12.07.2015 Views

v2007.09.17 - Convex Optimization

v2007.09.17 - Convex Optimization

v2007.09.17 - Convex Optimization

SHOW MORE
SHOW LESS
  • No tags were found...

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

E.3. SYMMETRIC IDEMPOTENT MATRICES 593E.3.2.0.1 Theorem. Symmetric rank/trace. (confer (1673) (1260))P T = P , P 2 = P⇔rankP = trP = ‖P ‖ 2 F and rank(I − P ) = tr(I − P ) = ‖I − P ‖ 2 F(1688)⋄Proof. We take as given Theorem E.2.0.0.1 establishing idempotence.We have left only to show trP =‖P ‖ 2 F ⇒ P T = P , established in [301,7.1].E.3.3Summary, symmetric idempotentIn summary, orthogonal projector P is a linear operator defined[148,A.3.1] by idempotence and symmetry, and characterized bypositive semidefiniteness and nonexpansivity. The algebraic complement(E.2) to R(P ) becomes the orthogonal complement R(I − P ) ; id est,R(P ) ⊥ R(I − P ).E.3.4Orthonormal decompositionWhen Z = 0 in the general nonorthogonal projector A(A † + BZ T ) (1654),an orthogonal projector results (for any matrix A) characterized principallyby idempotence and symmetry. Any real orthogonal projector may, infact, be represented by an orthonormal decomposition such as (1680).[152,1, prob.42]To verify that assertion for the four fundamental subspaces (1678),we need only to express A by subcompact singular value decomposition(A.6.2): From pseudoinverse (1363) of A = UΣQ T ∈ R m×nAA † = UΣΣ † U T = UU T ,I − AA † = I − UU T = U ⊥ U ⊥T ,A † A = QΣ † ΣQ T = QQ TI − A † A = I − QQ T = Q ⊥ Q ⊥T(1689)where U ⊥ ∈ R m×m−rank A holds columnar an orthonormal basis for theorthogonal complement of R(U) , and likewise for Q ⊥ ∈ R n×n−rank A .Existence of an orthonormal decomposition is sufficient to establishidempotence and symmetry of an orthogonal projector (1680).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!