28.11.2012 Views

Differential Scanning Calorimetry (DSC)

Differential Scanning Calorimetry (DSC)

Differential Scanning Calorimetry (DSC)

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Differential</strong> <strong>Scanning</strong><br />

<strong>Calorimetry</strong> (<strong>DSC</strong>)<br />

Theory and Experimental Conditions<br />

Glass Transition<br />

Melting and Crystallization<br />

Heat Capacity<br />

M<strong>DSC</strong><br />

<strong>DSC</strong>: The Technique<br />

<strong>Differential</strong> <strong>Scanning</strong> <strong>Calorimetry</strong> (<strong>DSC</strong>) measures<br />

the temperatures and heat flows associated with<br />

transitions in materials as a function of time and<br />

temperature in a controlled atmosphere.<br />

These measurements provide quantitative and<br />

qualitative information about physical and chemical<br />

changes that involve endothermic or exothermic<br />

processes, or changes in heat capacity.


TA Instruments <strong>DSC</strong>’s<br />

<strong>DSC</strong> 2010 <strong>DSC</strong> 2910 <strong>DSC</strong> 2920<br />

<strong>DSC</strong>: What <strong>DSC</strong> Can Tell You<br />

�Glass Transitions<br />

�Melting and Boiling Points<br />

�Crystallization time and temperature<br />

�Percent Crystallinity<br />

�Heats of Fusion and Reactions<br />

�Specific Heat<br />

�Oxidative/Thermal Stability<br />

�Rate and Degree of Cure<br />

�Reaction Kinetics<br />

�Purity


<strong>DSC</strong>: Definitions<br />

A calorimeter measures the heat into or out of a sample.<br />

A differential calorimeter measures the heat of a sample relative to<br />

a reference.<br />

A differential scanning calorimeter does all of the above and heats<br />

the sample with a linear temperature ramp.<br />

Endothermic heat flows into the sample.<br />

Exothermic heat flows out of the sample.<br />

<strong>DSC</strong>: Heat Flow/Specific Heat Capacity<br />

∆H = Cp ∆T<br />

or in differential form<br />

dH/dt = Cp dT/dt + thermal events<br />

where:<br />

Cp = specific heat (J/g°C)<br />

T = temperature (°C)<br />

H = heat (J)<br />

dH/dt = heat flow (J/min.)<br />

mW = mJ/sec<br />

dT/dt = heating rate (°C/min.)<br />

assuming work & mass loss are zero


<strong>DSC</strong>: Measurement of HF and T<br />

Sample Ref<br />

chromel alumel<br />

Ni-Cr Ni-Al<br />

<strong>DSC</strong>: Temperature Measurement<br />

Sample Ref<br />

Sample Temperature Ts<br />

constantan<br />

Cu-Ni<br />

Platinel Control<br />

Thermocouple<br />

Furnace<br />

Temperature<br />

Ag<br />

furnace


<strong>DSC</strong>: Heat Flow Measurement<br />

Alumel wire<br />

(sample temp)<br />

Sample Ref<br />

Potential Difference ∆U<br />

Temperature Difference ∆T<br />

Heat Flow dQ/dt<br />

Chromel<br />

wires (∆T)


<strong>DSC</strong>: Cell Schematic Diagram<br />

Chromel<br />

Disc<br />

Dynamic Sample Chamber<br />

Reference Pan<br />

Gas Purge Inlet<br />

Heating<br />

Block<br />

Alumel Wire<br />

Chromel Wire<br />

<strong>DSC</strong>: Cell Components<br />

Sample Pan<br />

Lid<br />

Chromel<br />

Disc<br />

Thermocouple<br />

Junction<br />

Thermoelectric Disc<br />

(Constantan)<br />

Silver Furnace: for good temperature<br />

uniformity<br />

Sample Purge: for excellent oxidative<br />

stability measurements<br />

Purge Preheated: for very low noise from<br />

turbulence<br />

Air Cool: for fast return to room<br />

temperature


<strong>DSC</strong>: Heat Flux Principle<br />

The differential temperature ( ∆ T)<br />

between the sample and<br />

reference is converted to differential heat flow in a way that<br />

is analogous to current flow in Ohms Law.<br />

I = E/R where: I = current<br />

E = voltage (potential)<br />

R = electrical resistance<br />

∆<br />

Heat Flow =<br />

T k 1 k 2 where:<br />

R<br />

∆T<br />

= temperature difference (potential)<br />

R = thermal resistance of constantan disk<br />

k 1 = factory-set calibration value<br />

k 2 = user-set calibration value<br />

<strong>DSC</strong>: How Heat Flux is Measured<br />

• Heat flow through the chromel wafer causes a<br />

temperature difference ∆T. The temperature<br />

difference is measured as the voltage difference ∆U<br />

between the sample and reference constantan/chromel<br />

junctions. The voltage is adjusted for thermocouple<br />

response S and is proportional to heat flow.<br />

∆T = ∆U / S ∆T in °C<br />

∆U in µV<br />

S in µV/°C


<strong>DSC</strong>: Related Instrumentation<br />

• Modulated <strong>DSC</strong> (M<strong>DSC</strong>) : sinusoidal oscillation superimposed<br />

on linear temperature ramp<br />

• <strong>Differential</strong> Thermal Analysis (DTA)<br />

• Pressure <strong>DSC</strong> (P<strong>DSC</strong>)<br />

• <strong>Differential</strong> Photocalorimetry (DPC)<br />

• Dual Sample <strong>DSC</strong><br />

• SDT 2960 Simultaneous <strong>DSC</strong>-TGA<br />

DTA<br />

<strong>Differential</strong> Thermal Analysis (DTA) : measures the temperatures and<br />

temperature differences (between sample and reference) associated with<br />

transitions in materials as a function of time and temperature in a<br />

controlled atmosphere


P<strong>DSC</strong><br />

Pressure <strong>DSC</strong> (P<strong>DSC</strong>) : capability<br />

of operating at elevated pressure or<br />

at a vacuum (TAI P<strong>DSC</strong>: 1 Pa - 7<br />

Mpa)<br />

DPC & Dual Sample <strong>DSC</strong><br />

•<strong>Differential</strong><br />

Photocalorimetry (DPC) :<br />

sample is exposed to<br />

UV/Vis radiation<br />

•Dual Sample <strong>DSC</strong>:<br />

Allows two samples to<br />

be ran simultaneously


SDT 2960<br />

•SDT 2960 Simultaneous <strong>DSC</strong>-TGA:<br />

measures heat flow and weight changes<br />

simultaneously<br />

<strong>DSC</strong>: Heat Flow Measurements<br />

Calorimeter Signals<br />

Time<br />

Temperature<br />

Heat Flow<br />

Signal Change Properties Measured<br />

Heat Flow, absolute Specific Heat<br />

Heat Flow, shift Glass Transition<br />

Exothermic Peak Crystallization or Cure<br />

Endothermic Peak Melting<br />

Isothermal Onset Oxidative Stability


<strong>DSC</strong>: Typical <strong>DSC</strong> Transitions<br />

Heat Flow -> exothermic<br />

Glass<br />

Transition<br />

Crystallization<br />

Melting<br />

Temperature<br />

<strong>DSC</strong>: Experimental Design<br />

�Available Method Segments<br />

�Method Design Rules<br />

�Typical Methods (Examples)<br />

Cross-Linking<br />

(Cure)<br />

Oxidation<br />

or<br />

Decomposition


<strong>DSC</strong>: Available Method Segments<br />

JUMP ABORT NEXT SEG*<br />

EQUILIBRATE SAMPLING INTERVAL<br />

INITIAL TEMPERATURE SELECT GAS<br />

RAMP EXTERNAL EVENT<br />

ISOTHERMAL DATA STORAGE<br />

ISO-TRACK AIR COOL*<br />

STEP LNCA CONTROL*<br />

INCREMENT MARK END OF CYCLE*<br />

REPEAT SEGMENT x FOR y TIMES MODULATE#<br />

REPEAT SEGMENT x TILL y °C<br />

* Available on <strong>DSC</strong> 29XX only<br />

# Available on M<strong>DSC</strong> 29XX only<br />

<strong>DSC</strong>: Method Design Rules<br />

�Start Temperature<br />

�Generally, the baseline should have three (3)<br />

minutes to completely stabilize prior to the<br />

transition of interest. Therefore, at 10°C/min.,<br />

start at least 30°C below the transition onset<br />

temperature<br />

�End Temperature<br />

�Allow a three (3) minute baseline after the<br />

transition of interest in order to correctly select<br />

integration or analysis limits


<strong>DSC</strong>: Heating/Cooling Method<br />

Heating Method<br />

(NOTE: No equilibrate segment necessary if<br />

starting at or near ambient temperature.)<br />

1) Ramp 10°C/min. to 300°C<br />

Cooling Method<br />

1) Equilibrate at 300°C<br />

2) Ramp 10°C/min. to 25°C<br />

<strong>DSC</strong>: Heat-Cool-Reheat Method<br />

Heat-Cool-Reheat Method<br />

1) LNCA control: High<br />

2) Ramp 10°C/min. to 300°C<br />

3) Mark cycle end 0<br />

4) Ramp 10°C/min. to 25°C<br />

5) Mark cycle end 0<br />

6) Ramp 10°C/min. to 300°C<br />

7) Mark cycle end 0<br />

The first segment in this method allows for rapid cooling


<strong>DSC</strong>: Oxidative Stability (OIT) Method<br />

OIT Method<br />

1) Equilibrate at 60°C<br />

2) Isothermal for 5.00 min.<br />

3) Ramp 20°C/min. to 200°C<br />

4) Isothermal for 5.00 min.<br />

5) Abort next seg. if W/g > 1.0<br />

6) Select gas: 2<br />

7) Iso-track for 200.00 min.<br />

<strong>DSC</strong>: Modulated <strong>DSC</strong> Method<br />

M<strong>DSC</strong> Method<br />

1) Data storage: off<br />

2) Equilibrate at -20°C<br />

3) Modulate ±1°C every 60 seconds<br />

4) Isothermal for 5.00 min.<br />

5) Data storage: on<br />

6) Ramp 3°C/min. to 300°C


<strong>DSC</strong>: Calibration & Sample Preparation<br />

�Instrument Calibration<br />

� <strong>Differential</strong> Heat Flow (Cell Constant)<br />

� Temperature<br />

� Baseline<br />

�Miscellaneous<br />

� Purge Gas<br />

� Cooling Accessories<br />

� Environment<br />

�Sample Preparation<br />

�Selecting Experimental Conditions<br />

�Routine Maintenance/Sample Press<br />

<strong>DSC</strong>: Heat Flow Calibration<br />

�<strong>Differential</strong> Heat Flow (ASTM E968)<br />

�Heat of fusion (melting) standards<br />

�Heat capacity (no transition)<br />

�Miscellaneous<br />

� Use specific purge gas at specified rate<br />

� Calibrate w/cooling accessory functioning if it will be<br />

used to run samples<br />

� Single point used for heat of fusion which is typically<br />

accurate to +/- 1-2% from -50°C to 350°C<br />

� Calibration should not change w/heating rate


Heat Flow (mW)<br />

<strong>DSC</strong>: Heat Flow Calibration<br />

�Prepare a 10 to 15 mg. sample of indium and premelt<br />

prior to first use<br />

�Use this sample a maximum of 10 times<br />

�Calibrate at least once a month<br />

�Typical values for cell constant: 1.0 to 1.2<br />

<strong>DSC</strong>: Calorimetric Calibration<br />

5<br />

0<br />

-5<br />

-10<br />

157.44°C<br />

Cell Const.: 1.0766<br />

Onset Slope: -20.82 mW/°C<br />

Sample: Indium, 5.95 mg.<br />

CALIBRATION MODE; 10°C/MIN<br />

CALIBRATION BASED ON 28.42J/g<br />

-15<br />

150 155 160 165 170


Heat Flow (W/g)<br />

<strong>DSC</strong>: Temperature Calibration<br />

�ASTM Method E967<br />

�Pure metals (indium, lead, etc.) typically used<br />

�Extrapolated onset is used as melting temperature<br />

�Sample is fully melted at the peak<br />

� Miscellaneous<br />

�With metal standards, calibration should change very<br />

� little with heating rate<br />

�With metal standards, it is not practical to calibrate for<br />

�changes in heating rate on polymer samples<br />

<strong>DSC</strong>: Temperature Calibration<br />

1<br />

0<br />

-1<br />

-2<br />

-3<br />

HEATING RATE<br />

Extrapolated Onset<br />

156.61°C<br />

28.36J/g<br />

-4<br />

157.09°C<br />

-5<br />

PEAK<br />

150 152 154 156 158 160 162 164<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Deriv. Temperature (°C/min)


<strong>DSC</strong>: Temperature Calibration<br />

�Calibrate at least once a month<br />

�Use at least two calibration points up to a maximum of<br />

five points<br />

�Use tin, lead, and zinc one time only<br />

<strong>DSC</strong>: Recommended Temperature &<br />

Enthalpy Standards<br />

Enthalpy<br />

(cell constant)<br />

Temperature<br />

�Benzoic acid (147.3 J/g) Tm = 123°C<br />

�Urea (241.8 J/g) Tm = 133°C<br />

�Indium (28.45 J/g) Tm = 156.6°C<br />

�Anthracene (161.9 J/g) Tm = 216°C<br />

�Cyclopentane* -150.77°C<br />

�Cyclopentane* -135.09°C<br />

�Cyclopentane* -93.43°C<br />

�Cyclohexane# -83°C<br />

�Water# 0°C<br />

�Gallium# 29.76°C<br />

�Phenyl Ether# 30°C<br />

�p-Nitrotoluene� 51.45°C<br />

�Naphthalene� 80.25°C<br />

�Indium# 156.60°C<br />

�Tin# 231.95°C<br />

* GEFTA recommended<br />

Thermochim. Acta, 219 (1993) 333.<br />

# ITS 90 Fixed Point<br />

� Zone refined organic compound<br />

(sublimes)


<strong>DSC</strong>: Traceable Calibration Materials<br />

�NIST <strong>DSC</strong> calibration materials:<br />

�SRM 2232 Indium Tm = 156.5985°C<br />

� SRM 2220 Tin Tm = 231.95°C<br />

� SRM 2222 Biphenyl Tm = 69.41°C<br />

� SRM 2225 Mercury Tm = -38.70°C<br />

� SRM 2221b Zinc Tm = In Preparation<br />

�NIST: Gaithersburg, MD 20899-0001<br />

� Phone: 301-975-6776<br />

� Fax: 301-948-3730<br />

� Email: SRMINFO@nist.gov<br />

� www: HTTP://ts.nist.gov/srm<br />

<strong>DSC</strong>: Traceable Calibration Materials<br />

�LGC <strong>DSC</strong> Calibration Materials:<br />

�LGC2601: Indium (TA p/n: 915060-901)<br />

� LGC2608: Lead<br />

� LGC2609: Tin<br />

� LGC2611: Zinc<br />

�Laboratory of the Government Chemist, UK<br />

� Phone: 44 (0) 181 943 7565<br />

� Fax: 44 (0) 181 943 7554<br />

� Email: orm@lgc.co.uk


<strong>DSC</strong>: Traceable Calibration Materials<br />

�Certified materials used to establish traceability of<br />

instrument calibration<br />

�ISO/GLP certification often requires third party<br />

calibration of instruments:<br />

� Service provided by TA Instruments service<br />

representative using certified materials<br />

� Certificate of Calibration issued showing traceability<br />

of calibration to a national laboratory<br />

<strong>DSC</strong>: Effect of Heating Rate<br />

on Indium Melting Temperature<br />

Heat Flow (W/g)<br />

1<br />

0<br />

-1<br />

-2<br />

-3<br />

-4<br />

Heating Rates = 2, 5, 10, & 20°C/min<br />

-5<br />

154 156 158 160 162 164 166 168 170<br />

Temperature (°C)


<strong>DSC</strong>: Effect of Heating Rate<br />

on Indium Melting Temperature<br />

Heat Rate Onset Peak ∆H<br />

Onset<br />

Variation<br />

to 10°C/min<br />

2°C/min 156.49°C 156.61°C 28.46 J/g -0.12°C<br />

5 156.54 156.75 28.45 -0.07<br />

10 156.61 156.87 28.46 0<br />

20 156.76 157.08 28.44 +0.15<br />

<strong>DSC</strong>: Polymer Sample w/Internal<br />

Temperature Calibration Material<br />

2 Layers<br />

of Polymer<br />

Film<br />

Melting Point<br />

Standard, e.g.<br />

Indium<br />

Typical weight of polymer sample is 10mg<br />

(2 films at 5mg each) with 1-3mg of Indium


<strong>DSC</strong>: Indium Sample Placed Between<br />

Two HDPE Film Samples<br />

Sample: Linear Polyethylene-Indium<br />

Size: 10.0000 mg<br />

Method: VarHeat <strong>DSC</strong><br />

Operator: Lab<br />

Run Date: 11-Jun-97 12:43<br />

Comment: <strong>DSC</strong> @ 2,5,10%20°C/min; crimped pans, HS Cmpd<br />

Heat Flow (W/g)<br />

0<br />

-2<br />

-4<br />

Polyethylene<br />

Melt<br />

Indium<br />

Melt<br />

-6<br />

20 40 60 80 100 120 140 160 180<br />

Temperature (°C)<br />

<strong>DSC</strong>: Effect of Heating Rate on HDPE<br />

and Indium Melting<br />

Heat Flow (W/g)<br />

0<br />

-2<br />

-4<br />

-6<br />

Polyethylene<br />

Melt<br />

Indium<br />

Melt<br />

-8<br />

20 40 60 80 100 120 140 160 180<br />

Temperature (°C)


Heat Flow (W/g)<br />

0.5<br />

0.0<br />

-0.5<br />

-1.0<br />

-1.5<br />

When Placed Between Polymer Films<br />

Heating Rates = 2, 5, 10 & 20°C/min<br />

-2.0<br />

154 156 158 160 162 164 166 168 170<br />

Temperature (°C)<br />

<strong>DSC</strong>: Effect of Heating Rate on Indium Melting<br />

When Placed Between Polymer Film<br />

Onset Variation When Calibrated at 10°C/min.<br />

Heating Rate<br />

Standard<br />

Sample<br />

Polymer Sandwich<br />

Sample<br />

2°C/min -0.12°C +.03°C<br />

5 -0.07 +.16<br />

10 0 +0.44<br />

20 +0.15 +0.82


<strong>DSC</strong>: Baseline Calibration<br />

�Slope<br />

�Calibration should provide flat baseline with<br />

empty pans<br />

�Polymers should always have an endothermic<br />

slope due to increasing heat capacity with<br />

increasing temperature<br />

�Curvature<br />

�Not normally part of calibration procedure<br />

�Can be eliminated if necessary with baseline<br />

subtraction<br />

�Curvature can cause errors in analyses<br />

<strong>DSC</strong>: Baseline Slope<br />

Heat Flow (W/g)<br />

0.5<br />

0.0<br />

-0.5<br />

-1.0<br />

-1.5<br />

Empty Pans<br />

10 mg Polystyrene<br />

-2.0<br />

20 40 60 80 100 120 140 160 180 200


<strong>DSC</strong>: Baseline Curvature<br />

Heat Flow (W/g)<br />

0.1<br />

0.0<br />

-0.1<br />

-0.2<br />

100 150 200 250 300 350<br />

Temperature (°C)<br />

SDT 2960 Calibration<br />

Heating @ 1°C/min<br />

Heating @ 3.5°C/min<br />

•DTA Baseline and empty beams<br />

0.4<br />

0.2<br />

0.0<br />

-0.2<br />

TGA Weight Calibration calibration weights<br />

•Temperature Calibration up to 5 temperature<br />

standards<br />

•<strong>DSC</strong> Heat Flow Calibration sapphire<br />

Heat Flow (W/g)


SDT 2960 <strong>DSC</strong> Heat Flow Calibration<br />

•Two scans from ambient to 1500°C at 20 °C/min<br />

•empty alumina pans<br />

•sapphire in alumina sample pan<br />

•Use Thermal Solutions/Thermal Advantage NT<br />

Software to analyze<br />

•E-curve will be calculated and transferred to the<br />

module when the user accepts the results<br />

<strong>DSC</strong>: Instrument Preparation<br />

�Purge Gas<br />

�Type of purge gas and flow rate affect calibration and therefore<br />

should be controlled<br />

�Nitrogen is preferred because it is inert and calibration is least<br />

affected by changes in flow rate<br />

�Cooling Accessories<br />

�If used, they should be operating and equilibriated prior to<br />

calibration or sample runs<br />

�Warm-up Time/Environment<br />

�Electronics should be given at least one hour to stabilize for<br />

important samples if the instrument has been turned OFF<br />

�Electronics are effected by ambient temperature. Avoid areas such<br />

as hoods or near an air conditioner


Cell Constant<br />

<strong>DSC</strong>: Recommended Purge Gas Flow<br />

Rates & Effect of Flow Rate<br />

Purge Port (mL/min.)<br />

Module Purge Cool Vacuum<br />

<strong>DSC</strong> 2920/2910/2010 50 (N ) 50*<br />

2<br />

25 (He) 50<br />

* Only needed for subambient or M<strong>DSC</strong> use. Use dry nitrogen or He gas<br />

Purge Gas Flow Rate Too Slow: Moisture Accumulation and Early<br />

Aging of the Cell<br />

�Purge Gas Flow Rate Too Fast: Excessive Noise<br />

<strong>DSC</strong>: Effect of Flow Rate on Cell Constant<br />

1.80<br />

1.70<br />

1.60<br />

1.50<br />

1.40<br />

1.30<br />

1.20<br />

1.10<br />

1.00<br />

Helium Cell Constant<br />

Nitrogen Cell Constant<br />

0 10 20 30 40 50 60 70 80 90 100 110


<strong>DSC</strong>: Sample Preparation<br />

�Sample Weight<br />

� Selection of the optimum weight is dependent on a number of factors.<br />

The sample to be analyzed must be representative of the total sample<br />

�The change in heat flow due to the transition of interest should be<br />

in the range of 0.1 - 10mW<br />

- metal or chemical melting: 10mg<br />

�The accuracy of the analytical balance<br />

- sample weight should be accurate to +1%<br />

<strong>DSC</strong>: Heat Flow Change During a<br />

Transition<br />

Heat Flow (mW)<br />

1.0<br />

0.5<br />

0.0<br />

-0.5<br />

-1.0<br />

-1.5<br />

69.41°C<br />

73.37°C(H)<br />

+ 0.4881mW<br />

143.70°C<br />

34.95J/g<br />

161.17°C<br />

1.593mW<br />

-2.0<br />

40 60 80 100 120 140 160 180 200 220<br />

Temperature (°C)


<strong>DSC</strong>: Sample Preparation (cont.)<br />

�Sample Shape<br />

� Keep sample as thin as possible and cover as much of the pan bottom<br />

as possible<br />

� Samples should be cut rather than crushed to obtain a thin sample<br />

� Lids should be used with sample pans in order to keep the sample in<br />

contact with the bottom of the pan<br />

�Sample Pans<br />

� Use lightest, flattest pan possible<br />

� Use hermetic pans to prevent evaporation if it occurs in the same<br />

temperature range as the transition of interest<br />

<strong>DSC</strong>: Experimental Conditions<br />

�Reference Pan<br />

�Always use a reference pan of the same type used to prepare the<br />

sample<br />

�Never use a material in the reference pan that has a transition in<br />

the temperature range of interest<br />

�Because <strong>DSC</strong> measures the difference in heat flow between a<br />

sample and reference, the baseline stabilizes faster if the difference<br />

in heat capacity between the sample and reference is kept small by<br />

adding weight (same material as pan) to the reference pan so that it<br />

is similar in total weight to the sample pan.


<strong>DSC</strong>: Effect of Reference Pan Weight<br />

on <strong>DSC</strong> Baseline<br />

Heat Flow (mW)<br />

4<br />

2<br />

0<br />

-2<br />

-4<br />

-6<br />

-8<br />

-10<br />

Sample: Epoxy<br />

Weight: Approx. 10mg<br />

Heat Rate: 20°C<br />

REFERENCE PAN WITH 2 LIDS<br />

1.688mW<br />

REFERENCE PAN WITH 1.5 LIDS<br />

-0.6018mW<br />

-1.953mW<br />

REFERENCE PAN WITH LID<br />

-10.04mW<br />

NO REFERENCE PAN<br />

-12<br />

90 110 130<br />

Temperature °C<br />

150 170<br />

<strong>DSC</strong>: Comparison of <strong>DSC</strong> Tg Using No Reference<br />

Pan and One of Equal Cp to Sample<br />

Heat Flow (mW)<br />

0.2<br />

0<br />

-0.2<br />

-0.4<br />

-0.6<br />

Cp REF = Cp SAMPLE<br />

NO REFERENCE<br />

-0.8<br />

90 110 130 150 170


<strong>DSC</strong>: Experimental Conditions<br />

�Heating/Cooling Rates<br />

�High rates increase sensitivity<br />

dQ<br />

dt<br />

heat flow<br />

measured<br />

by <strong>DSC</strong><br />

dT<br />

= Cp x<br />

dt<br />

= heat capacity<br />

or weight<br />

of sample<br />

x heating<br />

rate<br />

+ (T, t) f<br />

+ time dependent<br />

or kinetic<br />

component<br />

�Low rates increase resolution by providing more time at any<br />

temperature<br />

�Purge Gas<br />

�nitrogen increases sensitivity because it is a relatively poor thermal<br />

conductor<br />

�helium increases resolution because it is a good conductor<br />

of heat to or from the sample<br />

<strong>DSC</strong>: Experimental Conditions<br />

General Summary<br />

Condition<br />

To Increase<br />

Sensitivity<br />

To Increase<br />

Resolution<br />

Sample Size Increase Decrease<br />

Heat Rate Increase Decrease<br />

Ref Pan Weight Increase No Effect<br />

Purge Gas Nitrogen* Helium*<br />

*instrument should be calibrated with the same<br />

purge gas as used to run a sample


<strong>DSC</strong>: Sample Pan Types<br />

�Pan Type<br />

�Aluminum<br />

�Copper<br />

�Gold<br />

�Graphite<br />

�Al Hermetic<br />

�Al Alodined Hermetic<br />

�Gold Hermetic<br />

�High Volume (100µL)<br />

�Al Solid Fat Index (SFI)<br />

�Platinum<br />

<strong>DSC</strong>: Sample Pan Selection<br />

Standard Aluminum Pans<br />

�Upper Temp Limit<br />

�600°C<br />

�725°C (in N2)<br />

�725°C<br />

�725°C (in N2)<br />

�600°C (3 atm.)<br />

�600°C (3 atm.)<br />

�725°C (6 atm.)<br />

�250°C (safety lid)<br />

�600°C (no cover)<br />

�725°C (no cover)<br />

Use a thin layer<br />

Distribute material<br />

evenly


<strong>DSC</strong>: Sample Preparation – Hermetic Pans<br />

<strong>DSC</strong>: Sample Pan Selection<br />

Spread Material Evenly<br />

Do not overfill!!<br />

�Sample Type Measurement Pan Type<br />

solid Tg,Tm std., hermetic, open<br />

(nonvolatile) OIT SFI, open<br />

Cp std.<br />

solid (volatile) Cp hermetic<br />

liquid Tn,Tc,Tg,Tm hermetic, SFI, open<br />

Cp hermetic<br />

OIT SFI, open<br />

aqueous solution Cp,Tm,Tg alodined or gold<br />

hermetic<br />

foods/biologicals denaturation high volume


<strong>DSC</strong>: Recommended Cell Maintenance<br />

�Cleaning the <strong>DSC</strong> cell (bakeout)<br />

(use this procedure for cleaning a contaminated cell)<br />

�Air purge = 50mL/min.<br />

�Ramp 20°C/min. to 600°C<br />

�Isothermal for 10 min.<br />

�Cool cell to room temperature<br />

�Brush out cell with fiberglass brush<br />

�Check for improved baseline performance<br />

�NEVER use solvents to clean <strong>DSC</strong> cell<br />

Thermoplastic Polymers<br />

Semi-Crystalline (or Amorphous)<br />

Crystalline Phase<br />

melting temperature Tm<br />

(endothermic peak)<br />

Amorphous Phase<br />

glass transition<br />

temperature (Tg)<br />

(causing ∆Cp)<br />

Tg < Tm<br />

Crystallizable polymer can crystallize<br />

on cooling from the melt at Tc


<strong>DSC</strong>: Selecting Experimental Conditions<br />

�Thermoplastic Polymers<br />

� Perform a Heat-Cool-Heat Experiment at 10°C/min.<br />

� First heat data is a function of the material and an unknown thermal<br />

history<br />

� Cooling segment data provides information on the crystallization<br />

properties of the polymer and gives the sample a known thermal<br />

history<br />

� Second heat data is a function of the material with a known thermal<br />

history<br />

<strong>DSC</strong>: Thermoplastic: Heat/Cool/Heat<br />

Heat Flow (W/g)<br />

0.4<br />

0.2<br />

0.0<br />

-0.2<br />

-0.4<br />

-0.6<br />

-0.8<br />

First Heat<br />

Cooling<br />

Second<br />

Heat<br />

0 20 40 60 80<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

[ ] Temperature (°C)


<strong>DSC</strong>: Thermoplastic: Heat Flow vs.<br />

Temperature for Heat/Cool/Heat<br />

Heat Flow (W/g)<br />

0.4<br />

0.2<br />

0.0<br />

-0.2<br />

-0.4<br />

-0.6<br />

Second Heat<br />

191.41°C<br />

First Heat<br />

Cool<br />

223.01°C<br />

48.03J/g<br />

-0.8<br />

20 40 60 80 100 120 140 160 180 200 220 240 260 280<br />

Temperature (°C)<br />

<strong>DSC</strong>: Selecting Experimental Conditions<br />

�Thermoplastic Polymers (con't)<br />

Interpreting Heat-Cool-Heat Results:<br />

One of the primary benefits of doing Heat-Cool-Heat is for the<br />

comparison of two or more samples which can differ in<br />

material, thermal history or both<br />

�If the materials are different then there will be differences in the Cool and<br />

Second Heat results<br />

�If the materials are the same and they have had the same thermal history<br />

then all three (H-C-H) segments will be similar<br />

�If the materials are the same but they have had different thermal histories<br />

then the Cool and Second Heat segments are similar but the First Heats<br />

are different


Selecting Experimental Conditions<br />

• During first heat the maximum temperature must be<br />

higher than the melting peak end; eventually an<br />

isothermal period must be introduced<br />

– too high temperature/time: decomposition could<br />

occur<br />

– too low temperature/time: possibly subsequent<br />

memory effect because of the fact that crystalline<br />

order is not completely destroyed<br />

• For non-crystallizable (amorphous) thermoplastics the<br />

maximum temperature should be slightly above Tg<br />

(removal of relaxation effects, avoid decomposition)<br />

Thermosetting Polymers<br />

A + B C<br />

Thermosetting polymers react (cross-link) irreversibly.<br />

A+B will give out heat (exothermic) when they crosslink<br />

(cure). After cooling and reheating C will have only<br />

a glass transition Tg.<br />

GLUE


<strong>DSC</strong>: Selecting Experimental Conditions<br />

Heat Flow (W/g)<br />

�Thermosetting Polymers<br />

Anneal the sample, then Heat-Cool-Heat at 10°C/min.<br />

�Anneal approximately 25°C above Tg onset for 1 minute to<br />

eliminate enthalpic relaxation from Tg<br />

�First Heat is used to measure Tg and residual cure (unreacted<br />

resin). Stop at a temperature below the onset of decomposition<br />

�Cooling segment gives the sample a known thermal history<br />

�Second Heat is used to measure the Tg of the fully cured sample.<br />

The greater the temperature difference between the Tg of the First<br />

and Second Heats the lower the degree of cure of the sample as<br />

received<br />

<strong>DSC</strong>: Effect of Annealing on the Shape<br />

of the Glass Transition<br />

0.0<br />

-0.1<br />

-0.2<br />

-0.3<br />

-0.4<br />

annealed<br />

aged<br />

0 10 20 30 40 50 60 70 80 90 100<br />

0.4<br />

0.2<br />

0.0<br />

-0.2<br />

Heat Flow (W/g)


Heat Flow (W/g)<br />

Heat Flow (W/g)<br />

<strong>DSC</strong>: Thermoset: Comparison of First<br />

and Second Heating Runs<br />

-0.04<br />

-0.08<br />

-0.12<br />

-0.16<br />

-0.20<br />

-0.24<br />

First<br />

Second<br />

Tg<br />

Tg<br />

155.93°C<br />

102.64°C<br />

20.38J/g<br />

Residual Cure<br />

0 50 100 150 200 250 300<br />

Temperature (°C)<br />

<strong>DSC</strong>: Determination of % Cure<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

0.0<br />

<strong>DSC</strong> Conditions:<br />

Heating Rate = 10°C/min.<br />

Temperature Range = -50°C to 250°C<br />

N2 Purge = 50mL/min.<br />

-5.27°C(H)<br />

-12.61°C(H)<br />

NOTE: Curves rescaled and shifted for readability<br />

145.4J/g<br />

54.55 % cured<br />

79.33J/g<br />

75.21 % cured<br />

Under-cured Sample<br />

Optimally-cured Sample


<strong>DSC</strong>: Characterization of Epoxy Prepreg<br />

<strong>DSC</strong>: The Glass Transition (Tg)<br />

�What is it?<br />

�How is it observed and measured?<br />

�What affects the Glass Transition?


<strong>DSC</strong>: What is the Glass Transition?<br />

The Glass Transition is the reversible change of the<br />

amorphous region of a polymer from, or to, a viscous or<br />

rubbery condition to, or from, a hard and relatively brittle<br />

one.<br />

The Glass Transition Temperature is a temperature taken to<br />

represent the temperature range over which the glass<br />

transition takes place.<br />

<strong>DSC</strong>: Some Properties Affected at Tg<br />

Physical property Response on heating<br />

through Tg<br />

Specific Volume Increases<br />

Modulus Decreases<br />

Coefficient of<br />

thermal expansion<br />

Increases<br />

Specific Heat Increases<br />

Enthalpy Increases<br />

Entropy Increases<br />

V,<br />

1/E,<br />

CTE<br />

Cp<br />

H &<br />

S<br />

Tg<br />

Temperature


<strong>DSC</strong>: Measurements of the Tg<br />

endo HEAT FLOW exo<br />

Heat Flow (mW)<br />

T o<br />

1/2h<br />

1/2h<br />

T f<br />

T m<br />

T o =Temperature of First Deviation ( C)<br />

o<br />

T f = Extrapolated Onset Temperature ( C)<br />

o<br />

T m = Midpoint Temperature ( C)<br />

o<br />

T i = Inflection Temperature ( C)<br />

o<br />

T e = Extrapolated Endset Temperature ( C)<br />

o<br />

T = Temperature of Return-to-Baseline ( C)<br />

T i Te T r<br />

TEMPERATURE (°C)<br />

<strong>DSC</strong>: Polyethylene Terephthalate<br />

Glass Transition<br />

-0.6<br />

-0.7<br />

-0.8<br />

-0.9<br />

-1.0<br />

40 60 80 100 120<br />

r<br />

71. 54° C<br />

79. 88° C<br />

0. 3005mW<br />

o


<strong>DSC</strong>: What Affects the Glass Transition?<br />

Heating Rate Crystalline Content<br />

Heating & Cooling Copolymers<br />

Aging Side Chains<br />

Molecular Weight Polymer Backbone<br />

Plasticizer Hydrogen Bonding<br />

Filler<br />

<strong>DSC</strong>: Heating Rate<br />

Heating Rate Sensitivity Reproducibility<br />

(°C/min)<br />

5 poor very good<br />

20* good good<br />

40 very good poor<br />

* Recommended heating rate for measuring Tg.


Heat Capacity (J/g/°C)<br />

<strong>DSC</strong>: Heating/Cooling of Polystyrene<br />

<strong>DSC</strong> Heat Flow (W/g)<br />

0.15<br />

0.10<br />

0.05<br />

0.00<br />

-0.05<br />

-0.10<br />

10 °C/min COOLING<br />

10 °C/min HEATING<br />

75 80 85 90 95 100 105 110 115<br />

Temperature (°C)<br />

M<strong>DSC</strong>: Heating/Cooling of Polystyrene<br />

1.00<br />

0.90<br />

0.80<br />

0.70<br />

0.60<br />

5 °C/min HEATING<br />

5 °C/min COOLING<br />

0.50<br />

75 80 85 90 95 100 105 110 115


Effect of Cooling Rate on Tg<br />

Heat Capacity (J/g°C)<br />

2.0<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

1.0<br />

Heat Capacity Measured<br />

After Cooling at Quench,<br />

20, 10, 5, 2, 1 and 0.2°C/min<br />

increased amorphous<br />

fraction<br />

Quench<br />

20<br />

10<br />

20 40 60 80 100 120 140 160<br />

Temperature (°C)<br />

<strong>DSC</strong>: Effect of Aging on the Glass<br />

Transition [M. Todoki, Polymer Data Handbook]<br />

As-Spun<br />

2 days<br />

28 days<br />

196 days<br />

3 years and<br />

2 months<br />

4 years and<br />

11 months<br />

Glass Transition<br />

0 50 100 150<br />

0.2<br />

Cold Crystallization


<strong>DSC</strong>: Effect of Annealing on Polystyrene<br />

Sample:<br />

Size:<br />

Method:<br />

Polystyrene; effect anneal @ 95°<br />

11.6600 mg<br />

Anneal Times <strong>DSC</strong><br />

Operator: Lab<br />

Run Date: 3-Jun-97 16:41<br />

Comment: <strong>DSC</strong> @ 10°C/min; N2 @ 50cc/min; 12.8mg A1 in ref.; crimped pans<br />

Heat Flow (W/g)<br />

0.2<br />

0.1<br />

0.0<br />

-0.1<br />

-0.2<br />

Anneal Times = 0, 10, 100 & 1000 minutes<br />

-0.3<br />

40 60 80 100 120 140 160<br />

Temperature (°C)<br />

<strong>DSC</strong>: Effect of Annealing Time at 95°C<br />

on Shape of Polystyrene Tg<br />

Heat Fl ow ( W/ g)<br />

0. 00<br />

-0.05<br />

-0.10<br />

-0.15<br />

-0.20<br />

Anneal Times = 0, 10, 100 & 1000 minutes<br />

-0.25<br />

80 90 100 110 120 130


<strong>DSC</strong>: Effect of Molecular Weight<br />

on the Tg (for Styrene Oligomers/Polymers)<br />

Molecular Weight Tg<br />

104 -138°C<br />

524 - 40°C<br />

2,210 40°C<br />

3,100 62°C<br />

15,100 86°C<br />

36,000 94°C<br />

170,000 100°C<br />

Turi, pg 249 Kumler, 1977<br />

<strong>DSC</strong>: Effect of Plasticizer on the Tg<br />

for Polyamides<br />

Water Content (%) Tg (°C)<br />

0.35 94<br />

0.70 84<br />

1.17 71<br />

1.99 56<br />

2.70 45<br />

4.48 40<br />

6.61 23<br />

10.33 6


<strong>DSC</strong>: Effect of Filler and Crystalline<br />

Content on the Tg<br />

�Decreases magnitude of Cp shift<br />

�Broadens temperature range of Glass Transition<br />

�Increases the Tg<br />

<strong>DSC</strong>: Copolymers<br />

Tg (K)<br />

490<br />

450<br />

410<br />

370<br />

0 20 40 60 80 100<br />

PPO (wt. %)


<strong>DSC</strong>: Effect of Side Chains on the Tg<br />

for - CH 2 - CH(R)-<br />

Side Chain Tg (°C)<br />

-H<br />

-36<br />

-CH<br />

3<br />

-12<br />

-CH<br />

2<br />

(CH<br />

3<br />

)<br />

64<br />

−C<br />

6<br />

H<br />

5<br />

100<br />

cyclohexyl<br />

120<br />

-C<br />

6<br />

H<br />

4<br />

-(4-C<br />

6<br />

H<br />

5<br />

)<br />

161<br />

<strong>DSC</strong>: Effect of Polymer Backbone<br />

on the Tg<br />

for -O-(CH 2 ) n -<br />

N Tg (°C)<br />

2 -41<br />

3 -78<br />

4 -84


<strong>DSC</strong>: Effect of Hydrogen Bonding<br />

on the Tg<br />

Polyamide Tg (°C) HBonding<br />

Nylon 12,2 59 Least<br />

Nylon 10,2 56<br />

Nylon 8,2 93<br />

Nylon 6,2 159 Most<br />

<strong>DSC</strong>: Melting and Crystallization<br />

�Terminology<br />

�Observations of Melting and Crystallization<br />

�Crystallinity Calculations<br />

�Applications


<strong>DSC</strong>: Terminology<br />

�Amorphous Phase - The portion of material whose molecules are randomly oriented in space. Liquids<br />

and glassy or rubbery solids. Thermosets and some thermoplastics.<br />

�Crystalline Phase - The portion of material whose molecules are regularly arranged into well defined<br />

structures consisting of repeat units. Very few polymers are 100% crystalline.<br />

�Semi-crystalline Polymers - Polymers whose solid phases are partially amorphous and partially<br />

crystalline. Most common thermoplastics are semi-crystalline.<br />

�Endothermic - A transition which absorbs energy.<br />

�Exothermic - A transition which releases energy.<br />

�Melting - The endothermic transition upon heating from a crystalline solid to the liquid state. This process<br />

is also called fusion. The melt is another term for the polymer liquid phase.<br />

�Crystallization - The exothermic transition upon cooling from liquid to crystalline solid. Crystallization<br />

is a function of time and temperature.<br />

�Cold Crystallization - The exothermic transition upon heating from the amorphous rubbery state to the<br />

crystalline state. This only occurs in semi-crystalline polymers that have been quenched (very rapidly<br />

cooled from the melt) into a highly amorphous state.<br />

�Enthalpy of Melting/Crystallization - The heat energy required for melting or released upon<br />

crystallization. This is calculated by integrating the area of the <strong>DSC</strong> peak on a time basis.<br />

Heat Flow (W/g)<br />

Observation of Melting<br />

0.0<br />

-0.2<br />

-0.4<br />

-0.6<br />

-0.8<br />

-1.0<br />

236.94°C<br />

45.30J/g<br />

12.73°C<br />

250.61°C<br />

Peak Temperature<br />

Extrapolated Onset Temperature<br />

Area under the curve (Heat of Fusion)<br />

Width @ half height


<strong>DSC</strong>: Melting Points and Ranges<br />

• To is the onset to melting<br />

• Tp is the melting peak temperature<br />

• Te is the end of melting<br />

Pure, low molecular weight materials (mw


Baseline Types: Linear<br />

Heat Flow (W/g)<br />

0.3<br />

0.2<br />

0.1<br />

12.20°C<br />

16.10°C<br />

22.27(24.02)J/g<br />

1.754J/g<br />

0.0<br />

-20 -10 0 10 20 30 40<br />

Exo Up Temperature (°C)<br />

Universal V2.5D TA Instruments<br />

Baseline Types: Sigmoidal<br />

Heat Flow (W/g)<br />

0.3<br />

0.2<br />

0.1<br />

12.20°C<br />

23.04J/g


<strong>DSC</strong>: Observation of Crystallization<br />

Heat Flow (mW)<br />

1.0<br />

0.5<br />

0.0<br />

-0.5<br />

-1.0<br />

139.47°C<br />

36.60J/g<br />

-1.5<br />

100 120 140 160 180 200<br />

<strong>DSC</strong>: Crystallization Point<br />

152.62°C<br />

Te<br />

Tc<br />

Temperature (°C)<br />

�Crystallization is a two step process:<br />

�Nucleation<br />

�Growth<br />

163.24°C<br />

�The onset temperature is the nucleation (T )<br />

�The peak maximum is the crystallization<br />

temperature (T )<br />

C<br />

Tn<br />

N


<strong>DSC</strong>: PET/ABS Blend "As Received"<br />

Heat Flow (W/g)<br />

-0.2<br />

-0.4<br />

-0.6<br />

-0.8<br />

67. 38° C<br />

+<br />

70. 26° C( H)<br />

120. 92° C<br />

111. 82° C<br />

9. 016J/ g<br />

STANDARD <strong>DSC</strong><br />

FIRST HEAT ON MOLDED PART<br />

235. 36° C<br />

22. 63J/ g<br />

249. 75° C<br />

50 100 150<br />

Temperature (°C)<br />

200 250<br />

<strong>DSC</strong>: Calculation of % Crystallinity<br />

�Sample must be pure material, not copolymer or filled<br />

�Must know enthalpy of melting for 100% crystalline<br />

material (∆H lit )<br />

�You can use a standard ∆H for relative crystallinity<br />

For standard samples:<br />

% crystallinity = 100* ∆H m / ∆H lit<br />

For samples with cold crystallization:<br />

% crystallinity = 100* (∆H m - ∆H c)/ ∆H lit<br />

lit


<strong>DSC</strong>: Polymer Crystallinity - Polyolefin<br />

ENDO HEAT FLOW EXO<br />

0<br />

∆H<br />

= 141 J/g<br />

141<br />

% Crystallinity = X 100%<br />

290<br />

= 49%<br />

Size: 10.5mg<br />

Prog: 5° C/min<br />

<strong>DSC</strong>: Applications<br />

2 4 6 8 10 12 14<br />

TIME (min)<br />

�Effect of heating/cooling rate<br />

�Crystallization kinetics<br />

�Effects of polymer structure/composition<br />

�Effects of thermal/mechanical processing<br />

190<br />

170<br />

150<br />

130<br />

110<br />

90<br />

TEMPERATURE (°C)


<strong>DSC</strong>: Effect of Heating Rate on<br />

Nylon 66 Melting Behavior<br />

endo HEAT FLOW exo<br />

0.2 mW<br />

1 mW<br />

5 mW<br />

5 mW<br />

10 mW<br />

0.5°C/min<br />

2°C/min<br />

10°C/min<br />

20°C/min<br />

50°C/min<br />

1 240 2 260 280 300 3 4<br />

Temperature (°C)<br />

<strong>DSC</strong>: Effect of Cooling Rate on<br />

Crystallization of HDPE<br />

Heat Flow (mW)<br />

70<br />

50<br />

30<br />

10<br />

32°C/min<br />

16<br />

-10<br />

100 110 120 130<br />

Temperature (°C)<br />

8<br />

4<br />

2<br />

1 0.5


<strong>DSC</strong>: Crystallization Kinetics<br />

�Two step process<br />

� Nucleation<br />

� Crystal growth<br />

�Nucleation may be<br />

� Natural<br />

� Induced (using nucleation agents)<br />

�Thermally influenced process<br />

� Natural nucleation<br />

� Crystal growth<br />

� Modeled by Isothermal Kinetics using the<br />

Autocatalytic Model<br />

<strong>DSC</strong>: Isothermal Crystallization<br />

Procedure<br />

�Heat to 10°C above T<br />

�Hold for 5 minutes to remove local order<br />

�Cool rapidly to below melt onset (DO NOT<br />

OVERSHOOT TEMP)<br />

�Hold isothermally<br />

�Record time to crystallization peak (t )<br />

M<br />

c


∆T<br />

Exothermic<br />

<strong>DSC</strong>: Isothermal Crystallization of<br />

Polyethylene Terephthalate<br />

T 1<br />

Blank run<br />

T 2<br />

T < < T < T<br />

T<br />

1 2 3 4<br />

T 3<br />

0 1 2 3 4 5 6<br />

Time (min)<br />

<strong>DSC</strong>: Effect of Nucleating Agents<br />

on Crystallization<br />

NUCLEATED<br />

POLYPROPYLENE<br />

T 4<br />

NON-NUCLEATED<br />

POLYPROPYLENE


<strong>DSC</strong>: Supercooling of Water<br />

Heat Flow (mW)<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

+<br />

-15.55°C<br />

-4.36°C<br />

+<br />

-50<br />

-30 -25 -20 -15 -10 -5 0 5 10<br />

Temperature (°C)<br />

<strong>DSC</strong>: Purity of Pharmaceutical<br />

Compounds<br />

Heat Flow (mW/mg)<br />

-0.8<br />

-1.0<br />

-1.2<br />

-1.4<br />

-1.6<br />

-1.8<br />

-2.0<br />

-2.2<br />

Purity: 99.55 mole %<br />

Melting Pt: 134.9°C<br />

Depression: 0.24°C<br />

Delta H: 26.4 kJ/mole<br />

Correction: 8.11%<br />

Mol. Weight: 179.2 g/mole<br />

Cell Const: 0.977<br />

Onset Slope: 10.14 mW/°C<br />

Total Area/Partial Area<br />

0<br />

2 4 6<br />

8<br />

10<br />

135.0<br />

134.5<br />

134.0<br />

133.5<br />

133.0<br />

132.5<br />

Temperature (°C)


<strong>DSC</strong>: Effect of Polymer Type<br />

on Melting<br />

Class Structure Melting Range<br />

Polyolefins<br />

Polyamides<br />

Polyesters<br />

Polyphenylene<br />

-CH 2-CH 2-<br />

-CH -NH-C(O)-CH -<br />

2 2<br />

-CH -O-C(O)-CH -<br />

2 2<br />

85 - 174°C<br />

190 - 265°C<br />

220 - 270°C<br />

Sulfides -Ph-S- 300 - 360°C<br />

<strong>DSC</strong>: Effect of Molecular Weight<br />

on Melting<br />

Olefin Formula Mole. Wt. T m<br />

(g/mol) (°C)<br />

C 12H 26 170 -10<br />

C 24H 50 339 54<br />

C 30H 62 423 66<br />

C 35H 72 493 75


Heat Flow (W/g)<br />

<strong>DSC</strong>: Effect of Hydrogen Bonding<br />

on Melting<br />

Polyamide T m H Bonding<br />

Nylon 12,2 236 Least<br />

Nylon 10,2 242<br />

Nylon 8,2 279<br />

Nylon 6,2 326 Most<br />

Nylon x,y where:<br />

x = carbons in diamine section<br />

y = carbons in diacid section<br />

<strong>DSC</strong>: Effect of Annealing<br />

Poly(ethyletherketone) (PEEK) on Melting<br />

0.0<br />

-0.1<br />

-0.2<br />

PEEK<br />

303.61°C<br />

PEEK annealed<br />

@ 300°C<br />

-0.3<br />

260 280 300 320 340 360 380


<strong>DSC</strong>: Effect of Draw Ratio<br />

on Melting Temperature<br />

Tm (°C)<br />

137<br />

133<br />

129<br />

1.0 3.0 5.0 7.0<br />

<strong>DSC</strong>: Effect of Aromaticity on Melting<br />

Polymer % Aromatic Melting Range<br />

-CH 2 -CH 2 - 0 105 - 135°C<br />

PET 39 250 - 275°C<br />

-(Ph)-O- 62 300 - 315°C<br />

-(Ph)-S- 70 300 - 360°C<br />

λ


<strong>DSC</strong>: Effect of Branching on Melting<br />

Polyolefin Branching T m<br />

LDPE irregular ~ 105°C<br />

random lengths<br />

LLDPE irregular ~ 127°C<br />

fixed lengths<br />

HDPE none ~ 135°C<br />

PP regular ~ 150°C<br />

fixed lengths<br />

<strong>DSC</strong>: Melting and Crystallization -<br />

Summary<br />

�Melting and crystallization are phase changes from organized solid to<br />

amorphous phases and vice-versa.<br />

�Melting is a one-step process while crystallization involves nucleation<br />

and crystal growth.<br />

�The enthalpy of melting can be used to measure crystallinity or filler.<br />

�Any process that makes it easier for molecules to be organized will<br />

raise the melting temperature.


<strong>DSC</strong>: Specific Heat Capacity<br />

�What is it?<br />

�How is it observed and measured?<br />

�Methods for calculating specific heat capacity<br />

�What affects the specific heat capacity of a<br />

polymer?<br />

<strong>DSC</strong>: What is Specific Heat Capacity?<br />

�Specific Heat Capacity (Cp) is the amount of heat required to raise the<br />

temperature of one gram of a particular material one kelvin of<br />

temperature. Specific Heat Capacity is due to the molecular motion in a<br />

material (units of J/g K).<br />

�Heat Capacity is the amount of heat required to raise the temperature of a<br />

material one kelvin of temperature. This is unnormalized specific heat<br />

(units of J/K).<br />

�Specific heat is the specific heat capacity of an analyte compared to the<br />

specific heat capacity of a reference material (dimensionless).


<strong>DSC</strong>: How are Heat Capacity and<br />

Specific Heat Measured?<br />

�In a <strong>DSC</strong> experiment, heat capacity is measured as the<br />

absolute value of the heat flow, divided by the heating<br />

rate, and multiplied by a calibration constant.<br />

dH/dt = Cp (dT/dt)<br />

or<br />

Cp = [(dH/dt)/(dT/dt)] x E<br />

E = calibration constant<br />

<strong>DSC</strong>: How Heating Rate Shifts<br />

Heat Flow<br />

Heat Flow (mW)<br />

0<br />

-2<br />

-4<br />

-6<br />

-8<br />

106. 85° C<br />

-2.137mW<br />

106. 85° C<br />

- 40175mW<br />

106. 85° C<br />

-8.104mW<br />

5°C/min<br />

10°C/min<br />

20°C/min<br />

-10<br />

40 60 80 100 120 140 160 180 200


<strong>DSC</strong>: Specific Heat Capacity Equation<br />

Cp =<br />

E x H x 60<br />

Hr x M<br />

�Cp = Specific Heat Capacity (J/g/°C)<br />

�E = Calibration Constant (dimensionless)<br />

�H = Heat Flow (mW)<br />

�60 = conversion constant (min sec)<br />

�Hr = Heating Rate (°C/min)<br />

�M = Sample Mass (mg)<br />

<strong>DSC</strong>: Specific Heat Capacity<br />

Step 1. Run Empty Pans<br />

�Create Thermal Method, e.g.,<br />

1) Equilibrate @ 50°C<br />

2) Isothermal for 10 min.<br />

3) Ramp 20°C/min to 300°C<br />

4) Isothermal for 10 min.<br />

�Run Empty Pans to determine background heat flow<br />

�Subtract background heat flow from subsequent


<strong>DSC</strong>: Specific Heat Capacity<br />

Step 2. Determine Value of E<br />

�E is temperature-dependant<br />

�Heat sapphire disc (Cp standard) through thermal<br />

profile<br />

�At temperature of interest, calculate E<br />

<strong>DSC</strong>: Specific Heat Capacity<br />

Step 2. Determine Value of E (cont.)<br />

�For example, at 380 K (106.85°C), sapphire<br />

Cp = 0.9161 J/g/°C<br />

�M = 25.20mg<br />

�Hr = 20°C/min<br />

�Measured Heat Flow = 7.25 mW<br />

E =<br />

Cp Hr M<br />

(0.9161 mJ/mg/°C) x (20°C/min) x (25.20 mg)<br />

(7.25 mW (mJ/sec)) x (60 sec/min)<br />

H


<strong>DSC</strong>: Specific Heat Capacity<br />

Step 3. Measure Unknown Sample<br />

�Use exact same thermal profile as empty pans and<br />

sapphire<br />

�Measure sample mass, e.g., 14.20 mg<br />

�Measure Heat Flow at 380K, e.g., 4.60 mW<br />

�Substitute E into equation on page 103.<br />

Cp =<br />

E<br />

H<br />

(1.06) x (4.60 mW (mJ/sec)) x (60 sec/min)<br />

(20°C/min) x (14.20 mg)<br />

Hr<br />

M<br />

Cp = 1.030 mJ/mg/°C (J/g/°C)<br />

<strong>DSC</strong>: What Affects the Specific Heat<br />

Capacity?<br />

�Amorphous Content<br />

�Aging<br />

�Side Chains<br />

�Polymer Backbone<br />

�Copolymer Composition


<strong>DSC</strong>: Effect of Amorphous Content<br />

on Cp<br />

�Amorphous Cp is greater than Crystalline Cp<br />

�Amorphous Content increases Specific Heat Capacity<br />

Crystalline polymers contain more order and thus fewer<br />

degrees of molecular motion. Less molecular motion<br />

results in lower specific heat<br />

capacity.<br />

<strong>DSC</strong>: Effect of Annealing<br />

(Crystallization) on Cp of PEEK<br />

Complex Cp (J/g/°C)<br />

2.2<br />

2.0<br />

1.8<br />

1.6<br />

1.4<br />

Amorphous PEEK<br />

PEEK annealed at 300°C<br />

PEEK annealed at 330°C<br />

1.2<br />

100 110 120 130 140 150 160


<strong>DSC</strong>: Effect of Aging on the Specific<br />

Heat Capacity of Polystyrene<br />

Endotherm<br />

406<br />

272<br />

240<br />

120<br />

360 380 400 420<br />

Temperature (K)<br />

<strong>DSC</strong>: Effect of Side Chains on Specific<br />

Heat Capacity<br />

tg (h)<br />

Polymer Side Chain Cp (J/g/°C)<br />

PE -H 2.763<br />

PP -CH 2.752<br />

PS -Ph 2.139<br />

As the steric bulk of the side chain increases, molecular<br />

mobility decreases resulting in lower specific heat.<br />

66<br />

24<br />

3<br />

0


<strong>DSC</strong>: Effect of Polymer Backbone on Specific<br />

Heat Capacity of Polyoxyalkenes @ -153°C<br />

O<br />

O<br />

( CH2n )<br />

[ ]<br />

# of Methylenes Cp (J/g/°C)<br />

1 0.6226<br />

2 0.6918<br />

3 0.7088<br />

4 0.7597<br />

8 0.7736<br />

As the number of methylenes increase, mobility is<br />

increased in the polymer, resulting in higher heat capacity.<br />

B. Wunderlich, ATHAS Cp Data Bank, 1985.<br />

<strong>DSC</strong>: Effect of Copolymer Composition on Specific<br />

Heat Capacity of PE/PP Copolymer @ -93°C<br />

Composition Copolymer Cp<br />

(%PP) (Type) (J/°C/mol)<br />

6.0 block 15.12<br />

7.5 random 16.39<br />

15.5 random 18.54<br />

As PP concentration is increase, the number of methylenes<br />

increases, resulting in a rise in specific heat capacity. Also, with<br />

randomness comes entropy, increase in mobility, and increase<br />

in specific heat capacity.


<strong>DSC</strong>: Modulated <strong>DSC</strong> TM<br />

�Theory<br />

�Signals<br />

�Applications<br />

�Experimental Conditions<br />

�Calibration<br />

M<strong>DSC</strong> Theory


Heat Flow (mW)<br />

Heat Flow Equation<br />

dH<br />

dt<br />

dH<br />

dt<br />

= Cp<br />

dT<br />

dt<br />

+<br />

f ( T,<br />

t)<br />

= Total Heat Flow measured<br />

by the calorimeter<br />

Cp = Specific Heat Capacity<br />

dT<br />

dt<br />

= Underlying Heating Rate<br />

f(T,t) = kinetic response of sample<br />

Heat Flow Due to Heat Capacity<br />

0<br />

(2)<br />

(4)<br />

(6)<br />

(8)<br />

(10)<br />

40<br />

60<br />

80<br />

106.85°C<br />

-2.137mW<br />

106.85°C<br />

-4.018mW<br />

106.85°C<br />

-8.104mW<br />

100<br />

120<br />

140<br />

5°C/min<br />

10°C/min<br />

20°C/min<br />

160<br />

180<br />

200


Heat Flow<br />

Heat Flow<br />

Kinetic Heat Flow<br />

Isothermal Temperature<br />

The magnitude of measured kinetic<br />

heat flow is a function of time at a<br />

constant temperature.<br />

0 t 1<br />

t2<br />

time<br />

Standard <strong>DSC</strong> Measures the Sum of Heat Flow<br />

Heat Flow due to<br />

Heat Capacity<br />

Heat Flow due to<br />

Kinetic Events


Heat Flow<br />

Heat Flow Can Be Separated<br />

f(T,t)<br />

Heat Flow due to<br />

Kinetic Events<br />

Cp dT<br />

dt<br />

Heat Flow due to<br />

Heat Capacity<br />

Temperature<br />

General Theory of M<strong>DSC</strong><br />

Heat flow from <strong>DSC</strong> experiments is composed of two parts<br />

but <strong>DSC</strong> can only measure the sum of the two.<br />

dH/dt = Cp (dT/dt) + f (T,t)<br />

Total = Heat Capacity + Kinetic<br />

Heat Flow Component Component<br />

(<strong>DSC</strong>)<br />

= Heating Rate + Time<br />

Dependent Dependent<br />

= M<strong>DSC</strong> Reversing + M<strong>DSC</strong> Nonreversing


Distribution of Transitions in M<strong>DSC</strong> Experiments<br />

Total = Heat Capacity + Kinetic<br />

Component Component<br />

= Reversing Heat Flow + Nonreversing Heat Flow<br />

glass transition<br />

melting (some)<br />

Physical Measurement Technique<br />

enthalpic relaxation<br />

evaporation<br />

crystallization<br />

decomposition<br />

cure<br />

melting (some)<br />

Apply Stimulus Measure Response<br />

Stimulus Response<br />

FTIR IR Radiation Absorbance<br />

Wavelength<br />

NMR Magnetic Field Resonance<br />

Frequency<br />

X-Ray Diffraction X-Ray Radiation Angle of<br />

Diffraction<br />

M<strong>DSC</strong> Sinusoidal<br />

Heating Rate<br />

Amplitude of<br />

Heat Flow


Deriv. Modulated Temp (°C/min)<br />

Raw Signals in M<strong>DSC</strong><br />

All Modulated <strong>DSC</strong> Signals are derived from<br />

three measured parameters.<br />

8<br />

6<br />

4<br />

2<br />

0<br />

Time<br />

Modulated Temperature (Stimulus)<br />

Modulated Heat Flow (Response)<br />

M<strong>DSC</strong> Raw Signal<br />

COLD CRYSTALLIZATION<br />

MODULATED HEAT FLOW<br />

(Response)<br />

CRYSTALLIZATION DURING MELTING<br />

GLASS TRANSITION<br />

MODULATED HEATING RATE<br />

(Stimulus)<br />

NOTE: ALL TRANSITIONS OF<br />

INTEREST ARE CONTAINED IN<br />

M<strong>DSC</strong> RAW DATA SIGNALS<br />

MELTING<br />

50 100 150 200 250 300<br />

0.2<br />

0.0<br />

-0.2<br />

-0.4<br />

-0.6<br />

Modulated Heat Flow (W/g)


Temperature (°C)<br />

Temperature Change (M<strong>DSC</strong>)<br />

240<br />

230<br />

220<br />

210<br />

ACTUAL MEASURED TEMPERATURE<br />

200<br />

200<br />

38 39 40 41 42 43 44 45<br />

Exo Up Time (min)<br />

Universal V2.5D TA Instruments<br />

M<strong>DSC</strong> Signals: Total Heat Flow<br />

CALCULATED AVERAGE<br />

TEMPERATURE<br />

The average value of the modulated heat flow signal. This<br />

signal is qualitatively and quantitatively equivalent to the heat<br />

flow signal from conventional <strong>DSC</strong> at the same average<br />

heating rate.<br />

Definition: The sum of all thermal events in the sample<br />

Calculation: Fourier Transformation analysis of the modulated<br />

heat flow signal is used to continuously calculate its average<br />

value<br />

P<br />

A<br />

240<br />

230<br />

220<br />

210<br />

Modulated Temp (°C)


Modulated Heat Flow (W/g)<br />

Total Heat Flow: Average of Modulated Heat<br />

Flow Signal<br />

0.2<br />

0.1<br />

0.0<br />

-0.1<br />

-0.2<br />

-0.3<br />

-0.4<br />

0.2<br />

0.0<br />

-0.2<br />

-0.4<br />

50 100 150 200 250 300<br />

Temperature (°C)<br />

M<strong>DSC</strong> Signals: Heat Capacity<br />

A<br />

Cp =<br />

A<br />

MHF<br />

K<br />

MHR<br />

Where:<br />

AMHF = Amplitude of Modulated Heat Flow<br />

AMHR = Amplitude of Modulated Heating Rate<br />

K = Heat Capacity Calibration Factor<br />

Definition: The amount of heat required to raise the<br />

temperature of a material 1°C.<br />

Calculation: The basis for making the heat capacity<br />

measurement in M<strong>DSC</strong> can be explained from a series of<br />

x<br />

Heat Flow (W/g)


Conventional <strong>DSC</strong> Cp Measurement<br />

Cp = K x<br />

HFS<br />

– HFMT<br />

Heat Rate x wt<br />

Where:<br />

K = Calibration constant<br />

HFS = <strong>Differential</strong> heat flow<br />

with sample<br />

HFMT = <strong>Differential</strong> heat flow<br />

with empty pans<br />

wt = weight of sample<br />

0<br />

HF<br />

�<br />

endo<br />

Alternative <strong>DSC</strong> Cp Measurement<br />

Cp<br />

=<br />

K x<br />

HF<br />

(HR<br />

HR2<br />

2<br />

– HF<br />

– HR1)<br />

HR1<br />

wt<br />

Where:<br />

K = Calibration constant<br />

HFHR1 = <strong>Differential</strong> heat flow of<br />

sample at HR1 HFHR2 = <strong>Differential</strong> heat flow of<br />

sample at HR2 HR2 = Heating rate 2<br />

= Heating rate 1<br />

HR 1<br />

0<br />

HF<br />

�<br />

endo<br />

HF MT<br />

HF S<br />

Temp.<br />

Temp.<br />

HF HR1<br />

HF HR2


Heat Capacity from M<strong>DSC</strong> Raw Signals<br />

Deriv. Modulated Temp (°C/min)<br />

10<br />

5<br />

0<br />

MODULATED HEAT FLOW<br />

HEAT CAPACITY<br />

MODULATED HEATING RATE<br />

Complex Cp (J/g/°C)<br />

0.6<br />

0.2<br />

-0.2<br />

50 100 150 200 250<br />

-0.6<br />

300<br />

Temperature<br />

(°C)<br />

M<strong>DSC</strong> Signals - Reversing Heat Flow<br />

(Heat Capacity Component)<br />

Reversing Heat Flow is the heat capacity component of the total heat flow. It is<br />

calculated by converting the measured heat capacity into a heat flow signal using<br />

the classical heat flow equation as a theoretical basis.<br />

Reversing Heat Flow = –Cp x Avg. Heat Rate<br />

Basis for Calculation<br />

Where :<br />

dH<br />

=<br />

total heat flow<br />

dt<br />

Cp = measured heat capacity<br />

dH<br />

dt<br />

= Cp<br />

dT<br />

= average heating rate<br />

dt<br />

dT<br />

Cp = heat capacity component (Reversing)<br />

dT<br />

dt<br />

+<br />

f<br />

6<br />

4<br />

2<br />

0<br />

2<br />

4<br />

(T, t)<br />

Modulated Heat Flow (W/g)


Reversing Heat Flow from M<strong>DSC</strong> Raw Signals<br />

Complex Cp (J/g/°C)<br />

Heat Flow (W/g)<br />

8<br />

4<br />

0<br />

-4<br />

-8<br />

HEAT CAPACITY<br />

REVERSING HEAT FLOW<br />

50 100 150 200 250 300<br />

Temperature (°C)<br />

0.15<br />

0.05<br />

-0.05<br />

-0.15<br />

-0.25<br />

Quench Cooled PET: Total vs. Reversing Heat<br />

Flow<br />

0.1<br />

0.0<br />

-0.1<br />

-0.2<br />

-0.3<br />

TOTAL<br />

REVERSING<br />

-0.25<br />

50 100 150 200 250 300<br />

Rev Heat Flow (W/g)<br />

0.15<br />

0.05<br />

-0.05<br />

-0.15<br />

[ ]Rev Heat Flow (W/g)


M<strong>DSC</strong> Signals - Nonreversing Heat Flow<br />

(Kinetic Component)<br />

Nonreversing Heat Flow is the kinetic component of the total heat<br />

flow. It is calculated by subtracting the heat capacity component from the<br />

total heat flow using the classical heat flow equation as a theoretical basis.<br />

Nonreversing = Total – Reversing<br />

Basis for Calculation<br />

dH dT<br />

= Cp + f (T, t)<br />

dt dt<br />

dH<br />

= total heat flow<br />

dt<br />

dT<br />

Cp = heat capacity component (reversing)<br />

dt<br />

f (T, t) = kinetic component (nonreversing)<br />

Quench-Cooled PET: Deconvoluted Signals<br />

Heat Flow (W/g)<br />

0.25<br />

0.15<br />

0.05<br />

-0.05<br />

-0.15<br />

-0.25<br />

NONREVERSING<br />

TOTAL<br />

REVERSING<br />

0.25<br />

0.15<br />

0.05<br />

-0.05<br />

-0.15<br />

-0.25<br />

50 100 150 200 250 300<br />

Nonrev Heat Flow (W/g)<br />

0.1<br />

0.0<br />

-0.1<br />

-0.2<br />

Rev Heat Flow (W/g)


Glass Transition of Polymer Resin<br />

M<strong>DSC</strong>: Glass Transition of Epoxy Coating<br />

Heat Flow (mW)<br />

-0.20<br />

-0.22<br />

-0.24<br />

-0.26<br />

-0.28<br />

-0.30<br />

NOTE: Sensitivity is 100µW Full Scale<br />

TOTAL<br />

REVERSING<br />

0.00<br />

-0.02<br />

-0.04<br />

-0.06<br />

-0.08<br />

0 20 40 60 80 100 120<br />

-0.10<br />

140<br />

Rev Heat Flow (mW)


PET/ABS Blend - Conventional <strong>DSC</strong><br />

Heat Flow (W/g)<br />

-0.2<br />

-0.3<br />

-0.4<br />

-0.5<br />

-0.6<br />

-0.7<br />

-0.8<br />

120.92°C<br />

67.38°C<br />

70.262°C (H)<br />

111.82°C<br />

9.016J/g<br />

first heat on molded part<br />

second heat after 10°C/min cooling<br />

(Curve shifted on Y axis to avoid overlap)<br />

9.22 mg sample, nitrogen purge<br />

10°C/minute heating rate<br />

235.36°C<br />

22.63J/g<br />

249.75°C<br />

50 100 150 200 250<br />

Temperature (°C)<br />

PET/ABS - M<strong>DSC</strong><br />

Heat Flow (mW)<br />

-0.10<br />

-0.11<br />

-0.12<br />

-0.13<br />

-0.14<br />

-0.15<br />

first heat on molded part<br />

PET Tg<br />

67.00°C<br />

+72.89°C (H)<br />

104.45°C<br />

107.25°C (H)<br />

8.46mg sample ABS Tg<br />

nitrogen purge<br />

2°C/minute heating rate, ±1°C amplitude, 60 second period<br />

20 40 60 80 100 120 140 160<br />

( ) Nonrev. Heat Flow (W/g)<br />

-0.02<br />

-0.03<br />

-0.04<br />

-0.05<br />

-0.06<br />

-0.04<br />

-0.05<br />

-0.06<br />

-0.07<br />

-0.08<br />

-0.09<br />

180 200<br />

( ) Rev. Heat Flow (W/g)


M<strong>DSC</strong>: Detection of Two Glass<br />

Transitions in PC/PEE Blend<br />

Rev Heat Flow (W/g)<br />

-0.02<br />

-0.04<br />

-0.06<br />

-0.08<br />

-0.10<br />

3 CONSECUTIVE HEATING RUNS AFTER 2deg/min COOLING<br />

+<br />

62. 58° C<br />

DERIVATIVE<br />

-0.001<br />

-0.002<br />

-0.003<br />

-0.004<br />

-0.12 NOTE 81°C WIDTH OF GLASS TRANSITION<br />

-0.005<br />

40 60 80 100 120 140 160<br />

Temperature (°C)<br />

3<br />

2<br />

1<br />

+<br />

141. 45° C<br />

M<strong>DSC</strong> ±0.424°C, 40 sec. period<br />

4°C/min underlying ramp rate<br />

M<strong>DSC</strong>: Heat Capacity for PET During<br />

Isothermal Steps<br />

Heat Capacity (J/g/°C)<br />

1.6<br />

1.4<br />

1.2<br />

PLOT vs TIME<br />

Heat Capacity<br />

Temperature<br />

M<strong>DSC</strong> ±0.30°C, 40 sec. period<br />

1°C isothermal steps<br />

1.0<br />

60<br />

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0<br />

140<br />

120<br />

100<br />

80<br />

Temperature (°C)<br />

Deriv. Rev Heat Flow (W/g/min)


M<strong>DSC</strong>: PET Heat Capacity During Glass<br />

Transition & Cold Crystallization<br />

Heat Capacity (J/g/°C)<br />

1.6<br />

1.5<br />

1.4<br />

1.3<br />

1.2<br />

1.1<br />

GLASS TRANSITION<br />

(Second-Order Transition)<br />

60 70 80 90 100 110 120 130<br />

Isothermal Epoxy Cure<br />

Nonrev. Heat Flow (mW)<br />

6<br />

4<br />

2<br />

0<br />

Isothermal 80°C<br />

helium purge<br />

±0.5°C amplltude<br />

60 second period<br />

Heat<br />

Capacity<br />

Temperature (°C)<br />

∆H of Cure<br />

COLD CRYSTALLIZATION<br />

(First-Order Transition)<br />

M<strong>DSC</strong> ±0.30°C, 40 sec. period<br />

1°C isothermal steps<br />

DMA 1Hz<br />

( ) E' (GPa)<br />

30<br />

20<br />

10<br />

0<br />

14.5<br />

14.0<br />

13.5<br />

13.0<br />

12.5<br />

12.0<br />

11.5<br />

( ) Heat Capacity (mJ/°C)


M<strong>DSC</strong>: Heat Capacity vs. Cure Time<br />

TM =<br />

Epoxy-Amine System M<strong>DSC</strong> Result at 70°C Cure<br />

( ) Nonreversing Heat Flow (mW/g)<br />

120<br />

90<br />

60<br />

30<br />

Heat Capacity<br />

exo<br />

t1/2∆Cp t1/2∆Cp X = 0.53<br />

0<br />

1.0<br />

0 100 200 300<br />

Time (min)<br />

=<br />

Thermochimica Acta, 268, 121-142 (1995), Dr. B. Van Mele, et al<br />

at Vrije Universiteit Brussels (Belgium)<br />

vit<br />

Nonreversing Heat Flow<br />

=97 mi<br />

M<strong>DSC</strong>: Experimental Considerations<br />

Modulation Period?<br />

Calibration?<br />

Phase Correction?<br />

2.5<br />

2.0<br />

1.5<br />

( ) Heat Capacity (J/g/K)<br />

Sample Dimensions?<br />

Purge Gas?


M<strong>DSC</strong>: Sample Preparation<br />

�Thin, Low Mass Samples<br />

�Minimize Thermal Gradients<br />

�Allow for Faster Periods, Larger<br />

Modulation Amplitudes<br />

�Thicker, Heavier Samples<br />

�Minimize Baseline Curvature<br />

�Improve Sensitivity<br />

M<strong>DSC</strong>: Sample Pans<br />

Standard Crimped<br />

�Low, Consistent Mass<br />

�Best Choice for M<strong>DSC</strong> Measurements<br />

�Solids, Powders, Films<br />

�Volatility may be an issue


M<strong>DSC</strong>: Sample Pans<br />

Standard Hermetic<br />

�Use for liquid/volatile samples<br />

�Higher Mass, Less Sensitivity<br />

�Use Heat Sink Compound<br />

M<strong>DSC</strong>: Purge Gas<br />

�Nitrogen<br />

�Economical<br />

�Wide Operating Range<br />

�Provides Good Sensitivity<br />

�Helium<br />

�Higher Thermal Conductivity<br />

�Facilitates Wider Range of Modulation<br />

Conditions


M<strong>DSC</strong>: Purge Gas Flow Rates<br />

�Use Purge Gas Flow Rate of 50 mL/min. (N2) &<br />

25 ml/min (He)<br />

�Faster rates increase noise<br />

�Slower rates decrease sensitivity, increase<br />

baseline curvature<br />

�Flow Purge Gas through Vacuum Port<br />

at 50 mL/min.<br />

�Improves response of furnace<br />

�Facilitates wider range of modulation<br />

parameters<br />

M<strong>DSC</strong>: Baseline Calibration<br />

Identical to Standard<br />

<strong>DSC</strong> experiment<br />

Eliminates Baseline<br />

Drift<br />

Does not affect<br />

curvature<br />

-Slower heating rates<br />

contribute to<br />

curvature<br />

-Heavier sample<br />

masses minimize<br />

<<br />

Delta µ ( V)<br />

Baseline Calibration - 2920 M<strong>DSC</strong> (4)<br />

Sample: Empty Pans <strong>DSC</strong> File: D:\TA\<strong>DSC</strong>\...BASE1102.001<br />

-4<br />

-6<br />

-8<br />

Baseline Calibration<br />

Slope: -0.0005<br />

Offset: -8.564<br />

Cell Number: 319<br />

-90.29°C<br />

287.04°C<br />

-10<br />

-200 -100 0 100 200 300 400<br />

Temperature (°C)


M<strong>DSC</strong>: Heat Flow (Cell Constant)<br />

Calibration<br />

Heat Flow (mW)<br />

v<br />

Identical to Standard <strong>DSC</strong> Calibration<br />

Baseline Calibration - 2920 M<strong>DSC</strong> (4)<br />

Sample: Indium Metal <strong>DSC</strong> File: D:\TA\<strong>DSC</strong>\DATA\CAL0512.001<br />

0<br />

-5<br />

-10<br />

-15<br />

-20<br />

157.74°C<br />

Cell Constant Calibration<br />

Indium Standard Heat: 28.71 J/g<br />

Cell Constant: 1.5555<br />

Onset Slope: -40.63 mW/°C<br />

Cell Number: 319<br />

-25<br />

150 152 154 156 158 160 162 164<br />

Temperature (°C)<br />

M<strong>DSC</strong>: Cell Constant Effect on<br />

Modulated Heat Flow<br />

Modulated Heat Flow (mW)<br />

4<br />

2<br />

0<br />

-2<br />

E = 0.5<br />

E = 1.0<br />

E = 1.6<br />

-4<br />

25 75 125 175 225 275<br />

Temperature (°C)


K(Cp)<br />

M<strong>DSC</strong>: Heat Capacity Calibration<br />

�Provides for Accurate Heat Capacity Measurements<br />

�Use Either Sapphire Disc (wide temperature range) or<br />

HDPE (polymer melt)<br />

�Choose one-point or average values<br />

�Effects of Experimental Conditions<br />

M<strong>DSC</strong>: Heat Capacity Calibration-<br />

Frequency Dependence<br />

1.3<br />

1.2<br />

1.1<br />

1<br />

0.9<br />

0.8<br />

10 Sec<br />

20 Sec<br />

30 Sec<br />

40 Sec<br />

50 Sec<br />

60 Sec<br />

70 Sec<br />

80 Sec<br />

90 Sec<br />

100 Sec


K(Cp)<br />

K(Cp)<br />

M<strong>DSC</strong>: Heat Capacity Calibration<br />

Frequency Dependence (cont.)<br />

0.95<br />

0.93<br />

0.91<br />

0.89<br />

0.87<br />

0.85<br />

40 Sec<br />

50 Sec<br />

60 Sec<br />

70 Sec<br />

80 Sec<br />

90 Sec<br />

100 Sec<br />

0 10 20 30 40 50 60 70 80 90 100<br />

Temperature (°C)<br />

M<strong>DSC</strong>: Heat Capacity Calibration<br />

Amplitude Dependence<br />

0.94<br />

0.93<br />

0.92<br />

0.91<br />

0.9<br />

0.89<br />

0.88<br />

0.87<br />

0.86<br />

0.85<br />

0.10°C<br />

0.25°C<br />

0.50°C<br />

0.75°C<br />

1.00°C<br />

1.25°C<br />

1.50°C<br />

1.75°C<br />

2.00°C


K(Cp)<br />

M<strong>DSC</strong>: Heat Capacity Calibration -<br />

Heating Rate Dependence<br />

0.94<br />

0.92<br />

0.9<br />

0.88<br />

0.86<br />

0.84<br />

0 10 20 30 40 50 60 70 80 90 100<br />

Temperature (°C)<br />

1°C/min<br />

3°C/min<br />

5°C/min<br />

Isothermal<br />

Effect of Modulation Conditions on K<br />

K<br />

1.60<br />

1.50<br />

1.40<br />

1.30<br />

1.20<br />

1.10<br />

1.00<br />

10 20 30 40 50<br />

Period (sec)<br />

60 70 80 90 100<br />

0.1<br />

0.2<br />

He purge @ 25 ml/min.<br />

1<br />

0.8<br />

0.4<br />

1.6<br />

1.4<br />

1.2<br />

1.82<br />

Amplitude (±°C)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!