12.07.2015 Views

Oxygen isotope biogeochemistry of pore water sulfate in the deep ...

Oxygen isotope biogeochemistry of pore water sulfate in the deep ...

Oxygen isotope biogeochemistry of pore water sulfate in the deep ...

SHOW MORE
SHOW LESS
  • No tags were found...

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Oxygen</strong> <strong>isotope</strong> <strong>biogeochemistry</strong> <strong>of</strong> <strong>pore</strong> <strong>water</strong> <strong>sulfate</strong>... 4227<strong>sulfate</strong> reduc<strong>in</strong>g bacteria<strong>sulfate</strong> reduction {f } • δ 18 O SO4 <strong>pore</strong><strong>water</strong>Sulfate <strong>in</strong><strong>pore</strong><strong>water</strong>δ 18 O SO4 cytoplasm {δ Out }=δ 18 O SO4 <strong>pore</strong><strong>water</strong> {δ In } • (1-k) +k•(δ H 2 O + ε)exchange flux {b} • δ 18 O SO4 <strong>pore</strong><strong>water</strong>exchange flux {b} • δ 18 O SO4 cytoplasmFig. 6. The pr<strong>in</strong>cipal fluxes <strong>in</strong>volved <strong>in</strong> oxygen <strong>isotope</strong> exchange reactions between <strong>sulfate</strong> and <strong>water</strong>. Note that our model makes noassumption whe<strong>the</strong>r <strong>the</strong> exchange reactions happen cell-<strong>in</strong>ternal or cell-external.2<strong>of</strong> SO 4is not changed by <strong>the</strong> exchange reaction, we have<strong>the</strong> additional constra<strong>in</strong>t that <strong>the</strong> sum <strong>of</strong> <strong>the</strong> fluxes <strong>of</strong> 18 Oand 16 O cannot add any new <strong>sulfate</strong>, i.e., <strong>the</strong>y must cancelbðS 16 O 4 ÞþbðS 18 O 4 Þ0ð11Þwhere b denotes <strong>the</strong> exchange velocity. Thus <strong>the</strong> isotopiccomposition <strong>of</strong> <strong>the</strong> output flux becomes simply a function<strong>of</strong> <strong>the</strong> <strong>isotope</strong> equilibrium value and we can write it as acomb<strong>in</strong>ation <strong>of</strong> <strong>the</strong> <strong>in</strong>put and output flux asbðS 16 ½S 16 O 4 Š1O 4 Þ¼b þð12Þ½SO 4 Š 1 þðd out =1000 þ 1ÞR 0bðS 18 ½S 18 O 4 ŠO 4 Þ¼b þ ðd out=1000 þ 1ÞR 0ð13Þ½SO 4 Š 1 þðd out =1000 þ 1ÞR 0where R 0 refers to <strong>the</strong> isotopic ratio <strong>of</strong> V-SMOW, andd out ¼ d <strong>in</strong> ð1 kÞþkðd H2 O þ Þ ð14Þand d H2 O denotes <strong>the</strong> oxygen isotopic composition <strong>of</strong> <strong>the</strong><strong>pore</strong>-<strong>water</strong> H 2 O. The reaction transport model to describe<strong>the</strong> oxygen <strong>isotope</strong> exchange for 16 O is <strong>the</strong>n a comb<strong>in</strong>ation<strong>of</strong> Eqs. (6, 10 and 11)u o½S16 O 4 Šot¼u o½S16 O 4 Š oDozux o½S16 O 4 Šozand similarly for [S 18 O 4 ].oz þ ½S 16 O 4 ŠuDo2 oz 22.4. Model<strong>in</strong>g cell external oxidationþ D ou o½S 16 O 4 Šoz ozuf ðS 16 O 4 ÞþubðS 16 O 4 Þð15ÞCell external oxidation <strong>of</strong> H 2 S can be achieved througha solid oxidant like ferric oxihydroxide. As bioturbationwill only affect <strong>the</strong> benthic boundary layer, we can treatour oxidant as a solid, and writeoðð1uÞ½X s ŠÞot¼ oðð1 uÞx s½X s ŠÞozð1 uÞf n ð16Þwhere X s denotes a solid oxidant, f <strong>the</strong> gross flux <strong>of</strong> SO 4 2 ,x s <strong>the</strong> sedimentation rate, and n <strong>the</strong> molar ratio <strong>of</strong> <strong>the</strong> oxidationreaction.3. RESULTS AND DISCUSSIONUnder steady state conditions with no lateral changes <strong>of</strong>boundary conditions, results <strong>of</strong> a 1-D model must equal <strong>the</strong>results <strong>of</strong> a 2-D model. However, if lateral changes (e.g., <strong>of</strong><strong>sulfate</strong> concentration or biological activity) do occur, 1-Dmodels may somewhat overestimate <strong>sulfate</strong> reduction rates.At present, <strong>the</strong> hydrogeology <strong>of</strong> ODP-Site 1130 is not sufficientlyconstra<strong>in</strong>ed to allow for a detailed 2-D model.However, we can set up a 2-D model which is sufficientlysimilar (i.e., it uses <strong>the</strong> same spatial scales and similar fluidvelocities as observed at ODP Site 1130) to <strong>in</strong>vestigate <strong>the</strong>potential error <strong>in</strong>troduced by <strong>the</strong> 1-D assumptions. Tocompare <strong>the</strong> results <strong>of</strong> <strong>the</strong> two models, we plot a 1-D crosssection <strong>of</strong> <strong>the</strong> 2-D model, aga<strong>in</strong>st <strong>the</strong> results <strong>of</strong> a 1-D modelus<strong>in</strong>g <strong>the</strong> same parameters as <strong>the</strong> 2-D model. Fig. 7 showthat <strong>the</strong> ma<strong>in</strong> differences between <strong>the</strong> two approaches are2found <strong>in</strong> <strong>the</strong> result<strong>in</strong>g concentration <strong>of</strong> SO 4and H 2 S.(Fig. 7). This implies that <strong>the</strong> 1-D model overestimates<strong>the</strong> volumetric <strong>sulfate</strong> reduction rate compared to <strong>the</strong> 2-Dmodel. However, <strong>the</strong> isotopic composition rema<strong>in</strong>s <strong>the</strong>same. We <strong>the</strong>refore conclude that <strong>the</strong> total fluxes computedby our model may conta<strong>in</strong> a certa<strong>in</strong> error, but that <strong>the</strong> ratio<strong>of</strong> <strong>the</strong> fluxes should be accurate.The d 18 O SO4 2 data from ODP Site 1130 show a dist<strong>in</strong>ctive<strong>in</strong>crease up to a maximum <strong>of</strong> 28.6‰ at 27.5 mbsf, andsubsequently decrease to 11.6‰ at 300 mbsf (Fig. 8). Thereturn to values close to <strong>the</strong> sea<strong>water</strong> <strong>sulfate</strong> <strong>isotope</strong> compositionis mostly a function <strong>of</strong> <strong>the</strong> upwell<strong>in</strong>g br<strong>in</strong>e supply<strong>in</strong>g<strong>sulfate</strong> with a d 18 O SO4 2 11&. We will first explorewhe<strong>the</strong>r this d 18 O SO4 2 signal can be expla<strong>in</strong>ed with a k<strong>in</strong>etic<strong>isotope</strong> effect alone. The suggested ratio between <strong>the</strong>fractionation factors for O and S vary from 1:1.4 to 1:4

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!