>in</strong>itially tested <strong>in</strong> isolation by by-pass<strong>in</strong>g <strong>the</strong> digital down-converter circuitry. Subsequenttest<strong>in</strong>g was per<strong>for</strong>med through <strong>the</strong> digital down-converters, show<strong>in</strong>g per<strong>for</strong>mance<strong>in</strong> <strong>the</strong> 5 MHz IF (800 kHz bandwidth) and 12.8 MHz IF (10 MHz bandwidth)modes respectively.6.1 Empirical Test<strong>in</strong>g <strong>of</strong> A-D Converter and AnalogueFront-End CircuitryThis section describes <strong>the</strong> test<strong>in</strong>g <strong>of</strong> <strong>the</strong> AD6644 A-D converter and analogue <strong>in</strong>putcircuitry <strong>in</strong> isolation. The tests were per<strong>for</strong>med by plac<strong>in</strong>g <strong>the</strong> digital receiver <strong>in</strong> amode which by-passed <strong>the</strong> digital down-converters. The AD6644 output samples wererouted directly <strong>in</strong>to <strong>the</strong> 32k FIFO memories. The FIFOs were allowed to fill with 16k<strong>of</strong> data po<strong>in</strong>ts, be<strong>for</strong>e <strong>the</strong> data was read out by <strong>the</strong> DSP. The data was <strong>the</strong>n relayed to<strong>the</strong> host SBC <strong>for</strong> subsequent analysis through a Blackman-w<strong>in</strong>dowed FFT.6.1.1 Non-harmonic Spurious Free Dynamic RangeTest<strong>in</strong>g was per<strong>for</strong>med on <strong>the</strong> digital receiver with <strong>the</strong> analogue <strong>in</strong>put term<strong>in</strong>ated <strong>in</strong>50 Ω (matched to <strong>in</strong>put impedance). The test aimed to determ<strong>in</strong>e <strong>the</strong> presence <strong>of</strong> anyfixed-frequency spurious signals generated on <strong>the</strong> board, and <strong>the</strong> extent to which <strong>the</strong>ylimited <strong>the</strong> spurious-free dynamic range <strong>of</strong> <strong>the</strong> digital receiver. Potential sources <strong>of</strong>75


conducted and radiated spurious signals <strong>in</strong>clude <strong>the</strong> sampl<strong>in</strong>g clock oscillator, digitalsignals, power supply switch<strong>in</strong>g noise and ground loops.Figure C.1 shows <strong>the</strong> output <strong>of</strong> <strong>the</strong> A-D converter from DC to Nyquist. Averag<strong>in</strong>gwas per<strong>for</strong>med on <strong>the</strong> 16k FFT output <strong>in</strong> order to reduce <strong>the</strong> noise variance, such thatfixed frequency spurious was emphasised. Band-limited di<strong>the</strong>r noise can be identified<strong>in</strong> <strong>the</strong> band from DC to 500 kHz. The rema<strong>in</strong>der <strong>of</strong> <strong>the</strong> noise floor may be seen to lieat approximately -113 dBFS. This agrees closely to <strong>the</strong> -74 dBFS noise level quoted <strong>in</strong><strong>the</strong> AD6644 data sheet, when <strong>the</strong> 42 dB <strong>of</strong> process<strong>in</strong>g ga<strong>in</strong> <strong>in</strong>troduced by <strong>the</strong> 16k FFTis taken <strong>in</strong>to account, <strong>in</strong>dicat<strong>in</strong>g that <strong>the</strong> on-board noise is dom<strong>in</strong>ated by <strong>the</strong> AD6644noise.Fixed frequency spurious signals may be identified above <strong>the</strong> noise floor. The peakspurious is lower than -100 dBFS over <strong>the</strong> entire Nyquist band, and <strong>the</strong>re<strong>for</strong>e meets<strong>the</strong> design requirements <strong>for</strong> all <strong>the</strong> <strong>in</strong>tended receiver modes. The noise generated<strong>in</strong>ternally <strong>in</strong> <strong>the</strong> AD6644 (as well as by <strong>the</strong> di<strong>the</strong>r circuit, when active) is sufficient toact as small-scale di<strong>the</strong>r, allow<strong>in</strong>g <strong>the</strong> converter to see well below <strong>the</strong> 84 dB dynamicrange that <strong>the</strong> AD6644’s 14 bits provides, when averag<strong>in</strong>g <strong>in</strong> <strong>the</strong> <strong>for</strong>m <strong>of</strong> decimationor FFT process<strong>in</strong>g follows <strong>the</strong> digitisation. S<strong>in</strong>ce <strong>the</strong> noise is not regulated to be1RPDF di<strong>the</strong>r, <strong>the</strong> quantisation error is not guaranteed to be uni<strong>for</strong>mly distributed and<strong>in</strong>dependent <strong>of</strong> <strong>the</strong> <strong>in</strong>put signal, although <strong>in</strong> practice <strong>the</strong> noise is seen to be uni<strong>for</strong>mlydistributed, and is uncorrelated with <strong>the</strong> <strong>in</strong>put signal.6.1.2 Harmonic Spurious Free Dynamic RangeFigure 6.1 shows <strong>the</strong> test setup used to determ<strong>in</strong>e <strong>the</strong> spurious-free dynamic range<strong>of</strong> <strong>the</strong> AD6644 as limited by spurious signals that are harmonically related to <strong>the</strong>frequency <strong>of</strong> a signal at <strong>the</strong> analogue <strong>in</strong>put. A signal generator is used to <strong>in</strong>ject as<strong>in</strong>gle tone <strong>in</strong>to <strong>the</strong> receiver’s analogue <strong>in</strong>put. A filter with a stopband attenuation<strong>of</strong> greater than 90 dB is positioned between <strong>the</strong> signal generator and <strong>the</strong> device undertest (DUT), <strong>in</strong> this case <strong>the</strong> digital receiver, such that harmonics aris<strong>in</strong>g from <strong>the</strong> signalgenerator are sufficiently filtered out. Any harmonics exceed<strong>in</strong>g -90 dBc are <strong>the</strong>re<strong>for</strong>erelated to non-l<strong>in</strong>earities on <strong>the</strong> board (A-D converter or analogue <strong>in</strong>put circuitry),ra<strong>the</strong>r than <strong>the</strong> test equipment.It is common practice to test s<strong>in</strong>gle tone converter per<strong>for</strong>mance at -1 dBFS at <strong>the</strong>converter <strong>in</strong>put[3]. The results <strong>of</strong> plac<strong>in</strong>g a signal <strong>of</strong> -1 dBFS amplitude at a frequency<strong>of</strong> 7.6 MHz are shown <strong>in</strong> figure C.2. A lowpass filter with a 10 MHz cut-<strong>of</strong>f was placedbetween <strong>the</strong> signal generator and <strong>the</strong> receiver <strong>in</strong>put. It is noted that <strong>for</strong> this particularplot, spurious signals did not exceed -90 dBFS. Tests were not per<strong>for</strong>med over <strong>the</strong> fullNyquist range <strong>of</strong> <strong>the</strong> converter, due to a lack <strong>of</strong> availability <strong>of</strong> filters with adequate76


Stopband attenuation >= 90dBHP8640BSignal GeneratorDUTFigure 6.1: Test setup <strong>for</strong> harmonic spurious per<strong>for</strong>mance measurement.stopband suppression.More comprehensive test<strong>in</strong>g was per<strong>for</strong>med <strong>in</strong> each <strong>of</strong> <strong>the</strong> receiver operat<strong>in</strong>g bands,and is presented <strong>in</strong> sections 6.2 and 6.3 respectively.6.1.3 Effect <strong>of</strong> Band-limited Di<strong>the</strong>r Noise on A-D Converter L<strong>in</strong>earityThis section aims to measure <strong>the</strong> effect <strong>of</strong> <strong>the</strong> di<strong>the</strong>r noise circuitry on <strong>the</strong> A-D converterl<strong>in</strong>earity. The test setup used <strong>in</strong> section 6.1.2 was used to place a test signal <strong>of</strong>amplitude -30 dBFS at an arbitrarily chosen frequency <strong>of</strong> 7.6 MHz. The -30 dBFS amplitudewas specifically chosen to exercise <strong>the</strong> region <strong>of</strong> poor l<strong>in</strong>earity <strong>in</strong> <strong>the</strong> AD6644’stransfer function result<strong>in</strong>g from its multi-stage architecture.Figure C.3 shows <strong>the</strong> result<strong>in</strong>g spectrum when di<strong>the</strong>r noise is disabled. Spurious signalsare visible throughout <strong>the</strong> Nyquist band, with peak levels recorded at -85 dBFS.Figure C.4 shows <strong>the</strong> effect <strong>of</strong> add<strong>in</strong>g band-limited di<strong>the</strong>r noise to <strong>the</strong> A-D converter’sanalogue <strong>in</strong>put. The spurious signals result<strong>in</strong>g from poor converter l<strong>in</strong>earity are dramaticallyreduced, with <strong>the</strong> peak spurious level recorded at -97 dBFS. A comparisonwith figure C.1 shows that many <strong>of</strong> <strong>the</strong> rema<strong>in</strong><strong>in</strong>g spurs are not harmonically relatedto <strong>the</strong> <strong>in</strong>put signal, but result from spurious generated on <strong>the</strong> board.6.2 Empirical Test<strong>in</strong>g <strong>of</strong> <strong>the</strong> Digital Receiver at 5 MHzIFThis section presents <strong>the</strong> results <strong>of</strong> tests per<strong>for</strong>med on <strong>the</strong> digital receiver while operat<strong>in</strong>g<strong>in</strong> <strong>the</strong> 5 MHz IF, 800 kHz wideband receiver mode, with a resolution bandwidth(FFT frequency resolution) <strong>of</strong> 1 kHz. The 800 kHz bandwidth was realised by concatenat<strong>in</strong>geight 100 kHz bands. Each <strong>of</strong> <strong>the</strong> GC4016 channels was configured to77


decimate by a factor <strong>of</strong> 400, result<strong>in</strong>g <strong>in</strong> an output sample rate and output bandwidth<strong>of</strong> 128 kSPS and 100 kHz per channel respectively. Band-limited di<strong>the</strong>r noise at approximately-20 dBFS was present dur<strong>in</strong>g all test<strong>in</strong>g <strong>of</strong> this receiver mode.6.2.1 Non-harmonic Spurious-free Dynamic RangeTest<strong>in</strong>g was per<strong>for</strong>med on <strong>the</strong> digital receiver with <strong>the</strong> analogue <strong>in</strong>put term<strong>in</strong>ated <strong>in</strong>50 Ω. Decimation by a factor <strong>of</strong> 400 resulted <strong>in</strong> a process<strong>in</strong>g ga<strong>in</strong> <strong>of</strong> approximately26 dB, which was sufficient to reduce <strong>the</strong> level <strong>of</strong> <strong>the</strong> noise floor to -100 dBFS. Thereduced noise level was too small to be represented <strong>in</strong> <strong>the</strong> 96 dB resolution availableat <strong>the</strong> 16-bit GC4016 outputs. As a result, <strong>the</strong> FFT output was zero-valued, and is<strong>the</strong>re<strong>for</strong>e not plotted. This peculiarity is fur<strong>the</strong>r illustrated <strong>in</strong> section 6.2.2.6.2.2 Harmonic Spurious-free Dynamic RangeThe test setup shown <strong>in</strong> figure 6.1 was used to evaluate <strong>the</strong> s<strong>in</strong>gle-tone SFDR <strong>of</strong> <strong>the</strong>digital receiver. A lowpass filter with a 6 MHz cut-<strong>of</strong>f was used between <strong>the</strong> signalgenerator and <strong>the</strong> receiver <strong>in</strong>put. A signal correspond<strong>in</strong>g to a level <strong>of</strong> -1 dBFS at <strong>the</strong>A-D converter <strong>in</strong>put at a frequency <strong>of</strong> 5.15 MHz was placed on <strong>the</strong> digital receiver<strong>in</strong>put.The result<strong>in</strong>g spectrum is shown <strong>in</strong> figures C.5 and C.6, which shows <strong>the</strong> averageand peak spectral power estimations respectively. The lack <strong>of</strong> noise floor described <strong>in</strong>section 6.2.1 may be seen <strong>in</strong> <strong>the</strong> seven down-converter channels that conta<strong>in</strong> no signal.A noise floor is present <strong>in</strong> <strong>the</strong> channel that conta<strong>in</strong>s <strong>the</strong> signal. This is expected, s<strong>in</strong>ce<strong>the</strong> output <strong>of</strong> this channel is sufficiently large to be represented by <strong>the</strong> 96 dB dynamicrange, and <strong>the</strong>re<strong>for</strong>e conta<strong>in</strong>s quantisation noise.6.2.3 Two-tone Third-order Intermodulation Distortion MeasurementIntermodulation distortion products arise as a result <strong>of</strong> <strong>the</strong> mix<strong>in</strong>g <strong>of</strong> two or more <strong>in</strong>putsignals <strong>of</strong> different frequencies with<strong>in</strong> a device. The mix<strong>in</strong>g results from non-l<strong>in</strong>earity<strong>in</strong> <strong>the</strong> device’s transfer function. For signals with fundamental frequencies f 1 and f 2presented to <strong>the</strong> <strong>in</strong>put <strong>of</strong> a device with a degree <strong>of</strong> non-l<strong>in</strong>earity <strong>in</strong> its transfer function,<strong>in</strong>termodulation products will arise at frequencies <strong>of</strong> [13] n f 1 + m f 2 where n,m =0,±1,±2,±3... and <strong>the</strong> order <strong>of</strong> <strong>the</strong> resultant <strong>in</strong>termodulation products is def<strong>in</strong>ed as78


[13] i = |n|+|m|. Third-order <strong>in</strong>termodulation distortion is <strong>of</strong> particular concern, s<strong>in</strong>ce<strong>the</strong> distortion products fall at frequencies <strong>of</strong> 2 f 1 − f 2 and 2 f 2 − f 1 . For closely spacedsignals with<strong>in</strong> <strong>the</strong> bandwidth <strong>of</strong> a wideband receiver, <strong>the</strong> <strong>in</strong>termodulation products<strong>of</strong>ten fall <strong>in</strong>-band, reduc<strong>in</strong>g <strong>the</strong> receiver’s SFDR.In analogue components, <strong>the</strong> level <strong>of</strong> third-order <strong>in</strong>termodulation distortion may usuallybe reliably predicted <strong>for</strong> any output power us<strong>in</strong>g equation 2.28, once <strong>the</strong> thirdorder <strong>in</strong>tercept po<strong>in</strong>t (a measure <strong>of</strong> third order non-l<strong>in</strong>earity) has been determ<strong>in</strong>ed.This is usually not true <strong>for</strong> sub-rang<strong>in</strong>g A-D converters, where regions <strong>of</strong> poor l<strong>in</strong>earitymay be localised to a particular <strong>in</strong>put power range (such as <strong>the</strong> -20 dBFS to-30 dBFS range discussed <strong>in</strong> 5.2).The two-tone third-order <strong>in</strong>termodulation test requires that two equal-amplitude signalsare placed at <strong>the</strong> <strong>in</strong>put <strong>of</strong> <strong>the</strong> device under test (DUT). When test<strong>in</strong>g A-D converters,it is conventional to set <strong>the</strong> amplitude <strong>of</strong> each signal to a level <strong>of</strong> -7 dBFS at<strong>the</strong> A-D converter <strong>in</strong>put[3]. Figure 6.2 shows <strong>the</strong> test setup that was used to per<strong>for</strong>mtwo-tone third-order <strong>in</strong>termodulation test<strong>in</strong>g.The test setup consists <strong>of</strong> two signal generators which are used to generate <strong>the</strong> two<strong>in</strong>put tones. Amplifiers follow <strong>the</strong> signal generators to provide isolation between <strong>the</strong>signal sources, s<strong>in</strong>ce <strong>in</strong>adequate isolation may result <strong>in</strong> <strong>in</strong>accurate measurements [19].Filters with a stopband attenuation <strong>of</strong> 90 dB follow <strong>the</strong> amplifiers. The cut-<strong>of</strong>f frequency<strong>of</strong> <strong>the</strong> filters was chosen to attenuate second-order and higher-order harmonicsgenerated by <strong>the</strong> signal generators and amplifiers, which may negatively affect <strong>the</strong>results <strong>of</strong> <strong>the</strong> <strong>in</strong>termodulation test. The filtered signals are comb<strong>in</strong>ed, be<strong>for</strong>e be<strong>in</strong>gamplified by 30 dB us<strong>in</strong>g highly l<strong>in</strong>ear amplifiers and placed on <strong>the</strong> <strong>in</strong>put <strong>of</strong> <strong>the</strong> DUT.The l<strong>in</strong>earity <strong>of</strong> <strong>the</strong> output amplifiers is <strong>of</strong> particular importance, due to <strong>the</strong> high outputpower (-7 dBFS at <strong>the</strong> A-D converter <strong>in</strong>put or -3.63 dBm at <strong>the</strong> digital receiver<strong>in</strong>put) required.The output IP3 <strong>of</strong> <strong>the</strong> test setup was calculated at +42 dBm, accord<strong>in</strong>g to equation2.27. Equation 2.29 was used to calculate <strong>the</strong> two-tone dynamic range <strong>of</strong> <strong>the</strong> testsetup, which was found to be -87.63 dBc at <strong>the</strong> -3.63 dBm output level. The test setupper<strong>for</strong>mance was verified by replac<strong>in</strong>g <strong>the</strong> digital receiver with a spectrum analyser,and measur<strong>in</strong>g <strong>the</strong> two-tone dynamic range. The two-tone dynamic range <strong>of</strong> <strong>the</strong> testsetup was measured as -85 dBc. The test setup thus limits <strong>the</strong> measurement <strong>of</strong> twotonedynamic range to no better than -85 dBc.The <strong>in</strong>termodulation distortion <strong>for</strong> <strong>the</strong> 5.1 MHz IF mode was measured by plac<strong>in</strong>gtwo signals at frequencies <strong>of</strong> 4.9 MHz and 5.1 MHz respectively. Third-order <strong>in</strong>termodulationproducts were <strong>the</strong>re<strong>for</strong>e expected at frequencies <strong>of</strong> 4.7 MHz and 5.3 MHzon <strong>the</strong> wideband output. Figures C.7 and C.8 show <strong>the</strong> average and peak power outputs<strong>of</strong> <strong>the</strong> receiver respectively. The averaged two-tone dynamic range, measured on79


G=15dBNF=3.3dBIP3=43dBG = -1dBStopbandatten >90dBMatch<strong>in</strong>g padG=-3dBHP8640B SignalGeneratorAP108Match<strong>in</strong>g padG=-3dBG=15dBNF=3.3dBIP3=43dBG=15dBNF=3.3dBIP3=43dBComb<strong>in</strong>erADP-2-1W(2W)AP108AP108DUTG=15dBNF=3.3dBIP3=43dBG = -1dBStopbandatten >90dBMatch<strong>in</strong>g padG=-3dBHP8645A SignalGeneratorAP108Figure 6.2: Intermodulation distortion test setup.figure C.7, was -85 dBc, while <strong>the</strong> worst-case two-tone dynamic range was found tobe -81 dBc. The large discrepancy between <strong>the</strong> averaged and worst-case per<strong>for</strong>mancemay be attributed to <strong>the</strong> fact that <strong>the</strong> average l<strong>in</strong>earity <strong>of</strong> <strong>the</strong> A-D converter exceeds itsworst-case l<strong>in</strong>earity. The measurement <strong>of</strong> average two-tone dynamic range is limitedby <strong>the</strong> test equipment, which was measured at -85 dBc.6.3 Empirical Test<strong>in</strong>g <strong>of</strong> <strong>the</strong> Digital Receiver at 12.8 MHzIFThis section presents <strong>the</strong> results <strong>of</strong> tests per<strong>for</strong>med on <strong>the</strong> digital receiver while operat<strong>in</strong>g<strong>in</strong> <strong>the</strong> 12.8 MHz IF, 10 MHz wideband receiver mode, with a resolution bandwidth(FFT frequency resolution) <strong>of</strong> 12.5 kHz. Band-limited di<strong>the</strong>r noise at approximately-20 dBFS was present dur<strong>in</strong>g all test<strong>in</strong>g <strong>of</strong> this receiver mode, unless o<strong>the</strong>rwise noted.6.3.1 Non-Harmonic Spurious-free Dynamic RangeTest<strong>in</strong>g was per<strong>for</strong>med on <strong>the</strong> digital receiver <strong>in</strong> a 10 MHz bandwidth configurationwith <strong>the</strong> analogue <strong>in</strong>put term<strong>in</strong>ated <strong>in</strong> 50 Ω. The result<strong>in</strong>g output spectrum is shown<strong>in</strong> figures C.9 and C.10, illustrat<strong>in</strong>g <strong>the</strong> averaged and worst-case (peak hold) spuriousrespectively. The worst-case non-harmonic spurious-free dynamic range was found tobe noise-limited, at a level <strong>of</strong> -93 dBFS.80


6.3.2 Harmonic Spurious-free Dynamic RangeThe test setup shown <strong>in</strong> figure 6.1 was used to evaluate <strong>the</strong> s<strong>in</strong>gle-tone SFDR <strong>of</strong> <strong>the</strong>digital receiver. A lowpass filter with a 12.8 MHz cut-<strong>of</strong>f was used between <strong>the</strong> signalgenerator and <strong>the</strong> receiver <strong>in</strong>put. A signal correspond<strong>in</strong>g to a level <strong>of</strong> -1 dBFS at <strong>the</strong>A-D converter <strong>in</strong>put at a frequency <strong>of</strong> 12.64 MHz was placed on <strong>the</strong> digital receiver<strong>in</strong>put. The frequency was deliberately chosen to be close to 12.8 MHz (one quarter<strong>of</strong> <strong>the</strong> sampl<strong>in</strong>g rate), such that <strong>the</strong> odd-ordered harmonics generated <strong>in</strong> <strong>the</strong> A-D converterwould fold back close to <strong>the</strong> <strong>in</strong>put frequency, fall<strong>in</strong>g with<strong>in</strong> <strong>the</strong> 10 MHz band.Figures C.11 and C.12 plot <strong>the</strong> averaged and worst case (peak hold) output respectively.The worst-case spurious was found to be caused by <strong>the</strong> third harmonic at alevel <strong>of</strong> -88 dBFS.10095−1dBFS s<strong>in</strong>gle tone SFDR [−dBc]90858075700.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7Frequency [MHz]x 10 7Figure 6.3: S<strong>in</strong>gle-tone harmonic spurious-free dynamic range versus frequency.Figure 6.3 shows <strong>the</strong> results <strong>of</strong> sweep<strong>in</strong>g a -1 dBFS signal across <strong>the</strong> 10 MHz bandwidth,and record<strong>in</strong>g <strong>the</strong> spurious-free dynamic range at 0.5 MHz <strong>in</strong>crements. Theresults at 12.8 MHz are mislead<strong>in</strong>g, s<strong>in</strong>ce at this frequency all <strong>of</strong> <strong>the</strong> even-orderedharmonics fall out-<strong>of</strong>-band, and <strong>the</strong> odd-ordered harmonics alias back onto 12.8 MHz.The region around 12.8 MHz shows a poor SFDR, which results from <strong>the</strong> third harmonicfold<strong>in</strong>g back <strong>in</strong>-band. The amplitude <strong>of</strong> <strong>the</strong> third harmonic was found to <strong>in</strong>creaseas <strong>the</strong> <strong>in</strong>put frequency was <strong>in</strong>creased.Figure 6.4 plots <strong>the</strong> s<strong>in</strong>gle-tone spurious-free dynamic range versus <strong>in</strong>put amplitude,81


9080no di<strong>the</strong>r added70di<strong>the</strong>r addedS<strong>in</strong>gle tone SFDR [−dBc]6050403020100−100 −90 −80 −70 −60 −50 −40 −30 −20 −10 0S<strong>in</strong>gle tone <strong>in</strong>put power [dBFS]Figure 6.4: S<strong>in</strong>gle-tone harmonic spurious-free dynamic range versus <strong>in</strong>put amplitude.<strong>for</strong> an <strong>in</strong>put signal at a fixed frequency <strong>of</strong> 12.64 MHz. The plot compares <strong>the</strong> resultswith no di<strong>the</strong>r noise added to those with a di<strong>the</strong>r noise level <strong>of</strong> approximately-20 dBFS. The region <strong>of</strong> poor l<strong>in</strong>earity around -20 to -30 dBFS is clearly visible <strong>in</strong> <strong>the</strong>case where no di<strong>the</strong>r was added. The additional di<strong>the</strong>r noise can be seen to improve<strong>the</strong> s<strong>in</strong>gle tone SFDR at <strong>the</strong>se <strong>in</strong>put power levels by 5 dB.6.3.3 Two-tone Third-order Intermodulation Distortion MeasurementThe two-tone third-order <strong>in</strong>termodulation tests were per<strong>for</strong>med us<strong>in</strong>g <strong>the</strong> test setupdiscussed <strong>in</strong> section 6.2.3. The filters used <strong>in</strong> <strong>the</strong> test setup were designed with acut-<strong>of</strong>f frequency <strong>of</strong> 13 MHz and a stopband attenuation greater than 90 dB.The <strong>in</strong>termodulation distortion <strong>for</strong> <strong>the</strong> 12.8 MHz IF mode was measured by plac<strong>in</strong>gtwo signals at frequencies <strong>of</strong> 12.7 MHz and 12.9 MHz respectively, each at a level <strong>of</strong>-7 dBFS. Initial tests showed that <strong>the</strong> noise generated <strong>in</strong> <strong>the</strong> IMD test setup resulted82


<strong>in</strong> <strong>the</strong> receiver noise floor be<strong>in</strong>g higher than <strong>the</strong> level <strong>of</strong> third-order <strong>in</strong>termodulationdistortion products. It was <strong>the</strong>re<strong>for</strong>e necessary to reduce <strong>the</strong> noise level, such that<strong>the</strong> <strong>in</strong>termodulation distortion products could be measured. The noise level reductionwas achieved by decimat<strong>in</strong>g <strong>the</strong> signal by a fur<strong>the</strong>r factor <strong>of</strong> eight <strong>in</strong> each channel(equivalent to <strong>the</strong> eight times zoom mode discussed <strong>in</strong> chapter 4). The noise floor wasreduced by 9 dB through <strong>the</strong> result<strong>in</strong>g process<strong>in</strong>g ga<strong>in</strong>, which was sufficient to allow<strong>the</strong> <strong>in</strong>termodulation products to be measured.Figures C.13 and C.14 show <strong>the</strong> averaged and worst-case receiver outputs <strong>for</strong> <strong>the</strong>12.8 MHz IMD tests respectively. The <strong>in</strong>termodulation products are visible above<strong>the</strong> noise floor at frequencies <strong>of</strong> 12.5 MHz and 13.1 MHz. The averaged two-tonedynamic range, measured on figure C.13, was -85 dBc, while <strong>the</strong> worst-case twotonedynamic range, measured on figure C.14, was found to be -79 dBc. The largediscrepancy between <strong>the</strong> averaged and worst-case per<strong>for</strong>mance may be attributed to<strong>the</strong> fact that <strong>the</strong> average l<strong>in</strong>earity <strong>of</strong> <strong>the</strong> A-D converter exceeds its worst-case l<strong>in</strong>earity.The worst-case l<strong>in</strong>earity measurement may be attributed to <strong>the</strong> A-D converter, whena large percentage <strong>of</strong> <strong>the</strong> samples fall <strong>in</strong>to non-l<strong>in</strong>ear regions <strong>of</strong> its transfer function.The measurement <strong>of</strong> average two-tone dynamic range is limited by <strong>the</strong> test equipment.The average was measured at -85 dBc.83


Chapter 7ConclusionThe aim <strong>of</strong> this dissertation was to <strong>in</strong>vestigate and evaluate state-<strong>of</strong>-<strong>the</strong>-art widebanddigital radio receiver hardware through <strong>the</strong> design and implementation <strong>of</strong> a highper<strong>for</strong>mancedigital receiver capable <strong>of</strong> function<strong>in</strong>g <strong>in</strong> both wideband and narrowbandmodes, that would satisfy <strong>the</strong> requirements described <strong>in</strong> section 1.3. The system thatwas implemented is successful <strong>in</strong> achiev<strong>in</strong>g <strong>the</strong>se aims:• The designed system was shown to be highly flexible, support<strong>in</strong>g output bandwidthsfrom 2.5 kHz to 1.25 MHz <strong>in</strong> each down-converter channel by alter<strong>in</strong>g<strong>the</strong> decimation factor.In a narrowband output mode, <strong>the</strong> receiver is capable <strong>of</strong> simultaneously provid<strong>in</strong>g12 basebanded output channels. This mode has been successfully used<strong>in</strong> <strong>the</strong> implementation <strong>of</strong> a 12-channel narrowband demodulator, us<strong>in</strong>g a s<strong>in</strong>gleISA adapter board and mezzan<strong>in</strong>e modules. Each down-converter channel maybe <strong>in</strong>dependently programmed to down-convert any signal with<strong>in</strong> <strong>the</strong> wideband<strong>in</strong>put range <strong>of</strong> <strong>the</strong> digital receiver.Operat<strong>in</strong>g <strong>in</strong> a wideband mode, <strong>the</strong> receiver is capable <strong>of</strong> support<strong>in</strong>g bandwidths<strong>of</strong> up to 10 MHz at a 12.5 kHz frequency resolution, with zoom modes be<strong>in</strong>gsupported through decimation factor adjustment.• The design approach taken to <strong>for</strong>m wide output bandwidths (up to 10 MHz)through <strong>the</strong> concatenation <strong>of</strong> narrower bandwidths was shown to be a highlyscalable solution, capable <strong>of</strong> achiev<strong>in</strong>g output bandwidths that may be scaledup to near to <strong>the</strong> Nyquist bandwidth <strong>of</strong> <strong>the</strong> A-D converter, through <strong>the</strong> use <strong>of</strong> asufficient number <strong>of</strong> down-converter channels. The solution was shown to reduceprocess<strong>in</strong>g time and w<strong>in</strong>dow coefficient storage requirements. A limitation<strong>of</strong> <strong>the</strong> approach is that <strong>the</strong> channelised wideband output may not be suitable <strong>for</strong>84


subsequent narrowband time-doma<strong>in</strong> process<strong>in</strong>g such as demodulation, s<strong>in</strong>ce<strong>the</strong> narrowband signals may fall over two wideband output channels.• The spurious-free dynamic range realised by <strong>the</strong> receiver was found to be limitedby harmonic spurious, ra<strong>the</strong>r than noise. Although <strong>the</strong> SNR quoted by <strong>the</strong>AD6644 datasheet[3] is worse than its harmonic distortion, <strong>the</strong> process<strong>in</strong>g ga<strong>in</strong>sachieved through decimation filter<strong>in</strong>g and <strong>the</strong> use <strong>of</strong> <strong>the</strong> FFT result <strong>in</strong> <strong>the</strong> noisebandwidth be<strong>in</strong>g sufficiently reduced, such that noise is not <strong>the</strong> limit<strong>in</strong>g factor<strong>in</strong> <strong>the</strong> receiver’s spurious-free dynamic range.• The addition <strong>of</strong> appropriate levels <strong>of</strong> band-limited di<strong>the</strong>r noise to <strong>the</strong> <strong>in</strong>put <strong>of</strong> amulti-stage pipel<strong>in</strong>ed A-D converter was shown to <strong>in</strong>crease <strong>the</strong> average l<strong>in</strong>earity<strong>of</strong> <strong>the</strong> converter (SFDR <strong>in</strong>creases <strong>of</strong> up to 5 dB) <strong>in</strong> <strong>the</strong> regions <strong>of</strong> poor l<strong>in</strong>earity<strong>in</strong> its transfer function.• The noise <strong>in</strong>ternal to <strong>the</strong> AD6644 was <strong>of</strong> sufficient level to exercise <strong>the</strong> LSBsand act as small-scale di<strong>the</strong>r noise, enabl<strong>in</strong>g <strong>the</strong> receiver to observe signals thatare well below <strong>the</strong> 84 dB <strong>of</strong> dynamic range which an undi<strong>the</strong>red 14-bit A-D convertercan provide, when averag<strong>in</strong>g <strong>in</strong> <strong>the</strong> <strong>for</strong>m <strong>of</strong> decimation or FFT process<strong>in</strong>gis used.• The receiver was shown to meet and exceed its per<strong>for</strong>mance specifications <strong>in</strong> allreceiver modes, achiev<strong>in</strong>g a SFDR <strong>of</strong> better than -80 dB <strong>in</strong> all modes.• The receiver was shown to be capable <strong>of</strong> phase-synchronous data acquisitionacross multiple boards. This mode has been successfully used <strong>in</strong> <strong>the</strong> implementation<strong>of</strong> a 6-channel wideband DF system (shown <strong>in</strong> figures D.1 and D.2).• The receiver was shown to use predom<strong>in</strong>antly COTS components and standardassembly methods.The follow<strong>in</strong>g improvements to <strong>the</strong> receiver design are suggested:• The <strong>in</strong>terfac<strong>in</strong>g <strong>of</strong> <strong>the</strong> analogue receiver circuitry to <strong>the</strong> A-D converter shouldbe optimised accord<strong>in</strong>g to <strong>the</strong> discussion <strong>in</strong> section 2.6. The A-D converter per<strong>for</strong>manceshould <strong>the</strong>re<strong>for</strong>e be taken <strong>in</strong>to account when design<strong>in</strong>g <strong>the</strong> analoguereceiver, ra<strong>the</strong>r than be<strong>in</strong>g treated as a separate entity.• Consideration should be given to mov<strong>in</strong>g <strong>the</strong> IF to a higher frequency (70 MHz),<strong>in</strong> a sub-sampl<strong>in</strong>g architecture. This is seen as advantageous <strong>in</strong> that it removes<strong>the</strong> necessity <strong>for</strong> a second analogue mixer <strong>in</strong> <strong>the</strong> analogue receiver (which iscurrently responsible <strong>for</strong> limit<strong>in</strong>g <strong>the</strong> analogue receiver dynamic range), and85


facilitates <strong>the</strong> use <strong>of</strong> COTS SAW filters at <strong>the</strong> IF. System cost is <strong>the</strong>re<strong>for</strong>e reduced,and per<strong>for</strong>mance is improved. Based on <strong>the</strong> f<strong>in</strong>d<strong>in</strong>gs <strong>of</strong> this dissertation,<strong>the</strong> noise result<strong>in</strong>g from <strong>the</strong> sampl<strong>in</strong>g clock jitter is likely to be a limit<strong>in</strong>g factor<strong>in</strong> receiver SFDR at <strong>the</strong>se analogue <strong>in</strong>put frequencies, and a careful selection <strong>of</strong>sampl<strong>in</strong>g clock and related circuitry will be required.• The di<strong>the</strong>r circuitry should be moved closer to <strong>the</strong> receiver frontend. The <strong>in</strong>clusion<strong>of</strong> di<strong>the</strong>r circuitry <strong>in</strong>curs losses at <strong>the</strong> end <strong>of</strong> <strong>the</strong> analogue receiver cha<strong>in</strong>(<strong>the</strong> comb<strong>in</strong>er results <strong>in</strong> a m<strong>in</strong>imum <strong>of</strong> 3 dB loss). The losses <strong>in</strong>crease <strong>the</strong> <strong>in</strong>termodulationdistortion <strong>for</strong> any particular output level. This can be improved bymov<strong>in</strong>g <strong>the</strong> lossy components closer to <strong>the</strong> analogue receiver frontend.86


Bibliography[1] Mixed-signal and DSP Design Techniques. Analog Devices, Inc., 2000.[2] J. V. Adler. Clock-source jitter: A clear understand<strong>in</strong>g aids oscillator selection.URL: http://www.ednmag.com, February 1999.[3] Analog Devices Inc. AD6644 14-Bit, 40MSPS/65MSPS A/D ConverterData Sheet. URL: http://products.analog.com/products/<strong>in</strong>fo.asp?product=AD6644.[4] Analog Devices Inc. A Technical Tutorial on Digital Signal Syn<strong>the</strong>sis, 1999.URL: http://www.analog.com/technology/dataConverters/tra<strong>in</strong><strong>in</strong>g/pdf/DDStutor.p%df.[5] B. Brannon. Aperture uncerta<strong>in</strong>ty and adc system per<strong>for</strong>mance. URL:http://www.analog.com/library/applicationNotes/dataConverters/adc/AN501.pdf.[6] B. Brannon. Basics <strong>of</strong> design<strong>in</strong>g a digital radio receiver. URL: http://www.analog.com/technology/dataConverters/versaComm/radio101.pdf.[7] B. Brannon. Overcom<strong>in</strong>g converter non-l<strong>in</strong>earities with di<strong>the</strong>r. URL:http://www.analog.com/library/applicationNotes/dataConverters/adc/AN-410.pdf.[8] R. E. Crochiere and L. R. Rab<strong>in</strong>er. Multirate Digital Signal Process<strong>in</strong>g. PrenticeHall, Inc., 1983.[9] N. G. Dutil. Implementation <strong>of</strong> dynamic compensation <strong>for</strong> analog-to-digital converters.<strong>Master</strong>’s <strong>the</strong>sis, The Graduate School, University <strong>of</strong> Ma<strong>in</strong>e, 1997.[10] Hewlett Packard. The Dynamic Range Benefits <strong>of</strong> Large-Scale Di<strong>the</strong>redAnalog-to-Digital Conversion <strong>in</strong> <strong>the</strong> HP 89400 Series VSAs. URL:http://www.tm.agilent.com/classes/<strong>Master</strong>Servlet?view=applicationnote&ap%n-ItemID=1000000124&language=eng&locale=US.87


[11] J. R. H<strong>of</strong>fman and J. A. Wepman. Rf and if digitization <strong>in</strong> radio receivers:Theory, concepts, and examples. Technical report, National Telecommunicationsand In<strong>for</strong>mation Adm<strong>in</strong>istration (NTIA), U.S. Department <strong>of</strong> Commerce,March 1996. NTIA Report 96-328 URL: http://www.its.bldrdoc.gov/pub/digradio/digrdrpt.htm.[12] E. B. Hogenauer. An economical class <strong>of</strong> digital filters <strong>for</strong> decimation and <strong>in</strong>terpolation.IEEE Transactions on Acoustics, Speech and Signal Process<strong>in</strong>g,ASSP-29(2):155–162, April 1981.[13] M. Inggs. Eee486f course notes. 1999.[14] M. Laddomada, T. P. di, and F. Daneshgaran. A pc-based s<strong>of</strong>tware receiverus<strong>in</strong>g a novel front-end technology. In G. Kuo, editor, IEEE CommunicationsMagaz<strong>in</strong>e, volume 39, pages 136–145. IEEE Communications Society, August2001.[15] J. H. Larrabee, D. Hummels, and F. Irons. Adc compensation us<strong>in</strong>g a s<strong>in</strong>ewavehistogram method. IEEE Instruments and Measurement Technology Conference,1997.[16] R. Lyons. Quadrature signals: Complex, but not complicated. URL: http://www.dspguru.com/<strong>in</strong>fo/tutor/quadsig.htm.[17] R. G. Lyons. Understand<strong>in</strong>g Digital Signal Process<strong>in</strong>g. Addison Wesley Longman,Inc., 1997.[18] J. J. McDonald. Adaptive compensation <strong>of</strong> analog-to-digital converters. <strong>Master</strong>’s<strong>the</strong>sis, Graduate School, University <strong>of</strong> Ma<strong>in</strong>e, 1997.[19] M<strong>in</strong>icircuits. RF/IF Designer’s Manual, 1992.[20] N. Morrison. Introduction to Fourier Analysis. John Wiley and Sons, Inc., 1994.[21] A. V. Oppenheim and R. W. Schafer. Discrete-Time Signal Process<strong>in</strong>g. PrenticeHall Signal Process<strong>in</strong>g. Prentice-Hall International, Inc., 1989.[22] W. P. Rob<strong>in</strong>s. Phase Noise <strong>in</strong> Signal Sources. Peter Peregr<strong>in</strong>us Ltd., 1996.[23] U. L. Rohde, J. Whitaker, and T. Bucher. Communications Receivers. McGraw-Hill Companies, Inc., second edition, 1997.[24] D. H. She<strong>in</strong>gold, editor. Analog-Digital Conversion Handbook. P T R Prentice-Hall, Inc., third edition, 1986.88


[25] F. G. Stremler. Introduction to Communications Systems. Addison-Wesley Publish<strong>in</strong>gCompany, Inc., third edition, 1990.[26] Texus Instruments. GC4016 Multi-Standard Quad DDC Chip DataSheet. URL: http://focus.ti.com/docs/prod/productfolder.jhtml?genericPartNumber=GC4%016.[27] J. B. Tsui. Digital Techniques <strong>for</strong> Wideband Receivers. Artech House, Inc., 685Canton Street, Norwood, MA, 1995.[28] R. G. Vaughan, N. L. Scott, and D. R. White. The <strong>the</strong>ory <strong>of</strong> bandpass sampl<strong>in</strong>g.IEEE Trans. Signal Proc., 39(9):1973–1991, September 1991.[29] S. Velazquez. High per<strong>for</strong>mance advanced filter band analog-to-digital converter<strong>for</strong> universal rf receivers. October 1998. Presented at <strong>the</strong> IEEE-SP InternationalSymposium on Time-Frequency and Time-Scale Analysis URL: http://www.v-corp.com/afb/tfts98/.[30] R. A. Wannamaker. The Theory <strong>of</strong> Di<strong>the</strong>red Quantisation. PhD <strong>the</strong>sis, University<strong>of</strong> Waterloo, 1997.89


Appendix ADerivationsA.1 Signal-to-Noise Ratio result<strong>in</strong>g from Encode JitterIn this section <strong>the</strong> author derives equation 2.15. This derivation is based on <strong>the</strong> discussion<strong>in</strong> [5], which is fur<strong>the</strong>r ellucidated:We beg<strong>in</strong> by consider<strong>in</strong>g a s<strong>in</strong>usoid with zero phase <strong>of</strong>fset. The s<strong>in</strong>usoid may beexpressed as:V(t) = As<strong>in</strong>(2π f a t)(A.1)where A refers to <strong>the</strong> amplitude <strong>of</strong> <strong>the</strong> s<strong>in</strong>usoid, and f a its frequency <strong>in</strong> Hertz.From figure 2.5, it is noted that an error <strong>in</strong> <strong>the</strong> sampl<strong>in</strong>g time results <strong>in</strong> an error voltagethat is proportional to <strong>the</strong> <strong>in</strong>stantaneous slew rate (slope) <strong>of</strong> <strong>the</strong> signal:∆V = slew rate ∗ ∆t(A.2)The slew rate <strong>of</strong> <strong>the</strong> signal is def<strong>in</strong>ed as <strong>the</strong> signals first derivative. We proceed to f<strong>in</strong>d<strong>the</strong> derivative <strong>of</strong> equation A.1:ddt V (t) = A2π f acos(2π f a t)(A.3)We may express <strong>the</strong> rms error voltage as (cf. equation A.2):(∆V) rms = ( ddtV (t) ) rms ·(∆t) rms= A2π f at jitter √2(A.4)90


The rms signal value is:(V(t)) rms = (A·s<strong>in</strong>(2π f a t)) rms= A √2(A.5)The rms signal-to-noise ratio may now be expressed as <strong>the</strong> logarithmic ratio <strong>of</strong> powers:( ( )SN Psignal= 10·log)rms 10 P noise( ( ) 2)A√2= 10·log 10 ( A2π f)at j itter 2√2= 10·log 10(= 20·log 10() 212π f a t jitter)12π f a t jitter(A.6)91


Appendix BGC4016 Wideband DecimationFilter<strong>in</strong>g Frequency ResponseThis appendix shows <strong>the</strong> magnitude and phase response <strong>of</strong> <strong>the</strong> decimation filter<strong>in</strong>g employed<strong>in</strong> <strong>the</strong> GC4016, <strong>in</strong> order to achieve an overall bandwidth <strong>of</strong> 10 MHz (1.25 MHzper channel), with a sampl<strong>in</strong>g frequency <strong>of</strong> 25.6 MHz.The GC4016 decimation filter<strong>in</strong>g consists <strong>of</strong> a 5th order CIC filter with programmabledecimation <strong>in</strong> <strong>the</strong> range 8 to 4096, followed by two stages <strong>of</strong> FIR filter<strong>in</strong>g with programmable14-bit coefficients. Each FIR filter per<strong>for</strong>ms a fur<strong>the</strong>r decimation by afactor <strong>of</strong> two.92


0−50Magnitude (dB)−100−150−200−250−300−3500 0.5 1 1.5 2 2.5Frequency (Hz)x 10 70−500Phase (degrees)−1000−1500−2000−2500−3000−35000 0.5 1 1.5 2 2.5Frequency (Hz)x 10 7Figure B.1: Magnitude and phase response <strong>of</strong> 5th order CIC decimation filter (decimateby 8).93


50Magnitude (dB)0−50−100−1500 0.5 1 1.5 2 2.5Frequency (Hz)x 10 70−2000Phase (degrees)−4000−6000−8000−10000−120000 0.5 1 1.5 2 2.5Frequency (Hz)x 10 7Figure B.2: Magnitude and phase response <strong>of</strong> 21-tap CFIR FIR filter.94


1000Magnitude (dB)−100−200−300−4000 0.5 1 1.5 2 2.5Frequency (Hz)x 10 70−2000Phase (degrees)−4000−6000−8000−10000−12000−140000 0.5 1 1.5 2 2.5Frequency (Hz)x 10 7Figure B.3: Comb<strong>in</strong>ed magnitude and phase response <strong>of</strong> CIC and CFIR.95


0Magnitude (dB)−50−100−150−2000 0.5 1 1.5 2 2.5Frequency (Hz)x 10 7−1Phase (degrees)−2−3−4−50 x 104 Frequency (Hz)−6−70 0.5 1 1.5 2 2.5x 10 7Figure B.4: Magnitude and phase response <strong>of</strong> 63-tap PFIR FIR filter.96


500Magnitude (dB)−50−100−150−2000 0.5 1 1.5 2 2.5Frequency (Hz)x 10 70 x 104 Frequency (Hz)Phase (degrees)−2−4−6−80 0.5 1 1.5 2 2.5x 10 7Figure B.5: Comb<strong>in</strong>ed magnitude and phase response <strong>of</strong> CFIR and PFIR filters.97


1000Magnitude (dB)−100−200−300−4000 0.5 1 1.5 2 2.5Frequency (Hz)x 10 70 x 104 Frequency (Hz)Phase (degrees)−2−4−6−80 0.5 1 1.5 2 2.5x 10 7Figure B.6: Comb<strong>in</strong>ed magnitude and phase response <strong>of</strong> CIC, CFIR and PFIR filters.98


Appendix CDigital Receiver Per<strong>for</strong>mance PlotsThis appendix conta<strong>in</strong>s plots depict<strong>in</strong>g <strong>the</strong> typical per<strong>for</strong>mance <strong>of</strong> <strong>the</strong> digital receiver.C.1 AD6644 A-D Converter Output PlotsPlots C.1, C.2, C.3 and C.4 show <strong>the</strong> averaged output from DC to Nyquist (25.6 MHz)<strong>of</strong> a 16k FFT per<strong>for</strong>med on <strong>the</strong> AD6644 output samples with various signals placed at<strong>the</strong> digital receiver’s analogue <strong>in</strong>put. A discussion <strong>of</strong> <strong>the</strong> plots is conta<strong>in</strong>ed <strong>in</strong> section6.1.C.2 Wideband 5 MHz IF 800 kHz Bandwidth ReceiverOutput PlotsPlots C.5, C.6, C.7 and C.8 demonstrate <strong>the</strong> functionality <strong>of</strong> <strong>the</strong> digital receiver <strong>in</strong><strong>the</strong> 5 MHz, 800 kHz mode <strong>of</strong> operation, with a resolution bandwidth (FFT frequencyresolution) <strong>of</strong> 1 kHz. A discussion <strong>of</strong> <strong>the</strong> plots may be found <strong>in</strong> section 6.2.99


0−20−40Amplitude [dBFS]−60−80−100−1200 0.5 1 1.5 2 2.5Frequency [MHz]x 10 7Figure C.1: Receiver analogue <strong>in</strong>put term<strong>in</strong>ated <strong>in</strong> 50 Ω.C.3 Wideband 12.8 MHz IF 10 MHz Bandwidth ReceiverOutput PlotsPlots C.9, C.10, C.11, C.12, C.13 and C.14 show <strong>the</strong> output <strong>of</strong> <strong>the</strong> digital receiverconfigured <strong>in</strong> a 10 MHz bandwidth output. The 10 MHz bandwidth is <strong>for</strong>med byconcatenat<strong>in</strong>g eight 1.25 MHz bands tuned to adjacent frequencies. The resolutionbandwidth (FFT frequency resolution) <strong>of</strong> all plots corresponds to <strong>the</strong> 12.5 kHz used<strong>in</strong> <strong>the</strong> 10 MHz system configuration described <strong>in</strong> chapter 4, with <strong>the</strong> exception <strong>of</strong> <strong>the</strong><strong>in</strong>termodulation tests. A fur<strong>the</strong>r decimation by eight (correspond<strong>in</strong>g to <strong>the</strong> eight timeszoom mode with an eight times <strong>in</strong>crease <strong>in</strong> frequency resolution) was necessary toreduce <strong>the</strong> high noise levels generated by <strong>the</strong> IMD test setup, such that <strong>the</strong> <strong>in</strong>termodulationproducts could be reliably measured.100


0−20−40Amplitude [dBFS]−60−80−100−1200 0.5 1 1.5 2 2.5Frequency [MHz]x 10 7Figure C.2: 7.6 MHz, -1 dBFS tone at receiver analogue <strong>in</strong>put.A discussion <strong>of</strong> <strong>the</strong> plots may be found <strong>in</strong> section 6.3..101


0−20−40Amplitude [dBFS]−60−80−100−1200 0.5 1 1.5 2 2.5Frequency [MHz]x 10 7Figure C.3: 7.6 MHz, -30 dBFS tone at receiver analogue <strong>in</strong>put with no di<strong>the</strong>r.102


0−20−40Amplitude [dBFS]−60−80−100−1200 0.5 1 1.5 2 2.5Frequency [MHz]x 10 7Figure C.4: 7.6 MHz, -30 dBFS tone at receiver analogue <strong>in</strong>put with di<strong>the</strong>r.103


0−20−40Amplitude [dBFS]−60−80−100−1204.6 4.7 4.8 4.9 5 5.1 5.2 5.3 5.4Frequency [MHz]x 10 6Figure C.5: S<strong>in</strong>gle tone at 5.15 MHz <strong>of</strong> amplitude -1 dBFS (averaged).104


0−10−20−30−40Amplitude [dBFS]−50−60−70−80−90−100−1104.6 4.7 4.8 4.9 5 5.1 5.2 5.3 5.4Frequency [MHz]x 10 6Figure C.6: S<strong>in</strong>gle tone at 5.15 MHz <strong>of</strong> amplitude -1 dBFS (peak hold).105


0Two−tone dynamic range−20−40Amplitude [dBFS]−60<strong>in</strong>termodulation products−80−100−1204.6 4.7 4.8 4.9 5 5.1 5.2 5.3 5.4Frequency [MHz]x 10 6Figure C.7: Two-tone <strong>in</strong>termodulation test results at 5 MHz IF (averaged).106


0−10−20−30−40Amplitude [dBFS]−50−60−70−80−90−100−1104.6 4.7 4.8 4.9 5 5.1 5.2 5.3 5.4Frequency [MHz]x 10 6Figure C.8: Two-tone <strong>in</strong>termodulation test results at 5 MHz IF(peak hold)107


0−10−20−30−40Amplitude [dBFS]−50−60−70−80−90−100−110−1200.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7Frequency [MHz]x 10 7Figure C.9: Receiver <strong>in</strong>put term<strong>in</strong>ated <strong>in</strong> 50 Ω (averaged).108


0−10−20−30−40Amplitude [dBFS]−50−60−70−80−90−100−110−1200.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7Frequency [MHz]x 10 7Figure C.10: Receiver <strong>in</strong>put term<strong>in</strong>ated <strong>in</strong> 50 Ω (peak hold).109


0−10−20−30−40Amplitude [dBFS]−50−60−70−80−90−100−110−1200.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7Frequency [MHz]x 10 7Figure C.11: S<strong>in</strong>gle tone at 12.64 MHz, -1 dBFS (averaged).110


0−10−20−30−40Amplitude [dBFS]−50−60−70−80−90−100−110−1200.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7Frequency [MHz]x 10 7Figure C.12: S<strong>in</strong>gle tone at 12.64 MHz, -1 dBFS (peak hold).111


0−10−20−30−40Amplitude [dBFS]−50−60−70−80−90−100−110−1200.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7Frequency [MHz]x 10 7Figure C.13: Two-tone <strong>in</strong>termodulation test results at 12.8 MHz IF (averaged).112


0−10−20−30−40Amplitude [dBFS]−50−60−70−80−90−100−110−1200.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7Frequency [MHz]x 10 7Figure C.14: Two-tone <strong>in</strong>termodulation test results at 12.8 MHz IF (peak hold).113


Appendix DSystem and Board PhysicalConstruction and LayoutThis appendix demonstrates <strong>the</strong> physical layout and construction <strong>of</strong> a typical systemand digital receiver boards through a series <strong>of</strong> photographic images. Labels have been<strong>in</strong>cluded where appropriate.Figure D.1: 6-Antenna wideband receiver <strong>in</strong>corporat<strong>in</strong>g <strong>the</strong> digital receiver..114


KeyABCDDescriptionVideo DisplayDigital ReceiverAnalogue ReceiverAntenna SelectorTable D.1: Key <strong>for</strong> figure D.1KeyABCDEFDescriptionSampl<strong>in</strong>g clock and synchronisation boardDigital receiver adapter cardsS<strong>in</strong>gle board computer (SBC)DSP process<strong>in</strong>g boardsATX Power supply4U, 19 <strong>in</strong>ch rack-mountable enclosureTable D.2: Key <strong>for</strong> figure D.2KeyABCDEFDescriptionADC and DDC mezzan<strong>in</strong>e modules.ADC and DDC shield<strong>in</strong>g cover.Mezzan<strong>in</strong>e site on ISA base board.ADSP-21160 digital signal processor.External multichannel synchronisation <strong>in</strong>put (PECL levels).IF <strong>in</strong>put connector (rigid co-axial cable runs along back<strong>of</strong> ISA board to top left <strong>of</strong> ADC moduleTable D.3: Key <strong>for</strong> figure D.3115


Figure D.2: 6-Channel wideband digital receiver.116


Figure D.3: Physical layout <strong>of</strong> <strong>the</strong> digital receiver adapter card and mezzan<strong>in</strong>e module.KeyABCDEFGHIJKLDescriptionEMI shield<strong>in</strong>g <strong>for</strong> sensitive circuitry.Level match<strong>in</strong>g and filter board (unpopulated).F<strong>in</strong>al anti-alias<strong>in</strong>g filter.Di<strong>the</strong>r circuitry.AD6644 A-D converter.External clock <strong>in</strong>put.GC4016 DDC’s (BGA on bottom side <strong>of</strong> board).Altera FPGA (BGA on bottom side <strong>of</strong> board).+5.1V Analog DC-DC converter.+3.3V Digital DC-DC converter.FIFO memories.Altera CPLD.Table D.4: Key <strong>for</strong> figure D.4117


Figure D.4: Physical layout <strong>of</strong> <strong>the</strong> ADC and DDC boards.Figure D.5: Assembled digital receiver card (no shield<strong>in</strong>g cover).118

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!