13.07.2015 Views

Applications of finite geometry in coding theory and cryptography

Applications of finite geometry in coding theory and cryptography

Applications of finite geometry in coding theory and cryptography

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

¦A 1A 2¡A 3¢G 12 G § 13 ¨G23¥¤ B 3£ B 2B 1Figure 3. Pappus TheoremWe call (a 0 , . . .,a d ) the homogeneous coord<strong>in</strong>ates <strong>of</strong> the po<strong>in</strong>t 〈v〉 <strong>of</strong> PG(V ) withrespect to the projective reference system {〈v 0 〉, . . . , 〈v d 〉, 〈u〉}, where u = v 0 +· · ·+v d .S<strong>in</strong>ce 〈v〉 = 〈µv〉 for any µ ≠ 0 the homogeneous coord<strong>in</strong>ates <strong>of</strong> a projective po<strong>in</strong>t areunique up to a nonzero scalar factor.Example 1The l<strong>in</strong>e through the po<strong>in</strong>ts with homogeneous coord<strong>in</strong>ates (a 0 , . . . , a d ) <strong>and</strong> (b 0 , . . . , b d )consists <strong>of</strong> the po<strong>in</strong>ts with the follow<strong>in</strong>g coord<strong>in</strong>ates (a 0 , . . . , a d ) <strong>and</strong> (b 0 , . . . , b d ) +x(a 0 , . . . , a d ), with x ∈ F.If V is a vector space over a <strong>f<strong>in</strong>ite</strong> field, then PG(V ) has a <strong>f<strong>in</strong>ite</strong> number <strong>of</strong> po<strong>in</strong>ts<strong>and</strong> l<strong>in</strong>es. Theorem 5 counts them.Theorem 5The projective space PG(d, q) has qd+1 −1q−1(q d +q d−1 +···+q+1)(q d−1 +q d−2 +···+q+1)q+1l<strong>in</strong>es.Each l<strong>in</strong>e <strong>of</strong> PG(d, q) conta<strong>in</strong>s exactly q + 1 po<strong>in</strong>ts.Pro<strong>of</strong>. The vector space F d+1q= q d + q d−1 + · · · + q + 1 po<strong>in</strong>ts. <strong>and</strong>conta<strong>in</strong>s q d+1 − 1 nonzero vectors <strong>and</strong> a 1-dimensionalsubspaces <strong>of</strong>dimension 1.As special cases we have that a two dimensional vector space over F q has q + 1subspaces <strong>of</strong> dimension 1, i.e. a l<strong>in</strong>e <strong>of</strong> PG(d, q) has q + 1 po<strong>in</strong>ts.There are (q d+1 − 1)(q d+1 − q) possibilities to choose l<strong>in</strong>early <strong>in</strong>dependent vectorssubspace <strong>of</strong> F d+1q conta<strong>in</strong>s q − 1 nonzero vectors. Thus F d+1qu, v ∈ F d+1qThus F d+1qhas qd+1 −1q−1. Every two dimensional space 〈u, v〉 has (q 2 − 1)(q 2 − q) different bases.conta<strong>in</strong>s(q d+1 − 1)(q d+1 − q)(q 2 − 1)(q 2 − q)= (qd + · · · + q + 1)(q d−1 + · · · + q + 1)q + 1subspaces <strong>of</strong> dimension 2.□

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!