12.07.2015 Views

v2007.09.17 - Convex Optimization

v2007.09.17 - Convex Optimization

v2007.09.17 - Convex Optimization

SHOW MORE
SHOW LESS
  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

50 CHAPTER 2. CONVEX GEOMETRYwhere all entries off the main diagonal have been scaled. Now for Z ∈ S M〈Y , Z〉 ∆ = tr(Y T Z) = vec(Y ) T vec Z = svec(Y ) T svec Z (48)Then because the metrics become equivalent, for X ∈ S M‖ svec X − svec Y ‖ 2 = ‖X − Y ‖ F (49)and because symmetric vectorization (47) is a linear bijective mapping, thensvec is an isometric isomorphism on the symmetric matrix subspace. In otherwords, S M is isometrically isomorphic with R M(M+1)/2 in the Euclidean senseunder transformation svec .The set of all symmetric matrices S M forms a proper subspace in R M×M ,so for it there exists a standard orthonormal basis in isometrically isomorphicR M(M+1)/2 {E ij ∈ S M } =⎧⎨⎩e i e T i ,1 √2(e i e T j + e j e T ii = j = 1...M), 1 ≤ i < j ≤ M⎫⎬⎭(50)where M(M +1)/2 standard basis matrices E ij are formed from the standardbasis vectors e i ∈ R M . Thus we have a basic orthogonal expansion for Y ∈ S MY =M∑ j∑〈E ij ,Y 〉 E ij (51)j=1 i=1whose coefficients〈E ij ,Y 〉 ={Yii , i = 1... MY ij√2 , 1 ≤ i < j ≤ M(52)correspond to entries of the symmetric vectorization (47).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!