13.07.2015 Views

U. Bellugi et al. (1999) - Duke-UNC Brain Imaging and Analysis Center

U. Bellugi et al. (1999) - Duke-UNC Brain Imaging and Analysis Center

U. Bellugi et al. (1999) - Duke-UNC Brain Imaging and Analysis Center

SHOW MORE
SHOW LESS
  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

U. <strong>Bellugi</strong> <strong>et</strong> <strong>al</strong>. – Linking cognition <strong>and</strong> the brain P ERSPECTIVES ON DISEASE59 Wang, Y.K. <strong>et</strong> <strong>al</strong>. (1997) Hum. Mol. Gen<strong>et</strong>. 6, 465–47260 Frangiskakis, J.M. <strong>et</strong> <strong>al</strong>. (1996) Cell 86, 59–6961 Osborne, L.R. <strong>et</strong> <strong>al</strong>. (1997) Am. J. Hum. Gen<strong>et</strong>. 61, 449–45262 Peoples, R. <strong>et</strong> <strong>al</strong>. (1996) Am. J. Hum. Gen<strong>et</strong>. 58, 1370–137363 Hoogenradd, C.C. <strong>et</strong> <strong>al</strong>. (1998) Genomics 53, 348–35864 Meng, X. <strong>et</strong> <strong>al</strong>. (1998) Genomics 52, 130–13765 Lu, X. <strong>et</strong> <strong>al</strong>. (1998) Genomics 54, 241–24966 Meng, X <strong>et</strong> <strong>al</strong>. (1998) Genomics 52, 130–13767 Jurado, L.A.P. <strong>et</strong> <strong>al</strong>. (1998) Hum. Mol. Gen<strong>et</strong>. 7, 325–33468 Wu, Y.Q. <strong>et</strong> <strong>al</strong>. (1998) Am. J. Med. Gen<strong>et</strong>. 78, 82–8969 Botta, A. <strong>et</strong> <strong>al</strong>. (1998) Am. Soc. Hum. Gen<strong>et</strong>. Prog. 63, A9870 Korenberg, J.R. <strong>et</strong> <strong>al</strong>. (1998) Soc. Cognit. Neurosci. Abstr. 5, 1171 Robinson, W.P. <strong>et</strong> <strong>al</strong>. (1996) Genomics 34, 17–2372 Osborne, L.R. <strong>et</strong> <strong>al</strong>. (1997) Genomics 45, 402–40673 Korenberg, J.R. <strong>et</strong> <strong>al</strong>. (1997) Am. J. Hum. Gen<strong>et</strong>. 61, 10374 Jurado, L.A.P. <strong>et</strong> <strong>al</strong>. (1996) Am. J. Hum. Gen<strong>et</strong>. 59, 781–79275 Nakayama, T. <strong>et</strong> <strong>al</strong>. (1998) Cytogen<strong>et</strong>. Cell Gen<strong>et</strong>. 82, 49–5176 Hirota, H. <strong>et</strong> <strong>al</strong>. (1998) Am. Soc. Hum. Gen<strong>et</strong>. Prog. 63, A13877 Tassabehji, M. <strong>et</strong> <strong>al</strong>. (<strong>1999</strong>) Am. J. Hum. Gen<strong>et</strong>. 64, 118–12578 Olson, T.M. <strong>et</strong> <strong>al</strong>. (1995) Hum Mol. Gen<strong>et</strong>. 4, 1677–167979 Li, D.Y. (1997) Hum. Mol. Gen<strong>et</strong>. 7, 1021–102880 Korenberg, J.R. <strong>et</strong> <strong>al</strong>. (1996) Am. J. Hum. Gen<strong>et</strong>. 59, A38681 Korenberg, J.R. <strong>et</strong> <strong>al</strong>. (1998) Soc.Cognit. Neurosci. Abstr. 5, 1182 <strong>Bellugi</strong>, U., Lai, Z.C. <strong>and</strong> Korenberg, J. in Frontiere della Biologia:The <strong>Brain</strong> of Homo Sapiens (Vol. 3) (Bizzi, E., C<strong>al</strong>issano, P. <strong>and</strong>Volterra V., eds), Istituto della Enciclopedia It<strong>al</strong>iana (in press)What is the amygd<strong>al</strong>a?A comparative approachL ETTERS TO THE EDITORation he proposed but the use of a comparativeperspective, which is essenti<strong>al</strong> toelaborate solid hypotheses concerning theanatomic<strong>al</strong> <strong>and</strong> function<strong>al</strong> organization ofthe brain.In their exciting <strong>and</strong> provocative article 1 ,Swanson <strong>and</strong> P<strong>et</strong>rovich consider the term‘amygd<strong>al</strong>a’ to be an arbitrary namedescribing a series of structures that areh<strong>et</strong>erogeneous from both anatomic<strong>al</strong> <strong>and</strong>function<strong>al</strong> viewpoints. Function<strong>al</strong>ly, theysee the amygd<strong>al</strong>a as being made up ofnuclei that belong to the autonomicnervous system (centr<strong>al</strong> nucleus), thevomeronas<strong>al</strong> system (medi<strong>al</strong>, posteromedi<strong>al</strong>cortic<strong>al</strong> <strong>and</strong> posterior nuclei), theolfactory system (the cortic<strong>al</strong> olfactorecipientnuclei, the basomedi<strong>al</strong> nucleus<strong>and</strong> the posterior part of the basolater<strong>al</strong>nucleus) <strong>and</strong> the frontotempor<strong>al</strong> cortic<strong>al</strong>system (later<strong>al</strong> nucleus <strong>and</strong> anterior basolater<strong>al</strong>nucleus). Anatomic<strong>al</strong>ly, they considerthe amygd<strong>al</strong>a to be composed oftradition<strong>al</strong> cortic<strong>al</strong> (cortic<strong>al</strong> nuclei <strong>and</strong>areas receiving direct olfactory input),claustr<strong>al</strong> (basolater<strong>al</strong> amygd<strong>al</strong>a) <strong>and</strong> striat<strong>al</strong>elements (centr<strong>al</strong> <strong>and</strong> medi<strong>al</strong> nuclei).In the past, a combination of differentm<strong>et</strong>hods has demonstrated the role of thebasolater<strong>al</strong> <strong>and</strong> centr<strong>al</strong> amygd<strong>al</strong>a in fearconditioning <strong>and</strong> emotion<strong>al</strong> learning 2–4 .Therefore, the basolater<strong>al</strong> amygd<strong>al</strong>a(frontotempor<strong>al</strong>) <strong>and</strong> the centr<strong>al</strong> amygd<strong>al</strong>a(autonomic) appear to constitute a singlefunction<strong>al</strong> system that, according toanatomic<strong>al</strong> data from reptile studies 5–7 ,appears to have been well conservedduring vertebrate evolution. Although theremaining amygd<strong>al</strong>oid nuclei certainlybelong to the main <strong>and</strong> accessory olfactorysystems (in view of the large number ofafferents from the olfactory bulbs), evenSwanson <strong>and</strong> P<strong>et</strong>rovich recognize that theyhave a s<strong>et</strong> of intricate interconnectionswith the centr<strong>al</strong> <strong>and</strong> basolater<strong>al</strong> amygd<strong>al</strong>a.The activity in the chemosensory amygd<strong>al</strong>amust, therefore, have a strong influence onthe basolater<strong>al</strong> <strong>and</strong> centr<strong>al</strong> amygd<strong>al</strong>a, whichsuggests a function<strong>al</strong> interdependence of <strong>al</strong>lthe amygd<strong>al</strong>oid nuclei.Addition<strong>al</strong>ly, as is emphasized by theauthors 1 , their structur<strong>al</strong> classification ofthe amygd<strong>al</strong>a coincides essenti<strong>al</strong>ly withthat proposed by Johnston in 1923(Ref. 8). Using a comparative perspective,Johnston divided the amygd<strong>al</strong>a into a primitivegroup of nuclei, which includes the‘striat<strong>al</strong>’ <strong>and</strong> ‘olfactory’ nuclei, <strong>and</strong> a phylogen<strong>et</strong>ic<strong>al</strong>lynew group of nuclei, the ‘claustr<strong>al</strong>’amygd<strong>al</strong>a. However, recent connection<strong>al</strong><strong>and</strong> neurochemic<strong>al</strong> studies havereve<strong>al</strong>ed the presence of a putative homologu<strong>et</strong>o the mamm<strong>al</strong>ian basolater<strong>al</strong>amygd<strong>al</strong>a in the dors<strong>al</strong> ventricular ridge(DVR) of the reptilian brain 5–7 , which,following the view held by Swanson <strong>and</strong>P<strong>et</strong>rovich, would be claustr<strong>al</strong> <strong>and</strong>, therefore,isocortic<strong>al</strong> in nature. Were this true,the DVR would represent the reptiliancounterpart of the claustrum 9 <strong>and</strong> otherderivatives of the cortic<strong>al</strong> cell plate (layerVIb), even though the remaining layers ofthe isocortex are absent in the reptilianbrain. However, the reptilian DVR has asubcortic<strong>al</strong> origin 10,11 <strong>and</strong> occupies a subventricularposition in the adult. Thisstrongly suggests that the basolater<strong>al</strong>amygd<strong>al</strong>a is not a cortic<strong>al</strong> (claustr<strong>al</strong>) structure.Data on the expression of genes thatcontrol region<strong>al</strong> specification, morphogenesis<strong>and</strong> differentiation in the forebrainof embryonic vertebrates are urgentlyneeded in order to clarify this issue.The major legacy of Johnston’s work onthe amygd<strong>al</strong>a is not the compartment<strong>al</strong>iz-ReplyLanuza <strong>and</strong> his colleagues address two fundament<strong>al</strong>problems in their l<strong>et</strong>ter 1 : how areneur<strong>al</strong> systems defined <strong>and</strong> is there a basicplan of the vertebrate brain? Their excitingEnrique Lanuza<strong>Center</strong> for Neur<strong>al</strong> Science,New York University, NY 10012,USA.Alino Martínez-MarcosDept of Anatomy <strong>and</strong> Cell Biology,He<strong>al</strong>th Science <strong>Center</strong> at Brooklyn,SUNY, Brooklyn, NY 11203-2098,USA.Fern<strong>and</strong>o Martínez-GarcíaDept de Biologia Anim<strong>al</strong>, Fac. CC.Biològiques, Universitat de V<strong>al</strong>ència,Burjassot 46100, V<strong>al</strong>ència, Spain.References1 Swanson, L.W. <strong>and</strong> P<strong>et</strong>rovich, G.D.(1998) Trends Neurosci. 21, 323–3312 Davis, M. (1994) Int. Rev. Neurobiol. 36,225–2663 Ono, T., Nishijo, H. <strong>and</strong> Uwano, T.(1995) Prog. Neurobiol. 46, 401–4224 LeDoux, J.E. (1996) The Emotion<strong>al</strong> <strong>Brain</strong>,Simon & Schuster5 Bruce, L.L. <strong>and</strong> Neary, T.J. (1995) <strong>Brain</strong>Behav. Evol. 46, 224–2346 Lanuza, E. <strong>et</strong> <strong>al</strong>. (1997) J. Comp. Neurol.384, 537–5557 Lanuza, E. <strong>et</strong> <strong>al</strong>. (1998) Eur. J. Neurosci.10, 3517–35348 Johnston, J.B. (1923) J. Comp. Neurol.35, 337–4829 Striedter, G.F. (1997) <strong>Brain</strong> Behav. Evol.49, 179–21310 Yanes, C.M. <strong>et</strong> <strong>al</strong>. (1987) J. Morphol.194, 55–6411 Lohman, A.H.M. <strong>and</strong> Sme<strong>et</strong>s, W.J.A.J.(1990) in The Neocortex (Finley, B.L.,Innocenti, G. <strong>and</strong> Scheich, H., eds),pp. 59–74, Plenum Presswork on the connections of what appearsto be the amygd<strong>al</strong>a in reptiles refers to thelatter, classic<strong>al</strong> problem, which has beenreviewed thoroughly quite recently 2 .What is a neur<strong>al</strong> system? Perhaps thebest way to approach this problem isthrough a simple example. Essenti<strong>al</strong>TINS Vol. 22, No. 5, <strong>1999</strong> 207

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!