12.07.2015 Views

v2007.09.17 - Convex Optimization

v2007.09.17 - Convex Optimization

v2007.09.17 - Convex Optimization

SHOW MORE
SHOW LESS
  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

106 CHAPTER 2. CONVEX GEOMETRYwhich is isomorphic with the convex cone S rank A+ . Thus dimension of thesmallest face containing given matrix A isdim F ( S M + ∋A ) = rank(A)(rank(A) + 1)/2 (191)in isomorphic R M(M+1)/2 , and each and every face of S M + is isomorphic witha positive semidefinite cone having dimension the same as the face. Observe:not all dimensions are represented, and the only zero-dimensional face is theorigin. The positive semidefinite cone has no facets, for example.2.9.2.3.1 Table: Rank k versus dimension of S 3 + facesk dim F(S 3 + ∋ rank-k matrix)0 0boundary 1 12 3interior 3 6For the positive semidefinite cone S 2 + in isometrically isomorphic R 3depicted in Figure 31, for example, rank-2 matrices belong to the interior ofthe face having dimension 3 (the entire closed cone), while rank-1 matricesbelong to the relative interior of a face having dimension 1 (the boundaryconstitutes all the one-dimensional faces, in this dimension, which are raysemanating from the origin), and the only rank-0 matrix is the point at theorigin (the zero-dimensional face).Any simultaneously diagonalizable positive semidefinite rank-k matricesbelong to the same face (190). That observation leads to the followinghyperplane characterization of PSD cone faces: Any rank-k

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!