12.07.2015 Views

Influence of Input Parameters on the Characteristics of the EDM ...

Influence of Input Parameters on the Characteristics of the EDM ...

Influence of Input Parameters on the Characteristics of the EDM ...

SHOW MORE
SHOW LESS
  • No tags were found...

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Strojniški vestnik - Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Mechanical Engineering 57(2011)9, 689-696Table 1. Mechanical and physical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> AISI H13 [10]Temperature[°C]Density[kg/dm 3 ]Specific heat[J/(kg·K)]Electricalresistivity[Ω·mm 2 /m]Modulus <str<strong>on</strong>g>of</str<strong>on</strong>g>elasticity[N/mm 2 ]Thermalc<strong>on</strong>ductivity[W/m·K]20°C 7.80 460 0.52 215×10 3 24.30500°C 7.64 550 0.86 176×10 3 27.70600°C 7.60 590 0.96 165×10 3 27.50Liquidus temperature 1454 °C Solidus temperature 1315 °C[8], <strong>the</strong> optimum utilizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>EDM</strong> processrequires <strong>the</strong> selecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an appropriate set <str<strong>on</strong>g>of</str<strong>on</strong>g>machining parameters that would result in <strong>the</strong>minimum thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> recast layer and depth<str<strong>on</strong>g>of</str<strong>on</strong>g> heat affected z<strong>on</strong>e [9].This paper aims to fill <strong>the</strong> gap in <strong>the</strong>existing literature with respect to <strong>the</strong> processing<str<strong>on</strong>g>of</str<strong>on</strong>g> AISI H13 tool steel with <strong>EDM</strong>. In particular,<strong>EDM</strong> machining experiments were c<strong>on</strong>ducted<strong>on</strong> AISI H13 samples having a hardness <str<strong>on</strong>g>of</str<strong>on</strong>g> 52.7HRC using copper electrode to investigate <strong>the</strong>correlati<strong>on</strong>s between <strong>the</strong> <strong>EDM</strong> parameters (pulse<strong>on</strong>-time and current) and <strong>the</strong> <strong>EDM</strong> characteristics<str<strong>on</strong>g>of</str<strong>on</strong>g> such a workpiece. The output factorsinvestigated were <strong>the</strong> material removal rate, toolwear ratio, surface roughness, as well as <strong>the</strong>thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> white layer and depth <str<strong>on</strong>g>of</str<strong>on</strong>g> heat affectedz<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>EDM</strong>ed workpiece. This experimentalstudy results in <strong>the</strong> selecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> optimum processparameters to achieve <strong>the</strong> desired <strong>EDM</strong> efficiency,surface roughness, and surface integrity whenmachining such a workpiece material.1 EXPERIMENTAL SETUP AND PROCEDUREThe workpiece material used in this studywas AISI H13 tool steel. Prior to <strong>EDM</strong> processing,<strong>the</strong> workpiece was cut in a cylindrical shape witha length <str<strong>on</strong>g>of</str<strong>on</strong>g> 20 mm and a diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> 20 mm. Themain mechanical and physical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> suchworkpiece material at different temperatures aregiven in Table 1.The tool material was forged commercialpure copper with <strong>the</strong> main properties given inTable 2. The experiments were performed <strong>on</strong> a diesinking <strong>EDM</strong> machine (CHARMILLES ROBO-FORM200) which operates with an iso-pulsegenerator. Machining tests were carried out at fivepulse current settings, as well as four pulse <strong>on</strong>timesettings. As a result, 20 experiments could bedesigned. Each machining test was performed for15 minutes. Table 3 presents <strong>the</strong> experimental testc<strong>on</strong>diti<strong>on</strong>s.Table 2. Physical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> copper electrode[11]Physical properties CopperThermal c<strong>on</strong>ductivity [W/m·K] 380.7Melting point [°C] 1083Boiling temperature [°C] 2595Specific heat [cal/g·°C] 0.092Specific gravity at 20°C [g/cm 3 ] 8.9Coefficient <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>rmal expansi<strong>on</strong>[×10 -6 (1/°C)]17A digital balance (CP2245-Surtorius) witha resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.1 mg was used for weighing<strong>the</strong> workpieces before and after <strong>the</strong> machiningprocess. The tool wear ratio is defined as <strong>the</strong>volume <str<strong>on</strong>g>of</str<strong>on</strong>g> material removed from <strong>the</strong> tool (V E )divided by <strong>the</strong> volume <str<strong>on</strong>g>of</str<strong>on</strong>g> material removed from<strong>the</strong> workpiece (V W ). Eqs. (1) and (2) show <strong>the</strong>calculati<strong>on</strong>s used for assessing <strong>the</strong> values <str<strong>on</strong>g>of</str<strong>on</strong>g> MRRand TWR.MRR = (M 1 – M 2 ) / ( ρ w·T) , (1)TWR = (V E / V W )·100% , (2)where M 1 and M 2 are <strong>the</strong> weight <str<strong>on</strong>g>of</str<strong>on</strong>g> workpiecebefore and after machining [g], respectively. ρ wis <strong>the</strong> density <str<strong>on</strong>g>of</str<strong>on</strong>g> workpiece [g/mm 3 ], and T is <strong>the</strong>machining time [min].According to Lee and Tai [12], <strong>the</strong>amount <str<strong>on</strong>g>of</str<strong>on</strong>g> white layer thickness (WT) has beenmeasured by measuring this layer’s thicknessat 30 different points by utilizing VEGA\\TESCAN scanning electr<strong>on</strong> microscopy (SEM)and accounting for <strong>the</strong>ir average (Figs. 1 to3). Therefore, <strong>the</strong> machined specimens weresecti<strong>on</strong>ed transversely by a wire electrical690 Shabgard, M. – Seyedzavvar, M. – Oliaei, S.N.B.


Strojniški vestnik - Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Mechanical Engineering 57(2011)9, 689-696is much higher than that <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> workpiece. As aresult, tool wear ratio decreases by increase inpulse <strong>on</strong>-time.Figs. 7 to 9 show that MRR, TWR, and R aincrease with augments <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> pulse current. Suchresults were expected as it is obvious that a highercurrent causes a str<strong>on</strong>ger spark, which results inmore eroded material for both electrodes.Fig. 3. SEM micrograph showing <strong>the</strong> white layer<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>EDM</strong>ed workpiece (I = 24 A and Ti = 100 µs)Fig. 1. SEM micrograph showing <strong>the</strong> white layer<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>EDM</strong>ed workpiece (I = 8 A and Ti = 25 µs)At a low current, a small quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> heat isgenerated and a substantial porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> it is absorbedby <strong>the</strong> surroundings. As a result, <strong>the</strong> amount <str<strong>on</strong>g>of</str<strong>on</strong>g>utilized energy in melting and vaporizing <strong>the</strong>electrodes is not so intense. However, with anincrease in pulse current and with a c<strong>on</strong>stantamount <str<strong>on</strong>g>of</str<strong>on</strong>g> pulse <strong>on</strong>-time, a str<strong>on</strong>ger spark withhigher <strong>the</strong>rmal energy is produced [14], and asubstantial quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> heat will be transferredinto <strong>the</strong> electrodes. Fur<strong>the</strong>rmore, as <strong>the</strong> pulsecurrent increases, discharge strikes <strong>the</strong> surface<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> sample more intensely, and creates animpact force <strong>on</strong> <strong>the</strong> molten material in <strong>the</strong> craterand causes more molten material to be ejectedout <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> crater, so <strong>the</strong> surface roughness <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>machined surface increases.2.2 Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Pulse <strong>on</strong>-Time and Pulse Current<strong>on</strong> Surface IntegrityFig. 2. SEM micrograph showing <strong>the</strong> white layer<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>EDM</strong>ed workpiece (I = 24 A and Ti = 50 µs)The increase in <strong>the</strong> thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> whitelayer and depth <str<strong>on</strong>g>of</str<strong>on</strong>g> heat affected z<strong>on</strong>e by <strong>the</strong>increase in pulse <strong>on</strong>-time can be clearly seenfrom <strong>the</strong> experimental results (Figs. 10 and 11).The justificati<strong>on</strong> for this phenomen<strong>on</strong> is that <strong>the</strong>plasma flushing efficiency has a strict effect <strong>on</strong> <strong>the</strong>white layer thickness. With an increase in pulse<strong>on</strong>-time, plasma flushing efficiency decreases.692 Shabgard, M. – Seyedzavvar, M. – Oliaei, S.N.B.


Strojniški vestnik - Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Mechanical Engineering 57(2011)9, 689-696pulse current has no significant effect <strong>on</strong> <strong>the</strong> depth<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> heat affected z<strong>on</strong>e.4. A slight decrease could be observed in <strong>the</strong>white layer thickness by an increase in <strong>the</strong>pulse current.5. By c<strong>on</strong>stant level <str<strong>on</strong>g>of</str<strong>on</strong>g> discharge energy, highpulse current and low pulse <strong>on</strong>-time leads toa reducti<strong>on</strong> in <strong>the</strong> white layer thickness anddepth <str<strong>on</strong>g>of</str<strong>on</strong>g> heat affected z<strong>on</strong>e <strong>on</strong> <strong>the</strong> surface <str<strong>on</strong>g>of</str<strong>on</strong>g><strong>EDM</strong>ed workpiece.4 ACKNOWLEDGEMENTSFig. 13. HD vs. pulse currentFur<strong>the</strong>rmore, with an increase in <strong>the</strong>pulse current and with a c<strong>on</strong>stant amount <str<strong>on</strong>g>of</str<strong>on</strong>g>pulse <strong>on</strong>-time, causing a sharp rise in <strong>the</strong> averagetemperature <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> plasma channel [15], <strong>the</strong> energygradient increases, which leads to an increasein <strong>the</strong> pressure <str<strong>on</strong>g>of</str<strong>on</strong>g> gap. Therefore, regarding <strong>the</strong>mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> bulk boiling phenomen<strong>on</strong>, <strong>the</strong>amount <str<strong>on</strong>g>of</str<strong>on</strong>g> molten material, which is ejected from<strong>the</strong> molten puddle at <strong>the</strong> end <str<strong>on</strong>g>of</str<strong>on</strong>g> each discharge,increases and as a result, <strong>the</strong> %PFE increases [16]as <strong>the</strong> reports <str<strong>on</strong>g>of</str<strong>on</strong>g> Maraf<strong>on</strong>a et al. prove [10].3 CONCLUSIONResults from an experimental investigati<strong>on</strong><strong>on</strong> <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> machining parameters <strong>on</strong> <strong>EDM</strong>process characteristics have been presented. Theleading c<strong>on</strong>clusi<strong>on</strong>s are as follows:1. The increase in pulse <strong>on</strong>-time leads to anincrease in <strong>the</strong> material removal rate, surfaceroughness, as well <strong>the</strong> white layer thicknessand depth <str<strong>on</strong>g>of</str<strong>on</strong>g> heat affected z<strong>on</strong>e.2. The increase in pulse current leads to a sharpincrease in <strong>the</strong> material removal rate andsurface roughness.3. The tool wear ratio decreases by <strong>the</strong> increase<str<strong>on</strong>g>of</str<strong>on</strong>g> pulse <strong>on</strong>-time, and increases by <strong>the</strong>increase in <strong>the</strong> pulse current.The authors <str<strong>on</strong>g>of</str<strong>on</strong>g> this study are indebted to<strong>the</strong> Razi Metallurgical Laboratory, MetallurgicalLaboratory <str<strong>on</strong>g>of</str<strong>on</strong>g> Sahand University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology,universal workshop <str<strong>on</strong>g>of</str<strong>on</strong>g> Training Center <str<strong>on</strong>g>of</str<strong>on</strong>g>Iran Tractor Manufacturing Company, andadvance machining workshop <str<strong>on</strong>g>of</str<strong>on</strong>g> ManufacturingEngineering Department <str<strong>on</strong>g>of</str<strong>on</strong>g> University <str<strong>on</strong>g>of</str<strong>on</strong>g> Tabriz.Also, we would like to appreciate <strong>the</strong> help <str<strong>on</strong>g>of</str<strong>on</strong>g>authors Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essors J. Khalil Allafy, T.B. NavidChakharlu, as well Mr. A. Nejat Ebrahimi for <strong>the</strong>irinvaluable technical support.5 REFERENCES[1] Abu Zeid, O.A. (1997). On <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g>electro-discharge machining parameters <strong>on</strong><strong>the</strong> fatigue life <str<strong>on</strong>g>of</str<strong>on</strong>g> AISI D6 tool steel. Journal<str<strong>on</strong>g>of</str<strong>on</strong>g> Materials Processing Technology, vol. 68,p. 27-32.[2] Merdan, M.A.E.R., Arnell, R.D. (1991). Thesurface integrity <str<strong>on</strong>g>of</str<strong>on</strong>g> a die steel after electrodischargemachining, 2. residual stressdistributi<strong>on</strong>. Surface Engineering, vol. 7, p.154-158.[3] Castro, G., Fernandez-Vicente, A., Cid, J.(2007). <str<strong>on</strong>g>Influence</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> nitriding time <strong>on</strong> <strong>the</strong>wear behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> an AISI H13 steel during acrankshaft forging process. Wear, vol. 263, p.1375-1385.[4] Abdullah, A., Shabgard, M.R. (2008). Effect<str<strong>on</strong>g>of</str<strong>on</strong>g> ultras<strong>on</strong>ic vibrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> tool <strong>on</strong> electricaldischarge machining <str<strong>on</strong>g>of</str<strong>on</strong>g> cemented tungstencarbide (WC-Co). Internati<strong>on</strong>al Journal <str<strong>on</strong>g>of</str<strong>on</strong>g>Advanced Manufacturing Technology, vol.38, p. 1137-1147.[5] Khan, A.A. (2008). Electrode wear andmaterial removal rate during <strong>EDM</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>aluminum and mild steel using copper andbrass electrodes. Internati<strong>on</strong>al Journal <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>Influence</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Input</str<strong>on</strong>g> <str<strong>on</strong>g>Parameters</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Characteristics</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>EDM</strong> Process695


Strojniški vestnik - Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Mechanical Engineering 57(2011)9, 689-696Advanced Manufacturing Technology, vol.39, p. 482-487.[6] Dibitoto, D.D., Eubank, Ph.T., Patel, M.R.,Barrufet, M.A. (1989). Theoretical models <str<strong>on</strong>g>of</str<strong>on</strong>g><strong>the</strong> electrical discharge machining process, I.A simple cathode erosi<strong>on</strong> model. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g>Applied Physics, vol. 66, no. 9, p. 4095-4103.[7] Mamalis, A.G., Vosniakos, G.C., Vaxevanidis,N.M. (1987). Macroscopic phenomena <str<strong>on</strong>g>of</str<strong>on</strong>g>electro-discharge machined steel surface:an experimental investigati<strong>on</strong>. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g>Mechanical Working Technology, vol. 15, p.335-356.[8] Boujelbene, M., Bayraktar, E., Tebni, W., BenSalem, S. (2009). <str<strong>on</strong>g>Influence</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> machiningparameters <strong>on</strong> <strong>the</strong> surface integrity inelectrical discharge machining. Archive <str<strong>on</strong>g>of</str<strong>on</strong>g>Materials Science and Engineering, vol. 37,p. 110-116.[9] Rebelo, J.C., Dias Morao, A., Kremer, D.,Lebrun, J.L. (1998). <str<strong>on</strong>g>Influence</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>EDM</strong> pulseenergy <strong>on</strong> <strong>the</strong> surface integrity <str<strong>on</strong>g>of</str<strong>on</strong>g> martensiticsteel. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Materials ProcessingTechnology, vol. 84, p. 90-96.[10] Böhler Edelstahl, http://www.bohleredelstahl.at,accesed <strong>on</strong> 2008-08-23.[11] Fischer, U., Heinzle, M., Näher, F., Paetzold,H., Gomeringer, R., Kilgus, R., Oesterle, S.,Stephan, A. (2008). Tabellenbuch Metall.Verlag Europa-Lehrmittel, Nourney, VollmerGmbH & Co. KG, Haan-Gruiten.[12] Lee, H.T. Tai, T.Y. (2003). Relati<strong>on</strong>shipbetween <strong>EDM</strong> parameters and surface crackformati<strong>on</strong>. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Materials ProcessingTechnology, vol. 142, p. 676-683.[13] Hascalyk, A., Caydas, U. (2004).Experimental study <str<strong>on</strong>g>of</str<strong>on</strong>g> wire electricaldischarge machining <str<strong>on</strong>g>of</str<strong>on</strong>g> AISI D5 tool steel.Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Materials Processing Technology,vol. 148, p. 362-367.[14] Petropoulos, G.P., Vaxevanidis, N.M.,Radovanoviü, M., Zoler, C. (2009).Morphological - Functi<strong>on</strong>al Aspects <str<strong>on</strong>g>of</str<strong>on</strong>g>Electro-Discharge Machined SurfaceTextures. Strojniški vestnik - Journal <str<strong>on</strong>g>of</str<strong>on</strong>g>Mechanical Engineering, vol. 55, no. 2, p.95-103.[15] Kansal, H.K., Singh, S., Kumar, P. (2008).Numerical simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> powder mixedelectric discharge machining (PM<strong>EDM</strong>)using finite element method. Ma<strong>the</strong>maticaland Computer Modeling. vol. 47, p. 1217-1237.[16] Das, S., Klotz, M., Klocke, F. (2003). <strong>EDM</strong>simulati<strong>on</strong>: finite element-based calculati<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> deformati<strong>on</strong>, microstructure and residualstresses. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Materials ProcessingTechnology, vol. 142, p. 434-451.696 Shabgard, M. – Seyedzavvar, M. – Oliaei, S.N.B.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!