13.07.2015 Views

Applications of finite geometry in coding theory and cryptography

Applications of finite geometry in coding theory and cryptography

Applications of finite geometry in coding theory and cryptography

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Then γ 0 is the maximal i for which an i-po<strong>in</strong>t <strong>in</strong> M exists. The m<strong>in</strong>imum distance<strong>of</strong> C is the m<strong>in</strong>imal number <strong>of</strong> po<strong>in</strong>ts <strong>of</strong> M ly<strong>in</strong>g <strong>in</strong> the complement <strong>of</strong> a hyperplane, i.e.d = n − γ k−2 .If an [n, k, d] q -code meets the Griesmer bound we can compute the values γ i fromits parameters. At this moment we only need the follow<strong>in</strong>g lemma.Lemma 1 (Maruta [22])Let (s − 1)q k−1 < d ≤ sq k−1 <strong>and</strong> let C be an [n, k, d] q -code meet<strong>in</strong>g the Griesmerbound. Then γ 0 = max{c(P) | P ∈ PG(k − 1, q)} = s.Pro<strong>of</strong>. By the pigeonhole pr<strong>in</strong>ciple, we get γ 0 ≥nθ k−1> s − 1.Assume γ 0 > s, then there exists a po<strong>in</strong>t P = (p 0 , . . .,p k−1 ) described by at leasts + 1 columns <strong>of</strong> the generator matrix. Consider the subcode C ′ <strong>of</strong> C def<strong>in</strong>ed byk−1C ′ = {x = (x 0 , . . .,x k−1 ) ∈ F k q | ∑x i p i = 0}G .The codewords <strong>of</strong> C ′ have entry 0 at the columns correspond<strong>in</strong>g to P . Punctur<strong>in</strong>g C ′ atthese columns yields an [n ′ , k ′ , d ′ ] q -code with n ′ ≤ n − s − 1, k ′ = k − 1 <strong>and</strong> d ′ ≥ d.But the Griesmer bound says that∑n − s − 1 ≥ n ′ ≥ ⌈ d′k−2q i ⌉ ≥ ∑⌈ d k−1q i ⌉ = ∑⌈ d q i ⌉ − ⌈ d ⌉ = n − s,qk−1 a contradiction.k ′i=0i=0We represent the l<strong>in</strong>ear code C by the multiset M ′ <strong>in</strong> which each po<strong>in</strong>t P <strong>of</strong> PG(k −1, q) has weight w(P) equal to s m<strong>in</strong>us the number <strong>of</strong> columns <strong>in</strong> the generator matrixdef<strong>in</strong><strong>in</strong>g P . In fact, M ′ is the multiset <strong>of</strong> columns <strong>of</strong> the anticode correspond<strong>in</strong>g to C<strong>in</strong> the copy <strong>of</strong> s simplex codes. We have shown above that for l<strong>in</strong>ear codes meet<strong>in</strong>g theGriesmer bound w(P) ≥ 0 for each po<strong>in</strong>t P . Let d = sq k−1 − ∑ k−2i=0 t iq i , 0 ≤ t i ≤ q−1for i = 0, . . .,k − 2. Then the total weight <strong>of</strong> all po<strong>in</strong>ts <strong>in</strong> M ′ is ∑ k−2i=0 t iθ i+1 <strong>and</strong> eachhyperplane has a weight <strong>of</strong> at least n − d = ∑ k−2i=0 t iθ i .This geometrical structure is important enough to deserve a name.Def<strong>in</strong>ition 4An (n, w; d, q)-m<strong>in</strong>ihyper is a multiset <strong>of</strong> n po<strong>in</strong>ts <strong>in</strong> PG(d, q) with the property thatevery hyperplane meets it <strong>in</strong> at least w po<strong>in</strong>ts.Many characterisation theorems <strong>of</strong> m<strong>in</strong>ihypers are known. The simplest is:Theorem 10 (Bose <strong>and</strong> Burton [2])Let k ≤ d. A (θ k+1 , θ k ; d, q)-m<strong>in</strong>ihyper always is a k-dimensional subspace <strong>of</strong> PG(d, q).Pro<strong>of</strong>. Let H be a (θ k+1 , θ k ; d, q)-m<strong>in</strong>ihyper. We claim that for s ≤ k every codimensions space <strong>of</strong> PG(d, q) meets H <strong>in</strong> at least θ k−s+1 po<strong>in</strong>ts.For s = 1 this is the def<strong>in</strong>ition <strong>of</strong> a m<strong>in</strong>ihyper. Now let s > 1 <strong>and</strong> assume that acodimension s space π meets H <strong>in</strong> less than θ k−s+1 po<strong>in</strong>ts. Then the average number <strong>of</strong>po<strong>in</strong>ts <strong>of</strong> H <strong>in</strong> a codimension s − 1 space through π is less thani=0i=0□

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!