13.07.2015 Views

Ecology and Management of Avian Botulism on the Canadian Prairies

Ecology and Management of Avian Botulism on the Canadian Prairies

Ecology and Management of Avian Botulism on the Canadian Prairies

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<str<strong>on</strong>g>Ecology</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Management</str<strong>on</strong>g><str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Avian</str<strong>on</strong>g> <str<strong>on</strong>g>Botulism</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong><strong>Canadian</strong> <strong>Prairies</strong>Prepared for:Prairie Habitat Joint VentureScience Committee, August 2011


iEXECUTIVE SUMMARY<str<strong>on</strong>g>Avian</str<strong>on</strong>g> botulism (Clostridium botulinum, Type C; hereafter ‘botulism’) has occurred <strong>on</strong> <strong>the</strong><strong>Prairies</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> elsewhere for centuries. <str<strong>on</strong>g>Botulism</str<strong>on</strong>g> affects varying numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> birds, <str<strong>on</strong>g>of</str<strong>on</strong>g>ten inmultiple locati<strong>on</strong>s, at some time virtually every year. After <strong>the</strong> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Prairie HabitatJoint Venture (PHJV) in 1988, <str<strong>on</strong>g>and</str<strong>on</strong>g> as early as 1994, it was becoming increasingly apparentthat very large numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> ducks <str<strong>on</strong>g>and</str<strong>on</strong>g> shorebirds were dying annually during botulismoutbreaks at several large wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s <strong>on</strong> <strong>the</strong> <strong>Canadian</strong> <strong>Prairies</strong>. The magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se lossescreated c<strong>on</strong>siderable c<strong>on</strong>sternati<strong>on</strong> in <strong>the</strong> North American waterfowl <str<strong>on</strong>g>and</str<strong>on</strong>g> wildlifemanagement community.At <strong>the</strong> time, wetl<str<strong>on</strong>g>and</str<strong>on</strong>g> surveillance <str<strong>on</strong>g>and</str<strong>on</strong>g> carcass removal (or ‘clean-up’) were used to try to limit<strong>the</strong> severity <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se outbreaks, but <strong>the</strong> efficacy <str<strong>on</strong>g>of</str<strong>on</strong>g> this approach was unknown. In 1997, <strong>the</strong>PHJV Advisory Board resp<strong>on</strong>ded by creating an <str<strong>on</strong>g>Avian</str<strong>on</strong>g> <str<strong>on</strong>g>Botulism</str<strong>on</strong>g> Working Group to identifycritical research needs <str<strong>on</strong>g>and</str<strong>on</strong>g> management objectives. From 1998 to 2001, this group coordinated aPrairie-wide investigati<strong>on</strong> to determine whe<strong>the</strong>r carcass removal could reduce waterfowl losses<str<strong>on</strong>g>and</str<strong>on</strong>g> whe<strong>the</strong>r late-summer survival <str<strong>on</strong>g>of</str<strong>on</strong>g> mallards (Anas platyrhynchos) was reduced duringbotulism outbreaks. The group also sought to learn more about <strong>the</strong> basic ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> avianbotulism, with <strong>the</strong> goal <str<strong>on</strong>g>of</str<strong>on</strong>g> providing clues about o<strong>the</strong>r management opti<strong>on</strong>s.<str<strong>on</strong>g>Botulism</str<strong>on</strong>g> <str<strong>on</strong>g>Ecology</str<strong>on</strong>g>Initial investigati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> botulism ecology focused <strong>on</strong> whe<strong>the</strong>r <str<strong>on</strong>g>and</str<strong>on</strong>g> why abiotic <str<strong>on</strong>g>and</str<strong>on</strong>g> biotic factorscould trigger <str<strong>on</strong>g>and</str<strong>on</strong>g> perpetuate botulism outbreaks. The source <str<strong>on</strong>g>of</str<strong>on</strong>g> substrate for initial proliferati<strong>on</strong><str<strong>on</strong>g>and</str<strong>on</strong>g> toxigenesis <str<strong>on</strong>g>of</str<strong>on</strong>g> botulism prior to outbreaks was unknown.One study investigated <strong>the</strong> factors involved in <strong>the</strong> initiati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> avian botulism outbreaks, byfocussing <strong>on</strong> <strong>the</strong> role <str<strong>on</strong>g>of</str<strong>on</strong>g> Franklin’s gull (Larus pipixcan) mortality as a source <str<strong>on</strong>g>of</str<strong>on</strong>g> initial substratefor C. botulinum. Hatch-year Franklin's gull carcasses were <strong>the</strong> predominant source <str<strong>on</strong>g>of</str<strong>on</strong>g> toxinladenmaggots found prior to outbreaks <str<strong>on</strong>g>of</str<strong>on</strong>g> avian botulism in waterfowl. Peak carcass density <str<strong>on</strong>g>of</str<strong>on</strong>g>gulls occurred <strong>on</strong>e to two weeks prior to <strong>the</strong> <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g> botulism outbreaks in waterfowl.Gull carcasses were 22.7 times more likely to become maggot-laden at ambient temperatures≥20 C than were carcasses exposed to lower temperatures. High C. botulinum toxicity <str<strong>on</strong>g>of</str<strong>on</strong>g>maggots produced in gull (or eared grebes [Podiceps nigricollis]) chick carcasses coincided withhigh densities <str<strong>on</strong>g>of</str<strong>on</strong>g> susceptible birds. Hence, mortality <str<strong>on</strong>g>of</str<strong>on</strong>g> gulls or o<strong>the</strong>r birds may be a majorinitiating factor to trigger some botulism outbreaks.In c<strong>on</strong>trolled studies <str<strong>on</strong>g>of</str<strong>on</strong>g> mallards collected from a range <str<strong>on</strong>g>of</str<strong>on</strong>g> wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s, abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> botulismspores <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> potency <str<strong>on</strong>g>of</str<strong>on</strong>g> toxins produced from spores in birds varied c<strong>on</strong>siderably am<strong>on</strong>g studywetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s. The proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> carcasses producing type C C. botulinum toxin under c<strong>on</strong>trolledc<strong>on</strong>diti<strong>on</strong>s in mallard carcasses varied from 0 to 100% across lakes. The prevalence <str<strong>on</strong>g>of</str<strong>on</strong>g> toxinproducti<strong>on</strong> <strong>on</strong> n<strong>on</strong>-botulism lakes ranged from 0 to 38% (median = 17%), whereas lakeswith a history <str<strong>on</strong>g>of</str<strong>on</strong>g> botulism had prevalences ranging from 15 to 100% (median = 71%).


iiThe model <str<strong>on</strong>g>of</str<strong>on</strong>g> botulism ecology, developed by <strong>the</strong> working group in 1998, should c<strong>on</strong>tinue to beused as a basis for management <str<strong>on</strong>g>and</str<strong>on</strong>g> research, <str<strong>on</strong>g>and</str<strong>on</strong>g> should be revised as new data becomeavailable. However, new quantitative evaluati<strong>on</strong>s should also be undertaken to determine <strong>the</strong>relative importance <str<strong>on</strong>g>of</str<strong>on</strong>g> different risk factors that could c<strong>on</strong>tribute to <strong>the</strong> initiati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g>perpetuati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> botulism outbreaks.Carcass RemovalRemoving carcasses to prevent propagati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> botulism outbreaks is a l<strong>on</strong>g-st<str<strong>on</strong>g>and</str<strong>on</strong>g>ing approach tomanaging avian botulism. However, to our knowledge, its effectiveness under field c<strong>on</strong>diti<strong>on</strong>shad not been investigated prior to this study.We dem<strong>on</strong>strated that carcass clean-up operati<strong>on</strong>s c<strong>on</strong>ducted during botulism outbreaks removed


iii[Anas acuta]). Impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> botulism <strong>on</strong> populati<strong>on</strong> growth rates may be evaluated mosteffectively within a populati<strong>on</strong> modeling framework. The effects <str<strong>on</strong>g>of</str<strong>on</strong>g> botulism <strong>on</strong> c<strong>on</strong>tinentalpopulati<strong>on</strong>s will depend not <strong>on</strong>ly <strong>on</strong> <strong>the</strong> mortality rates <str<strong>on</strong>g>of</str<strong>on</strong>g> exposed individuals, but also <strong>on</strong> <strong>the</strong>proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> individuals in <strong>the</strong> populati<strong>on</strong> that are routinely exposed, <str<strong>on</strong>g>and</str<strong>on</strong>g> acquiring informati<strong>on</strong><strong>on</strong> <strong>the</strong> size <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> populati<strong>on</strong> at risk will be essential.In additi<strong>on</strong>, fur<strong>the</strong>r work is needed to determine how spore <str<strong>on</strong>g>and</str<strong>on</strong>g> toxin producti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> potencyinteract to affect survival, <str<strong>on</strong>g>and</str<strong>on</strong>g> whe<strong>the</strong>r <strong>the</strong>se factors may be managed to reduce occurrence orseverity <str<strong>on</strong>g>of</str<strong>on</strong>g> botulism outbreaks.


ivTABLE OF CONTENTSEXECUTIVE SUMMARY..............................................................................................................iGENERAL INTRODUCTION........................................................................................................1PART I - EFFICACY OF CARCASS CLEAN-UP DURING AVIAN BOTULISMOUTBREAKS...............................................................................................................................16PART II - SURVIVAL OF RADIO-MARKED MALLARDS IN RELATION TOMANAGEMENT OF AVIAN BOTULISM.................................................................................36PART III - RELATIONSHIPS BETWEEN LOCAL CARCASS DENSITY ANDSURVIVAL OF MOULTING MALLARDS DURING OUTBREAKS OF AVIANBOTULISM.................................................................................................................................. 51PART IV - LATE-SUMMER SURVIVAL OF MALLARDS EXPOSED TO AVIANBOTULISM: AN INVESTIGATION USING DIRECT BAND RECOVERYANALYSES.................................................................................................................................. 60PART V - IDENTIFICATION OF PRIMARY SUBSTRATE IN THE INITIATION OFAVIAN BOTULISM OUTBREAKS............................................................................................77PART VI - VARIABILITY OF TYPE C TYPE C CLOSTRIDIUN BOTULINUM TOXINPRODUCTION ON CANADIAN PRAIRIE LAKES: A PREDICTOR OFMALLARD SURVIVAL.............................................................................................................100MAIN CONCLUSIONS AND RECOMMENDATIONS..........................................................116ACKNOWLEDGEMENTS.........................................................................................................119APPENDIX 1 - AVIAN BOTULISM IN ALBERTA: A HISTORY.........................................120APPENDIX 2 - EXPOSURE OF MALLARD DUCKLINGS TO MICROCYSTIN-LR..........136


1GENERAL INTRODUCTIONType C Clostridium botulinum is a naturally occurring bacterium, which produces <strong>the</strong>neurotoxins that cause <strong>the</strong> paralytic disease known as botulism. <str<strong>on</strong>g>Botulism</str<strong>on</strong>g> results in significantmortality in North American birds (Hunter et al. 1970; Smith 1976; Samuel 1992) <str<strong>on</strong>g>and</str<strong>on</strong>g> hasresulted in die-<str<strong>on</strong>g>of</str<strong>on</strong>g>fs (see below) <str<strong>on</strong>g>of</str<strong>on</strong>g> hundreds <str<strong>on</strong>g>of</str<strong>on</strong>g> thous<str<strong>on</strong>g>and</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> waterbirds <strong>on</strong> a single wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>, in asingle seas<strong>on</strong> (Rocke <str<strong>on</strong>g>and</str<strong>on</strong>g> Bollinger 2007).There is evidence thatbotulism has occurred inNorth America for almost100 years, <str<strong>on</strong>g>and</str<strong>on</strong>g> that it recursevery year. <str<strong>on</strong>g>Botulism</str<strong>on</strong>g> hasbeen reported <strong>on</strong> severallakes in Prairie Canada(Figure 1; Table 1; seeAppendix 1 regardingAlberta), includingsignificant outbreaks in <strong>the</strong>1990s. These outbreaksraised serious c<strong>on</strong>cernsbecause avian breedingsuccess <str<strong>on</strong>g>and</str<strong>on</strong>g> mortality in thisregi<strong>on</strong> has significantimpacts <strong>on</strong> waterfowl <str<strong>on</strong>g>and</str<strong>on</strong>g>o<strong>the</strong>r migratory birds at ac<strong>on</strong>tinental scale.The outbreaks <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> 1990sraised questi<strong>on</strong>s, not <strong>on</strong>lyabout <strong>the</strong> impact <str<strong>on</strong>g>of</str<strong>on</strong>g>botulism <strong>on</strong> waterfowlpopulati<strong>on</strong>s, but also about<strong>the</strong> potential impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>disease <strong>on</strong> programsdesigned to c<strong>on</strong>servewaterfowl <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong>irhabitats. The public beganto questi<strong>on</strong> organizati<strong>on</strong>alcommitment to waterfowlmanagement within Canadaif c<strong>on</strong>servati<strong>on</strong> agenciescould allow such mortality to occur. At <strong>the</strong> same time, organizati<strong>on</strong>s involved in botulismmanagement started to questi<strong>on</strong> <strong>the</strong> efficacy <str<strong>on</strong>g>of</str<strong>on</strong>g> traditi<strong>on</strong>al management techniques, <str<strong>on</strong>g>and</str<strong>on</strong>g>expressed c<strong>on</strong>cern over <strong>the</strong> apparent lack <str<strong>on</strong>g>of</str<strong>on</strong>g> opti<strong>on</strong>s for dealing with disease outbreaks.


2Research from <strong>the</strong> 1970s supported <strong>the</strong> idea that botulism outbreaks were perpetuated by <strong>the</strong>proliferati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> C. botulinum toxin in decomposing bird carcasses, <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> subsequentc<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> toxic maggots from <strong>the</strong>se carcasses by healthy birds (Hunter 1970). Therefore,<strong>the</strong> management resp<strong>on</strong>se in Canada was to c<strong>on</strong>tinually survey botulism-pr<strong>on</strong>e wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s <str<strong>on</strong>g>and</str<strong>on</strong>g> toremove dead birds (see below). By reducing <strong>the</strong> availability <str<strong>on</strong>g>of</str<strong>on</strong>g> toxin-laden maggots, thistechnique (hereaftercarcass collecti<strong>on</strong>,pickup, removal, orclean-up) was expectedto break <strong>the</strong> carcassmaggotbotulism cycle(Hunter 1970) <str<strong>on</strong>g>and</str<strong>on</strong>g> thusincrease waterfowlsurvival. Yet, despite<strong>the</strong> significant cost <str<strong>on</strong>g>of</str<strong>on</strong>g>carcass collecti<strong>on</strong>, whichwas roughly C$1 milli<strong>on</strong>in 1997, its efficacy wasnever tested under fieldc<strong>on</strong>diti<strong>on</strong>s in <strong>the</strong>60 years since it wasfirst employed.With c<strong>on</strong>cerns about botulism growing, questi<strong>on</strong>s relating to its ecology, its impact <strong>on</strong> birdpopulati<strong>on</strong>s, <str<strong>on</strong>g>and</str<strong>on</strong>g> how it should be managed remained unanswered. At <strong>the</strong> time <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> 1990soutbreaks, studies <str<strong>on</strong>g>of</str<strong>on</strong>g> botulism had been fragmented <str<strong>on</strong>g>and</str<strong>on</strong>g> short-term, <str<strong>on</strong>g>and</str<strong>on</strong>g> usually occurred at alocal level. Left with an incomplete underst<str<strong>on</strong>g>and</str<strong>on</strong>g>ing <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> factors that precipitated botulismoutbreaks <str<strong>on</strong>g>and</str<strong>on</strong>g> an inability to predict outbreaks, managers c<strong>on</strong>tinued to carry out carcass removalwhile calling for more research to inform future management decisi<strong>on</strong>s.PHJV AVIAN BOTULISM WORKING GROUPAgencies involved in waterfowl <str<strong>on</strong>g>and</str<strong>on</strong>g> avian habitat management in Prairie Canada are drawntoge<strong>the</strong>r under a partnership called <strong>the</strong> Prairie Habitat Joint Venture (PHJV). In support <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>goals <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> North American Waterfowl <str<strong>on</strong>g>Management</str<strong>on</strong>g> Plan (NAWMP), <strong>the</strong> PHJV missi<strong>on</strong> is toachieve healthy <str<strong>on</strong>g>and</str<strong>on</strong>g> diverse populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> waterfowl <str<strong>on</strong>g>and</str<strong>on</strong>g> o<strong>the</strong>r birds through c<strong>on</strong>servati<strong>on</strong>programs <str<strong>on</strong>g>and</str<strong>on</strong>g> acti<strong>on</strong>s. To address c<strong>on</strong>cerns raised during 1990s botulism outbreaks, <strong>the</strong> PHJVformed <strong>the</strong> <str<strong>on</strong>g>Avian</str<strong>on</strong>g> <str<strong>on</strong>g>Botulism</str<strong>on</strong>g> Working Group in 1997. This working group brought toge<strong>the</strong>rbiologists experienced with botulism, including provincial agencies <str<strong>on</strong>g>and</str<strong>on</strong>g> Ducks UnlimitedCanada (DUC), as well as scientists from Envir<strong>on</strong>ment Canada, DUC’s Institute for Wetl<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g>Waterfowl Research, <strong>the</strong> Nati<strong>on</strong>al Wildlife Health Centre (U.S. Geological Survey), <strong>the</strong> U.S.Fish <str<strong>on</strong>g>and</str<strong>on</strong>g> Wildlife Service, Utah State University, <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> <strong>Canadian</strong> Cooperative Wildlife HealthCentre (CCWHC).


3Initially, <strong>the</strong> working group reviewed <strong>the</strong> botulism situati<strong>on</strong> in Prairie Canada <str<strong>on</strong>g>and</str<strong>on</strong>g> agreed thatcomprehensive studies were required to address <strong>the</strong> following three critical informati<strong>on</strong> gaps:1. The impact <str<strong>on</strong>g>of</str<strong>on</strong>g> botulism <strong>on</strong>:- local populati<strong>on</strong>s <strong>on</strong> individual lakes- c<strong>on</strong>tinental populati<strong>on</strong>s- populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> species <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>servati<strong>on</strong> c<strong>on</strong>cern2. The effectiveness <str<strong>on</strong>g>of</str<strong>on</strong>g> carcass pickup/recovery/clean-up operati<strong>on</strong>s3. Methods for assessing risks <str<strong>on</strong>g>of</str<strong>on</strong>g> botulism <strong>on</strong> a wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>SUMMARY OF PREVIOUS REPORTSIn 1998, <strong>the</strong> <str<strong>on</strong>g>Avian</str<strong>on</strong>g> <str<strong>on</strong>g>Botulism</str<strong>on</strong>g> Working Group presented <strong>the</strong> PHJV Advisory Board with a report,which outlined <strong>the</strong>ir initial findings <str<strong>on</strong>g>and</str<strong>on</strong>g> made recommendati<strong>on</strong>s to guide fur<strong>the</strong>r acti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g>investigati<strong>on</strong>. The group also reported <strong>on</strong> <strong>the</strong>ir progress <str<strong>on</strong>g>and</str<strong>on</strong>g> plans in a 1999 document entitled ASummary <str<strong>on</strong>g>and</str<strong>on</strong>g> Pre-Proposal for Adaptive Resource <str<strong>on</strong>g>Management</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Avian</str<strong>on</strong>g> <str<strong>on</strong>g>Botulism</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong><strong>Canadian</strong> <strong>Prairies</strong>. Both reports are summarized below. Because <strong>the</strong> informati<strong>on</strong> presented in<strong>the</strong>se summaries is taken directly from <strong>the</strong> original documents, it reflects <strong>the</strong> underst<str<strong>on</strong>g>and</str<strong>on</strong>g>ing <str<strong>on</strong>g>of</str<strong>on</strong>g>botulism prior to 1999. Subsequent secti<strong>on</strong>s will outline how this knowledge has sinceexp<str<strong>on</strong>g>and</str<strong>on</strong>g>ed, <str<strong>on</strong>g>and</str<strong>on</strong>g> will make recommendati<strong>on</strong>s as to how <strong>the</strong>se insights can guide fur<strong>the</strong>r acti<strong>on</strong>.1998 reportGeneral informati<strong>on</strong> about botulismC. botulinum is a naturally occurring bacterium with worldwide distributi<strong>on</strong>. It producesneurotoxins, which are am<strong>on</strong>g <strong>the</strong> most pois<strong>on</strong>ous substances in <strong>the</strong> world <str<strong>on</strong>g>and</str<strong>on</strong>g> cause <strong>the</strong>paralytic disease known as botulism. These neurotoxins can be divided into seven toxinotypes(A to G) based <strong>on</strong> <strong>the</strong>ir antigenicity. This discussi<strong>on</strong> deals <strong>on</strong>ly with type C because botulism inwild birds, with a few excepti<strong>on</strong>s in fish-eating birds, is caused by that toxinotype.Type C C. botulinum exists as spores, or as vegetative (growing) cells that may produce toxin.Spores <str<strong>on</strong>g>of</str<strong>on</strong>g> this bacterium are very widespread in soils, especially in wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s (Dobbs 1992), <str<strong>on</strong>g>and</str<strong>on</strong>g>sites <str<strong>on</strong>g>of</str<strong>on</strong>g> former botulism outbreaks can be heavily c<strong>on</strong>taminated with <strong>the</strong>m (Wobeser et al. 1987).The spores are extremely resistant <str<strong>on</strong>g>and</str<strong>on</strong>g> can persist in wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s that are dry for years (Wobeser etal. 1987). However, <strong>the</strong> factors that influence spore density in soil are poorly understood.Spores <strong>on</strong>ly begin vegetative growth under specific circumstances, including: anaerobic (free <str<strong>on</strong>g>of</str<strong>on</strong>g>oxygen) c<strong>on</strong>diti<strong>on</strong>s; temperatures <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 C or higher; a pH between 5 <str<strong>on</strong>g>and</str<strong>on</strong>g> 9; <str<strong>on</strong>g>and</str<strong>on</strong>g> a nutrientsubstrate with a high protein c<strong>on</strong>tent, such as <strong>the</strong> carcass <str<strong>on</strong>g>of</str<strong>on</strong>g> a vertebrate or invertebrate animal


4(Coburn <str<strong>on</strong>g>and</str<strong>on</strong>g> Quortrup 1938; Bell et al. 1955). In <strong>the</strong> absence <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se c<strong>on</strong>diti<strong>on</strong>s, a reversi<strong>on</strong> to<strong>the</strong> spore form occurs. Vegetative growth can also be inhibited by o<strong>the</strong>r factors that are not wellunderstood. How <strong>the</strong>se limiting factors might apply to type C C. botulinum growth in differentsubstrates, such as within carcasses, is also largely unknown.<str<strong>on</strong>g>Botulism</str<strong>on</strong>g> in wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s <str<strong>on</strong>g>and</str<strong>on</strong>g> waterfowlType C C. botulinum spores are readily available in wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s, <str<strong>on</strong>g>and</str<strong>on</strong>g> a wide range <str<strong>on</strong>g>of</str<strong>on</strong>g> wildlifespecies ingest <strong>the</strong>m c<strong>on</strong>tinuously. Spores have been detected in <strong>the</strong> liver <str<strong>on</strong>g>of</str<strong>on</strong>g> birds not affectedwith botulism (Gunders<strong>on</strong> 1933), as well as in <strong>the</strong> intestines <str<strong>on</strong>g>of</str<strong>on</strong>g> fish (Itoh et al. 1978) <str<strong>on</strong>g>and</str<strong>on</strong>g> within<strong>the</strong> liver <str<strong>on</strong>g>and</str<strong>on</strong>g> intestines <str<strong>on</strong>g>of</str<strong>on</strong>g> healthy mallards (Anas platyrhynchos) (Reed <str<strong>on</strong>g>and</str<strong>on</strong>g> Rocke 1992). Thefrequency <str<strong>on</strong>g>of</str<strong>on</strong>g> occurrence, as well as <strong>the</strong> density <str<strong>on</strong>g>and</str<strong>on</strong>g> residency time <str<strong>on</strong>g>of</str<strong>on</strong>g> spores in different animals,have not been established; nor has <strong>the</strong> relati<strong>on</strong>ship between <strong>the</strong> prevalence <str<strong>on</strong>g>of</str<strong>on</strong>g> spores in <strong>the</strong>envir<strong>on</strong>ment <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> prevalence <str<strong>on</strong>g>of</str<strong>on</strong>g> spores in animals.When an animal with spores in its gut or tissue dies, its carcass becomes anaerobic <str<strong>on</strong>g>and</str<strong>on</strong>g> its tissuesare invaded by C. botulinum spores, which <strong>the</strong>n begin vegetative growth <str<strong>on</strong>g>and</str<strong>on</strong>g> toxin producti<strong>on</strong> ifc<strong>on</strong>diti<strong>on</strong>s are favourable (Smith <str<strong>on</strong>g>and</str<strong>on</strong>g> Turner 1987). This process <str<strong>on</strong>g>of</str<strong>on</strong>g> toxin development has beenreproduced in various insects, birds, <str<strong>on</strong>g>and</str<strong>on</strong>g> mammals (Hunter 1970; Notermans et al. 1980; Reed<str<strong>on</strong>g>and</str<strong>on</strong>g> Rocke 1992). Vertebrate carcasses tend to support particularly high levels <str<strong>on</strong>g>of</str<strong>on</strong>g> C. botulinumtoxin producti<strong>on</strong>; mostly likely because <strong>the</strong>y provide a large amount <str<strong>on</strong>g>of</str<strong>on</strong>g> suitable substrate, a selfc<strong>on</strong>tainedmicroenvir<strong>on</strong>ment, <str<strong>on</strong>g>and</str<strong>on</strong>g> high temperatures that are optimal for growth <str<strong>on</strong>g>and</str<strong>on</strong>g> toxinproducti<strong>on</strong> (Duncan <str<strong>on</strong>g>and</str<strong>on</strong>g> Jensen 1976; Wobeser <str<strong>on</strong>g>and</str<strong>on</strong>g> Galmut 1984). The amount <str<strong>on</strong>g>of</str<strong>on</strong>g> toxinproduced in different types <str<strong>on</strong>g>of</str<strong>on</strong>g> animal carcasses may vary (Smith <str<strong>on</strong>g>and</str<strong>on</strong>g> Turner 1989), but this hasnot been examined carefully.When <strong>the</strong> type Cneurotoxin is ingested by abird, it is absorbed into<strong>the</strong>ir blood <str<strong>on</strong>g>and</str<strong>on</strong>g> binds tospecific receptors <strong>on</strong> <strong>the</strong>irmotor neur<strong>on</strong>s. The toxins<strong>the</strong>n block <strong>the</strong> transmissi<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> nerve impulses involvedin muscle activati<strong>on</strong>, whichresults in <strong>the</strong> flaccidparalysis seen in birdsaffected by botulism(Schiavo et al. 1995) (seeleft). Ingesti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> preformedtoxin is <strong>the</strong> majorroute <str<strong>on</strong>g>of</str<strong>on</strong>g> botulismintoxicati<strong>on</strong> in all wildlifespecies, including wild


5birds. There is no evidence that birds become intoxicated through drinking water, possiblybecause toxins do not reach high enough c<strong>on</strong>centrati<strong>on</strong>s in water to cause pois<strong>on</strong>ing. The mostlikely source <str<strong>on</strong>g>of</str<strong>on</strong>g> toxin is toxin-bearing invertebrates, <str<strong>on</strong>g>and</str<strong>on</strong>g> bird species differ markedly in <strong>the</strong>probability <str<strong>on</strong>g>of</str<strong>on</strong>g> ingesting <strong>the</strong>se due to differences in feeding behaviour. All birds, with <strong>the</strong>possible excepti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> vultures (Kalmbach 1939; Cohen et al. 1969), are susceptible toingested type C neurotoxin, but <strong>the</strong>re is very little informati<strong>on</strong> <strong>on</strong> interspecific differencesin susceptibility.In California, Rocke et al. (1999) determined that certain wetl<str<strong>on</strong>g>and</str<strong>on</strong>g> envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s wereassociated with botulism outbreaks. They found an associati<strong>on</strong>, in time, between <strong>the</strong> occurrence<str<strong>on</strong>g>of</str<strong>on</strong>g> outbreaks <str<strong>on</strong>g>and</str<strong>on</strong>g>: increasing sediment <str<strong>on</strong>g>and</str<strong>on</strong>g> water temperature; increasing abundance or biomass<str<strong>on</strong>g>of</str<strong>on</strong>g> invertebrates; <str<strong>on</strong>g>and</str<strong>on</strong>g> decreasing turbidity. Wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s with botulism outbreaks also had lowerredox potential than n<strong>on</strong>-outbreak wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s. In later studies, which were c<strong>on</strong>ducted <strong>on</strong> a largergeographic scale, outbreaks were more likely when water pH was in <strong>the</strong> 7.5-8.5 range, redoxpotential was negative, <str<strong>on</strong>g>and</str<strong>on</strong>g> temperature exceeded 20 C, although <strong>the</strong> relati<strong>on</strong>ship am<strong>on</strong>g <strong>the</strong>sevariables was complex (Rocke <str<strong>on</strong>g>and</str<strong>on</strong>g> Samuel 1999). How <strong>the</strong>se physiochemical factors mightrelate to bacterial abundance, growth <str<strong>on</strong>g>and</str<strong>on</strong>g> toxin producti<strong>on</strong>, as well as <strong>the</strong> availability <str<strong>on</strong>g>of</str<strong>on</strong>g> toxin tobirds, is unknown.Models <str<strong>on</strong>g>of</str<strong>on</strong>g> botulism ecologyThe most basic c<strong>on</strong>ceptual model <str<strong>on</strong>g>of</str<strong>on</strong>g> avian botulism has three comp<strong>on</strong>ents: i) <strong>the</strong> bacterium,ii) <strong>the</strong> substrate within which <strong>the</strong> bacterium grows <str<strong>on</strong>g>and</str<strong>on</strong>g> produces toxin, <str<strong>on</strong>g>and</str<strong>on</strong>g> iii) a populati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>susceptible birds. Each <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se three comp<strong>on</strong>ents is influenced by many o<strong>the</strong>r envir<strong>on</strong>mentalfactors, <str<strong>on</strong>g>and</str<strong>on</strong>g> botulism <strong>on</strong>ly occurs when all three comp<strong>on</strong>ents are present <str<strong>on</strong>g>and</str<strong>on</strong>g> envir<strong>on</strong>mentalc<strong>on</strong>diti<strong>on</strong>s are favourable.For example, toxin may beproduced if toxin-producingbacteria <str<strong>on</strong>g>and</str<strong>on</strong>g> substrate arepresent, but <strong>the</strong> disease w<strong>on</strong>’toccur if birds are absent.Similarly, if <strong>the</strong> bacterium<str<strong>on</strong>g>and</str<strong>on</strong>g> birds are present butsubstrate is not available forbacterial growth, no toxin willbe formed. In a simpleschematic model, <strong>the</strong> risk <str<strong>on</strong>g>of</str<strong>on</strong>g>botulism is dependent up<strong>on</strong><strong>the</strong> overlap am<strong>on</strong>g all threecomp<strong>on</strong>ents (see right).SubstrateBacteriaBirds<str<strong>on</strong>g>Botulism</str<strong>on</strong>g> occurs in<strong>the</strong> area <str<strong>on</strong>g>of</str<strong>on</strong>g> overlapThere are two distinct phases in <strong>the</strong> ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> botulism: an initiati<strong>on</strong> phase <str<strong>on</strong>g>and</str<strong>on</strong>g> a propagati<strong>on</strong>phase. The basic bacteria-substrate-birds model (see above) applies to both phases, but <strong>the</strong>ydiffer in <strong>the</strong> type <str<strong>on</strong>g>of</str<strong>on</strong>g> substrate involved. In <strong>the</strong> initiati<strong>on</strong> phase, any protein-rich organic matter


6could potentially serve as substrate for bacterial growth. The actual source <str<strong>on</strong>g>of</str<strong>on</strong>g> toxin (i.e., <strong>the</strong>substrate involved) that initiates mortality in wild birds is almost never known, but threepotential substrates have been identified: invertebrate carcasses, vertebrate carcasses, <str<strong>on</strong>g>and</str<strong>on</strong>g> n<strong>on</strong>carcassproteinaceous material. In <strong>the</strong> propagati<strong>on</strong> phase, carcasses <str<strong>on</strong>g>of</str<strong>on</strong>g> birds that havesuccumbed to botulism are <strong>the</strong> substrate within which toxin producti<strong>on</strong> occurs. Althoughwaterbirds, o<strong>the</strong>r than gulls, do not feed directly <strong>on</strong> carcasses, <strong>the</strong>y can c<strong>on</strong>tract <strong>the</strong> toxin byeating toxin-bearing invertebrates such as maggots. Once intoxicated, <strong>the</strong>y will <strong>the</strong>n succumb tobotulism <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong>ir carcasses will, in turn, produce more toxin-bearing maggots. Through thiscarcass-maggot botulism cycle, <strong>the</strong> potential for expansi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> botulism from a single carcassis immense.Because <strong>the</strong> three comp<strong>on</strong>ents (bacteria, substrate, <str<strong>on</strong>g>and</str<strong>on</strong>g> birds) <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> botulism model are normallypresent in most wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s, it is likely that <strong>the</strong> initiati<strong>on</strong> phase <str<strong>on</strong>g>of</str<strong>on</strong>g> botulism occurs comm<strong>on</strong>ly <str<strong>on</strong>g>and</str<strong>on</strong>g>repeatedly in wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s. When c<strong>on</strong>diti<strong>on</strong>s are favourable <str<strong>on</strong>g>and</str<strong>on</strong>g> a large amount <str<strong>on</strong>g>of</str<strong>on</strong>g> toxin is produced,many birds may die. This could explain why some botulism outbreaks begin after someenvir<strong>on</strong>mental event, such as a hail storm that kills many birds, a fish kill, or o<strong>the</strong>r events thatprovide suitable c<strong>on</strong>diti<strong>on</strong>s for bacterial growth <str<strong>on</strong>g>and</str<strong>on</strong>g> toxin formati<strong>on</strong>.The carcass <str<strong>on</strong>g>of</str<strong>on</strong>g> a bird that dies in <strong>the</strong> initiati<strong>on</strong> phase may or may not become substrate for toxinproducti<strong>on</strong>. For this to occur, <strong>the</strong> carcass must c<strong>on</strong>tain spores <str<strong>on</strong>g>and</str<strong>on</strong>g> must remain intact l<strong>on</strong>genough for toxin <str<strong>on</strong>g>and</str<strong>on</strong>g> maggots to develop. Factors that influence this step include <strong>the</strong> rate atwhich toxin <str<strong>on</strong>g>and</str<strong>on</strong>g> maggots develop in <strong>the</strong> carcass, <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> rapidity <str<strong>on</strong>g>and</str<strong>on</strong>g> thoroughness with which


7carcasses are removed by larger scavengers. When temperatures are high <str<strong>on</strong>g>and</str<strong>on</strong>g> flies are abundant,carcasses may c<strong>on</strong>tain toxin-laden maggots within two to three days. Under cool c<strong>on</strong>diti<strong>on</strong>s,carcasses may remain free <str<strong>on</strong>g>of</str<strong>on</strong>g> maggots for weeks (Wobeser <str<strong>on</strong>g>and</str<strong>on</strong>g> Galmut 1984). If scavengers areabundant, <str<strong>on</strong>g>and</str<strong>on</strong>g> carcasses are relatively few in number, most may be removed before toxindevelops. However, if <strong>the</strong>re are many carcasses in an area, scavengers may be saturated so thatmost carcasses persist until maggots are present (Cliplef <str<strong>on</strong>g>and</str<strong>on</strong>g> Wobeser 1993). When a birdsuccumbs to botulism, its carcass can be involved in <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> two pathways (see below).Carcass <str<strong>on</strong>g>of</str<strong>on</strong>g> bird that dies in initiati<strong>on</strong> stage <str<strong>on</strong>g>of</str<strong>on</strong>g> botulismCarcass is removed by scavengerorSpores are not present in carcassorToxin producti<strong>on</strong> does not occurorMaggots do not developorBirds do not ingest maggotsCarcass remains intact in wetl<str<strong>on</strong>g>and</str<strong>on</strong>g><str<strong>on</strong>g>and</str<strong>on</strong>g>Spores are present in carcass<str<strong>on</strong>g>and</str<strong>on</strong>g>Toxin producti<strong>on</strong> occurs<str<strong>on</strong>g>and</str<strong>on</strong>g>Maggots develop in carcass<str<strong>on</strong>g>and</str<strong>on</strong>g>Birds ingest maggotsPropagati<strong>on</strong> phase does not beginPropagati<strong>on</strong> phase may begin1999 report<str<strong>on</strong>g>Avian</str<strong>on</strong>g> botulism losses <str<strong>on</strong>g>and</str<strong>on</strong>g> management<str<strong>on</strong>g>Avian</str<strong>on</strong>g> botulism c<strong>on</strong>tinued to be a problem <strong>on</strong> <strong>the</strong> <strong>Canadian</strong> <strong>Prairies</strong>, with total waterfowl lossesestimated to be in excess <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e milli<strong>on</strong> birds in 1998. Although <strong>the</strong>se losses were comparable tothose <str<strong>on</strong>g>of</str<strong>on</strong>g> 1997, <strong>the</strong> pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> mortality was different in 1998. In 1997, as in <strong>the</strong> previous threeyears, <strong>the</strong> greatest losses were observed <strong>on</strong> three large terminal basins in <strong>the</strong> sou<strong>the</strong>rn <strong>Canadian</strong>Prairie: Pakowki Lake, Alberta (45,048 collected); Old Wives Lake, Saskatchewan (1,000,000estimated dead); <str<strong>on</strong>g>and</str<strong>on</strong>g> Whitewater Lake, Manitoba (49,000 collected). In c<strong>on</strong>trast, avian botulismmortality was relatively low <strong>on</strong> <strong>the</strong>se three lakes in 1998, but was recorded <strong>on</strong> approximately 23


8additi<strong>on</strong>al lakes <str<strong>on</strong>g>and</str<strong>on</strong>g> marshes. Although this was <strong>the</strong> first time botulism had been detected <strong>on</strong>some lakes, botulism had not been reported <strong>on</strong> o<strong>the</strong>rs for <strong>the</strong> previous 20-40 years. Theoutbreaks <str<strong>on</strong>g>of</str<strong>on</strong>g> 1998 were also unusual in that two <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> largest die-<str<strong>on</strong>g>of</str<strong>on</strong>g>fs were in <strong>the</strong> boreal forestecoregi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nor<strong>the</strong>rn Alberta, <str<strong>on</strong>g>and</str<strong>on</strong>g> diving ducks comprised a significant proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>carcasses collected in <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se die-<str<strong>on</strong>g>of</str<strong>on</strong>g>fs. In total, approximately 210,000 carcasses werecollected during clean-up operati<strong>on</strong>s across <strong>the</strong> <strong>Canadian</strong> Prairie in 1998, <str<strong>on</strong>g>and</str<strong>on</strong>g> direct costs <str<strong>on</strong>g>of</str<strong>on</strong>g> thisclean-up were c<strong>on</strong>servatively estimated at C$950,000.Regi<strong>on</strong>al investigati<strong>on</strong>sIn resp<strong>on</strong>se to high botulism losses, <strong>the</strong> PHJV funded a regi<strong>on</strong>al coordinator <str<strong>on</strong>g>and</str<strong>on</strong>g> investigati<strong>on</strong>unit to c<strong>on</strong>duct studies recommended by <strong>the</strong> <str<strong>on</strong>g>Avian</str<strong>on</strong>g> <str<strong>on</strong>g>Botulism</str<strong>on</strong>g> Working Group, <strong>on</strong> Pakowki, OldWives, <str<strong>on</strong>g>and</str<strong>on</strong>g> Whitewater lakes June-August 1998 (see below). From <strong>the</strong>se investigati<strong>on</strong>s, <strong>the</strong>working group learned thatcarcass counts from removalefforts during botulismoutbreaks underestimatedtotal mortality by a factor <str<strong>on</strong>g>of</str<strong>on</strong>g>four to ten, which wassignificantly greater than <strong>the</strong>correcti<strong>on</strong> factor <str<strong>on</strong>g>of</str<strong>on</strong>g> two thathad been proposed in <strong>the</strong>past. Using a correcti<strong>on</strong>factor <str<strong>on</strong>g>of</str<strong>on</strong>g> five, <str<strong>on</strong>g>and</str<strong>on</strong>g> recordsindicating that over 200,000carcasses were retrievedduring botulism outbreaks in1998, it was estimated that atleast <strong>on</strong>e milli<strong>on</strong> birds died <str<strong>on</strong>g>of</str<strong>on</strong>g>botulism <strong>on</strong> <strong>the</strong> <strong>Canadian</strong><strong>Prairies</strong> that year. Low clean-up efficiencies meant that a large number <str<strong>on</strong>g>of</str<strong>on</strong>g> carcasses remained <strong>on</strong><strong>the</strong> marsh to perpetuate <strong>the</strong> carcass-maggot botulism cycle. This was c<strong>on</strong>firmed by carcassdensity maps, which revealed areas <str<strong>on</strong>g>of</str<strong>on</strong>g> marshes with densities <str<strong>on</strong>g>of</str<strong>on</strong>g> 20-50 carcasses/ha during cleanupoperati<strong>on</strong>s.Potential risk factors for botulism outbreaks were also identified at <strong>the</strong> three lakes in 1998. First,high carcass densities were associated with Franklin’s gull (Larus pipixcan) col<strong>on</strong>ies. Sec<strong>on</strong>d, agreater proporti<strong>on</strong> (~90%) <str<strong>on</strong>g>of</str<strong>on</strong>g> maggot-laden carcasses c<strong>on</strong>tained type C toxin <strong>on</strong> all three lakesthan <strong>on</strong> outbreak sites (~40%) in California (Reed <str<strong>on</strong>g>and</str<strong>on</strong>g> Rocke 1992), implying a high risk <str<strong>on</strong>g>of</str<strong>on</strong>g>exposure to toxin at <strong>the</strong>se <strong>Canadian</strong> lakes.


9Priority areasIn order to move forward, <strong>the</strong> working group proposed to focus <strong>on</strong> three main priority areas <str<strong>on</strong>g>and</str<strong>on</strong>g>associated objectives:1. Effectiveness <str<strong>on</strong>g>of</str<strong>on</strong>g> managementAt <strong>the</strong> time <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> 1999 report, it was evident that methods <str<strong>on</strong>g>of</str<strong>on</strong>g> surveillance <str<strong>on</strong>g>and</str<strong>on</strong>g> carcassremoval were not effective <strong>on</strong> large lakes. Therefore, <strong>the</strong> group proposed to determinewhe<strong>the</strong>r carcass removal can be made more effective <str<strong>on</strong>g>and</str<strong>on</strong>g>, if so, how this could beachieved. They also proposed to determine whe<strong>the</strong>r birds are saved as a direct result<str<strong>on</strong>g>of</str<strong>on</strong>g> management, <str<strong>on</strong>g>and</str<strong>on</strong>g> planned to address <strong>the</strong>se questi<strong>on</strong>s in <strong>the</strong> following three interrelatedways:a) Vary <strong>the</strong> level <str<strong>on</strong>g>of</str<strong>on</strong>g> management effort <strong>on</strong> three to four wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s, <str<strong>on</strong>g>and</str<strong>on</strong>g> determine <strong>the</strong>effort required to reduce densities <str<strong>on</strong>g>of</str<strong>on</strong>g> toxin-producing carcasses to levels wheresurvival <str<strong>on</strong>g>of</str<strong>on</strong>g> birds is increased (see b, below).b) Directly measure survival <str<strong>on</strong>g>of</str<strong>on</strong>g> radio-marked birds (pintails, if possible) <strong>on</strong> wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>ssubjected to different levels <str<strong>on</strong>g>of</str<strong>on</strong>g> management effort (see a, above). This could alsoindicate <strong>the</strong> level <str<strong>on</strong>g>of</str<strong>on</strong>g> effort required to increase survival <str<strong>on</strong>g>of</str<strong>on</strong>g> birds.c) Over time (e.g., three years), specify a level <str<strong>on</strong>g>of</str<strong>on</strong>g> effort required to reduce carcassdensity <str<strong>on</strong>g>and</str<strong>on</strong>g> bird mortality, <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong>n measure carcasses <str<strong>on</strong>g>and</str<strong>on</strong>g> survival <str<strong>on</strong>g>of</str<strong>on</strong>g> birds inresp<strong>on</strong>se to management effort, comparing predicted against measured resp<strong>on</strong>ses.2. Effects <strong>on</strong> populati<strong>on</strong>sOn <strong>the</strong> scale <str<strong>on</strong>g>of</str<strong>on</strong>g> individual wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s, it is possible to estimate whe<strong>the</strong>r mortality is reducedas a result <str<strong>on</strong>g>of</str<strong>on</strong>g> management (see 1, above). However, if subsequent fall or breedingpopulati<strong>on</strong> sizes are not reduced because <str<strong>on</strong>g>of</str<strong>on</strong>g> botulism mortality, <strong>the</strong>n outbreakmanagement is not necessary because <strong>the</strong>se efforts would not increase <strong>the</strong> number <str<strong>on</strong>g>of</str<strong>on</strong>g>birds significantly. While <strong>the</strong> group felt this issue couldn’t be ignored, <strong>the</strong>y alsocauti<strong>on</strong>ed that it wouldn’t be easily addressed. In 1998, <strong>the</strong>y began to tackle <strong>the</strong> issue byb<str<strong>on</strong>g>and</str<strong>on</strong>g>ing <str<strong>on</strong>g>and</str<strong>on</strong>g> vaccinating ducks <strong>on</strong> two lakes (<strong>on</strong>e with clean-up <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> o<strong>the</strong>r without).However, <strong>the</strong>y encountered problems associated with timing <str<strong>on</strong>g>of</str<strong>on</strong>g> b<str<strong>on</strong>g>and</str<strong>on</strong>g>ing relative todisease outbreak, as well as uncertainty surrounding <strong>the</strong> efficacy <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> vaccineemployed. The group planned to address <strong>the</strong>se problems in three ways:a) Determine whe<strong>the</strong>r <strong>the</strong> vaccine increases survival in <strong>the</strong> field using radio-markedducks <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>trols <str<strong>on</strong>g>and</str<strong>on</strong>g>, if not, assess ways <str<strong>on</strong>g>of</str<strong>on</strong>g> making <strong>the</strong> vaccine work.b) C<strong>on</strong>tinue b<str<strong>on</strong>g>and</str<strong>on</strong>g>ing (<str<strong>on</strong>g>and</str<strong>on</strong>g> vaccinati<strong>on</strong> if <strong>the</strong> vaccine is effective).c) Explore <strong>the</strong> possibility <str<strong>on</strong>g>of</str<strong>on</strong>g> modelling effects <str<strong>on</strong>g>of</str<strong>on</strong>g> botulism <strong>on</strong> pintail populati<strong>on</strong>dynamics <strong>on</strong>ce better estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> survival rates are acquired.3. Evaluating o<strong>the</strong>r management opti<strong>on</strong>sTo ensure that newly proposed management efforts weren’t misdirected, <strong>the</strong> grouprequired a better underst<str<strong>on</strong>g>and</str<strong>on</strong>g>ing <str<strong>on</strong>g>of</str<strong>on</strong>g> additi<strong>on</strong>al factors. First, <strong>the</strong> group needed to knowmore about <strong>the</strong> key comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> botulism, such as o<strong>the</strong>r sources <str<strong>on</strong>g>of</str<strong>on</strong>g> birdmortality <str<strong>on</strong>g>and</str<strong>on</strong>g> alternate botulism vectors. Sec<strong>on</strong>d, <strong>the</strong> group needed to know how manybirds die for reas<strong>on</strong>s o<strong>the</strong>r than maggot ingesti<strong>on</strong> during an outbreak. This could pose a


10challenge because management assumed that maggots are <strong>the</strong> source <str<strong>on</strong>g>of</str<strong>on</strong>g> toxin, <str<strong>on</strong>g>and</str<strong>on</strong>g> was<strong>the</strong>refore geared to eliminating maggot-laden carcasses. To address <strong>the</strong>se two issues, aseries <str<strong>on</strong>g>of</str<strong>on</strong>g> small-scale studies were proposed to evaluate factors that might c<strong>on</strong>tribute to<strong>the</strong> occurrence <str<strong>on</strong>g>and</str<strong>on</strong>g> magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> an outbreak but are not directly associated with <strong>the</strong>carcass-maggot cycle, such as: nutrients, blue-green algae, wea<strong>the</strong>r, <str<strong>on</strong>g>and</str<strong>on</strong>g> o<strong>the</strong>r animals(e.g., gulls).ORGANIZATION OF THIS REPORTThe remainder <str<strong>on</strong>g>of</str<strong>on</strong>g> this report summarizes <strong>the</strong> studies c<strong>on</strong>ducted in associati<strong>on</strong> with <strong>the</strong> PHJV<str<strong>on</strong>g>Avian</str<strong>on</strong>g> <str<strong>on</strong>g>Botulism</str<strong>on</strong>g> Working Group since 1999. These findings, coupled with <strong>the</strong> backgroundinformati<strong>on</strong> outlined above, provide a framework for future efforts to underst<str<strong>on</strong>g>and</str<strong>on</strong>g> this disease <str<strong>on</strong>g>and</str<strong>on</strong>g>manage its impacts <strong>on</strong> waterfowl populati<strong>on</strong>s.Carcass collecti<strong>on</strong> has been <strong>the</strong> <strong>on</strong>ly active management technique used in Western Canada forbotulism, yet its efficacy has not been assessed under field c<strong>on</strong>diti<strong>on</strong>s. Investigati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>efficacy <str<strong>on</strong>g>of</str<strong>on</strong>g> carcass collecti<strong>on</strong> are presented in Part I <str<strong>on</strong>g>of</str<strong>on</strong>g> this reportIn <strong>the</strong>ir 1998 report, <strong>the</strong> working group created a working model <str<strong>on</strong>g>of</str<strong>on</strong>g> botulism ecology.Informati<strong>on</strong> required to revise this model, as well as factors that influence <strong>the</strong> progressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>botulism, have since been identified <str<strong>on</strong>g>and</str<strong>on</strong>g> studied. The results <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se studies are discussed inPart II <str<strong>on</strong>g>and</str<strong>on</strong>g> Part III <str<strong>on</strong>g>of</str<strong>on</strong>g> this report. The working group also explored <strong>the</strong> potential role <str<strong>on</strong>g>of</str<strong>on</strong>g> bluegreenalgae in causing initial mortality events that could act as a catalyst for botulism outbreaks,<str<strong>on</strong>g>and</str<strong>on</strong>g> presents results <str<strong>on</strong>g>of</str<strong>on</strong>g> this study in Appendix 2.Populati<strong>on</strong> impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> botulism must be c<strong>on</strong>sidered at local, regi<strong>on</strong>al, <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>tinental levels. Theeffect <str<strong>on</strong>g>of</str<strong>on</strong>g> this disease <strong>on</strong> species <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>servati<strong>on</strong> c<strong>on</strong>cern, such as <strong>the</strong> nor<strong>the</strong>rn pintails <str<strong>on</strong>g>and</str<strong>on</strong>g>shorebirds, requires special attenti<strong>on</strong>. Fundamental to assessing populati<strong>on</strong> effects <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong>efficacy <str<strong>on</strong>g>of</str<strong>on</strong>g> botulism management techniques is <strong>the</strong> need to determine <strong>the</strong> mortality rate (<strong>the</strong>number <str<strong>on</strong>g>of</str<strong>on</strong>g> birds that die <str<strong>on</strong>g>of</str<strong>on</strong>g> botulism / number <str<strong>on</strong>g>of</str<strong>on</strong>g> birds in <strong>the</strong> populati<strong>on</strong> at risk) for differentspecies <str<strong>on</strong>g>and</str<strong>on</strong>g> groups. Three separate studies were undertaken to assess <strong>the</strong> populati<strong>on</strong> impacts <str<strong>on</strong>g>of</str<strong>on</strong>g>botulism <strong>on</strong> mallards, <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong>se are presented <str<strong>on</strong>g>and</str<strong>on</strong>g> Parts II, III, IV, <str<strong>on</strong>g>and</str<strong>on</strong>g> VI <str<strong>on</strong>g>of</str<strong>on</strong>g> this report.Key findings <str<strong>on</strong>g>of</str<strong>on</strong>g> all studies are discussed in <strong>the</strong> Main C<strong>on</strong>clusi<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> Recommendati<strong>on</strong>s secti<strong>on</strong>at <strong>the</strong> end <str<strong>on</strong>g>of</str<strong>on</strong>g> this report. This last secti<strong>on</strong> presents results in an adaptive managementframework, to guide future efforts to advance our underst<str<strong>on</strong>g>and</str<strong>on</strong>g>ing <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> botulism <str<strong>on</strong>g>and</str<strong>on</strong>g>its impacts <strong>on</strong> avian populati<strong>on</strong>s, as well as potential management strategies.


11LITERATURE CITEDBell GF, Sciple GW, Hubert AA. 1955. A microenvir<strong>on</strong>ment c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> epizoology <str<strong>on</strong>g>of</str<strong>on</strong>g> avianbotulism. J Wildl Manage. 19:352-357.Cato EP, Sciple GW, Hubert AA. 1986. Genus Clostridium Prazmowski 1880, 23 Al . In: Bergey’sManual <str<strong>on</strong>g>of</str<strong>on</strong>g> Systematic Bacteriology, Vol. 2 (Sneath PHA, editor). Maryl<str<strong>on</strong>g>and</str<strong>on</strong>g>: Williams <str<strong>on</strong>g>and</str<strong>on</strong>g>Wilkins. p 1141-1200.Cliplef DJ, Wobeser G. 1993. Observati<strong>on</strong>s <strong>on</strong> waterfowl carcasses during a botulism epizootic.J Wildl Dis. 29:8-14.Coburn DR, Quortrup ER. 1938. The distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> botulinus toxin in duck sickness areas. TransN Amer Wildl C<strong>on</strong>f. 3:869-876.Cohen GM, Pates AL, East<strong>on</strong> DM, Peters<strong>on</strong> MG. 1969. Vulture <str<strong>on</strong>g>and</str<strong>on</strong>g> rooster resistance tobotulinus toxin. Amer Zool. 9:584.Dobbs KL. 1992. Clostridium botulinum in <strong>the</strong> envir<strong>on</strong>ment. In: Clostridium botulinum: <str<strong>on</strong>g>Ecology</str<strong>on</strong>g><str<strong>on</strong>g>and</str<strong>on</strong>g> C<strong>on</strong>trol in Foods (Hauschild AHW, Dodds KL, editors). New York: Marcell DekkerInc. p 21-52.Duncan RM, Jensen WI. 1976. A relati<strong>on</strong>ship between avian carcasses <str<strong>on</strong>g>and</str<strong>on</strong>g> living invertebrates in<strong>the</strong> epizootiology <str<strong>on</strong>g>of</str<strong>on</strong>g> avian botulism. J Wildl Dis. 12:116-126.Gunders<strong>on</strong> MF. 1933. Presence <str<strong>on</strong>g>of</str<strong>on</strong>g> Clostridium botulinum in livers <str<strong>on</strong>g>of</str<strong>on</strong>g> birds not affected bybotulism. Proc Exp Biol Med Soc. 30:747-750.Hunter BF. 1970. <str<strong>on</strong>g>Ecology</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> waterfowl botulism toxin producti<strong>on</strong>. Trans N Amer Wildl C<strong>on</strong>f.34:64-72.Itoh T, Saito K, Inaba M, Sakai S. 1978. Dem<strong>on</strong>strati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> type C Clostridium botulinum fromsludges <str<strong>on</strong>g>and</str<strong>on</strong>g> fresh-water fish in <strong>the</strong> River Nakagawa in Tokyo. Ann Rep Tokyo Metr ResLab PH. 29:13-18.Kalmbach ER. 1939. American vultures <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> toxin <str<strong>on</strong>g>of</str<strong>on</strong>g> Clostridium botulinum. J Amer VetMed Assoc. 94:197-191.Notermans S, Dufrenne J, Kozaki S. 1980. Experimental botulism in Pekin ducks. <str<strong>on</strong>g>Avian</str<strong>on</strong>g> Dis.24:658-664.Reed TM, Rocke TE. 1992. The role <str<strong>on</strong>g>of</str<strong>on</strong>g> avian carcasses in botulism epizootics. Wildl Soc Bull.20:175-182.


12Rocke TE, Bollinger TK. 2007. <str<strong>on</strong>g>Avian</str<strong>on</strong>g> botulism. In: Infectious Diseases <str<strong>on</strong>g>of</str<strong>on</strong>g> Wild Birds (ThomasNJ, Hunter DB, Atkins<strong>on</strong> CT, editors). Iowa: Blackwell Publishing. p 377-416.Rocke TE, Euliss NH Jr, Samuel MD. 1999. Envir<strong>on</strong>mental characteristics associated with <strong>the</strong>occurrence <str<strong>on</strong>g>of</str<strong>on</strong>g> avian botulism in wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> a nor<strong>the</strong>rn California refuge. J Wildl Manage.63:358-369.Rocke TE, Samuel MD. 1999. Water <str<strong>on</strong>g>and</str<strong>on</strong>g> sediment characteristics associated with avian botulismoutbreaks in wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s. J Wildl Manage. 63:1249-1260.Schiavo G, Sh<strong>on</strong>e CC, Bennett MK, Scheller RH, M<strong>on</strong>tecucco C. 1995. Botulinum neurotoxintype C cleaves a single Lys-Ala b<strong>on</strong>d within <strong>the</strong> carboxyl-terminal regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> syntaxins. JBiol Chem. 270:10566-10570.Samuel MD. 1992. Influence <str<strong>on</strong>g>of</str<strong>on</strong>g> disease <strong>on</strong> a populati<strong>on</strong> model <str<strong>on</strong>g>of</str<strong>on</strong>g> mid-c<strong>on</strong>tinent mallards. TransN Amer Wildl & Nat Res C<strong>on</strong>f. 57:486-498.Smith GR. 1976. <str<strong>on</strong>g>Botulism</str<strong>on</strong>g> in waterfowl. Wildfowl. 27:129.Smith GR. 1987. <str<strong>on</strong>g>Botulism</str<strong>on</strong>g> in water birds <str<strong>on</strong>g>and</str<strong>on</strong>g> its relati<strong>on</strong> to comparative medicine. In: <str<strong>on</strong>g>Avian</str<strong>on</strong>g>botulism: an internati<strong>on</strong>al perspective (Eklund MW, Dowell VR, editors). Illinois: CharlesC. Thomas Publ. p 73-86.Smith GR, Turner A. 1987. Factors affecting <strong>the</strong> toxicity <str<strong>on</strong>g>of</str<strong>on</strong>g> rotting carcasses c<strong>on</strong>tainingClostridium botulinum type C. Epidemiol Infect. 98:345-351.Smith GR, Turner A. 1989. The producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Clostridium botulinum toxin in mammalian, avian<str<strong>on</strong>g>and</str<strong>on</strong>g> piscine carri<strong>on</strong>. Epidemiol Infect. 102:467-471.Wobeser G, Galmut E. 1984. Internal temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> decomposing duck carcasses in relati<strong>on</strong> tobotulism. J Wildl Dis. 20:267-271.Wobeser G, Marsden S, MacFarlane RJ. 1987. Occurrence <str<strong>on</strong>g>of</str<strong>on</strong>g> toxigenic Clostridium botulinum in<strong>the</strong> soil <str<strong>on</strong>g>of</str<strong>on</strong>g> wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s in Saskatchewan. J Wildl Dis. 23:67-76.


Figure 1. Map indicating lakes where botulism has been reported in Prairie Canada to date.Names <str<strong>on</strong>g>and</str<strong>on</strong>g> coordinates <str<strong>on</strong>g>of</str<strong>on</strong>g> individual lakes are provided in Table 1.13


14Table 1. Names <str<strong>on</strong>g>and</str<strong>on</strong>g> locati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> lakes where botulism has been reported in Prairie Canada todate. Lake numbers corresp<strong>on</strong>d to <strong>the</strong> numbers in Figure 1.Lake # Locati<strong>on</strong> Province* Latitude L<strong>on</strong>gitude1 Axe Lake SK 51.53333 -105.216672 Beaverhill Lake AB 53.41667 -112.500003 Big Grass Marsh MB 50.38194 -98.855284 Big Hay Lake AB 53.17000 -113.200005 Big Lake AB 53.61667 -113.700006 Bigstick Lake SK 50.26666 -109.333337 Bittern Lake AB 53.05000 -113.083338 Buffalo Lake AB 49.61667 -110.583339 Campbell Project, SE Little Quill Lake SK 51.92000 -104.0800010 Cardinal Lake AB 56.14000 -117.4400011 Chaplin Lake SK 50.36670 -106.6000012 Crane Lake SK 50.08000 -109.0800013 Cygnet Lake AB 52.28000 -114.0200014 Delta Marsh MB 50.19861 -98.2047315 Dowd Slough MB 49.53000 -99.2700016 Eyebrow Lake SK 50.93333 -106.1499917 Fincastle Lake AB 49.83333 -111.9833318 Foam Lake SK 51.71667 -103.6166719 Frank Lake AB 50.57000 -113.7200020 Galloway Bay SK 50.83333 -108.0333521 Gambling Lake AB 53.33333 -112.9000022 Grantham AB 50.06667 -112.0000023 Hay Lake AB 58.82560 -118.6685024 Hay Zama Lakes AB 58.75000 -119.0000125 Hay Zama Lakes II AB 53.20000 -113.5000026 Jackfish Marsh SK 53.01370 -108.3193127 Jesmer Marsh, NE Little Quill Lake SK 51.92000 -104.0800028 Jessie Lake AB 54.25380 -110.7377029 Kettlehut Lake SK 50.65000 -106.5000030 Kimiwan AB 55.45000 -116.5500031 Kings Lake AB 54.56667 -114.2000132 Kutawagan Lake SK 51.60000 -104.7333333 Lac La Biche AB 54.77000 -111.9700034 Lake Newell AB 50.43000 -111.9200035 Last Mountain Lake SK 51.08333 -105.2333336 Lidcliffe Marsh MB 50.62917 -101.1333337 Little Fish Lake AB 55.46000 -111.59000


15Lake # Locati<strong>on</strong> Province* Latitude L<strong>on</strong>gitude38 Little Quill Lake SK 51.91667 -104.0833339 Many Isl<str<strong>on</strong>g>and</str<strong>on</strong>g> Lake AB 50.13333 -110.0500040 Middle Quill Lake SK 51.92000 -104.2000041 Milligan Creek, E <str<strong>on</strong>g>of</str<strong>on</strong>g> Little Quill SK 51.88000 -103.8700042 Miquel<strong>on</strong> Lake AB 53.25000 -112.8800043 Mud Lake SK 51.92000 -104.2000044 Murray Lakes AB 49.80000 -110.9300045 Namaka Lake AB 50.93000 -113.2200046 Oak Hammock Marsh MB 50.18750 -97.1250047 Oak/Plum Lakes MB 49.60000 -100.6833248 Old Wives Lake SK 50.10000 -106.0000049 Pakowki Lake AB 49.33333 -110.9166750 Paysen Lake SK 50.68000 -106.7300051 Pel Lake SK 51.55000 -104.7000052 Pelican Lake SK 50.53333 -106.0000053 Proven Lake MB 50.53333 -99.9833354 Rice Lake SK 52.05000 -107.1166755 Rush Lake SK 50.40420 -107.4017056 San Francisco Lake AB 50.58333 -112.1333257 Smoky Lake AB 54.16667 -112.6666758 Stirling Lake AB 49.53000 -112.5800059 Stobart Lake AB 50.92000 -113.1800060 Town <str<strong>on</strong>g>of</str<strong>on</strong>g> Milo AB 50.50050 -112.8838061 Twelve Mile Lake SK 49.48333 -106.2333362 Utikuma Lake AB 55.83333 -115.4166763 Valeport SK 50.75000 -104.8666764 Waterhen Marsh SK 52.83333 -105.0333265 Watt Lake AB 53.70000 -111.9300066 Welstead Lake AB 58.33000 -111.7800067 Whitewater Lake MB 49.25000 -100.3000068 Whitford Lake AB 53.88333 -112.2500069 Winnipeg MB 49.88000 -97.15000* SK = Saskatchewan; AB = Alberta; MB = Manitoba.


16PART IEFFICACY OF CARCASS CLEAN-UP DURING AVIAN BOTULISM OUTBREAKSTRENT K. BOLLINGER, DANIEL D. EVELSIZER AND MARNIE ZIMMERABSTRACTCarcass clean-up is a comm<strong>on</strong> management resp<strong>on</strong>se to waterfowl die-<str<strong>on</strong>g>of</str<strong>on</strong>g>fs caused byClostridium botulinum, Type C (hereafter, botulism). We evaluated <strong>the</strong> effectiveness <str<strong>on</strong>g>of</str<strong>on</strong>g> carcassclean-up in reducing carcass densities <strong>on</strong> seven wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s in Prairie Canada, under typical toenhanced botulism clean-up efforts. The wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s varied from 250-7,850 ha in area, <str<strong>on</strong>g>and</str<strong>on</strong>g> hadvarying density <str<strong>on</strong>g>of</str<strong>on</strong>g> vegetati<strong>on</strong>. During clean-up operati<strong>on</strong>s, we regularly estimated carcassdensities remaining <strong>on</strong> lakes using line transect surveys. Fresh carcasses were marked with legb<str<strong>on</strong>g>and</str<strong>on</strong>g>s <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> carcasses retrieved during clean-up operati<strong>on</strong>s was estimated foreach lake. The proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> carcasses retrieved varied from 7-42% <str<strong>on</strong>g>and</str<strong>on</strong>g>, as predicted, highervalues were associated with smaller wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s that had greater clean-up effort per ha. Clean-up<strong>on</strong> large, heavily vegetated wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s was ineffective, resulting in removal <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>ly 7% <str<strong>on</strong>g>of</str<strong>on</strong>g>carcasses <str<strong>on</strong>g>and</str<strong>on</strong>g> leaving 20-40 carcasses/ha over extensive areas. Costs for clean-up varied fromC$11-144 / ha (estimated in 2000), with higher costs associated with clean-up <strong>on</strong> smaller lakes,where <strong>the</strong> highest proporti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> carcasses retrieved were under 50%. Extrapolating labourestimates for clean-up <strong>on</strong> small wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s to project requirements for <strong>the</strong> largest wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s, weestimated that 47 airboats would need to be deployed, for eight hours a day, every day <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>summer to achieve levels <str<strong>on</strong>g>of</str<strong>on</strong>g> carcass removal similar to those obtained <strong>on</strong> smaller wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s.Carcass clean-up <str<strong>on</strong>g>of</str<strong>on</strong>g> botulism outbreaks is costly <str<strong>on</strong>g>and</str<strong>on</strong>g> time c<strong>on</strong>suming, <str<strong>on</strong>g>and</str<strong>on</strong>g> recovers


17INTRODUCTIONIn Type C Clostridium botulinum (botulism), carcasses act as a source <str<strong>on</strong>g>of</str<strong>on</strong>g> toxin for susceptiblebirds. Decaying carcasses that c<strong>on</strong>tain type C botulism spores provide a highly suitable substratefor vegetative growth <str<strong>on</strong>g>of</str<strong>on</strong>g> this anaerobic bacterium <str<strong>on</strong>g>and</str<strong>on</strong>g> provide c<strong>on</strong>diti<strong>on</strong>s for producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> C.botulinum toxin. Larvae <str<strong>on</strong>g>of</str<strong>on</strong>g> necrophagous invertebrates, in particular blowfly (Calliphora spp.)maggots, feed <strong>on</strong> decaying, toxin-laden carcasses <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong>n pass <strong>the</strong> toxin to o<strong>the</strong>r birds that use<strong>the</strong> larvae for food. This process <str<strong>on</strong>g>of</str<strong>on</strong>g> propagati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> type C botulism intoxicati<strong>on</strong> can lead to die<str<strong>on</strong>g>of</str<strong>on</strong>g>fs<str<strong>on</strong>g>of</str<strong>on</strong>g> hundreds <str<strong>on</strong>g>of</str<strong>on</strong>g> thous<str<strong>on</strong>g>and</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> waterbirds <strong>on</strong> a single wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>, in a single seas<strong>on</strong> (Rocke <str<strong>on</strong>g>and</str<strong>on</strong>g>Bollinger 2007).Although removing carcasses to prevent propagati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> botulism outbreaks is a logical <str<strong>on</strong>g>and</str<strong>on</strong>g> l<strong>on</strong>gst<str<strong>on</strong>g>and</str<strong>on</strong>g>ingapproach to managing avian botulism, its effectiveness under field c<strong>on</strong>diti<strong>on</strong>s has notbeen evaluated. Reed <str<strong>on</strong>g>and</str<strong>on</strong>g> Rocke (1992) reported that <strong>the</strong> daily relative risk <str<strong>on</strong>g>of</str<strong>on</strong>g> sentinel mallards(Anas platyrhynchos) c<strong>on</strong>tracting botulism was 4.5 times lower when <strong>the</strong>ir 0.8 ha enclosuresc<strong>on</strong>tained zero carcasses compared to when <strong>the</strong>y c<strong>on</strong>tained 12.5 carcasses/ha. High carcassdensity also produced high mortality risk in free-ranging mallards (Evelsizer et al. 2010a).Unfortunately, a carcass density <str<strong>on</strong>g>of</str<strong>on</strong>g> zero cannot be obtained under field c<strong>on</strong>diti<strong>on</strong>s because <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>difficulty <str<strong>on</strong>g>of</str<strong>on</strong>g> finding carcasses in <strong>the</strong> heavily vegetated wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s where botulism occurs. Forinstance, Stutzenbakeret al. (1986) reportedthat <strong>on</strong>ly 6% <str<strong>on</strong>g>of</str<strong>on</strong>g> aviancarcasses were foundby eight searcherswalking through a 40.5ha marsh in sou<strong>the</strong>astTexas. In that study,n<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> markedcarcasses placed inlocati<strong>on</strong>s obscured byoverheard cover werefound, whereas 12% <str<strong>on</strong>g>of</str<strong>on</strong>g>carcasses placed <strong>on</strong> top<str<strong>on</strong>g>of</str<strong>on</strong>g> cover were detected. Cliplef <str<strong>on</strong>g>and</str<strong>on</strong>g> Wobeser (1993) reported that <strong>on</strong>ly 32% <str<strong>on</strong>g>of</str<strong>on</strong>g> marked carcasseswere recovered in routine carcass collecti<strong>on</strong> activities using an airboat <str<strong>on</strong>g>and</str<strong>on</strong>g> two-pers<strong>on</strong> crew <strong>on</strong>850 ha Eyebrow Lake in south central Saskatchewan. This estimate was an average obtainedfrom two visits, with searches lasting approximately six hours each.During <strong>the</strong> mid to late 1990s, large outbreaks <str<strong>on</strong>g>of</str<strong>on</strong>g> avian botulism occurred <strong>on</strong> wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s in PrairieCanada. Intensive clean-up (or ‘removal’) operati<strong>on</strong>s were undertaken to reduce losses <str<strong>on</strong>g>of</str<strong>on</strong>g>waterfowl <strong>on</strong> many <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s. Daily clean-up <str<strong>on</strong>g>of</str<strong>on</strong>g> individual wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s, over a period <str<strong>on</strong>g>of</str<strong>on</strong>g>weeks to m<strong>on</strong>ths, resulted in <strong>the</strong> removal <str<strong>on</strong>g>of</str<strong>on</strong>g> 10,000-120,000 avian carcasses per lake, per year.Because <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> clean-up effort, it was generally believed that over half <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>carcasses <strong>on</strong> each wetl<str<strong>on</strong>g>and</str<strong>on</strong>g> were being removed <str<strong>on</strong>g>and</str<strong>on</strong>g>, more importantly, that this had a beneficialeffect in reducing losses to avian botulism.


18Our objectives were to determine: 1) efficacy <str<strong>on</strong>g>of</str<strong>on</strong>g> carcass removal effort <str<strong>on</strong>g>and</str<strong>on</strong>g>, morespecifically, <strong>the</strong> proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> carcasses removed; 2) carcass density remaining after clean-up;3) relative costs <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> clean-up effort; <str<strong>on</strong>g>and</str<strong>on</strong>g> 4) clean-up effort required to substantially reducecarcass densities.METHODSEvaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Routine Clean-upThe efficacy <str<strong>on</strong>g>of</str<strong>on</strong>g> carcass clean-up was evaluated during routine clean-up operati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> botulismoutbreaks <strong>on</strong> seven lakes in Prairie Canada, from 1998-2001. One lake was evaluated in twoc<strong>on</strong>secutive years, for a total <str<strong>on</strong>g>of</str<strong>on</strong>g> eight different estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> efficiency <str<strong>on</strong>g>of</str<strong>on</strong>g> carcass removal.The lakes ranged from 250-7,850 ha in area (Table 1). These wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s had experienced repeatedoccurrences <str<strong>on</strong>g>of</str<strong>on</strong>g> avian botulism over <strong>the</strong> previous several decades, <str<strong>on</strong>g>and</str<strong>on</strong>g> outbreaks had typicallybeen managed by carcass removal. The lakes were typical <str<strong>on</strong>g>of</str<strong>on</strong>g> Prairie wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s, with varyingwater levels <str<strong>on</strong>g>and</str<strong>on</strong>g> varying amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> emergent vegetati<strong>on</strong> (Figure 1), including Scirpus spp.,Typha spp., Carex spp., grasses, <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> submergent plant, Potamoget<strong>on</strong> spp.Clean-up activitiesClean-up activities were typical <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> type <str<strong>on</strong>g>of</str<strong>on</strong>g> carcass clean-up operati<strong>on</strong>s that had beenundertaken <strong>on</strong> wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s in Western Canada. Airboats, with a driver <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>on</strong>e or two crewmembers, were used to systematically search <str<strong>on</strong>g>and</str<strong>on</strong>g> collect carcasses, usually beginning in mid tolate June. Some wetl<str<strong>on</strong>g>and</str<strong>on</strong>g> shorelines were also searched <strong>on</strong> foot or with all-terrain vehicles. Allobserved carcasses were collected, as were sick birds, which were humanely killed. Carcasseswhere buried in a pit aftertreating with lime (seeright). In 1998 <str<strong>on</strong>g>and</str<strong>on</strong>g> 1999,lakes were initiallysearched every three toseven days by a singleairboat. When present,carcasses were collectedduring this m<strong>on</strong>itoringperiod but an intensiveclean-up was not initiateduntil numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> carcassesappeared to be increasing,usually in mid to late July.During intensive clean-up,several airboats <str<strong>on</strong>g>and</str<strong>on</strong>g> crews


19visited <strong>the</strong> site daily. This strategy had been used comm<strong>on</strong>ly in past botulism managementprograms. In 2000 <str<strong>on</strong>g>and</str<strong>on</strong>g> 2001, daily intensive clean-up programs were initiated earlier in July,before carcass densities had increased. All areas <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> lakes were searched, but areas withhigher carcass density were searched more intensively. These areas were identified by clean-upcrews, <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> research crews that performed transect surveys <str<strong>on</strong>g>and</str<strong>on</strong>g> marked carcasses alsoinformed clean-up coordinators <str<strong>on</strong>g>of</str<strong>on</strong>g> areas where carcass density was high. Lakes were typicallydivided into sectors, to assist in clean-up efforts (Figure 2). Carcasses were checked for U.S.Fish <str<strong>on</strong>g>and</str<strong>on</strong>g> Wildlife leg b<str<strong>on</strong>g>and</str<strong>on</strong>g>s <str<strong>on</strong>g>and</str<strong>on</strong>g> poultry b<str<strong>on</strong>g>and</str<strong>on</strong>g>s that had been placed <strong>on</strong> <strong>the</strong>m to m<strong>on</strong>itorclean-up efficiency.Surveys <str<strong>on</strong>g>and</str<strong>on</strong>g> marked carcassesWhile clean-up procedures were underway, an airboat with a two-pers<strong>on</strong> crew performedsurveys to estimate carcass densities remaining <strong>on</strong> <strong>the</strong> wetl<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> to map vegetati<strong>on</strong>. Surveystook place every two weeks in 1998 <str<strong>on</strong>g>and</str<strong>on</strong>g> were run approximately every week in <strong>the</strong> remainingyears. Transects were run in a north-south or east-west directi<strong>on</strong>, depending <strong>on</strong> <strong>the</strong> orientati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><strong>the</strong> lake (Figure 3). The first transect positi<strong>on</strong> was r<str<strong>on</strong>g>and</str<strong>on</strong>g>omly determined <str<strong>on</strong>g>and</str<strong>on</strong>g> all o<strong>the</strong>r transectlines were placed at 50-500 m intervals depending <strong>on</strong> <strong>the</strong> size <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> lake <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> expectedcarcass density. Transects were run from shoreline to shoreline, as far as <strong>the</strong> airboat could travel,at c<strong>on</strong>sistent intervals from <strong>the</strong> positi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> first transect. H<str<strong>on</strong>g>and</str<strong>on</strong>g>-held Global Positi<strong>on</strong>ingSystem (GPS) units (Garmin Inc.) were used for guidance. One observer (<str<strong>on</strong>g>and</str<strong>on</strong>g> occasi<strong>on</strong>allytwo) stood at <strong>the</strong> fr<strong>on</strong>t <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> boat, counting all carcasses <str<strong>on</strong>g>and</str<strong>on</strong>g> estimating <strong>the</strong> perpendiculardistance from <strong>the</strong> carcass to <strong>the</strong> centre <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> transect (i.e., <strong>the</strong> centre <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> boat). In 1998, <strong>the</strong>seobservati<strong>on</strong>s were truncated at 2.5 m; however <strong>the</strong>re was no truncati<strong>on</strong> in subsequent years.UTM coordinates <str<strong>on</strong>g>of</str<strong>on</strong>g> each carcass were recorded.For all carcasses within 2.5 m <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> transect line, species, age, sex <str<strong>on</strong>g>and</str<strong>on</strong>g> state <str<strong>on</strong>g>of</str<strong>on</strong>g> decompositi<strong>on</strong>(SOD) was recorded. At Pakowki Lake in 1998, carcass searches were also performed <strong>on</strong>transects placed r<str<strong>on</strong>g>and</str<strong>on</strong>g>omly around <strong>the</strong> perimeter <str<strong>on</strong>g>of</str<strong>on</strong>g><strong>the</strong> lake (shoreline transect), to account for <strong>the</strong>accumulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> carcasses in <strong>the</strong>se locati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> tomimic clean-up strategies (Figure 3). SOD wasevaluated <str<strong>on</strong>g>and</str<strong>on</strong>g> recorded according to six categories:SOD 1, sick bird; SOD 2, freshly dead with noevidence <str<strong>on</strong>g>of</str<strong>on</strong>g> decompositi<strong>on</strong> (see left); SOD 3,autolyzed carcass without evidence <str<strong>on</strong>g>of</str<strong>on</strong>g> maggots; SOD4, early maggot development with little or nopenetrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> carcass; SOD 5, carcasscompletely inundated with maggots; <str<strong>on</strong>g>and</str<strong>on</strong>g> SOD 6,carcass c<strong>on</strong>sisted <str<strong>on</strong>g>of</str<strong>on</strong>g> skin <str<strong>on</strong>g>and</str<strong>on</strong>g> skelet<strong>on</strong> with few, ifany, maggots. A numbered aluminum poultry legb<str<strong>on</strong>g>and</str<strong>on</strong>g> (Nati<strong>on</strong>al B<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Tag Company, Newport, Kansas) was placed <strong>on</strong> <strong>the</strong> tarsometatarsalb<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> majority <str<strong>on</strong>g>of</str<strong>on</strong>g> relatively fresh carcasses (SOD categories 1-3) al<strong>on</strong>g <strong>the</strong> 5 m shorelinetransect. In some cases, carcasses found <str<strong>on</strong>g>of</str<strong>on</strong>g>f transect were also marked to increase <strong>the</strong> number <str<strong>on</strong>g>of</str<strong>on</strong>g>


20marked carcasses potentially available to be retrieved by search crews. All carcasses werereturned to <strong>the</strong> marsh, to approximately <strong>the</strong> same locati<strong>on</strong> where <strong>the</strong>y were found.The UTM coordinates <str<strong>on</strong>g>of</str<strong>on</strong>g> transiti<strong>on</strong> z<strong>on</strong>es between <strong>the</strong> various vegetati<strong>on</strong> density z<strong>on</strong>es wererecorded al<strong>on</strong>g <strong>the</strong> length <str<strong>on</strong>g>of</str<strong>on</strong>g> each transect. Vegetati<strong>on</strong> z<strong>on</strong>es were categorized as: open water;light vegetati<strong>on</strong> (>10 m visibility); medium vegetati<strong>on</strong> (2.5-10 m visibility); or heavy vegetati<strong>on</strong>(


21searched <strong>the</strong> area thoroughly, collecting all carcasses encountered <str<strong>on</strong>g>and</str<strong>on</strong>g> recording all markedcarcasses, until <strong>the</strong>y felt <strong>the</strong> area was completely covered.The trial was repeated <strong>on</strong> 28 August using <strong>the</strong> same study area. Procedures were identical tothose used 10 days previously, except different coloured leg b<str<strong>on</strong>g>and</str<strong>on</strong>g>s were used to mark <strong>the</strong>carcasses. Also, an additi<strong>on</strong>al six carcasses were collected <str<strong>on</strong>g>and</str<strong>on</strong>g> b<str<strong>on</strong>g>and</str<strong>on</strong>g>ed from outside <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> studyarea, to bring <strong>the</strong> total number <str<strong>on</strong>g>of</str<strong>on</strong>g> marked birds distributed within <strong>the</strong> study area to 30.RESULTSEvaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> routine clean-upThe surface area covered by open water, light, medium, <str<strong>on</strong>g>and</str<strong>on</strong>g> heavy vegetati<strong>on</strong> <strong>on</strong> each <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>research lakes is shown in Figure 1. The area <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> lakes <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> area <str<strong>on</strong>g>of</str<strong>on</strong>g> vegetati<strong>on</strong> arepresented in Table 2. The proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> marked carcasses found by clean-up crews duringbotulism outbreaks <strong>on</strong> <strong>the</strong> eight research lakes ranged from 7-45% (Table 2). Only 7% <str<strong>on</strong>g>of</str<strong>on</strong>g>marked carcasses were found <strong>on</strong> Whitewater Lake (7,850 ha), whereas 28-45% <str<strong>on</strong>g>of</str<strong>on</strong>g> markedcarcasses were found <strong>on</strong> lakes that were 250-550 ha in area. Kimiwan <str<strong>on</strong>g>and</str<strong>on</strong>g> Pakowki lakes, whichwere also large lakes, had pickup rates <str<strong>on</strong>g>of</str<strong>on</strong>g> 32 <str<strong>on</strong>g>and</str<strong>on</strong>g> 28%, respectively. However, <strong>the</strong> proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><strong>the</strong>se lakes that was heavily vegetated, which is where most <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> carcasses were found <str<strong>on</strong>g>and</str<strong>on</strong>g>where most <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> clean-up effort was c<strong>on</strong>centrated, was much smaller than <strong>the</strong> total area <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>lake (Figure 3). The average cost per ha <strong>on</strong> <strong>the</strong> four small lakes was ~C$123 (Table 1). OnWhitewater Lake, <strong>the</strong> cost per ha was ~C$11 in 1998 <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> clean-up rate remained at 7% in1999, despite an increased clean-up effort <str<strong>on</strong>g>and</str<strong>on</strong>g> a 40% increase in costs.The fates <str<strong>on</strong>g>of</str<strong>on</strong>g> radio-marked carcasses <strong>on</strong> three lakes with clean-up <str<strong>on</strong>g>and</str<strong>on</strong>g> four lakes without clean-upare presented in Table 3. Scavengers removed 7% <str<strong>on</strong>g>and</str<strong>on</strong>g> 5% <str<strong>on</strong>g>of</str<strong>on</strong>g> marked carcasses <strong>on</strong> Paysen Lakein 2000 <str<strong>on</strong>g>and</str<strong>on</strong>g> 2001, respectively. Although scavengers removed <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> two radio-markedcarcasses <strong>on</strong> Chaplin Lake, scavenging rate could not be determined at that site because <str<strong>on</strong>g>of</str<strong>on</strong>g> lowsample size. No radio-marked carcasses were removed by scavengers <strong>on</strong> <strong>the</strong> remaining fourlakes. Overall,


22Intensive search studyOn 18 August, 132 dead birds were counted <strong>on</strong> transects within <strong>the</strong> 25 ha study area <strong>on</strong> OldWives Lake, resulting in an estimate <str<strong>on</strong>g>of</str<strong>on</strong>g> 3,300 carcasses (132 carcasses/ha) for <strong>the</strong> entire studyarea. Of <strong>the</strong> 59 marked carcasses placed arbitrarily within <strong>the</strong> study plot, 36 (61%) werecollected during <strong>the</strong> subsequent clean-up <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> entire area. A total <str<strong>on</strong>g>of</str<strong>on</strong>g> 2,477 carcasses wascollected by <strong>the</strong> clean-up crew over 13 hours, involving 5.5 hrs <strong>on</strong> 18 August <str<strong>on</strong>g>and</str<strong>on</strong>g> 7.5 hrs <strong>on</strong> 19August. Based <strong>on</strong> a carcass pickup rate <str<strong>on</strong>g>of</str<strong>on</strong>g> 61% <str<strong>on</strong>g>and</str<strong>on</strong>g> 2,477 carcasses retrieved, <strong>the</strong> total number<str<strong>on</strong>g>of</str<strong>on</strong>g> carcasses <strong>on</strong> this study area was estimated at 4,060 (700 higher than <strong>the</strong> estimate derived from<strong>the</strong> transects). If we use <strong>the</strong> lower estimate <str<strong>on</strong>g>of</str<strong>on</strong>g> 3,300 carcasses <str<strong>on</strong>g>and</str<strong>on</strong>g> assume that 39% <str<strong>on</strong>g>of</str<strong>on</strong>g> carcasseswere missed, <strong>the</strong>n an estimated 1,287 carcasses (51 carcasses/ha) remained <strong>on</strong> <strong>the</strong> study area.On 28 August, 600 new carcasses were estimated to be present <strong>on</strong> <strong>the</strong> study area, based <strong>on</strong>transect counts. Using an airboat, a three-pers<strong>on</strong> crew collected a total <str<strong>on</strong>g>of</str<strong>on</strong>g> 604 birds overapproximately six hours <str<strong>on</strong>g>and</str<strong>on</strong>g> found 10 <str<strong>on</strong>g>of</str<strong>on</strong>g> 30 marked carcasses (33.3%). They also found twocarcasses that had been marked 10 days previously. Using a correcti<strong>on</strong> factor <str<strong>on</strong>g>of</str<strong>on</strong>g> three, <strong>the</strong>number <str<strong>on</strong>g>of</str<strong>on</strong>g> carcasses in <strong>the</strong> study plot was estimated to be 1,812, or 72.5 carcasses/ha. This totalshould reflect <strong>the</strong> number <str<strong>on</strong>g>of</str<strong>on</strong>g> carcasses left after <strong>the</strong> first clean-up nine days earlier(approximately 1,300 carcasses) <str<strong>on</strong>g>and</str<strong>on</strong>g> an additi<strong>on</strong>al 600 new carcasses, based <strong>on</strong> <strong>the</strong> estimatederived from transects. This value <str<strong>on</strong>g>of</str<strong>on</strong>g> 1,900 is very close to <strong>the</strong> estimate <str<strong>on</strong>g>of</str<strong>on</strong>g> approximately 1,800,which was derived from <strong>the</strong> number <str<strong>on</strong>g>of</str<strong>on</strong>g> carcasses collected during <strong>the</strong> clean-up multiplied by <strong>the</strong>correcti<strong>on</strong> factor <str<strong>on</strong>g>of</str<strong>on</strong>g> three. Many carcasses left <strong>on</strong> <strong>the</strong> study area over <strong>the</strong> previous nine dayswould be lost due to complete decompositi<strong>on</strong>. Based <strong>on</strong> <strong>the</strong> observati<strong>on</strong> that <strong>on</strong>ly <strong>on</strong>e in threecarcasses was found in this sec<strong>on</strong>d trial, approximately 1,200 carcasses (2 x 604) remained <strong>on</strong><strong>the</strong> 25 ha study plot. This equates to a density <str<strong>on</strong>g>of</str<strong>on</strong>g> 48 carcasses/ha, which is very similar to thatobserved in <strong>the</strong> first trial (51 carcasses/ha), when initial carcass densities were much higher, aswas <strong>the</strong> proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> carcasses found (61%).CONCLUSIONSAlthough carcass clean-up operati<strong>on</strong>s during this study were typical <str<strong>on</strong>g>of</str<strong>on</strong>g> past resp<strong>on</strong>ses to avianbotulism outbreaks, <strong>the</strong> level <str<strong>on</strong>g>of</str<strong>on</strong>g> effort applied was much greater than in <strong>the</strong> past in most cases.Yet, less than half <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> birds dying <str<strong>on</strong>g>of</str<strong>on</strong>g> botulism were actually retrieved. This was likely due topoor visibility <str<strong>on</strong>g>of</str<strong>on</strong>g> carcasses within st<str<strong>on</strong>g>and</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> emergent vegetati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> high cost <str<strong>on</strong>g>of</str<strong>on</strong>g> clean-up.Wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s with approximately 200-600 ha <str<strong>on</strong>g>of</str<strong>on</strong>g> emergent vegetati<strong>on</strong> had carcass pickup efficiencies<str<strong>on</strong>g>of</str<strong>on</strong>g> 25-45%. The highest recovery (45%) <str<strong>on</strong>g>of</str<strong>on</strong>g> marked carcasses occurred <strong>on</strong> Paysen Lake, a 445 hawetl<str<strong>on</strong>g>and</str<strong>on</strong>g> with very intensive clean-up efforts <str<strong>on</strong>g>of</str<strong>on</strong>g> 1.04 boat hrs/ha over <strong>the</strong> durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>outbreak, at a cost <str<strong>on</strong>g>of</str<strong>on</strong>g> ~C$117.00/ha. In spite <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se efforts, an average <str<strong>on</strong>g>of</str<strong>on</strong>g> 1.3 carcasses/haremained <strong>on</strong> <strong>the</strong> wetl<str<strong>on</strong>g>and</str<strong>on</strong>g> over <strong>the</strong> summer; focally, <strong>the</strong>se densities would have been much higher.These results are comparable to those <str<strong>on</strong>g>of</str<strong>on</strong>g> Cliplef <str<strong>on</strong>g>and</str<strong>on</strong>g> Wobeser (1993), who reported that 32% <str<strong>on</strong>g>of</str<strong>on</strong>g>marked carcasses were found during routine botulism clean-up operati<strong>on</strong>s using an airboat. In<strong>the</strong>ir study, marked carcasses were placed <strong>on</strong> <strong>the</strong> wetl<str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>on</strong>e day prior to clean-up <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong>experiment was repeated twice without <strong>the</strong> opportunity for repeated searches <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> area over


23time. Our experiment differed in that we marked carcasses at regular intervals throughout <strong>the</strong>summer <str<strong>on</strong>g>and</str<strong>on</strong>g> m<strong>on</strong>itored <strong>the</strong> proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> marked carcasses found over <strong>the</strong> course <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> entireclean-up. In spite <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> percepti<strong>on</strong> that <strong>the</strong> clean-up efforts were more intense due to c<strong>on</strong>tinuoussearches <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> lake, <strong>the</strong> proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> carcasses found was similar to previous reports.Intensive clean-up <str<strong>on</strong>g>of</str<strong>on</strong>g> well defined areas has <strong>the</strong> potential to improve pickup rates. Although weachieved a pickup rate <str<strong>on</strong>g>of</str<strong>on</strong>g> 61% under <strong>the</strong>se c<strong>on</strong>diti<strong>on</strong>s, 51 carcasses/ha still remained after cleanup,likely because <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> high initial density <str<strong>on</strong>g>of</str<strong>on</strong>g> carcasses <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> heavy vegetati<strong>on</strong> in <strong>the</strong> area.Ano<strong>the</strong>r thorough clean-up <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> area found <strong>on</strong>ly 33% <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> marked carcasses, with 48carcasses/ha remaining. On both occasi<strong>on</strong>s, <strong>the</strong> clean-up crew thought <strong>the</strong>y had thoroughlysearched <strong>the</strong> area even though <strong>the</strong> sec<strong>on</strong>d search took half <strong>the</strong> time. The fact that similar carcassdensities remained after each search suggests that searcher fatigue may play a role in achievingbetter detecti<strong>on</strong> rates.Scavenging appears to play an insignificant role in carcass removal during large botulismoutbreaks that occur in heavily vegetated wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s. In three <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> n<strong>on</strong>-clean-up wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s, whereradio-marked carcasses were placed, n<strong>on</strong>e were removed by scavengers <str<strong>on</strong>g>and</str<strong>on</strong>g> all developedmaggots <str<strong>on</strong>g>and</str<strong>on</strong>g> decomposed (Table 3). In o<strong>the</strong>r lakes, where carcass density was lower as a result<str<strong>on</strong>g>of</str<strong>on</strong>g> clean-up efforts <str<strong>on</strong>g>and</str<strong>on</strong>g> low levels <str<strong>on</strong>g>of</str<strong>on</strong>g> botulism mortality, scavenging rates varied from 0-13%.Scavenging appeared to be promoted by low carcass densities <str<strong>on</strong>g>and</str<strong>on</strong>g> higher carcass visibility,which resulted from light vegetati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> expanses <str<strong>on</strong>g>of</str<strong>on</strong>g> open or thinly vegetated shorelines.Coyotes, raptors, crows <str<strong>on</strong>g>and</str<strong>on</strong>g> o<strong>the</strong>r scavengers were frequently observed when shorelines werebeing searched for carcasses.Rates <str<strong>on</strong>g>of</str<strong>on</strong>g> maggot development <strong>on</strong> radio-marked carcasses revealed that carcasses took an average<str<strong>on</strong>g>of</str<strong>on</strong>g> six days to develop to <strong>the</strong> stage <str<strong>on</strong>g>of</str<strong>on</strong>g> most intense fly larvae activity. Even a few carcassesoccurring <strong>on</strong> a botulism-pr<strong>on</strong>e wetl<str<strong>on</strong>g>and</str<strong>on</strong>g> have <strong>the</strong> potential to precipitate an outbreak, becausesediment from wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s with a history <str<strong>on</strong>g>of</str<strong>on</strong>g> avian botulism are likely to c<strong>on</strong>tain spores <str<strong>on</strong>g>of</str<strong>on</strong>g> type C C.botulinum (Wobeser et al. 1987) <str<strong>on</strong>g>and</str<strong>on</strong>g> 60-100% <str<strong>on</strong>g>of</str<strong>on</strong>g> carcasses <strong>on</strong> wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s during our studyproduced botulism toxin (Part VI; T. Bollinger, unpublished data), which is similar to previouslyreported rates <str<strong>on</strong>g>of</str<strong>on</strong>g> toxin development (Haagsma et al. 1972; Duncan <str<strong>on</strong>g>and</str<strong>on</strong>g> Jensen 1976). To preventoutbreaks <strong>on</strong> <strong>the</strong>se wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s, regular searches would need to occur at least every four to six daysto prevent carcasses from developing maggots. Waterbird mortality comm<strong>on</strong>ly occurs <strong>on</strong>wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s due to such causes as inclement wea<strong>the</strong>r <str<strong>on</strong>g>and</str<strong>on</strong>g> hailstorms (Stout <str<strong>on</strong>g>and</str<strong>on</strong>g> Cornwell 1976), aswell as disease <str<strong>on</strong>g>and</str<strong>on</strong>g> trauma affecting juveniles in nesting col<strong>on</strong>ies (Part V; Soos <str<strong>on</strong>g>and</str<strong>on</strong>g> Wobeser2006). Intensive searches <str<strong>on</strong>g>and</str<strong>on</strong>g> clean-up <str<strong>on</strong>g>of</str<strong>on</strong>g> entire wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s would need to occur approximately 10times over <strong>the</strong> course <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> summer, to ensure that <strong>the</strong>se periodic or low-level occurrencemortality events do not escalate into large botulism outbreaks.Carcass clean-up <strong>on</strong> large, vegetated wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s was largely unsuccessful. Only 7% <str<strong>on</strong>g>of</str<strong>on</strong>g> carcasseswere removed from Whitewater Lake, an 8,200 ha wetl<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> which 4,500 ha are heavilyvegetated. Effective clean-up was not possible, due to <strong>the</strong> large area <str<strong>on</strong>g>of</str<strong>on</strong>g> vegetated wetl<str<strong>on</strong>g>and</str<strong>on</strong>g> to besearched <strong>on</strong> a regular basis <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> high cost <str<strong>on</strong>g>of</str<strong>on</strong>g> doing so. Based <strong>on</strong> <strong>the</strong> results <str<strong>on</strong>g>of</str<strong>on</strong>g> our intensiveclean-up study, approximately ½ hr/ha would be required to find 50-60% <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> carcasses which,


24if extrapolated to Whitewater Lake, corresp<strong>on</strong>ds to 2,250 hrs <str<strong>on</strong>g>of</str<strong>on</strong>g> airboat time every six days, or47 airboats searching for 8 hrs/ day over <strong>the</strong> course <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> summer.In summary, carcass clean-up <str<strong>on</strong>g>of</str<strong>on</strong>g> botulism outbreaks is costly <str<strong>on</strong>g>and</str<strong>on</strong>g> time c<strong>on</strong>suming. These effortsremove


25LITERATURE CITEDCliplef DJ, Wobeser G. 1993. Observati<strong>on</strong>s <strong>on</strong> waterfowl carcasses during a botulism epizootic.J Wildl Dis. 29:8-14.Duncan RM, Jensen WI. 1976. A relati<strong>on</strong>ship between avian carcasses <str<strong>on</strong>g>and</str<strong>on</strong>g> living invertebrates in<strong>the</strong> epizootiology <str<strong>on</strong>g>of</str<strong>on</strong>g> avian botulism. J Wildl Dis. 12:116-126.Evelsizer DD. 2002. <str<strong>on</strong>g>Management</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> avian botulism <str<strong>on</strong>g>and</str<strong>on</strong>g> survival <str<strong>on</strong>g>of</str<strong>on</strong>g> molting mallards. MSc<strong>the</strong>sis, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Saskatchewan. 59 p.Evelsizer DD, Clark RG, Bollinger TK. 2010a. Relati<strong>on</strong>ships between local carcass density <str<strong>on</strong>g>and</str<strong>on</strong>g>risk <str<strong>on</strong>g>of</str<strong>on</strong>g> mortality in molting mallards during avian botulism outbreaks. J Wildl Dis. 46:507-513.Evelsizer DD, Bollinger TK, Dufour KW, Clark RG. 2010b. Survival <str<strong>on</strong>g>of</str<strong>on</strong>g> radio-marked mallardsin relati<strong>on</strong> to management <str<strong>on</strong>g>of</str<strong>on</strong>g> avian botulism. J Wildl Dis., in press.Haagsma J, Over HJ, Smit T, Hoekstra J. 1972. <str<strong>on</strong>g>Botulism</str<strong>on</strong>g> in waterfowl in <strong>the</strong> Ne<strong>the</strong>rl<str<strong>on</strong>g>and</str<strong>on</strong>g>s in1970. Neth J Vet Sci. 5:11-33.Reed TM, Rocke TE. 1992. The role <str<strong>on</strong>g>of</str<strong>on</strong>g> avian carcasses in botulism epizootics. Wildl Soc Bull.20:175-182.Rocke TE, Bollinger TK. 2007. <str<strong>on</strong>g>Avian</str<strong>on</strong>g> botulism. In: Infectious Diseases <str<strong>on</strong>g>of</str<strong>on</strong>g> Wild Birds (ThomasNJ, Hunter DB, Atkins<strong>on</strong> CT, editors). Iowa: Blackwell Publishing. p 377-416.Soos C, Wobeser G. 2006. Identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> primary substrate in <strong>the</strong> initiati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> avian botulismoutbreaks. J Wildl Manage. 70:43-53.Stutzenbaker CD, Brown K, Lobpries D. 1986. Special report: An assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> accuracy <str<strong>on</strong>g>of</str<strong>on</strong>g>documenting waterfowl die-<str<strong>on</strong>g>of</str<strong>on</strong>g>fs in a Texas coastal marsh. In: Lead pois<strong>on</strong>ing in wildwaterfowl (Feierabend JS, Russell AB, editors). Kansas: Nati<strong>on</strong>al Wildlife Federati<strong>on</strong>.p 88-95.Thomas L, Laake JL, Strindberg S, Marques FFC, Buckl<str<strong>on</strong>g>and</str<strong>on</strong>g> ST, Borchers DL, Anders<strong>on</strong> DR,Burnham KP, Hedley SL, Pollard JH, Bishop JRB, Marques TA. 2006. Distance 5.0.Release “x”1. Research Unit for Wildlife Populati<strong>on</strong> Assessment, University <str<strong>on</strong>g>of</str<strong>on</strong>g> St.Andrews, UK. http://www.ruwpa.st-<str<strong>on</strong>g>and</str<strong>on</strong>g>.ac.uk/distance/.Wobeser G, Marsden GS, MacFarlane RJ. 1987. Occurrence <str<strong>on</strong>g>of</str<strong>on</strong>g> toxigenic Clostridium botulinumType C in <strong>the</strong> soil <str<strong>on</strong>g>of</str<strong>on</strong>g> wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s in Saskatchewan. J Wildl Dis. 23:67-76.


26Table 1. Characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> lakes used to evaluate effectiveness <str<strong>on</strong>g>of</str<strong>on</strong>g> botulism clean-up operati<strong>on</strong>s<strong>on</strong> eight lakes in Western Canada, 1998-2001. Locati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> coordinates for lakes are providedin Figure 1 <str<strong>on</strong>g>and</str<strong>on</strong>g> Table 1 <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> General Introducti<strong>on</strong>.YearLakeProvince aArea(ha)CarcassRemovalDates bBoat Hrs c(Boathrs/ha)CarcassesRemoved(Ducks)CarcassRemovalCost (C$) dCost/Carcass(/Duck)(C$)Cost/ ha(C$) e1998PakowkiAB4,81514 May-14 SeptNA4,943(4,443)81,714.0016.53(18.40)16.97WhitewaterMB8,2038 June-9 Sept690(0.09)19,106(11,631)89,793.004.70(7.72)10.951999KimiwanAB3,98628 April-27 SeptNA1,978(1,630)85,000.0042.97(52.15)21.32WhitewaterMB8,20312 May-16 Sept1170(0.15)15,512(9,950)125,442.178.09(12.61)15.292000PaysenSK4456 June-28 Aug461(1.04)2,928(1,428)52,170.3717.82(36.53)117.24FrankAB42031 July-25 Aug228(0.54)2,351(1,495)60,000.0025.52(40.13)142.862001KettlehutSK2538 June-23 Aug192(0.76)87(12)36,356.46417.89(3,029.71)143.70ChaplinSK55219 June-23 Aug215(0.38)242(38)48,272.88199.47(1,270.34)87.45aAB = Alberta; MB = Manitoba; SK = Saskatchewan.b Removal dates include <strong>the</strong> period from initial surveillance to <strong>the</strong> last day <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> removal operati<strong>on</strong>.cNumber <str<strong>on</strong>g>of</str<strong>on</strong>g> hrs removal crews (usually <strong>on</strong>e driver <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>on</strong>e “picker”) spent <strong>on</strong> <strong>the</strong> water, searching for carcasses.This does not include numerous hrs spent <str<strong>on</strong>g>of</str<strong>on</strong>g>f <strong>the</strong> water, with duties such as equipment maintenance <str<strong>on</strong>g>and</str<strong>on</strong>g> repairs.dExcludes capital cost <str<strong>on</strong>g>of</str<strong>on</strong>g> equipment, but does include total costs associated with surveillance <str<strong>on</strong>g>and</str<strong>on</strong>g> removaloperati<strong>on</strong>s that involved equipment maintenance, repairs, rental, staff wages, housing, staff expenses, <str<strong>on</strong>g>and</str<strong>on</strong>g> vehicleexpenses. Dollar amounts are taken from removal coordinators’ reports. The report for Kimiwan Lake wasprepared by Susan Tiege, DUC <str<strong>on</strong>g>and</str<strong>on</strong>g> Margo Pybus, Alberta Fish <str<strong>on</strong>g>and</str<strong>on</strong>g> Wildlife. The 1998 Whitewater report wasprepared by Murray Breemersch, while <strong>the</strong> 1999 Whitewater report was prepared by Darcy Pisiak, ManitobaDepartment <str<strong>on</strong>g>of</str<strong>on</strong>g> Natural Resources. Reports <str<strong>on</strong>g>of</str<strong>on</strong>g> removals in SK were prepared by Steve Stire, DUC <str<strong>on</strong>g>and</str<strong>on</strong>g> a report <strong>on</strong>Frank Lake came from Dave Kay, DUC.eCost <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> removal operati<strong>on</strong> per wetl<str<strong>on</strong>g>and</str<strong>on</strong>g> ha.


27Table 2. Total <str<strong>on</strong>g>and</str<strong>on</strong>g> vegetated areas <str<strong>on</strong>g>of</str<strong>on</strong>g> lakes used for assessments <str<strong>on</strong>g>of</str<strong>on</strong>g> carcass clean-up efficiencies.Also shown are numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> marked carcasses deployed at each lake, al<strong>on</strong>g with <strong>the</strong> percentage <str<strong>on</strong>g>of</str<strong>on</strong>g>marked carcasses found with 95% c<strong>on</strong>fidence intervals (CI).Year Lake, Province a Total area(ha)Area <str<strong>on</strong>g>of</str<strong>on</strong>g>vegetati<strong>on</strong>(ha)Number <str<strong>on</strong>g>of</str<strong>on</strong>g>carcassesmarkedPercentcarcassesfound (%)95% CI (%)1998 Pakowki, AB 4,815 318 131 28 20-35Whitewater, MB 8,203 4,429 440 7 4-101999 Kimiwan, AB 3,986 569 41 32 b 18-46Whitewater, MB 8,203 4,429 360 7 4-92000 Frank, AB 420 240 242 29 23-35Paysen, SK 445 417 236 42 (45 b ) 36-492001 Kettlehut, SK 253 253 7 0 Not applicableChaplin, SK 552 198 16 25 c 4-46a AB = Alberta; MB = Manitoba; SK = Saskatchewan.b Percent found, adjusting for a 6.7% scavenging rate based <strong>on</strong> Table 3.c These estimates are likely low because scavengers removed a significant number <str<strong>on</strong>g>of</str<strong>on</strong>g> marked carcasses, making<strong>the</strong>m unavailable for clean-up.


28Table 3. Number <str<strong>on</strong>g>of</str<strong>on</strong>g> radio-marked carcasses that developed maggots <strong>on</strong> lakes with botulismoutbreak clean-up (managed) operati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> those without (c<strong>on</strong>trol), in Alberta (AB) <str<strong>on</strong>g>and</str<strong>on</strong>g>Saskatchewan (SK), 2000-2001.Year Lake, Province a TreatmentNumber <str<strong>on</strong>g>of</str<strong>on</strong>g>markedcarcassesNumber (%)developingmaggotsComments re: carcasses2000 Crane, SK C<strong>on</strong>trol 29 29 (100)Kettlehut, SK C<strong>on</strong>trol 36 36 (100)Frank, AB Managed 30 23 (77) 7 collectedPaysen, SK Managed 30 13 (43) 2 scavenged; 15 collected2001 Chaplin, SK Managed 2 1 (50) 1 scavengedFrank, AB C<strong>on</strong>trol 11 11 (100)Paysen, SK C<strong>on</strong>trol 21 20 (95) 1 scavenged


29Table 4. Number <str<strong>on</strong>g>of</str<strong>on</strong>g> days required for radio-marked carcasses to reach specific stages <str<strong>on</strong>g>of</str<strong>on</strong>g>decompositi<strong>on</strong> (SOD) or to disappear (submerged). See Methods for categories <str<strong>on</strong>g>of</str<strong>on</strong>g> SOD.Days to reachSOD 5 SOD 6 SubmergedMean 5.8 9.9 11.9Sample size 117 102 76St<str<strong>on</strong>g>and</str<strong>on</strong>g>ard deviati<strong>on</strong> 2 1.9 4.1Minimum 2 6 7Maximum 13 17 28


30Table 5. Estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> birds killed by avian botulism <str<strong>on</strong>g>and</str<strong>on</strong>g> mean carcass densities (carcasses/ha)remaining during searches, based <strong>on</strong> carcass pickup rates <str<strong>on</strong>g>and</str<strong>on</strong>g> transect data.YearLakeProvince aNumbercarcassescollectedPercentcarcassesfoundScavengingRate bCarcassesremaining<strong>on</strong> lake c *Me<str<strong>on</strong>g>and</str<strong>on</strong>g>ensity*based <strong>on</strong>markedcarcassesMe<str<strong>on</strong>g>and</str<strong>on</strong>g>ensity*based <strong>on</strong>transects(SD) d1998PakowkiAB4,943 28Unknown,likely zero12,7102.31(na)WhitewaterMB19,106 7Unknown,likely 0%253,8402.31(na)1999WhitewaterMB15,512 7Unknown,likely 0%206,088 3.342.15(2.39)KimiwanAB1,978 32Unknown,likely high4,200 na2000PaysenSK2,928 42 13% (2/15) 4,040 1.31.23(1.12)FrankAB2,351 29 0% (0/30) 5,756 6.224.03(1.69)2001KettlehutSK870scavengingUnknown,likely high~0 naChaplinSK242 25 50% (1/2) 726 na* Over summer.abcAB = Alberta; MB = Manitoba; SK = Saskatchewan.The number <str<strong>on</strong>g>of</str<strong>on</strong>g> carcasses scavenged relative to number available is shown in paren<strong>the</strong>ses.Based <strong>on</strong> percent found.dna = informati<strong>on</strong> not available.


31NFigure 1. Maps <str<strong>on</strong>g>of</str<strong>on</strong>g> study lakes, indicating area covered by different densities <str<strong>on</strong>g>of</str<strong>on</strong>g> vegetati<strong>on</strong>. SeeTable 1 for fur<strong>the</strong>r details regarding lakes.


Figure 2. Map <str<strong>on</strong>g>of</str<strong>on</strong>g> Whitewater Lake, Manitoba showing its divisi<strong>on</strong> into sectors to facilitateclean-up operati<strong>on</strong>s. The numbers within each sector, from top to bottom, indicate: <strong>the</strong> number<str<strong>on</strong>g>of</str<strong>on</strong>g> times <strong>the</strong> sector was visited by clean-up crews during <strong>the</strong> summer; <strong>the</strong> number <str<strong>on</strong>g>of</str<strong>on</strong>g> markedcarcasses found/number placed; <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> marked carcasses found.32


33ANWEWater TransectsShoreline TransectsSBNWSE#######################################################Water TransectsFigure 3. Map <str<strong>on</strong>g>of</str<strong>on</strong>g> Pakowki Lake, Alberta (A) <str<strong>on</strong>g>and</str<strong>on</strong>g> Whitewater Lake, Manitoba (B) showingtypical distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> water transects (blue lines) <str<strong>on</strong>g>and</str<strong>on</strong>g> l<str<strong>on</strong>g>and</str<strong>on</strong>g> transects (red lines). The outline <str<strong>on</strong>g>of</str<strong>on</strong>g>Whitewater Lake was derived from a digitized topographic map. Although water levels werehigh, transects did not extend to shorelines depicted <strong>on</strong> <strong>the</strong> map. In Pakowki Lake, vegetati<strong>on</strong>was restricted to <strong>the</strong> west arm (see A) <str<strong>on</strong>g>and</str<strong>on</strong>g> carcasses were extremely rare <strong>on</strong> open water, sotransects were c<strong>on</strong>fined to <strong>the</strong> vegetated areas <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> lake <str<strong>on</strong>g>and</str<strong>on</strong>g> shoreline.


Figure 4. Variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> carcass density (carcasses/ha) within Whitewater Lake, Manitoba, asderived from line transects. Isoclines were derived using Spatial Analyst (ESRI Ltd)34


Figure 5. Variati<strong>on</strong> in carcass density (carcasses/ha) across Whitewater Lake, Manitoba <strong>on</strong>eweek after estimates shown in Figure 4. Isoclines were derived using Spatial Analyst (ESRILtd). Note that point estimates exceed 30 carcasses/ha in several areas.35


36PART IISURVIVAL OF RADIO-MARKED MALLARDS IN RELATION TO MANAGEMENTOF AVIAN BOTULISMDANIEL D. EVELSIZER, TRENT K. BOLLINGER, KEVIN W. DUFOUR <str<strong>on</strong>g>and</str<strong>on</strong>g> ROBERT G.CLARKAn unabridged versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this paper appears in Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Wildlife Diseases 46, July 2010.Please c<strong>on</strong>tact Bob Clark (bob.clark@ec.gc.ca) for a copy <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> full paper.ABSTRACTWe radio-marked 419 moulting mallards (Anas platyrhynchos) <strong>on</strong> 11 botulism-pr<strong>on</strong>e lakes inWestern Canada between 1999 <str<strong>on</strong>g>and</str<strong>on</strong>g> 2001 (July-August), <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong>n m<strong>on</strong>itored <strong>the</strong>m for 30 days totest whe<strong>the</strong>r survival was higher <strong>on</strong> lakes with carcass removal. <str<strong>on</strong>g>Botulism</str<strong>on</strong>g> occurred <strong>on</strong> 10 lakes.On five lakes where carcasses were removed, greater-than-normal effort was made to c<strong>on</strong>ductearly, thorough surveillance <str<strong>on</strong>g>and</str<strong>on</strong>g> immediately remove carcasses; <strong>on</strong> six ‘n<strong>on</strong>-removal’ lakes, nocarcasses were removed. In 1999, estimated 30-day survival probabilities ranged from 0.15 (95%CI = 0.06-0.30) <strong>on</strong> <strong>on</strong>e large lake with carcass removal to 0.47 (95% CI = 0.27-0.67) <str<strong>on</strong>g>and</str<strong>on</strong>g> 0.62(95% CI = 0.44-0.77) <strong>on</strong> two n<strong>on</strong>-removal lakes. As a result, we c<strong>on</strong>ducted work <strong>on</strong> smallerwetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s <strong>the</strong>reafter, reas<strong>on</strong>ing that any management benefit would be easier to detect. In 2000,estimated 30-day survival probabilities were 0.31 (95% CI = 0.14-0.56) <str<strong>on</strong>g>and</str<strong>on</strong>g> 0.79 (95% CI = 0.61-0.90) <strong>on</strong> two carcass removal lakes versus 0.52 (95% CI = 0.36-0.68) <str<strong>on</strong>g>and</str<strong>on</strong>g> 0.74 (95% CI = 0.56-0.86) <strong>on</strong> two n<strong>on</strong>-removal lakes. In 2001, botulism was detected <strong>on</strong> two n<strong>on</strong>-removal lakeswhere survival probabilities were 0.84 (95% CI = 0.63-0.94) <str<strong>on</strong>g>and</str<strong>on</strong>g> 0.94 (95% CI = 0.78-0.98), aswell as <strong>on</strong> <strong>on</strong>e removal lake where survival probability was 1.0 (95% CI = 0.99-1.0), but was notdetected <strong>on</strong> <strong>the</strong> o<strong>the</strong>r removal lake where no marked birds died from botulism (1.0, 95% CI =0.99-1.0). Survival tended to be higher <strong>on</strong> lakes with lower carcass density.


37INTRODUCTIONWhere logistically feasible, botulism outbreaks have typically been “managed” by surveillance <str<strong>on</strong>g>of</str<strong>on</strong>g>wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s during spring <str<strong>on</strong>g>and</str<strong>on</strong>g> summer, <str<strong>on</strong>g>and</str<strong>on</strong>g> by collecting <str<strong>on</strong>g>and</str<strong>on</strong>g> disposing <str<strong>on</strong>g>of</str<strong>on</strong>g> carcasses during botulismoutbreaks (Locke <str<strong>on</strong>g>and</str<strong>on</strong>g> Friend 1987; Rocke <str<strong>on</strong>g>and</str<strong>on</strong>g> Samuel 1999). Removing carcasses beforemaggots develop may reduce bird losses by reducing <strong>the</strong> probability <str<strong>on</strong>g>of</str<strong>on</strong>g> uninfected birds ingestingtoxic maggots, but this ‘clean-up’ practice can be expensive <str<strong>on</strong>g>and</str<strong>on</strong>g> time dem<str<strong>on</strong>g>and</str<strong>on</strong>g>ing (Part I;Wobeser 1987; Wobeser <str<strong>on</strong>g>and</str<strong>on</strong>g> Bollinger 2002).Despite large investments in botulism c<strong>on</strong>trol, results have been equivocal (Friend 1992). Reed<str<strong>on</strong>g>and</str<strong>on</strong>g> Rocke (1992) manipulated carcass density, <str<strong>on</strong>g>and</str<strong>on</strong>g> found that wing-clipped mallards (Anasplatyrhynchos) held in enclosures with 12 carcasses/ha were 4.5 times more likely to die <str<strong>on</strong>g>of</str<strong>on</strong>g>botulism than were birds in enclosures with no carcasses, indicating that absence <str<strong>on</strong>g>of</str<strong>on</strong>g> carcassescan improve survival. In a study <str<strong>on</strong>g>of</str<strong>on</strong>g> free-ranging mallards, birds exposed to >5 carcasses/haduring botulism outbreaks were >3.5 times more likely to die than were birds inhabiting carcassfreeareas <str<strong>on</strong>g>of</str<strong>on</strong>g> wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s (Part III; Evelsizer et al. 2010). However, effectiveness <str<strong>on</strong>g>of</str<strong>on</strong>g> removaloperati<strong>on</strong>s is unknown under actual field c<strong>on</strong>diti<strong>on</strong>s, where efficacy <str<strong>on</strong>g>of</str<strong>on</strong>g> removal operati<strong>on</strong>s couldvary with <strong>the</strong> intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> operati<strong>on</strong>, density <str<strong>on</strong>g>and</str<strong>on</strong>g> size <str<strong>on</strong>g>of</str<strong>on</strong>g> bird carcasses, <str<strong>on</strong>g>and</str<strong>on</strong>g> marsh vegetati<strong>on</strong>.Cliplef <str<strong>on</strong>g>and</str<strong>on</strong>g> Wobeser (1993) evaluated effectiveness <str<strong>on</strong>g>of</str<strong>on</strong>g> carcass removal <strong>on</strong> a small Saskatchewanlake during a botulism outbreak <str<strong>on</strong>g>and</str<strong>on</strong>g> reported that 32.1% <str<strong>on</strong>g>of</str<strong>on</strong>g> tagged carcasses were recovered.O<strong>the</strong>r researchers have reported rates <str<strong>on</strong>g>of</str<strong>on</strong>g> carcass detecti<strong>on</strong> as low as ~6% (Stutzenbaker et al.1986). One carcass can produce thous<str<strong>on</strong>g>and</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> maggots <str<strong>on</strong>g>and</str<strong>on</strong>g>, depending up<strong>on</strong> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> toxin, asfew as <strong>on</strong>e to four maggots can kill a duck (Locke <str<strong>on</strong>g>and</str<strong>on</strong>g> Friend 1987; Hubalek <str<strong>on</strong>g>and</str<strong>on</strong>g> Halouzka1991). Thus, a single carcass may produce enough toxin-laden maggots to kill hundreds <str<strong>on</strong>g>of</str<strong>on</strong>g> birds,which would <strong>the</strong>n produce even more toxin-laden maggots (Wobeser 1997; Wobeser <str<strong>on</strong>g>and</str<strong>on</strong>g>Bollinger 2002).Our main objective was to evaluate survival <str<strong>on</strong>g>of</str<strong>on</strong>g> wild moulting, radio-marked mallards duringbotulism outbreaks in Prairie Canada, to provide a known sample populati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> “ducks at risk”.We determined probable cause(s) <str<strong>on</strong>g>of</str<strong>on</strong>g> mallard mortality, estimated survival rates for mallards <strong>on</strong>each wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>, compared survival am<strong>on</strong>g wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s with surveillance <str<strong>on</strong>g>and</str<strong>on</strong>g> carcass removal(hereafter, removal lakes) to wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s where carcasses were not collected (hereafter, n<strong>on</strong>-removallakes), <str<strong>on</strong>g>and</str<strong>on</strong>g> evaluated how survival was related to lake-wide estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> carcass density.METHODSStudy areasWetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s were chosen each year if <strong>the</strong>y had recent recurrent botulism outbreaks, adequate waterlevels, <str<strong>on</strong>g>and</str<strong>on</strong>g> opportunity to maximize cooperati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> assistance (airboats, <str<strong>on</strong>g>and</str<strong>on</strong>g> crews forsurveillance <str<strong>on</strong>g>and</str<strong>on</strong>g> removal operati<strong>on</strong>s) from provincial agencies, <strong>the</strong> <strong>Canadian</strong> Wildlife Service,<str<strong>on</strong>g>and</str<strong>on</strong>g> Ducks Unlimited Canada. In 1999, work was c<strong>on</strong>ducted <strong>on</strong> two large (<strong>on</strong>e with carcassremoval) <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>on</strong>e small lake with c<strong>on</strong>firmed botulism outbreaks. On <strong>the</strong> basis <str<strong>on</strong>g>of</str<strong>on</strong>g> experience <str<strong>on</strong>g>and</str<strong>on</strong>g>preliminary results obtained from 1999, we focused work <strong>on</strong> smaller lakes in 2000 <str<strong>on</strong>g>and</str<strong>on</strong>g> 2001 toimprove <strong>the</strong> likelihood <str<strong>on</strong>g>of</str<strong>on</strong>g> reducing carcasses to very low densities. In each <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se two years,


38two lakes were subjected to carcass removal while two served as n<strong>on</strong>-removal (c<strong>on</strong>trol) lakes.Three wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s were revisited in 2000 <str<strong>on</strong>g>and</str<strong>on</strong>g> 2001, <str<strong>on</strong>g>and</str<strong>on</strong>g> treatments were crossed over.All wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s were shallow (maximum depth ≤ 2.5 m), but water levels were near basin capacitywhen work was c<strong>on</strong>ducted. Lakes had large areas <str<strong>on</strong>g>of</str<strong>on</strong>g> emergent vegetati<strong>on</strong> utilized by moultingducks; vegetati<strong>on</strong> was composed <str<strong>on</strong>g>of</str<strong>on</strong>g> bulrush (Scirpus spp.), cattail (Typha spp.), <str<strong>on</strong>g>and</str<strong>on</strong>g> whitetoprivergrass (Scholochloa festucacea; specific to Whitewater Lake), which ranged from sparseto thick.Carcass removal operati<strong>on</strong>sOn carcass removal wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s, surveillance began as early as mid-May <str<strong>on</strong>g>and</str<strong>on</strong>g>, with <strong>the</strong> excepti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>Whitewater Lake in 1999 <str<strong>on</strong>g>and</str<strong>on</strong>g> Frank Lake in 2000, surveillance was usually initiated about two t<str<strong>on</strong>g>of</str<strong>on</strong>g>our weeks earlier than normal (see Part I). Areas <str<strong>on</strong>g>of</str<strong>on</strong>g> open water <str<strong>on</strong>g>and</str<strong>on</strong>g> vegetati<strong>on</strong> were searchedusing airboats, whereas shorelines were searched <strong>on</strong> foot or with all-terrain-vehicles (see below).To increase effectiveness <str<strong>on</strong>g>of</str<strong>on</strong>g>carcass removal, researchcrews informed clean-uppers<strong>on</strong>nel <str<strong>on</strong>g>of</str<strong>on</strong>g> places wheremortality was occurring, sodead birds could be removedimmediately. The removaloperati<strong>on</strong> at WhitewaterLake (1999) was delayeduntil early July butn<strong>on</strong>e<strong>the</strong>less had moremanpower <str<strong>on</strong>g>and</str<strong>on</strong>g> airboats thanhad been employedpreviously. Wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s weredivided into 1 km 2 sectors<str<strong>on</strong>g>and</str<strong>on</strong>g> Global Positi<strong>on</strong>ingSystem (GPS) (Garmin Inc.) units were used to help removal crews ensure complete wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>coverage. Although toxic maggots can develop <strong>on</strong> carcasses in as little as two to three days(Reed <str<strong>on</strong>g>and</str<strong>on</strong>g> Rocke 1992), removal crews were <strong>on</strong>ly able to revisit sectors <strong>on</strong>ce per week atWhitewater Lake due to its large size. For this reas<strong>on</strong>, large wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s such as Whitewater Lakewere not used after 1999, <str<strong>on</strong>g>and</str<strong>on</strong>g> more thorough searches were accomplished twice per week <strong>on</strong>smaller wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s.Trapping <str<strong>on</strong>g>and</str<strong>on</strong>g> radio-marking mallardsAdult mallards in pre-moult <str<strong>on</strong>g>and</str<strong>on</strong>g> moult (emerging primaries


39mallards occurred <strong>on</strong> all study lakes. From 1 July to <strong>the</strong> sec<strong>on</strong>d week <str<strong>on</strong>g>of</str<strong>on</strong>g> August, bait traps (seebelow) were placed simultaneously at several locati<strong>on</strong>s <strong>on</strong> each lake to capture moulting male<str<strong>on</strong>g>and</str<strong>on</strong>g> female mallards; a few werecaptured by drive-trapping. Weattempted to balance <strong>the</strong> sex ratio<str<strong>on</strong>g>of</str<strong>on</strong>g> radio-marked birds at each lake,but this was not always feasiblegiven timing <str<strong>on</strong>g>of</str<strong>on</strong>g> wing moult <str<strong>on</strong>g>and</str<strong>on</strong>g>sample size requirements (Table1). Visibly healthy mallards wereaged, sexed, weighed, <str<strong>on</strong>g>and</str<strong>on</strong>g> b<str<strong>on</strong>g>and</str<strong>on</strong>g>ed.They were also equipped with aback-mounted, pr<strong>on</strong>g <str<strong>on</strong>g>and</str<strong>on</strong>g> suturestyle radio transmitter (172-174MHz), using st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard techniques(Mauser <str<strong>on</strong>g>and</str<strong>on</strong>g> Jarvis 1991) underlocal anes<strong>the</strong>tic (1 ml Marcaine),<str<strong>on</strong>g>and</str<strong>on</strong>g> released within 30 min toreduce stress (Cox <str<strong>on</strong>g>and</str<strong>on</strong>g> Aft<strong>on</strong> 1998). A small temperature-sensitive probe, encased in flexibleplastic tubing, ran underneath <strong>the</strong> stainless steel anchor; when a drop (≥4 C) occurred in bodytemperature <strong>the</strong> transmitter pulse rate increased, indicating death. Transmitters were designedwith a normal signal detecti<strong>on</strong> range <str<strong>on</strong>g>of</str<strong>on</strong>g> ~4 km (~2.5 km when submerged) <str<strong>on</strong>g>and</str<strong>on</strong>g> a life span <str<strong>on</strong>g>of</str<strong>on</strong>g>~42 days, while retaining favourable features <str<strong>on</strong>g>of</str<strong>on</strong>g> small size <str<strong>on</strong>g>and</str<strong>on</strong>g> light weight (12 g). If a markedmallard died in July during b<str<strong>on</strong>g>and</str<strong>on</strong>g>ing, <strong>the</strong> transmitter was sterilized <str<strong>on</strong>g>and</str<strong>on</strong>g> re-used if sufficient lifespan (>30 days) remained. Methods were approved by <strong>the</strong> University <str<strong>on</strong>g>of</str<strong>on</strong>g> Saskatchewan’sCommittee <strong>on</strong> Animal Care (Protocol 19980040) <strong>on</strong> behalf <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>Canadian</strong> Council <str<strong>on</strong>g>of</str<strong>on</strong>g>Animal Care.Radio-trackingSurvival was determined by tracking mallards daily (04:00 - 09:00 CST), sometimes morefrequently, for 30 days after release. After 30 days, surviving birds could not be tracked withcertainty because most had completed moult <str<strong>on</strong>g>and</str<strong>on</strong>g> become mobile. Bird locati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> status (deador alive) were recorded each morning by tracking with a receiver linked to truck- or towermountedantennas. If <strong>the</strong> transmitter pulse rate increased, indicating death, <strong>the</strong> carcass wasretrieved (usually within 2-6 hrs) with <strong>the</strong> aid <str<strong>on</strong>g>of</str<strong>on</strong>g> a h<str<strong>on</strong>g>and</str<strong>on</strong>g>-held tracking system from an air boat.The locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> each dead bird was determined with a GPS unit <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> carcass was frozen fornecropsy. In some cases, birds were not found; <strong>the</strong>se days were entered in <strong>the</strong> encounter historyas being missing. Signals were occasi<strong>on</strong>ally lost permanently; possibly because <strong>the</strong>se birdsregained flight <str<strong>on</strong>g>and</str<strong>on</strong>g> left <strong>the</strong> wetl<str<strong>on</strong>g>and</str<strong>on</strong>g> near <strong>the</strong> end <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> tracking period, or <strong>the</strong> transmitter wasshed or failed. In <strong>the</strong>se cases, <strong>the</strong> encounter history was right censored (Williams et al. 2002).


40NecropsiesDead birds were included in survival analysis if <strong>the</strong>y died from botulism. <str<strong>on</strong>g>Botulism</str<strong>on</strong>g> toxin causesno visible lesi<strong>on</strong>s; intoxicated birds <str<strong>on</strong>g>of</str<strong>on</strong>g>ten die from drowning, dehydrati<strong>on</strong>, or respiratory failure.Birds were diagnosed as havingdied <str<strong>on</strong>g>of</str<strong>on</strong>g> botulism if (1) botulismwas diagnosed in o<strong>the</strong>rwaterfowl <strong>on</strong> <strong>the</strong> lake usingserum <str<strong>on</strong>g>and</str<strong>on</strong>g> mouse bioassay <str<strong>on</strong>g>and</str<strong>on</strong>g>(2) no o<strong>the</strong>r diseases or lesi<strong>on</strong>swere identified at necropsy.<str<strong>on</strong>g>Botulism</str<strong>on</strong>g> was <strong>the</strong> <strong>on</strong>lysubstantial cause <str<strong>on</strong>g>of</str<strong>on</strong>g> mortality inducks at all lakes. Birdsdem<strong>on</strong>strating flaccid paralysis(see right) were c<strong>on</strong>sistentlyobserved <strong>on</strong> all lakes. In 1999,nine <str<strong>on</strong>g>of</str<strong>on</strong>g> nine, six <str<strong>on</strong>g>of</str<strong>on</strong>g> six, <str<strong>on</strong>g>and</str<strong>on</strong>g> 13<str<strong>on</strong>g>of</str<strong>on</strong>g> 14 serum samples testedpositive for type C toxin atWhitewater, Old Wives <str<strong>on</strong>g>and</str<strong>on</strong>g> Eyebrow lakes, respectively. In 2000, five <str<strong>on</strong>g>of</str<strong>on</strong>g> five, six <str<strong>on</strong>g>of</str<strong>on</strong>g> seven, two<str<strong>on</strong>g>of</str<strong>on</strong>g> two, <str<strong>on</strong>g>and</str<strong>on</strong>g> four <str<strong>on</strong>g>of</str<strong>on</strong>g> four serum samples tested positive for type C toxin at Kettlehut, Paysen,Frank <str<strong>on</strong>g>and</str<strong>on</strong>g> Crane lakes, respectively.Index <str<strong>on</strong>g>of</str<strong>on</strong>g> lake-wide carcass density from line transect dataCarcass densities <strong>on</strong> each <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> lakes were estimated <strong>on</strong> a five to 14 day cycle, beginning no laterthan <strong>the</strong> first week <str<strong>on</strong>g>of</str<strong>on</strong>g> July <str<strong>on</strong>g>and</str<strong>on</strong>g> ending no earlier than 15 August, spanning <strong>the</strong> period over whichradio-marked mallards were m<strong>on</strong>itored. The excepti<strong>on</strong> was Frank Lake in 2000, where transectsurveys did not commence until 23 July. Five to 12 estimates (cycles) <str<strong>on</strong>g>of</str<strong>on</strong>g> carcass density wereobtained for each lake over <strong>the</strong> summer. Fixed line transects were established at 100-500 mspacing, depending <strong>on</strong> vegetati<strong>on</strong> type <str<strong>on</strong>g>and</str<strong>on</strong>g> occurrence <str<strong>on</strong>g>of</str<strong>on</strong>g> carcasses, with <strong>the</strong> first transectr<str<strong>on</strong>g>and</str<strong>on</strong>g>omly chosen at <strong>the</strong> beginning <str<strong>on</strong>g>of</str<strong>on</strong>g> each cycle. Using a GPS unit, an airboat was driven down<strong>the</strong> center <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se transects while <strong>on</strong>e or two observers stood at <strong>the</strong> fr<strong>on</strong>t <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> boat <str<strong>on</strong>g>and</str<strong>on</strong>g> countedall carcasses. For each carcass, <strong>the</strong> UTM coordinate <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> boat was determined using <strong>the</strong> GPS,<str<strong>on</strong>g>and</str<strong>on</strong>g> perpendicular distance from <strong>the</strong> center <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> boat (i.e., transect) to <strong>the</strong> carcass was estimated.We assumed that detecti<strong>on</strong> probability in fr<strong>on</strong>t <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> airboat was 1.0. Because submergedcarcasses would not produce maggots, <strong>the</strong>y were not c<strong>on</strong>sidered. Density estimates were derivedusing <strong>the</strong> s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware DISTANCE (Thomas et al. 2006), as described in Part I. Best fit detecti<strong>on</strong>functi<strong>on</strong>s were derived for each cycle.To obtain a lake-wide estimate <str<strong>on</strong>g>of</str<strong>on</strong>g> carcass density for each lake in each year, we computedweighted average density estimates (above) across all cycles in a given lake-year, where <strong>the</strong>weighting factor for each individual carcass density estimate (c i ) was <strong>the</strong> total number <str<strong>on</strong>g>of</str<strong>on</strong>g> radiomarkedmallards known to be alive during that cycle. Number <str<strong>on</strong>g>of</str<strong>on</strong>g> birds alive in each cycle wasexpressed as a proporti<strong>on</strong> (a i ) <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> total number <str<strong>on</strong>g>of</str<strong>on</strong>g> birds known to be alive over all cycles.


41Weighted carcass density for each lake was <strong>the</strong>n calculated by summing <strong>the</strong> products <str<strong>on</strong>g>of</str<strong>on</strong>g> carcassdensity <str<strong>on</strong>g>and</str<strong>on</strong>g> proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> radio-marked mallards alive in each cycle.Survival analysesSurvival for 30 days post release was estimated using binomial modeling procedures for knownfate data as implemented in Program MARK (White <str<strong>on</strong>g>and</str<strong>on</strong>g> Burnham 1999). Years were analyzedseparately because <str<strong>on</strong>g>of</str<strong>on</strong>g> annual variati<strong>on</strong> in <strong>the</strong> magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> botulism outbreak severity, annualvariati<strong>on</strong> in wetl<str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong>s, <str<strong>on</strong>g>and</str<strong>on</strong>g> changes to our clean-up protocols after 1999. The samegeneral a priori global starting model was fit to <strong>the</strong> data each year. Lakes were treated asseparate input groups in program MARK; <str<strong>on</strong>g>and</str<strong>on</strong>g> capture <str<strong>on</strong>g>and</str<strong>on</strong>g> release date, sex, <str<strong>on</strong>g>and</str<strong>on</strong>g> body mass wereincluded as individual covariates in <strong>the</strong> general starting model {S (lake+date+sex+mass)}.Survival was initially modeled in relati<strong>on</strong> to “lake” to determine whe<strong>the</strong>r we could detect lakespecificdifferences in survival. Sex was used because we radio-marked male <str<strong>on</strong>g>and</str<strong>on</strong>g> femalemallards (Table 1) <str<strong>on</strong>g>and</str<strong>on</strong>g> sex-specific diet preferences could potentially produce different survivalrates (Rocke <str<strong>on</strong>g>and</str<strong>on</strong>g> Br<str<strong>on</strong>g>and</str<strong>on</strong>g> 1994). We also tested whe<strong>the</strong>r survival was related to body mass,independent <str<strong>on</strong>g>of</str<strong>on</strong>g> possible sex-related differences, because light-weight birds could be moresusceptible to toxicosis. Capture date (days since 1 January) was included to determine whe<strong>the</strong>rsurvival varied through <strong>the</strong> radio-marking period. Models incorporating temporal variati<strong>on</strong> insurvival rates received no support, so we modeled survival rates as being c<strong>on</strong>stant over <strong>the</strong> 30-day encounter period.We combined informati<strong>on</strong> obtained from all years for lake-wide estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> weighted carcassdensities, to test <strong>the</strong> predicti<strong>on</strong> that survival would be negatively related to carcass density. Thismodel set included effects <str<strong>on</strong>g>of</str<strong>on</strong>g> date, sex, body mass, lake-specific weighted carcass density, <str<strong>on</strong>g>and</str<strong>on</strong>g>additive combinati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se explanatory variables.The model(s) with <strong>the</strong> lowest AIC c (Akaike’s Informati<strong>on</strong> Criteri<strong>on</strong> with an adjustment forsample size) value was/were systematically selected from a set <str<strong>on</strong>g>of</str<strong>on</strong>g> c<str<strong>on</strong>g>and</str<strong>on</strong>g>idate models afterremoving <str<strong>on</strong>g>and</str<strong>on</strong>g> re-entering individual covariates. Model weights (w i ), precisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> parameterestimates for individual covariate(s), <str<strong>on</strong>g>and</str<strong>on</strong>g> differences in AIC c values between models (∆AICc)were c<strong>on</strong>sidered. We report 30-day survival probabilities <str<strong>on</strong>g>of</str<strong>on</strong>g> flightless mallards exposed tobotulism outbreaks, which were derived by model averaging to accommodate model selecti<strong>on</strong>uncertainty (Burnham <str<strong>on</strong>g>and</str<strong>on</strong>g> Anders<strong>on</strong> 2002). With this method, best-fit models with <strong>the</strong> highestmodel weight c<strong>on</strong>tribute most to average daily survival rate. Ninety-five percent c<strong>on</strong>fidenceintervals (CI) were c<strong>on</strong>structed based <strong>on</strong> <strong>the</strong> estimated unc<strong>on</strong>diti<strong>on</strong>al variance <str<strong>on</strong>g>and</str<strong>on</strong>g>, as such,include a model selecti<strong>on</strong> uncertainty comp<strong>on</strong>ent (Burnham <str<strong>on</strong>g>and</str<strong>on</strong>g> Anders<strong>on</strong> 2002).RESULTSRadio transmitters were deployed <strong>on</strong> 419 mallards from 1999-2001, but for various reas<strong>on</strong>s <strong>on</strong>ly393 mallards were used to model survival variati<strong>on</strong>; 101 transmitters (24%) failed or <strong>the</strong>ir signalswere lost during <strong>the</strong> tracking period, so encounter histories for birds equipped with <strong>the</strong>se radios


42were right censored. One hundred twenty deaths (31% <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> total sample <str<strong>on</strong>g>of</str<strong>on</strong>g> marked individuals)were attributed to botulism. The remaining 172 birds survived <strong>the</strong> 30-day tracking period.Survival in 1999A total <str<strong>on</strong>g>of</str<strong>on</strong>g> 107 birds was available for analyses. Lake differences in survival were comm<strong>on</strong> toeight best-approximating models, <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong>se models collectively embraced 100% <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> totalsupport based <strong>on</strong> AIC c weights (Table 2). The most parsim<strong>on</strong>ious model included effects <str<strong>on</strong>g>of</str<strong>on</strong>g> lake<str<strong>on</strong>g>and</str<strong>on</strong>g> capture date, <str<strong>on</strong>g>and</str<strong>on</strong>g> was 3.6 times better-supported than <strong>the</strong> global model (Table 2). Based <strong>on</strong>this model, survival was negatively related to capture date (β = -9.08, 95% CI = -16.35 to -1.82).Model-averaged estimates revealed wide variati<strong>on</strong> in survival am<strong>on</strong>g <strong>the</strong> three lakes (Table 3).The lowest survival rate was recorded at Whitewater Lake, a carcass removal site, whereassurvival was three to four times higher <strong>on</strong> <strong>the</strong> two n<strong>on</strong>-removal wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s, Eyebrow <str<strong>on</strong>g>and</str<strong>on</strong>g> OldWives lakes (Table 3).Survival in 2000A total <str<strong>on</strong>g>of</str<strong>on</strong>g> 147 mallards was used in survival analyses. Seven top-ranked models included effects<str<strong>on</strong>g>of</str<strong>on</strong>g> lake, <str<strong>on</strong>g>and</str<strong>on</strong>g> four incorporated effects <str<strong>on</strong>g>of</str<strong>on</strong>g> body mass (cumulative weight for mass = 0.69; Table 2).Under <strong>the</strong> top model, heavier mallards had higher survival rates than did light-weight birds(β = 0.35, 95% CI = 0.03 to 0.68). Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> date <str<strong>on</strong>g>and</str<strong>on</strong>g> mass were weak or absent. Survivalprobability was lowest at Frank Lake, a carcass removal site, followed by Crane Lake, a n<strong>on</strong>removalsite. Survival was higher at Kettlehut Lake, a n<strong>on</strong>-removal site, <str<strong>on</strong>g>and</str<strong>on</strong>g> higher still atPaysen Lake, a removal site, but 95% CIs overlapped for <strong>the</strong>se two lakes (Table 3).Survival in 2001In total, 139 moulting mallards were used in survival analyses. <str<strong>on</strong>g>Botulism</str<strong>on</strong>g> was detected less <str<strong>on</strong>g>of</str<strong>on</strong>g>tenin 2001 <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong>re was less variati<strong>on</strong> in survival am<strong>on</strong>g lakes. Kettlehut, a removal lake, had nodetectable botulism <str<strong>on</strong>g>and</str<strong>on</strong>g> Chaplin, <strong>the</strong> o<strong>the</strong>r removal lake, had low levels <str<strong>on</strong>g>of</str<strong>on</strong>g> botulism. Frank <str<strong>on</strong>g>and</str<strong>on</strong>g>Paysen lakes, which had no removal, also had low levels <str<strong>on</strong>g>of</str<strong>on</strong>g> detectable botulism. All bestapproximatingmodels included effects <str<strong>on</strong>g>of</str<strong>on</strong>g> lake (Table 2). Females survived better than did males(β = 0.89, 95% CI = 0.01 to 1.77), <str<strong>on</strong>g>and</str<strong>on</strong>g> heavier mallards also had higher survival rates (β = 1.59,95% CI = 0.48 to 2.70). Survival rates approached 1.0 <strong>on</strong> Kettlehut <str<strong>on</strong>g>and</str<strong>on</strong>g> Paysen lakes, whichwere removal lakes with limited or no detectable botulism (Table 3).Survival in relati<strong>on</strong> to carcass densityWe sought to determine whe<strong>the</strong>r survival was related to lake-wide estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> carcass density, oro<strong>the</strong>r covariates, by combining all data in <strong>on</strong>e modeling framework. Models with lake-yeareffects were well supported (Table 4). Based <strong>on</strong> <strong>the</strong> top-ranked model, heavier birds survived


43l<strong>on</strong>ger than did light-weight mallards (β = 0.36, 95% CI = 0.13 to 0.59). Birds marked earlier inoutbreak cycles tended to survive better as well (β = -0.20, 95% CI = -0.52 to 0.11), <strong>on</strong> <strong>the</strong> basis<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> sec<strong>on</strong>d-ranked model. The best-approximating model that incorporated effects <str<strong>on</strong>g>of</str<strong>on</strong>g> carcassdensity index had little support when compared with lake-year models (Table 4), but n<strong>on</strong>e<strong>the</strong>lesssurvival rates did tend to decrease with increasing carcass density (β = -0.21, 95% CI = -0.35 to-0.08).DISCUSSIONDuring botulism outbreaks, <strong>the</strong> number <str<strong>on</strong>g>of</str<strong>on</strong>g> dead birds collected can be counted, but mortality ratetypically cannot be estimated reliably because <strong>the</strong> number <str<strong>on</strong>g>of</str<strong>on</strong>g> wild birds “at risk” is unknown.Our estimates indicate that <strong>the</strong> impact <str<strong>on</strong>g>of</str<strong>on</strong>g> botulism can be severe (Table 3). Fur<strong>the</strong>rmore, acrosslakes <str<strong>on</strong>g>and</str<strong>on</strong>g> years, <strong>the</strong>re was a negative associati<strong>on</strong> between survival <str<strong>on</strong>g>and</str<strong>on</strong>g> carcass density, asreported recently by Evelsizer et al. (2010) <str<strong>on</strong>g>and</str<strong>on</strong>g> in Part III <str<strong>on</strong>g>of</str<strong>on</strong>g> this report, but carcass removal didnot c<strong>on</strong>sistently enhance survival, even <strong>on</strong> smaller wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s with intense surveillance. Lakespecificdifferences in prevalence <str<strong>on</strong>g>and</str<strong>on</strong>g> toxicity <str<strong>on</strong>g>of</str<strong>on</strong>g> botulism toxin or densities <str<strong>on</strong>g>of</str<strong>on</strong>g> susceptible birdspossibly superseded <strong>the</strong> importance <str<strong>on</strong>g>of</str<strong>on</strong>g> carcass density effects in predicting survival (Table 4).Based <strong>on</strong> results obtained in 1999, it was obvious that our ability to c<strong>on</strong>duct an effective removaloperati<strong>on</strong> was futile <strong>on</strong> large wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s with dense vegetati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> o<strong>the</strong>r features like thoseencountered at Whitewater or Old Wives lakes. So, in 2000 <str<strong>on</strong>g>and</str<strong>on</strong>g> 2001, smaller lakes were used toimprove <strong>the</strong> chances <str<strong>on</strong>g>of</str<strong>on</strong>g> reducing carcass density to very low levels needed to enhance survival<str<strong>on</strong>g>and</str<strong>on</strong>g> detect a positive effect <str<strong>on</strong>g>of</str<strong>on</strong>g> carcass removal operati<strong>on</strong>s. Effort <strong>on</strong> carcass removal lakes in2000 <str<strong>on</strong>g>and</str<strong>on</strong>g> 2001 was c<strong>on</strong>sidered very intense. Removal crews were trained, <str<strong>on</strong>g>and</str<strong>on</strong>g> equipment wasprepared in early July, much earlier than in traditi<strong>on</strong>al resp<strong>on</strong>ses to outbreaks. Our results implythat survival could not be increased by carcass removal <str<strong>on</strong>g>and</str<strong>on</strong>g>, <strong>the</strong>refore, <strong>the</strong> number <str<strong>on</strong>g>of</str<strong>on</strong>g> duckspotentially saved from botulism mortality was not related clearly to management effort.Survival probability increased for heavier mallards at four lakes studied in 2000, with no sexrelateddifferences, suggesting an interacti<strong>on</strong> between body mass <str<strong>on</strong>g>and</str<strong>on</strong>g> impact <str<strong>on</strong>g>of</str<strong>on</strong>g> toxin.Fur<strong>the</strong>rmore, when all data were analyzed simultaneously (Table 4), light-weight birds markedlater in <strong>the</strong> summer were more susceptible to botulism mortality. In general, survival wasdirectly or indirectly (via sex effects) related to body mass, which is c<strong>on</strong>sistent with a toxin dosehostsize effect. Thus, if our radio-marked samples were composed <str<strong>on</strong>g>of</str<strong>on</strong>g> mostly poor c<strong>on</strong>diti<strong>on</strong>mallards because <str<strong>on</strong>g>of</str<strong>on</strong>g> bait trapping (Wea<strong>the</strong>rhead <str<strong>on</strong>g>and</str<strong>on</strong>g> Ankney 1984), survival estimates may havebeen biased low. Unfortunately, we have no way <str<strong>on</strong>g>of</str<strong>on</strong>g> directly assessing this questi<strong>on</strong>.We evaluated management effectiveness <strong>on</strong> wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s where carcasses were removed <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>on</strong>those not subject to such management. Strict adherence to normal experimental protocols(i.e., r<str<strong>on</strong>g>and</str<strong>on</strong>g>om allocati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> treatment/c<strong>on</strong>trol, replicati<strong>on</strong>, cross-over, data independence) was notpossible, <str<strong>on</strong>g>and</str<strong>on</strong>g> no two wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s or outbreaks were similar in all respects (Wobeser et al. 1987;S<str<strong>on</strong>g>and</str<strong>on</strong>g>ler et al. 1993). In 1999, we observed that radio-marked birds utilized large porti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g>wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s, moved across lakes, <str<strong>on</strong>g>and</str<strong>on</strong>g> were not always c<strong>on</strong>fined to relatively small areas (T.Bollinger, unpublished data). In future studies, it may be possible to adopt a split-wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>


44design, possibly with a treatment cross-over between years, <str<strong>on</strong>g>and</str<strong>on</strong>g> to use radio telemetry to m<strong>on</strong>itormortality risk in clean-up versus c<strong>on</strong>trol locati<strong>on</strong>s within a lake. Finally, we did not explicitlyinclude "clean-up treatment" effects in <strong>the</strong> modeling framework because <str<strong>on</strong>g>of</str<strong>on</strong>g> our inability to applysuch a treatment in a c<strong>on</strong>sistent manner at all clean-up lakes. In short, <strong>the</strong> impositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>treatment (e.g., management "dose") could not be d<strong>on</strong>e uniformly across clean-up lakes, <str<strong>on</strong>g>and</str<strong>on</strong>g>"treatment" changed between years.Even though natural resource agencies spend c<strong>on</strong>siderable time <str<strong>on</strong>g>and</str<strong>on</strong>g> m<strong>on</strong>ey during removaloperati<strong>on</strong>s, o<strong>the</strong>r methods such as manipulating water levels, <str<strong>on</strong>g>and</str<strong>on</strong>g>/or vegetati<strong>on</strong> or treating sickbirds to recovery have been used (Hunter et al. 1970; Rosen 1971; Locke <str<strong>on</strong>g>and</str<strong>on</strong>g> Friend 1987;S<str<strong>on</strong>g>and</str<strong>on</strong>g>ler et al. 1993). However, <strong>the</strong>se alternative methods may not be logistically feasible,especially <strong>on</strong> larger botulism-pr<strong>on</strong>e wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s. Carcass removal operati<strong>on</strong>s have been <strong>the</strong>traditi<strong>on</strong>al <str<strong>on</strong>g>and</str<strong>on</strong>g> most advocated resp<strong>on</strong>se to outbreaks <str<strong>on</strong>g>of</str<strong>on</strong>g> avian botulism in North America. Thismethod attempts to break <strong>the</strong> carcass-maggot cycle via carcass removal <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong>reby attempts toreduce mortality <str<strong>on</strong>g>of</str<strong>on</strong>g> waterfowl. It also c<strong>on</strong>siders <strong>the</strong> view that a potentially beneficial acti<strong>on</strong> isbetter than doing nothing, <str<strong>on</strong>g>and</str<strong>on</strong>g> that visible acti<strong>on</strong> dem<strong>on</strong>strates good intenti<strong>on</strong>s (Peters<strong>on</strong> 1991).Our results are not c<strong>on</strong>sistent with <strong>the</strong> hypo<strong>the</strong>sis that carcass removal reduces duck mortality in<strong>the</strong> varied c<strong>on</strong>diti<strong>on</strong>s we encountered. Intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> outbreaks may be a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sporedensity, bacteria, bacteriophage, substrates, transfer <str<strong>on</strong>g>of</str<strong>on</strong>g> toxin, bird usage or o<strong>the</strong>r factors workingtoge<strong>the</strong>r in a given year <str<strong>on</strong>g>and</str<strong>on</strong>g> wetl<str<strong>on</strong>g>and</str<strong>on</strong>g> (Rocke <str<strong>on</strong>g>and</str<strong>on</strong>g> Bollinger 2007).We do not know whe<strong>the</strong>r duck mortality can be reduced <strong>on</strong> wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s where carcasses are highlyvisible, or whe<strong>the</strong>r <strong>the</strong>y can be detected <str<strong>on</strong>g>and</str<strong>on</strong>g> removed quickly (e.g., see Part I). Likewise, pickingup <str<strong>on</strong>g>and</str<strong>on</strong>g> recovering sick birds may be effective in some cases but, to our knowledge, no <strong>on</strong>e hascritically evaluated this practice. Decisi<strong>on</strong>s about launching carcass removal operati<strong>on</strong>s will bebased <strong>on</strong> socioec<strong>on</strong>omic <str<strong>on</strong>g>and</str<strong>on</strong>g> biological informati<strong>on</strong>. Our results str<strong>on</strong>gly suggest that decisi<strong>on</strong>sto undertake clean-up operati<strong>on</strong>s <strong>on</strong> lakes that are similar to those we studied should not be based<strong>on</strong> <strong>the</strong> premise that survival <str<strong>on</strong>g>of</str<strong>on</strong>g> moulting ducks will always be improved.


45LITERATURE CITEDBurnham KP, Anders<strong>on</strong> DR. 2002. Model selecti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> inference: a practical informati<strong>on</strong><strong>the</strong>oreticapproach. New York: Springer.Cliplef DJ, Wobeser G. 1993. Observati<strong>on</strong>s <strong>on</strong> waterfowl carcasses during a botulism epizootic. JWildl Dis. 29:8-14.Cox RR Jr, Aft<strong>on</strong> AD. 1998. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> capture <str<strong>on</strong>g>and</str<strong>on</strong>g> h<str<strong>on</strong>g>and</str<strong>on</strong>g>ling <strong>on</strong> survival <str<strong>on</strong>g>of</str<strong>on</strong>g> female nor<strong>the</strong>rnpintails. J Field Orn. 69:276-287.Evelsizer DD. 2002. <str<strong>on</strong>g>Management</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> avian botulism <str<strong>on</strong>g>and</str<strong>on</strong>g> survival <str<strong>on</strong>g>of</str<strong>on</strong>g> molting mallards. MSc<strong>the</strong>sis, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Saskatchewan. 59 p.Evelsizer DD, Clark RG, Bollinger TK. 2010. Relati<strong>on</strong>ships between local carcass density <str<strong>on</strong>g>and</str<strong>on</strong>g>risk <str<strong>on</strong>g>of</str<strong>on</strong>g> mortality in molting mallards during avian botulism outbreaks. J Wildl Dis. 46:507-513.Friend M. 1992. Envir<strong>on</strong>mental influences <strong>on</strong> major waterfowl diseases. Trans N Amer Wildl &Nat Res C<strong>on</strong>f. 57:517-525.Hubalek Z, Halouzka J. 1991. Persistence <str<strong>on</strong>g>of</str<strong>on</strong>g> Clostridium botulinum type C toxin in blow fly(Calliphoridae) larvae as a possible cause <str<strong>on</strong>g>of</str<strong>on</strong>g> avian botulism in spring. J Wildl Dis. 27:81-85.Hunter DB, Clark W, Perkins P, Coleman P. 1970. Applied botulism research includingmanagement recommendati<strong>on</strong>s: a progress report. California: California Department <str<strong>on</strong>g>of</str<strong>on</strong>g>Fish <str<strong>on</strong>g>and</str<strong>on</strong>g> Game.Lee VH, Vadlamudi S, Hans<strong>on</strong> RP. 1962. Blow fly larvae as a source <str<strong>on</strong>g>of</str<strong>on</strong>g> botulinum toxin fromgame farm pheasants. J Wildl Manage. 26:411-413.Locke NL, Friend M. 1987. Field guide to wildlife diseases. U.S. Fish <str<strong>on</strong>g>and</str<strong>on</strong>g> Wildlife ServiceResource Publicati<strong>on</strong> 167.Mauser DM, Jarvis RL. 1991. Attaching radio-transmitters to 1-day-old mallard ducklings. JWildl Manage. 55:488-491.Oring LW. 1964. Behavior <str<strong>on</strong>g>and</str<strong>on</strong>g> ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> certain ducks during <strong>the</strong> postbreeding period. J WildlManage. 28:223-233.Peters<strong>on</strong> MJ. 1991. Wildlife parasitism, science, <str<strong>on</strong>g>and</str<strong>on</strong>g> management policy. J Wildl Manage.55:782-789.Reed TM, Rocke TE. 1992. The role <str<strong>on</strong>g>of</str<strong>on</strong>g> avian carcasses in botulism epizootics. Wildl Soc Bull.20:175-182.


46Rocke TE, Bollinger TK. 2007. <str<strong>on</strong>g>Avian</str<strong>on</strong>g> botulism. In: Infectious Diseases <str<strong>on</strong>g>of</str<strong>on</strong>g> Wild Birds (ThomasNJ, Hunter DB, Atkins<strong>on</strong> CT, editors). Iowa: Blackwell Publishing. p 377-416.Rocke TE, Br<str<strong>on</strong>g>and</str<strong>on</strong>g> CJ. 1994. Use <str<strong>on</strong>g>of</str<strong>on</strong>g> sentinel mallards for epizootiological studies <str<strong>on</strong>g>of</str<strong>on</strong>g> avianbotulism. J Wildl Dis. 30:514-522.Rocke TE, Samuel MD. 1999. Water <str<strong>on</strong>g>and</str<strong>on</strong>g> sediment characteristics associated with avian botulismoutbreaks in wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s. J Wildl Manage. 63:1249-1260.Rosen MN. 1971. <str<strong>on</strong>g>Botulism</str<strong>on</strong>g>. In: Infectious <str<strong>on</strong>g>and</str<strong>on</strong>g> parasitic diseases <str<strong>on</strong>g>of</str<strong>on</strong>g> wild birds (Davis JW,Anders<strong>on</strong> RC, Karstad L, Trainer DO, editors). Iowa: Iowa State University Press. p 100-117.S<str<strong>on</strong>g>and</str<strong>on</strong>g>ler RJ, Rocke TE, Samuel MD, Yuill TM. 1993. Seas<strong>on</strong>al prevalence <str<strong>on</strong>g>of</str<strong>on</strong>g> Clostridiumbotulinum type C in sediments <str<strong>on</strong>g>of</str<strong>on</strong>g> a Nor<strong>the</strong>rn California wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>. J Wildl Dis. 29:533-539.Stutzenbaker CD, Brown K, Lobpries D. 1986. Special report: An assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> accuracy <str<strong>on</strong>g>of</str<strong>on</strong>g>documenting waterfowl die-<str<strong>on</strong>g>of</str<strong>on</strong>g>fs in a Texas coastal marsh. In: Lead pois<strong>on</strong>ing in wildwaterfowl (Feierabend JS, Russell AB, editors). Kansas: Nati<strong>on</strong>al Wildlife Federati<strong>on</strong>. p88-95.Thomas L, Laake JL, Strindberg S, Marques FFC, Buckl<str<strong>on</strong>g>and</str<strong>on</strong>g> ST, Borchers DL, Anders<strong>on</strong> DR,Burnham KP, Hedley SL, Pollard JH, Bishop JRB, Marques TA. 2006. Distance 5.0.Release “x”1. Research Unit for Wildlife Populati<strong>on</strong> Assessment, University <str<strong>on</strong>g>of</str<strong>on</strong>g> St.Andrews, UK. http://www.ruwpa.st-<str<strong>on</strong>g>and</str<strong>on</strong>g>.ac.uk/distance/Wea<strong>the</strong>rhead PJ, Ankney CD. 1984. A critical assumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> b<str<strong>on</strong>g>and</str<strong>on</strong>g>-recovery models may <str<strong>on</strong>g>of</str<strong>on</strong>g>ten beviolated. Wildl Soc Bull. 12:198-199.White GC, Burnham KP. 1999. Program MARK: Survival estimati<strong>on</strong> from populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g>marked animals. Bird Study Supplement. 46:120-139.Williams BK, Nichols JD, C<strong>on</strong>roy MJ. 2002. Analysis <str<strong>on</strong>g>and</str<strong>on</strong>g> management <str<strong>on</strong>g>of</str<strong>on</strong>g> animal populati<strong>on</strong>s.New York: Academic Press.Wobeser G. 1987. C<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> botulism in wild birds. In: <str<strong>on</strong>g>Avian</str<strong>on</strong>g> botulism: an internati<strong>on</strong>alperspective (Eklund MW, Dowell VR Jr, editors). Illinois: Charles C. Thomas Publ. p 339-348.Wobeser G, Marsden GS, MacFarlane RJ. 1987. Occurrence <str<strong>on</strong>g>of</str<strong>on</strong>g> toxigenic Clostridium botulinumType C in <strong>the</strong> soil <str<strong>on</strong>g>of</str<strong>on</strong>g> wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s in Saskatchewan. J Wildl Dis. 23:67-76.Wobeser G. 1997. Diseases <str<strong>on</strong>g>of</str<strong>on</strong>g> wild waterfowl, 2nd editi<strong>on</strong>. New York: Plenum Press.Wobeser G, Bollinger TK. 2002. Type C avian botulism - management dilemma. Trans N AmerWildl & Nat Res C<strong>on</strong>f. 67:40-50.


47Table 1. Body mass (g) <str<strong>on</strong>g>and</str<strong>on</strong>g> date <str<strong>on</strong>g>of</str<strong>on</strong>g> radio-marking for male <str<strong>on</strong>g>and</str<strong>on</strong>g> female mallards <strong>on</strong> study lakes inPrairie Canada, 1999-2001. Locati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> coordinates for lakes are provided in Figure 1 <str<strong>on</strong>g>and</str<strong>on</strong>g>Table 1 <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> General Introducti<strong>on</strong>. Shown are sample size (n), mean ( x ) <str<strong>on</strong>g>and</str<strong>on</strong>g> st<str<strong>on</strong>g>and</str<strong>on</strong>g>arddeviati<strong>on</strong> (SD).YearMalesFemalesBody mass Capture date Body mass Capture dateLake, Province a n x SD xSD(days)n x SD xSD(days)1999Whitewater, MB 3 1275 109 1 Aug 3 38 1077 93 28 July 4Old Wives, SK 24 1169 112 29 July 3 4 1006 123 31 July 6Eyebrow, SK 16 1301 106 28 July 3 22 1102 118 30 July 42000Frank, AB 7 1186 106 27 July 2 21 1010 93 31 July 4Kettlehut, SK 28 1286 120 19 July 6 9 1142 53 17 July 7Paysen, SK 34 1242 102 17 July 5 3 1135 74 5 Aug 2Crane, SK 27 1371 130 15 July 3 19 1092 93 23 July 72001Kettlehut, SK 20 1267 88 18 July 3 13 1057 100 19 July 4Paysen, SK 28 1344 116 14 July 5 6 1161 75 20 July 9Frank, AB 20 1230 140 13 July 9 18 1037 73 22 July 7Chaplin, SK 19 1291 145 10 July 5 15 1087 127 18 July 8aMB = Manitoba; SK = Saskatchewan; AB = Alberta.


48Table 2. Models used to assess effects <str<strong>on</strong>g>of</str<strong>on</strong>g> lake, radio-marking date, sex, <str<strong>on</strong>g>and</str<strong>on</strong>g> body mass <strong>on</strong> 30-daysurvival <str<strong>on</strong>g>of</str<strong>on</strong>g> mallards during botulism outbreaks in Prairie Canada. The best fitting model has <strong>the</strong>lowest Akaike’s Informati<strong>on</strong> Criteri<strong>on</strong> (AIC c ) adjusted for sample size. Only models with modelweight ≥0.05, <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> global <str<strong>on</strong>g>and</str<strong>on</strong>g> null (intercept-<strong>on</strong>ly) models are shown for each year.Year Model ∆AIC caWeight bK c1999 Lake, date 0.00 0.354 4Lake, date, mass 0.60 0.262 5Lake, date, sex 1.53 0.165 5Lake, date, sex, mass 2.57 0.098 6Null 22.53 0.000 12000 Lake, mass 0.00 0.368 5Lake, date, mass 1.98 0.137 6Lake, sex, mass 2.01 0.135 6Lake, sex 2.43 0.110 5Lake 2.65 0.098 4Lake, date 3.62 0.060 5Lake, date, sex, mass 3.99 0.050 7Null 23.77 0.000 12001 Lake, sex, mass 0.00 0.499 6Lake, date, sex, mass 1.99 0.184 7Lake, mass 2.25 0.162 5Lake, date, mass 3.99 0.068 6Null 10.13 0.003 1aThe difference in value between AIC c <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> current model versus <strong>the</strong> best-fitting model (1999, {S(lake+date)},AIC c = 510.51; 2000, {S(lake+mass)}, AIC c = 492.85; 2001, {S(lake+sex+mass)}, AIC c = 105.64).b Weight <str<strong>on</strong>g>of</str<strong>on</strong>g> evidence in favour <str<strong>on</strong>g>of</str<strong>on</strong>g> model, relative to those in c<str<strong>on</strong>g>and</str<strong>on</strong>g>idate list; weights sum to 1.0.cNumber <str<strong>on</strong>g>of</str<strong>on</strong>g> estimable parameters in model. Note: analyses involved three lakes in 1999, four lakes in 2000, <str<strong>on</strong>g>and</str<strong>on</strong>g>four lakes in 2001. Date <str<strong>on</strong>g>and</str<strong>on</strong>g> mass were treated as c<strong>on</strong>tinuous predictors.


49Table 3. Estimated survival probability (to 30-days post-release) <str<strong>on</strong>g>of</str<strong>on</strong>g> moulting mallards radiomarked<strong>on</strong> 11 lakes <strong>on</strong> <strong>the</strong> <strong>Canadian</strong> <strong>Prairies</strong>, 1999-2001, in relati<strong>on</strong> to carcass removaloperati<strong>on</strong>s, <str<strong>on</strong>g>and</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> birds (n) included in survival analyses. Survival estimates are adjustedfor covariate effects in top-ranked models (see Table 2).Year Lake, Province a Treatment n Survival (95%CI) b1999 Whitewater, MB Removal 41 0.149 (0.065-0.304)Eyebrow, SK N<strong>on</strong>-Removal 38 0.618 (0.443-0.767)Old Wives, SK N<strong>on</strong>-Removal 28 0.466 (0.270-0.674)2000 Frank, AB Removal 28 0.313 (0.143-0.556)Paysen, SK Removal 37 0.794 (0.609-0.905)Crane, SK N<strong>on</strong>-Removal 45 0.525 (0.362-0.682)Kettlehut, SK N<strong>on</strong>-Removal 37 0.743 (0.564-0.866)2001 Chaplin, SK Removal 34 1.00 (0.99-1.00)Kettlehut, SK c Removal 33 1.00 (0.99-1.00)Frank, AB N<strong>on</strong>-Removal 38 0.942 (0.778-0.987)Paysen, SK N<strong>on</strong>-Removal 34 0.845 (0.630-0.946)a MB = Manitoba, SK = Saskatchewan; AB = Alberta.b Model-averaged estimates (unc<strong>on</strong>diti<strong>on</strong>al 95% c<strong>on</strong>fidence intervals).c <str<strong>on</strong>g>Botulism</str<strong>on</strong>g> was not detected at this site.


50Table 4. Models used to evaluate effects <str<strong>on</strong>g>of</str<strong>on</strong>g> carcass density index (linear <str<strong>on</strong>g>and</str<strong>on</strong>g> quadratic terms),lake-year, radio-marking date, sex, <str<strong>on</strong>g>and</str<strong>on</strong>g> body mass <strong>on</strong> 30-day survival <str<strong>on</strong>g>of</str<strong>on</strong>g> molting mallards duringbotulism outbreaks, 1999-2001, in Prairie Canada. The best fitting model has <strong>the</strong> lowestAkaike’s Informati<strong>on</strong> Criteri<strong>on</strong> (AIC c ) adjusted for sample size. Only models with weight ≥0.05,<strong>the</strong> top-ranking model with carcass density effects <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> null model are shown.Year/Model∆AIC caWeight bK cLake-year, mass d 0 0.430 13Lake-year, mass, date 0.44 0.346 14Lake-year, mass, date, sex 1.95 0.162 15Lake-year 2.41 0.117 12Carcass density, carcass density², year, date, mass 14.29 0 7Null 137.94 0 1aThe difference in value between AIC c <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> current model versus <strong>the</strong> best-fitting model.b Weight <str<strong>on</strong>g>of</str<strong>on</strong>g> evidence in favor <str<strong>on</strong>g>of</str<strong>on</strong>g> model, relative to those in c<str<strong>on</strong>g>and</str<strong>on</strong>g>idate list, weights sum to 1.0.c Number <str<strong>on</strong>g>of</str<strong>on</strong>g> parameters (The model incorporating carcass density has 2 year estimates), including an intercept term.d AIC c is 1112.512.


51PART IIIRELATIONSHIPS BETWEEN LOCAL CARCASS DENSITY AND SURVIVAL OFMOULTING MALLARDS DURING OUTBREAKS OF AVIAN BOTULISMDANIEL D. EVELSIZER, ROBERT G. CLARK, <str<strong>on</strong>g>and</str<strong>on</strong>g> TRENT K. BOLLINGERAn unabridged versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this paper appears in Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Wildlife Diseases 46:507-513. Pleasec<strong>on</strong>tact Bob Clark (bob.clark@ec.gc.ca) for a copy <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> full paper.ABSTRACTAn inverse relati<strong>on</strong>ship between carcass density <str<strong>on</strong>g>and</str<strong>on</strong>g> survival has been reported in c<strong>on</strong>trolledstudies <str<strong>on</strong>g>of</str<strong>on</strong>g> botulism (Clostridium botulinum, Type C) susceptibility in captive mallards (Anasplatyrhynchos), but has not been verified in wild ducks during naturally-occurring botulismoutbreaks. We radio-marked 204 moulting mallards <strong>on</strong> seven lakes in Western Canada duringJuly <str<strong>on</strong>g>and</str<strong>on</strong>g> August 1999-2000, <str<strong>on</strong>g>and</str<strong>on</strong>g> m<strong>on</strong>itored <strong>the</strong>ir survival daily for 30 days. Carcass searcheswere c<strong>on</strong>ducted simultaneously at 90 matched locati<strong>on</strong>s, for freshly dead <str<strong>on</strong>g>and</str<strong>on</strong>g> r<str<strong>on</strong>g>and</str<strong>on</strong>g>omly selected,live radio-marked mallards. Carcass density (carcasses/ha) averaged about two times greater atdead than at live duck locati<strong>on</strong>s ( x = 12.4, SE = 1.2 versus x = 5.0, SE = 0.7). Predicted risk <str<strong>on</strong>g>of</str<strong>on</strong>g>mortality increased rapidly with carcass density (case-c<strong>on</strong>trol logistic regressi<strong>on</strong>: model-averagedβ density = 0.167, unc<strong>on</strong>diti<strong>on</strong>al SE = 0.062). Mallards exposed to 5-11 <str<strong>on</strong>g>and</str<strong>on</strong>g> >11 carcasses/ha were3.5 <str<strong>on</strong>g>and</str<strong>on</strong>g> 13 times more likely to die, respectively, than were mallards inhabiting carcass-freeareas. Mortality risk was more closely related to density <str<strong>on</strong>g>of</str<strong>on</strong>g> maggot-laden carcasses than tomaggot-free carcass densities. Our results were c<strong>on</strong>sistent with <strong>the</strong> assumpti<strong>on</strong> that reducingcarcass density could enhance survival. However, we cauti<strong>on</strong> that survival rates may remain low<strong>on</strong> lakes in which areas with high carcass densities persist due to incomplete carcass removal.


52INTRODUCTIONMaggot-laden carcasses are a known source <str<strong>on</strong>g>of</str<strong>on</strong>g> botulism (Clostridium botulinum, Type C) toxinfor waterfowl (Duncan <str<strong>on</strong>g>and</str<strong>on</strong>g> Jensen 1976); <str<strong>on</strong>g>and</str<strong>on</strong>g> vertebrates that die from any cause in a wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>can initiate <str<strong>on</strong>g>and</str<strong>on</strong>g> perpetuate botulism through a carcass-maggot cycle (Wobeser 1997a; Rocke <str<strong>on</strong>g>and</str<strong>on</strong>g>Bollinger 2007). Thus, <strong>the</strong> principal goal <str<strong>on</strong>g>of</str<strong>on</strong>g> carcass removal (or ‘clean-up’) operati<strong>on</strong>s is to stop<strong>the</strong> carcass-maggot cycle <str<strong>on</strong>g>and</str<strong>on</strong>g> reduce mortality in healthy birds.Reed <str<strong>on</strong>g>and</str<strong>on</strong>g> Rocke (1992) provided experimental c<strong>on</strong>firmati<strong>on</strong> that carcass removal could lowermortality, reporting that captive mallards (Anas platyrhynchos) held in 0.8 ha enclosures with 12carcasses/ha were 4.5 times more likely to die <str<strong>on</strong>g>of</str<strong>on</strong>g> botulism than were birds in pens with nocarcasses. Here, we examined <strong>the</strong> relati<strong>on</strong>ships between carcass density <str<strong>on</strong>g>and</str<strong>on</strong>g> survival <str<strong>on</strong>g>of</str<strong>on</strong>g> freerangingwild birds, by relating risk <str<strong>on</strong>g>of</str<strong>on</strong>g> mortality in wild radio-marked mallards, tracked duringbotulism outbreaks, to local variati<strong>on</strong> in density <str<strong>on</strong>g>and</str<strong>on</strong>g> characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> carcasses <strong>on</strong> multiple lakeswith <str<strong>on</strong>g>and</str<strong>on</strong>g> without carcass removal. Based <strong>on</strong> previous work (Reed <str<strong>on</strong>g>and</str<strong>on</strong>g> Rocke 1992), wepredicted that mortality risk would be positively related to carcass density, <str<strong>on</strong>g>and</str<strong>on</strong>g> most str<strong>on</strong>glyassociated with density <str<strong>on</strong>g>of</str<strong>on</strong>g> maggot-laden carcasses.METHODSMallards were captured, marked, <str<strong>on</strong>g>and</str<strong>on</strong>g> radio-tracked using st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard methods. Briefly, adultmallards in pre-moult <str<strong>on</strong>g>and</str<strong>on</strong>g> wing fea<strong>the</strong>r moult were captured in bait traps <str<strong>on</strong>g>and</str<strong>on</strong>g> radio-marked(see below) from ~1 July to <strong>the</strong> sec<strong>on</strong>d week <str<strong>on</strong>g>of</str<strong>on</strong>g> August, 1999 <str<strong>on</strong>g>and</str<strong>on</strong>g> 2000, at seven lakes <strong>on</strong> <strong>the</strong><strong>Canadian</strong> <strong>Prairies</strong>(Table 1). Visibly healthyducks were b<str<strong>on</strong>g>and</str<strong>on</strong>g>ed,equipped with backmountedradio transmitters(Advanced TelemetrySystems, Isanti, Minnesota,USA, Custom ModelA4430; Mauser <str<strong>on</strong>g>and</str<strong>on</strong>g> Jarvis1991) <str<strong>on</strong>g>and</str<strong>on</strong>g> released within30 min. A <strong>the</strong>rmister,c<strong>on</strong>nected to <strong>the</strong> transmitteranchor, was placed under<strong>the</strong> skin; <str<strong>on</strong>g>and</str<strong>on</strong>g> a ≥4 C drop inbody temperature triggered an increase in transmitter pulse rate, indicating death. Markingmethods were approved by <strong>the</strong> University <str<strong>on</strong>g>of</str<strong>on</strong>g> Saskatchewan Committee <strong>on</strong> Animal Care(Protocol 19980040).Status (dead or alive) <str<strong>on</strong>g>of</str<strong>on</strong>g> each bird was determined daily using truck-mounted, fixed locati<strong>on</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g>h<str<strong>on</strong>g>and</str<strong>on</strong>g>-held telemetry. If a bird was dead, <strong>the</strong> carcass was retrieved as quickly as possible with <strong>the</strong>aid <str<strong>on</strong>g>of</str<strong>on</strong>g> a h<str<strong>on</strong>g>and</str<strong>on</strong>g>-held tracking system from an airboat. The locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> each dead bird was recordedwith a Global Positi<strong>on</strong>ing System (GPS) (Garmin Inc.) <str<strong>on</strong>g>and</str<strong>on</strong>g> marked with a tall wooden stake,


53<str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> carcass was frozen for necropsy. A search for o<strong>the</strong>r carcasses was <strong>the</strong>n completed withina 50 m radius (0.785 ha plot) <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> dead mallard’s locati<strong>on</strong> as well as, within 24 hrs, at ar<str<strong>on</strong>g>and</str<strong>on</strong>g>omly-selected, live radio-marked mallard’s locati<strong>on</strong>. Live birds were drawn r<str<strong>on</strong>g>and</str<strong>on</strong>g>omly(without replacement) each day a mallard died. We moved slowly to <strong>the</strong> live bird’s morningpositi<strong>on</strong>, using a h<str<strong>on</strong>g>and</str<strong>on</strong>g>-held tracking system from an airboat, <str<strong>on</strong>g>and</str<strong>on</strong>g> reduced our approach speed assignal strength increased <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> bird began to move away from <strong>the</strong> boat.At <strong>the</strong> start <str<strong>on</strong>g>of</str<strong>on</strong>g> each carcass search, coloured flagging tape was tied to vegetati<strong>on</strong>, or a woodenstake was placed in four cardinal directi<strong>on</strong>s, 50 m from <strong>the</strong> central stake. A systematic searchwas c<strong>on</strong>ducted in water


54am<strong>on</strong>g categories after creating a separate category for plots having no carcasses (~14% <str<strong>on</strong>g>of</str<strong>on</strong>g> plots).Risk <str<strong>on</strong>g>of</str<strong>on</strong>g> mortality in each category was assessed using odds ratios <str<strong>on</strong>g>and</str<strong>on</strong>g> 95% c<strong>on</strong>fidence intervals.Finally, we c<strong>on</strong>ducted case-c<strong>on</strong>trol logistic regressi<strong>on</strong> analyses that c<strong>on</strong>sidered effects <str<strong>on</strong>g>of</str<strong>on</strong>g>carcasses with (SOD4-SOD6) <str<strong>on</strong>g>and</str<strong>on</strong>g> without (SOD1-SOD3) maggots. Because SOD was notrecorded at Old Wives Lake, <str<strong>on</strong>g>and</str<strong>on</strong>g> Whitewater Lake had high overall mortality (Evelsizer 2002),we excluded <strong>the</strong>se two lakes from this analysis. Models were c<strong>on</strong>structed to estimate, separately<str<strong>on</strong>g>and</str<strong>on</strong>g> in combinati<strong>on</strong>, <strong>the</strong> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> maggot-free <str<strong>on</strong>g>and</str<strong>on</strong>g> maggot-laden carcass densities <strong>on</strong> mortalityrisk. Model selecti<strong>on</strong> methods were as described above.RESULTS<str<strong>on</strong>g>Botulism</str<strong>on</strong>g> was <strong>the</strong> <strong>on</strong>ly substantial cause <str<strong>on</strong>g>of</str<strong>on</strong>g> mortality in ducks at all seven lakes. In 1999, nine <str<strong>on</strong>g>of</str<strong>on</strong>g>nine, six <str<strong>on</strong>g>of</str<strong>on</strong>g> six, <str<strong>on</strong>g>and</str<strong>on</strong>g> 13 <str<strong>on</strong>g>of</str<strong>on</strong>g> 14 serum samples tested positive for type C toxin at Whitewater, OldWives <str<strong>on</strong>g>and</str<strong>on</strong>g> Eyebrow lakes, respectively. In 2000, five <str<strong>on</strong>g>of</str<strong>on</strong>g> five, six <str<strong>on</strong>g>of</str<strong>on</strong>g> seven, two <str<strong>on</strong>g>of</str<strong>on</strong>g> two, <str<strong>on</strong>g>and</str<strong>on</strong>g> four<str<strong>on</strong>g>of</str<strong>on</strong>g> four serum samples tested positive for type C botulism toxin at Kettlehut, Paysen, Frank <str<strong>on</strong>g>and</str<strong>on</strong>g>Crane lakes, respectively.Searches were c<strong>on</strong>ducted at 90 matched dead <str<strong>on</strong>g>and</str<strong>on</strong>g> live bird locati<strong>on</strong>s from 26 July to 30 August in1999, <str<strong>on</strong>g>and</str<strong>on</strong>g> from 15 July to 27 August in 2000 (Table 1). Overall, carcass density (carcasses/ha)was roughly two times higher at dead ( x = 12.4, SE = 1.2, range 0-71) than at live ( x = 5.0,SE = 0.7, range 0-42) bird locati<strong>on</strong>s.Risk <str<strong>on</strong>g>of</str<strong>on</strong>g> mortality was best modeled by incorporating linear <str<strong>on</strong>g>and</str<strong>on</strong>g> n<strong>on</strong>linear effects <str<strong>on</strong>g>of</str<strong>on</strong>g> carcassdensity (Table 2), such that mortality risk rose initially with carcass density <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong>n levelled <str<strong>on</strong>g>of</str<strong>on</strong>g>f(β density = 0.177, SE = 0.046; β density 2 = -0.0021, SE = 0.0092). However, an equally plausiblemodel indicated that mortality risk was positively (β density = 0.117, SE = 0.029) related to carcassdensity. These two models accounted for ~60% <str<strong>on</strong>g>of</str<strong>on</strong>g> summed w. O<strong>the</strong>r plausible models, whichincorporated more complex n<strong>on</strong>linear density effects <str<strong>on</strong>g>and</str<strong>on</strong>g> date, had less support <str<strong>on</strong>g>and</str<strong>on</strong>g> parameterestimates were imprecise (β density 3 = 0.00005, SE = 0.00007; β date = 0.328, SE = 0.568). Themodel-averaged estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> relati<strong>on</strong>ship between carcass density <str<strong>on</strong>g>and</str<strong>on</strong>g> mortality risk wereβ density = 0.167 (unc<strong>on</strong>diti<strong>on</strong>al SE = 0.062) <str<strong>on</strong>g>and</str<strong>on</strong>g> β density 2 = -0.0031 (unc<strong>on</strong>diti<strong>on</strong>al SE = 0.0028).Models that included effects <str<strong>on</strong>g>of</str<strong>on</strong>g> density nested within lakes had no support (i.e., ∆AIC c ≥ 20.000<str<strong>on</strong>g>and</str<strong>on</strong>g> w ≤ 0.001 for <strong>the</strong> best <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se models) <str<strong>on</strong>g>and</str<strong>on</strong>g> thus are not c<strong>on</strong>sidered fur<strong>the</strong>r.Carcass density was grouped into four categories, <strong>on</strong>e c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> plots with no carcasses <str<strong>on</strong>g>and</str<strong>on</strong>g>three o<strong>the</strong>rs <str<strong>on</strong>g>of</str<strong>on</strong>g> nearly equal sample size. Mallards exposed to 5-11 carcasses/ha <str<strong>on</strong>g>and</str<strong>on</strong>g> >11carcasses/ha had roughly 3.5 (95% CI = 0.9 –13) times <str<strong>on</strong>g>and</str<strong>on</strong>g> 13 (95% CI = 3.5 – 48) times greaterodds <str<strong>on</strong>g>of</str<strong>on</strong>g> dying, respectively, relative to birds inhabiting areas with no carcasses.A case-c<strong>on</strong>trol logistic regressi<strong>on</strong> model that incorporated effects <str<strong>on</strong>g>of</str<strong>on</strong>g> maggot-laden carcassdensity (w = 0.504; AIC c = 118.497, K = 2, n = 60 pairs) was three times more plausible based <strong>on</strong>w than a model with both maggot-laden <str<strong>on</strong>g>and</str<strong>on</strong>g> maggot-free carcasses (i.e., total carcass density; w =0.167, ∆AIC c = 2.214, K = 3). A model with effects <str<strong>on</strong>g>of</str<strong>on</strong>g> maggot-free carcass density al<strong>on</strong>e was


55not well supported (∆AIC c = 4.513, K = 2, w = 0.053). Thus, mortality risk was more closelyassociated with maggot-laden than maggot-free carcass density.DISCUSSIONOur results were c<strong>on</strong>sistent with <strong>the</strong> assumpti<strong>on</strong> that survival <str<strong>on</strong>g>of</str<strong>on</strong>g> free-ranging ducks can beimproved by reducing density <str<strong>on</strong>g>of</str<strong>on</strong>g> carcasses during outbreaks <str<strong>on</strong>g>of</str<strong>on</strong>g> avian botulism. Reed <str<strong>on</strong>g>and</str<strong>on</strong>g> Rocke(1992) reported that captive mallards placed in large enclosures with 12 carcasses/ha were 4.5times more likely to die <str<strong>on</strong>g>of</str<strong>on</strong>g> botulism than were birds in pens with no carcasses. Relative to birdsm<strong>on</strong>itored in carcass-free areas, we found that wild mallards exposed to >11 carcasses/ha were~13 times more likely to die. The n<strong>on</strong>linear relati<strong>on</strong>ship that we observed between mortality risk<str<strong>on</strong>g>and</str<strong>on</strong>g> carcass density implies that carcass removal may be most effective at lower to intermediatecarcass densities. When carcass densities are very high, reducing carcass density may have alimited impact <strong>on</strong> mortality risk. Thus, when feasible, early surveillance <str<strong>on</strong>g>and</str<strong>on</strong>g> carcass removalmay be a more effective strategy for botulism management than attempting to reduce highcarcass densities after an outbreak has initiated. Differences in toxicity, amount <str<strong>on</strong>g>of</str<strong>on</strong>g> availabletoxin, envir<strong>on</strong>mental characteristics, live bird density, or o<strong>the</strong>r as yet unidentified factors likelyc<strong>on</strong>tributed to variati<strong>on</strong> in risk <str<strong>on</strong>g>of</str<strong>on</strong>g> mortality (Wobeser 1997b; Rocke <str<strong>on</strong>g>and</str<strong>on</strong>g> Br<str<strong>on</strong>g>and</str<strong>on</strong>g> 1994; Rockeet al. 1999).Because our focus was <strong>on</strong> flightless moulting birds, we assumed that carcass density estimatesrepresented c<strong>on</strong>diti<strong>on</strong>s experienced by radio-marked mallards during <strong>the</strong> timeframe over whichbotulism intoxicati<strong>on</strong> could occur. However, because birds can live for hours to days afteringesting type C toxin, depending <strong>on</strong> <strong>the</strong> dose c<strong>on</strong>sumed (Duncan <str<strong>on</strong>g>and</str<strong>on</strong>g> Jensen 1976), we couldnot determine precisely where <str<strong>on</strong>g>and</str<strong>on</strong>g> when ducks ingested toxin. Likewise, we assumed thatfactors influencing carcass detecti<strong>on</strong> probability were unbiased with respect to a bird’s status <strong>on</strong>each lake.In a related study, survival <str<strong>on</strong>g>of</str<strong>on</strong>g> radio-marked mallards was not enhanced by carcass removaloperati<strong>on</strong>s (Part II; Evelsizer 2002), possibly because maggot-laden carcasses remained in some“hot spot” areas <str<strong>on</strong>g>of</str<strong>on</strong>g> lakes during removal operati<strong>on</strong>s. C<strong>on</strong>sistent with this last suggesti<strong>on</strong>,maggot-laden carcasses were abundant in some localized areas <str<strong>on</strong>g>of</str<strong>on</strong>g> all clean-up lakes (Table 1;Figure 1). It seems likely that removal operati<strong>on</strong>s would not substantially reduce mortalityunless extremely low carcass densities can be maintained <strong>on</strong> most areas <str<strong>on</strong>g>of</str<strong>on</strong>g> lakes during anoutbreak. Our results clearly dem<strong>on</strong>strate that mortality risk could potentially be reduced withcarcass removal.


56LITERATURE CITEDBurnham KP, Anders<strong>on</strong> DR. 2002. Model selecti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> inference: a practical informati<strong>on</strong><strong>the</strong>oreticapproach. New York: Springer.Duncan RM, Jensen WI. 1976. A relati<strong>on</strong>ship between avian carcasses <str<strong>on</strong>g>and</str<strong>on</strong>g> living invertebrates in<strong>the</strong> epizootiology <str<strong>on</strong>g>of</str<strong>on</strong>g> avian botulism. J Wildl Dis. 12:116-126.Evelsizer DD. 2002. <str<strong>on</strong>g>Management</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> avian botulism <str<strong>on</strong>g>and</str<strong>on</strong>g> survival <str<strong>on</strong>g>of</str<strong>on</strong>g> molting mallards. MSc<strong>the</strong>sis, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Saskatchewan. 59 p.Hosmer DW, Lemeshow S. 2000. Applied logistic regressi<strong>on</strong>. New York: John Wiley & S<strong>on</strong>s.Mauser DM, Jarvis RL. 1991. Attaching radio-transmitters to 1-day-old mallard ducklings. JWildl Manage. 55:488-491.Reed TM, Rocke TE. 1992. The role <str<strong>on</strong>g>of</str<strong>on</strong>g> avian carcasses in botulism epizootics. Wildl Soc Bull.20:175-182.Rocke TE, Bollinger TK. 2007. <str<strong>on</strong>g>Avian</str<strong>on</strong>g> botulism. In: Infectious Diseases <str<strong>on</strong>g>of</str<strong>on</strong>g> Wild Birds (ThomasNJ, Hunter DB, Atkins<strong>on</strong> CT, editors). Iowa: Blackwell Publishing. p 377-416.Rocker TE, Br<str<strong>on</strong>g>and</str<strong>on</strong>g> CJ. 1994. Use <str<strong>on</strong>g>of</str<strong>on</strong>g> sentinel mallards for epizootiological studies <str<strong>on</strong>g>of</str<strong>on</strong>g> avianbotulism. J Wildl Dis. 30:514-522.Rocke TE, Euliss NH Jr, Samuel MD. 1999. Envir<strong>on</strong>mental characteristics associated with <strong>the</strong>occurrence <str<strong>on</strong>g>of</str<strong>on</strong>g> avian botulism in wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> a nor<strong>the</strong>rn California refuge. J Wildl Manage.63:358-368.SAS Institute. 2003. SAS/STAT User’s Guide. Release 9.1. North Carolina: SAS Institute Inc.Wobeser G. 1997a. Diseases <str<strong>on</strong>g>of</str<strong>on</strong>g> wild waterfowl, 2nd editi<strong>on</strong>. New York: Plenum Press.Wobeser G. 1997b. <str<strong>on</strong>g>Avian</str<strong>on</strong>g> botulism – ano<strong>the</strong>r perspective. J Wildl Dis. 33:181-186.


57Table 1. Estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> carcass density (carcasses/ha) near <strong>the</strong> locati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> dead <str<strong>on</strong>g>and</str<strong>on</strong>g> live radiomarkedmallards <strong>on</strong> seven lakes, 1999-2000. Shown are number <str<strong>on</strong>g>of</str<strong>on</strong>g> searches (N), <str<strong>on</strong>g>and</str<strong>on</strong>g> mean ( x )<str<strong>on</strong>g>and</str<strong>on</strong>g> range <str<strong>on</strong>g>of</str<strong>on</strong>g> carcass density. Maggot-laden carcasses were not recorded at Old Wives Lake(NA). Carcasses were actively removed from Whitewater, Frank <str<strong>on</strong>g>and</str<strong>on</strong>g> Paysen lakes as part <str<strong>on</strong>g>of</str<strong>on</strong>g>clean-up operati<strong>on</strong>s. Lake locati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> coordinates are provided in Figure 1 <str<strong>on</strong>g>and</str<strong>on</strong>g> Table 1 <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>General Introducti<strong>on</strong>.Dead birds Live birdsLakeProvince a All carcasses b Maggot-ladencarcasses c All carcasses b Maggot-ladencarcasses cN x Range N x Range N x Range N x RangeWhitewaterMBOld WivesSKEyebrowSKCraneSKFrankABPaysenSKKettlehutSK12 16 3-37 8 4 0-13 12 2 0-10 8 0 -13 15 1-51 NA - - 13 2 0-9 NA - -12 15 5-29 7 13 3-28 12 6 0-17 7 4 0-916 11 0-71 16 8 0-64 16 6 0-19 16 4 0-921 10 1-21 21 4 0-9 21 5 0-13 21 2 0-78 8 0-38 8 4 0-20 8 6 0-24 8 3 0-118 14 0-33 8 8 0-18 8 9 0-42 8 7 0-35abcMB = Manitoba, SK = Saskatchewan; AB = Alberta.All carcasses (SOD 1-6; see definiti<strong>on</strong>s in Methods) found in search plots.Carcasses with visible maggots (SOD 4-6; see definiti<strong>on</strong>s in Methods).


58Table 2. C<str<strong>on</strong>g>and</str<strong>on</strong>g>idate set <str<strong>on</strong>g>of</str<strong>on</strong>g> case-c<strong>on</strong>trol logistic regressi<strong>on</strong> models used to evaluate risk <str<strong>on</strong>g>of</str<strong>on</strong>g>mortality due to avian botulism for radio-marked mallards from seven lakes in Prairie Canadaduring July <str<strong>on</strong>g>and</str<strong>on</strong>g> August, 1999-2000. Models c<strong>on</strong>sidered effects <str<strong>on</strong>g>of</str<strong>on</strong>g> carcass density (linear,squared <str<strong>on</strong>g>and</str<strong>on</strong>g> cubic terms), marking <str<strong>on</strong>g>and</str<strong>on</strong>g> release date (date), lake <str<strong>on</strong>g>and</str<strong>on</strong>g> density nested within lakes(see Methods) <strong>on</strong> mortality risk; <strong>on</strong>ly <strong>the</strong> five top-ranked models are shown.ModelAIC ca∆AIC cbw cK dDensity, density 2 99.786 0 0.349 3Density 100.505 0.719 0.244 2Density, density 2 , density 3 101.194 1.408 0.172 4Density, density 2 , date 101.686 1.900 0.135 4Density, date 102.284 2.500 0.100 3aAkaike’s Informati<strong>on</strong> Criteri<strong>on</strong>, adjusted for sample size.b Difference in AIC c between current model <str<strong>on</strong>g>and</str<strong>on</strong>g> best approximating model (AIC c = 99.786).c Weight <str<strong>on</strong>g>of</str<strong>on</strong>g> evidence in favour <str<strong>on</strong>g>of</str<strong>on</strong>g> model relative to o<strong>the</strong>rs in <strong>the</strong> c<str<strong>on</strong>g>and</str<strong>on</strong>g>idate list; model weights sum to 1.0.d Number <str<strong>on</strong>g>of</str<strong>on</strong>g> parameters.


595040C<strong>on</strong>trol (65 plots)Clean-up (92 plots)Percent30201000 < 3.1 3.1 - 6.0 6.1 - 9.0 > 9.0Carcasses ha -1Figure 1. Density <str<strong>on</strong>g>of</str<strong>on</strong>g> maggot-laden carcasses in relati<strong>on</strong> to carcass clean-up <strong>on</strong> Saskatchewanlakes, 1999-2000. Shown is percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> plots with different carcass density levels for lakeswith carcass removal (clean-up) <str<strong>on</strong>g>and</str<strong>on</strong>g> for c<strong>on</strong>trol lakes.


60PART IVLATE-SUMMER SURVIVAL OF MALLARDS EXPOSED TO AVIAN BOTULISM:AN INVESTIGATION USING DIRECT BAND RECOVERY ANALYSESKEVIN W. DUFOUR AND TRENT K. BOLLINGERABSTRACTCatastrophic losses <str<strong>on</strong>g>of</str<strong>on</strong>g> waterfowl to avian botulism (Clostridium botulinum, Type C) are welldocumented, but few studies have attempted to quantify impacts at <strong>the</strong> populati<strong>on</strong> level. Weused b<str<strong>on</strong>g>and</str<strong>on</strong>g>-recovery data from adult mallards (Anas platyrhynchos), trapped at nine botulismoutbreak sites in Prairie Canada (late June to early August, 1998-2000), to determine <strong>the</strong> extentto which exposure to botulism during <strong>the</strong> post-breeding seas<strong>on</strong> resulted in reduced late-summersurvival. Specifically, we tested <strong>the</strong> predicti<strong>on</strong> that direct recovery rates (indicative <str<strong>on</strong>g>of</str<strong>on</strong>g> survivalduring <strong>the</strong> period between b<str<strong>on</strong>g>and</str<strong>on</strong>g>ing <str<strong>on</strong>g>and</str<strong>on</strong>g> harvest) would be lower am<strong>on</strong>g birds b<str<strong>on</strong>g>and</str<strong>on</strong>g>ed at outbreaksites (n = 6,594) than am<strong>on</strong>g c<strong>on</strong>specifics b<str<strong>on</strong>g>and</str<strong>on</strong>g>ed at n<strong>on</strong>-outbreak c<strong>on</strong>trol sites (n = 15,241). Asa sec<strong>on</strong>dary objective, we tested <strong>the</strong> predicti<strong>on</strong> that direct recovery rates should be higher am<strong>on</strong>gindividuals b<str<strong>on</strong>g>and</str<strong>on</strong>g>ed at outbreak sites with intensive carcass clean-up operati<strong>on</strong>s than am<strong>on</strong>g thoseb<str<strong>on</strong>g>and</str<strong>on</strong>g>ed at outbreak sites with no such clean-up. B<str<strong>on</strong>g>and</str<strong>on</strong>g>ing data from two <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> three Prairieprovinces (Saskatchewan <str<strong>on</strong>g>and</str<strong>on</strong>g> Manitoba) were uniformly c<strong>on</strong>sistent in supporting <strong>the</strong> predictedassociati<strong>on</strong> between exposure to botulism <str<strong>on</strong>g>and</str<strong>on</strong>g> direct recovery probability: recovery rates <str<strong>on</strong>g>of</str<strong>on</strong>g>mallards b<str<strong>on</strong>g>and</str<strong>on</strong>g>ed at outbreak sites in <strong>the</strong>se areas were 14-44% lower than expected based <strong>on</strong>comparis<strong>on</strong>s with c<strong>on</strong>trol data. This pattern was evident am<strong>on</strong>g both males <str<strong>on</strong>g>and</str<strong>on</strong>g> females, <str<strong>on</strong>g>and</str<strong>on</strong>g>occurred in all three years <str<strong>on</strong>g>of</str<strong>on</strong>g> study. In c<strong>on</strong>trast, results from a third province (Alberta) weremixed <str<strong>on</strong>g>and</str<strong>on</strong>g> generally did not support <strong>the</strong> predicted associati<strong>on</strong>. Overall, our results indicate thatexposure to botulism during <strong>the</strong> post-breeding seas<strong>on</strong> can have a measurable impact <strong>on</strong> survivalat <strong>the</strong> populati<strong>on</strong> level. However, our findings from Alberta suggest a need for cauti<strong>on</strong> whengeneralizing from <strong>the</strong>se results. Finally, our comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> recovery rates <str<strong>on</strong>g>of</str<strong>on</strong>g> mallards b<str<strong>on</strong>g>and</str<strong>on</strong>g>ed atoutbreak sites with <str<strong>on</strong>g>and</str<strong>on</strong>g> without intensive carcass removal provided little evidence to suggest thatcarcass removal was effective in reducing botulism-related mortality. Future investigati<strong>on</strong>sshould seek to: (1) refine our ability to predict when <str<strong>on</strong>g>and</str<strong>on</strong>g> where botulism-related mortality islikely to be most severe, <str<strong>on</strong>g>and</str<strong>on</strong>g> (2) identify <str<strong>on</strong>g>and</str<strong>on</strong>g> evaluate alternative management strategies.


61INTRODUCTION<str<strong>on</strong>g>Avian</str<strong>on</strong>g> botulism (Clostridium botulinum, Type C) is an issue <str<strong>on</strong>g>of</str<strong>on</strong>g> major c<strong>on</strong>cern to waterfowlmanagers in North America, in part because <strong>the</strong> frequency <str<strong>on</strong>g>and</str<strong>on</strong>g> magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> botulism outbreakshas increased in recent years. Although catastrophic losses <str<strong>on</strong>g>of</str<strong>on</strong>g> waterfowl to botulism are welldocumented, little is known about <strong>the</strong> impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> disease at <strong>the</strong> populati<strong>on</strong> level. In particular,estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> botulism-related mortality rates are lacking, as <strong>the</strong> number <str<strong>on</strong>g>of</str<strong>on</strong>g> individuals present atoutbreak sites (i.e., number at risk) is rarely quantified.Our first aim was to use b<str<strong>on</strong>g>and</str<strong>on</strong>g>-recovery data from mallards (Anas platyrhynchos) trapped at ninemajor outbreak sites in Prairie Canada, to test <strong>the</strong> hypo<strong>the</strong>sis that individuals exposed to outbreaklevels <str<strong>on</strong>g>of</str<strong>on</strong>g> botulism during <strong>the</strong> post-breeding seas<strong>on</strong> suffer reduced late-summer survival as ac<strong>on</strong>sequence. Specifically, we tested <strong>the</strong> predicti<strong>on</strong> that direct recovery rates (indicative <str<strong>on</strong>g>of</str<strong>on</strong>g>survival between b<str<strong>on</strong>g>and</str<strong>on</strong>g>ing <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> hunting seas<strong>on</strong>) would be lower am<strong>on</strong>g individuals b<str<strong>on</strong>g>and</str<strong>on</strong>g>ed atoutbreak sites than am<strong>on</strong>g c<strong>on</strong>specific individuals b<str<strong>on</strong>g>and</str<strong>on</strong>g>ed at n<strong>on</strong>-outbreak c<strong>on</strong>trol sites.We also summarize results <str<strong>on</strong>g>of</str<strong>on</strong>g> an analysis aimed at assessing <strong>the</strong> extent to which carcass removalis effective in reducing mortality am<strong>on</strong>g post-breeding mallards. Specifically, using b<str<strong>on</strong>g>and</str<strong>on</strong>g>ingdata assembled from a three-year field investigati<strong>on</strong>, we tested <strong>the</strong> predicti<strong>on</strong> that <strong>the</strong> rate <str<strong>on</strong>g>of</str<strong>on</strong>g>direct recovery by hunters (indicative <str<strong>on</strong>g>of</str<strong>on</strong>g> survival during <strong>the</strong> period between b<str<strong>on</strong>g>and</str<strong>on</strong>g>ing <str<strong>on</strong>g>and</str<strong>on</strong>g> harvest)should be higher am<strong>on</strong>g birds b<str<strong>on</strong>g>and</str<strong>on</strong>g>ed at outbreak sites with intensive clean-up operati<strong>on</strong>s thanam<strong>on</strong>g birds b<str<strong>on</strong>g>and</str<strong>on</strong>g>ed at outbreak sites with no such clean-up. This sec<strong>on</strong>d direct recoveryanalysis complements that shown in Part II <str<strong>on</strong>g>of</str<strong>on</strong>g> this report.METHODSData collecti<strong>on</strong>This study was c<strong>on</strong>ducted as part <str<strong>on</strong>g>of</str<strong>on</strong>g> a broader investigati<strong>on</strong>, initiated in 1998 by <strong>the</strong> PrairieHabitat Joint Venture (PHJV) <str<strong>on</strong>g>Avian</str<strong>on</strong>g> <str<strong>on</strong>g>Botulism</str<strong>on</strong>g> Working Group. Field protocols for that broaderinvestigati<strong>on</strong> included <strong>the</strong> capture <str<strong>on</strong>g>and</str<strong>on</strong>g> b<str<strong>on</strong>g>and</str<strong>on</strong>g>ing <str<strong>on</strong>g>of</str<strong>on</strong>g> mallards <str<strong>on</strong>g>and</str<strong>on</strong>g> o<strong>the</strong>r dabbling ducks at selectedbotulism outbreak sites in each <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> three <strong>Canadian</strong> Prairie provinces. B<str<strong>on</strong>g>and</str<strong>on</strong>g>ing data used in <strong>the</strong>analyses presented here were derived from fieldwork c<strong>on</strong>ducted at <strong>the</strong> following botulismoutbreak sites: Pakowki Lake, Alberta (AB) <str<strong>on</strong>g>and</str<strong>on</strong>g> Old Wives Lake, Saskatchewan (SK) in 1998;Kimiwan Lake, AB, Eyebrow Lake, SK, Old Wives Lake, SK, <str<strong>on</strong>g>and</str<strong>on</strong>g> Whitewater Lake, AB in1999; <str<strong>on</strong>g>and</str<strong>on</strong>g> Frank Lake, AB, Crane Lake, SK, Paysen Lake, SK, Kettlehut Lake, SK, <str<strong>on</strong>g>and</str<strong>on</strong>g>Whitewater Lake, Manitoba (MB) in 2000 (locati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> coordinates <str<strong>on</strong>g>of</str<strong>on</strong>g> lakes are shown inFigure 1 <str<strong>on</strong>g>and</str<strong>on</strong>g> Table 1 <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> General Introducti<strong>on</strong>). In each <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> three years, a subset <str<strong>on</strong>g>of</str<strong>on</strong>g>outbreak sites was subjected to surveillance <str<strong>on</strong>g>and</str<strong>on</strong>g> carcass collecti<strong>on</strong> as part <str<strong>on</strong>g>of</str<strong>on</strong>g> an experimentalprotocol aimed at assessing <strong>the</strong> effectiveness <str<strong>on</strong>g>of</str<strong>on</strong>g> traditi<strong>on</strong>al management practices. Additi<strong>on</strong>alb<str<strong>on</strong>g>and</str<strong>on</strong>g>ing informati<strong>on</strong> was obtained from “c<strong>on</strong>trol” wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s that lacked botulism outbreaks(details below).


62In each year <str<strong>on</strong>g>of</str<strong>on</strong>g> study, post-breading mallards were: captured using wire bait traps; classifiedaccording to sex <str<strong>on</strong>g>and</str<strong>on</strong>g> age (hatch-year [HY] vs. after-hatch-year [AHY]); fitted with a st<str<strong>on</strong>g>and</str<strong>on</strong>g>ardU.S. Fish <str<strong>on</strong>g>and</str<strong>on</strong>g> Wildlife Servicealuminum leg b<str<strong>on</strong>g>and</str<strong>on</strong>g> (see right);<str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong>n released. Capture datesspanned 22 June - 1 August in1998, 8 July - 9 August in 1999,<str<strong>on</strong>g>and</str<strong>on</strong>g> 5 July - 24 August in 2000,with most birds being capturedin July or early August. Birdswere classified as recovered if<strong>the</strong>y were shot <str<strong>on</strong>g>and</str<strong>on</strong>g> retrievedduring <strong>the</strong> hunting seas<strong>on</strong>immediately following b<str<strong>on</strong>g>and</str<strong>on</strong>g>ing<str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> b<str<strong>on</strong>g>and</str<strong>on</strong>g> was reported to <strong>the</strong>U.S. Bird B<str<strong>on</strong>g>and</str<strong>on</strong>g>ing Laboratory or<strong>the</strong> <strong>Canadian</strong> Bird B<str<strong>on</strong>g>and</str<strong>on</strong>g>ing Office. Because few HY birds were b<str<strong>on</strong>g>and</str<strong>on</strong>g>ed in any given year,analyses were restricted to AHY individuals (hereafter “adults”).Assessing <strong>the</strong> impact <str<strong>on</strong>g>of</str<strong>on</strong>g> exposure to botulism <strong>on</strong> late-summer survival required b<str<strong>on</strong>g>and</str<strong>on</strong>g> recoverydata from n<strong>on</strong>-outbreak c<strong>on</strong>trol sites for comparis<strong>on</strong>. For <strong>the</strong> c<strong>on</strong>trol sample, b<str<strong>on</strong>g>and</str<strong>on</strong>g>ing datawere collected as part <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Western Canada Cooperative Waterfowl B<str<strong>on</strong>g>and</str<strong>on</strong>g>ing Program,administered jointly by <strong>the</strong> <strong>Canadian</strong> Wildlife Service (CWS) <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> U.S. Fish <str<strong>on</strong>g>and</str<strong>on</strong>g> WildlifeService (USFWS). Because focal botulism outbreak sites were distributed am<strong>on</strong>g three broadgeographic regi<strong>on</strong>s (AB, SK, <str<strong>on</strong>g>and</str<strong>on</strong>g> MB), three traditi<strong>on</strong>al cooperative b<str<strong>on</strong>g>and</str<strong>on</strong>g>ing sites were selectedfor use as c<strong>on</strong>trols: Brooks, AB; Last Mountain Lake, SK; <str<strong>on</strong>g>and</str<strong>on</strong>g> Big Grass Marsh, MB. Thesesites were chosen <strong>on</strong> <strong>the</strong> basis <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>ir proximity to focal botulism outbreak sites (generally


63We used <strong>the</strong> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> direct recovery as a relative index <str<strong>on</strong>g>of</str<strong>on</strong>g> survival during <strong>the</strong> period betweenb<str<strong>on</strong>g>and</str<strong>on</strong>g>ing <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> hunting seas<strong>on</strong> (Samuel et al. 1992). To statistically evaluateam<strong>on</strong>g-site variati<strong>on</strong> in recovery rates, we developed binary logistic regressi<strong>on</strong> models,specifying: recovery status (recovered vs. not recovered) as <strong>the</strong> binary resp<strong>on</strong>se variable; date <str<strong>on</strong>g>of</str<strong>on</strong>g>b<str<strong>on</strong>g>and</str<strong>on</strong>g>ing as a covariate; <str<strong>on</strong>g>and</str<strong>on</strong>g> sex <str<strong>on</strong>g>and</str<strong>on</strong>g> locati<strong>on</strong> as categorical predictors. Initial models alsoincluded a sex-by-locati<strong>on</strong> interacti<strong>on</strong> term, to allow for <strong>the</strong> possibility that <strong>the</strong> pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> am<strong>on</strong>gsitevariati<strong>on</strong> in recovery probability differed between <strong>the</strong> sexes. In all analyses, when aninteracti<strong>on</strong> term was not significant (P > 0.10), it was removed <str<strong>on</strong>g>and</str<strong>on</strong>g> a reduced model wasdeveloped. All analyses were c<strong>on</strong>ducted separately by year.It is worth noting that <strong>the</strong> analytical design described above effectively pairs botulism outbreak<str<strong>on</strong>g>and</str<strong>on</strong>g> n<strong>on</strong>-outbreak c<strong>on</strong>trol sites occurring within <strong>the</strong> same geographic regi<strong>on</strong> (i.e., province). Formost year-regi<strong>on</strong> combinati<strong>on</strong>s (six <str<strong>on</strong>g>of</str<strong>on</strong>g> eight), each treatment group was represented by a singlesite. However, SK was represented by two botulism study sites in 1999 <str<strong>on</strong>g>and</str<strong>on</strong>g> three botulism sitesin 2000. For purposes <str<strong>on</strong>g>of</str<strong>on</strong>g> analysis, we combined data from SK sites in each <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se two years,based <strong>on</strong> <strong>the</strong> assumpti<strong>on</strong> that recovery rates <str<strong>on</strong>g>of</str<strong>on</strong>g> birds b<str<strong>on</strong>g>and</str<strong>on</strong>g>ed at <strong>the</strong>se sites were similar. Apreliminary analysis c<strong>on</strong>firmed that recovery rate differences am<strong>on</strong>g outbreak sites in SK did notdiffer for both 1999 <str<strong>on</strong>g>and</str<strong>on</strong>g> 2000 (K. Dufour, unpublished data).RESULTSOver three years <str<strong>on</strong>g>of</str<strong>on</strong>g> study, trapping at botulism outbreak sites yielded a total b<str<strong>on</strong>g>and</str<strong>on</strong>g>ed sample <str<strong>on</strong>g>of</str<strong>on</strong>g>6,594 adult mallards (annual totals for 1998, 1999, <str<strong>on</strong>g>and</str<strong>on</strong>g> 2000 were 1,057, 1,679, <str<strong>on</strong>g>and</str<strong>on</strong>g> 3,858,respectively; Table 1). Over <strong>the</strong> same period, 15,241 adult mallards were trapped <str<strong>on</strong>g>and</str<strong>on</strong>g> released atCWS/USFWS b<str<strong>on</strong>g>and</str<strong>on</strong>g>ing stati<strong>on</strong>s selected for use as c<strong>on</strong>trols (Table 1). Both samples wereheavily skewed toward males, with males comprising 84 <str<strong>on</strong>g>and</str<strong>on</strong>g> 79% <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> total b<str<strong>on</strong>g>and</str<strong>on</strong>g>ed sample forbotulism <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>trol sites, respectively (Table 1).Recovery rate comparis<strong>on</strong>s - 1998We predicted that recovery rates <str<strong>on</strong>g>of</str<strong>on</strong>g> mallards b<str<strong>on</strong>g>and</str<strong>on</strong>g>ed at botulism outbreak sites would be lowerthan those <str<strong>on</strong>g>of</str<strong>on</strong>g> mallards b<str<strong>on</strong>g>and</str<strong>on</strong>g>ed in <strong>the</strong> same year at n<strong>on</strong>-outbreak c<strong>on</strong>trol sites. C<strong>on</strong>sistent withthis predicti<strong>on</strong>, recovery rate estimates for c<strong>on</strong>trol sites in 1998 exceeded point estimates foroutbreak sites in three <str<strong>on</strong>g>of</str<strong>on</strong>g> four separate comparis<strong>on</strong>s (by sex <str<strong>on</strong>g>and</str<strong>on</strong>g> regi<strong>on</strong>; Figure 1). However, <strong>the</strong>initial logistic regressi<strong>on</strong> model revealed a marginally significant treatment-by-regi<strong>on</strong> interacti<strong>on</strong>(χ 2 = 2.79, df = 1, P = 0.095), suggesting regi<strong>on</strong>al variati<strong>on</strong> in recovery rate differences betweenoutbreak <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>trol sites. Analyses c<strong>on</strong>ducted separately by regi<strong>on</strong> indicated a significanttreatment effect in SK but no apparent treatment effect in AB (Table 2). Where a treatmenteffect was evident (i.e., in SK), recovery rates <str<strong>on</strong>g>of</str<strong>on</strong>g> birds b<str<strong>on</strong>g>and</str<strong>on</strong>g>ed at botulism outbreak sites were44% lower (sexes pooled) than expected based <strong>on</strong> comparis<strong>on</strong> with c<strong>on</strong>trol data (Figure 1). Inboth SK <str<strong>on</strong>g>and</str<strong>on</strong>g> AB, recovery rates <str<strong>on</strong>g>of</str<strong>on</strong>g> males exceeded those <str<strong>on</strong>g>of</str<strong>on</strong>g> females (Figure 1; Table 2); aresult that likely reflects sex differences in vulnerability to hunting (Anders<strong>on</strong> 1975, Nichols etal. 1990).


64Recovery rate comparis<strong>on</strong>s - 1999Data from 1999 were c<strong>on</strong>sistent with our initial predicti<strong>on</strong>, in that recovery rate estimates forc<strong>on</strong>trol sites exceeded point estimates for outbreak sites in five <str<strong>on</strong>g>of</str<strong>on</strong>g> six separate comparis<strong>on</strong>s(Figure 2). However, similar to 1998, <strong>the</strong> initial logistic regressi<strong>on</strong> model suggested aninteracti<strong>on</strong> effect between treatment <str<strong>on</strong>g>and</str<strong>on</strong>g> regi<strong>on</strong> (χ 2 = 4.57, df = 2, P = 0.102). Inspecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>actual recovery rates indicated that <strong>the</strong> interacti<strong>on</strong> was largely attributable to an anomalouspattern in <strong>the</strong> data from AB. Specifically, whereas recovery rate estimates for outbreak sites inSK <str<strong>on</strong>g>and</str<strong>on</strong>g> MB were c<strong>on</strong>sistently lower than corresp<strong>on</strong>ding estimates obtained from c<strong>on</strong>trol sites,results from AB were mixed (Figure 2). Accordingly, when recovery data from AB wereanalyzed separately from data obtained from <strong>the</strong> o<strong>the</strong>r two provinces, a significant effect <str<strong>on</strong>g>of</str<strong>on</strong>g>botulism was found for SK <str<strong>on</strong>g>and</str<strong>on</strong>g> MB, but not for AB (Table 3, Figure 2). Recovery rates <str<strong>on</strong>g>of</str<strong>on</strong>g> birdsb<str<strong>on</strong>g>and</str<strong>on</strong>g>ed at outbreak sites in SK <str<strong>on</strong>g>and</str<strong>on</strong>g> MB were, respectively, 44 <str<strong>on</strong>g>and</str<strong>on</strong>g> 18% lower (sexes pooled)than expected based <strong>on</strong> comparis<strong>on</strong>s with c<strong>on</strong>trol data (Figure 2).Recovery rate comparis<strong>on</strong>s - 2000Results from <strong>the</strong> 2000 field seas<strong>on</strong> were similar to those obtained in 1999: <strong>the</strong> initial logisticregressi<strong>on</strong> model revealed a significant treatment-by-regi<strong>on</strong> interacti<strong>on</strong> (χ 2 = 7.48, df = 2, P =0.024) <str<strong>on</strong>g>and</str<strong>on</strong>g> inspecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> recovery rate estimates suggested that <strong>the</strong> interactive effect was largelydue to <strong>the</strong> pattern in AB differing from that observed in <strong>the</strong> o<strong>the</strong>r two provinces (Figure 3).Thus, we again treated data from AB separately in <strong>the</strong> final analysis. Results indicated a highlysignificant treatment effect in SK <str<strong>on</strong>g>and</str<strong>on</strong>g> MB (Table 4), with recovery rates <str<strong>on</strong>g>of</str<strong>on</strong>g> birds b<str<strong>on</strong>g>and</str<strong>on</strong>g>ed atoutbreak sites being 14-35% lower (sexes pooled) than expected based <strong>on</strong> comparis<strong>on</strong>s withc<strong>on</strong>trol data (Figure 3). Interestingly, <strong>the</strong> opposite pattern was evident in AB (Figure 3),although recovery rate differences between outbreak <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>trol sites in that province were <strong>on</strong>lymarginally significant (Table 4).Clean-up versus no clean-up <strong>on</strong> botulism-pr<strong>on</strong>e wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>sOver all years, field crews working at botulism outbreaks sites trapped <str<strong>on</strong>g>and</str<strong>on</strong>g> released 6,594 adultsmallards (annual totals for 1998, 1999, <str<strong>on</strong>g>and</str<strong>on</strong>g> 2000 were 1,057, 1,679, <str<strong>on</strong>g>and</str<strong>on</strong>g> 3,858, respectively;Table 5). Partiti<strong>on</strong>ing data by sex <str<strong>on</strong>g>and</str<strong>on</strong>g> site, direct recovery rates ranged from 0-5.7% in 1998, 0-8.0% in 1999, <str<strong>on</strong>g>and</str<strong>on</strong>g> 0-16.7% in 2000 (Table 5). For reas<strong>on</strong>s explained above, recovery rates <str<strong>on</strong>g>of</str<strong>on</strong>g>males almost invariably exceeded those <str<strong>on</strong>g>of</str<strong>on</strong>g> females (Table 5).If carcass removal is effective at reducing botulism-related mortality, <strong>on</strong>e would expect recoveryrates <str<strong>on</strong>g>of</str<strong>on</strong>g> birds b<str<strong>on</strong>g>and</str<strong>on</strong>g>ed at managed sites to be greater than those <str<strong>on</strong>g>of</str<strong>on</strong>g> birds b<str<strong>on</strong>g>and</str<strong>on</strong>g>ed at unmanagedsites. Results from 1998 were c<strong>on</strong>sistent with this expectati<strong>on</strong>, in that recovery rates <str<strong>on</strong>g>of</str<strong>on</strong>g> birdsb<str<strong>on</strong>g>and</str<strong>on</strong>g>ed at Pakowki Lake, AB (a removal site) exceeded those <str<strong>on</strong>g>of</str<strong>on</strong>g> birds b<str<strong>on</strong>g>and</str<strong>on</strong>g>ed at Old WivesLake, SK (a n<strong>on</strong>-removal site; Table 5). However, formal analysis indicated that, afterc<strong>on</strong>trolling effects <str<strong>on</strong>g>of</str<strong>on</strong>g> sex <str<strong>on</strong>g>and</str<strong>on</strong>g> date <str<strong>on</strong>g>of</str<strong>on</strong>g> b<str<strong>on</strong>g>and</str<strong>on</strong>g>ing, differences between <strong>the</strong> two sites were no greaterthan expected based <strong>on</strong> sampling error (P = 0.651; Table 6). Similar results were obtained for1999 (Tables 5 <str<strong>on</strong>g>and</str<strong>on</strong>g> 6).


65Results from <strong>the</strong> 2000 field seas<strong>on</strong> were slightly more complex, in that <strong>the</strong> initial logisticanalysis revealed a significant sex-by-site interacti<strong>on</strong> (P = 0.008; Table 6). Accordingly, for thatyear, we assessed am<strong>on</strong>g-site variati<strong>on</strong> in recovery probability separately by sex. With respect toour central objective, results were mixed <str<strong>on</strong>g>and</str<strong>on</strong>g> generally did not support <strong>the</strong> predicted associati<strong>on</strong>between carcass removal <str<strong>on</strong>g>and</str<strong>on</strong>g> direct recovery rate. Am<strong>on</strong>g males, <strong>the</strong> recovery rate <str<strong>on</strong>g>of</str<strong>on</strong>g> birdsb<str<strong>on</strong>g>and</str<strong>on</strong>g>ed at <strong>on</strong>e removal site (Frank Lake, AB) was <strong>the</strong> highest observed in that year (Table 5), but<strong>the</strong> opposite was true <str<strong>on</strong>g>of</str<strong>on</strong>g> a sec<strong>on</strong>d removal site (Paysen Lake, SK; Table 5). Fur<strong>the</strong>r, logisticanalysis indicated that, overall, variati<strong>on</strong> am<strong>on</strong>g sites was no greater than expected (P = 0.23;Table 6), despite reas<strong>on</strong>ably large samples <str<strong>on</strong>g>of</str<strong>on</strong>g> b<str<strong>on</strong>g>and</str<strong>on</strong>g>ed individuals. Am<strong>on</strong>g females, <strong>the</strong> pattern <str<strong>on</strong>g>of</str<strong>on</strong>g>recovery rate variati<strong>on</strong> was c<strong>on</strong>sistent with our original predicti<strong>on</strong> (Table 5), but sample sizes inthis instance were extremely limited (e.g., <strong>on</strong>ly five recoveries from removal sites). Perhaps notsurprisingly, formal analysis again failed to distinguish am<strong>on</strong>g-site variati<strong>on</strong> from r<str<strong>on</strong>g>and</str<strong>on</strong>g>omsampling error (P = 0.20; Table 6).DISCUSSIONOur results lend c<strong>on</strong>siderable support to <strong>the</strong> suggesti<strong>on</strong> that, for mallards, exposure to botulismduring <strong>the</strong> post-breeding seas<strong>on</strong> can have a measurable impact <strong>on</strong> survival at <strong>the</strong> populati<strong>on</strong>level. In particular, analyses <str<strong>on</strong>g>of</str<strong>on</strong>g> b<str<strong>on</strong>g>and</str<strong>on</strong>g>ing data from SK <str<strong>on</strong>g>and</str<strong>on</strong>g> MB were uniformly c<strong>on</strong>sistent insupporting <strong>the</strong> predicted associati<strong>on</strong> between exposure to botulism <str<strong>on</strong>g>and</str<strong>on</strong>g> direct recoveryprobability. To <strong>the</strong> extent that recovery probability provides a relative index <str<strong>on</strong>g>of</str<strong>on</strong>g> late-summersurvival, data from SK <str<strong>on</strong>g>and</str<strong>on</strong>g> MB suggested a 14-44% reducti<strong>on</strong> in survival am<strong>on</strong>g mallards usingbotulism outbreak sites. This finding seems especially significant given that, in <strong>the</strong> absence <str<strong>on</strong>g>of</str<strong>on</strong>g>disease, late-summer survival rates <str<strong>on</strong>g>of</str<strong>on</strong>g> post-breeding mallards are thought to approach unity.In c<strong>on</strong>trast to <strong>the</strong> pattern observed in SK <str<strong>on</strong>g>and</str<strong>on</strong>g> MB, results from AB were mixed <str<strong>on</strong>g>and</str<strong>on</strong>g> generally didnot support <strong>the</strong> predicti<strong>on</strong> that mallards b<str<strong>on</strong>g>and</str<strong>on</strong>g>ed at outbreak sites would show reduced rates <str<strong>on</strong>g>of</str<strong>on</strong>g>direct recovery. Reas<strong>on</strong>s for this discrepancy are unclear. C<strong>on</strong>ceivably, differences in resultsobtained from <strong>the</strong> two areas might be attributable to regi<strong>on</strong>al variati<strong>on</strong> in factors such as timing<str<strong>on</strong>g>of</str<strong>on</strong>g> post-breeding activities <str<strong>on</strong>g>and</str<strong>on</strong>g>/or timing <str<strong>on</strong>g>and</str<strong>on</strong>g> extent <str<strong>on</strong>g>of</str<strong>on</strong>g> post-breeding movements. For instance, ifmallards in AB had, <strong>on</strong> average, completed post-breeding activities earlier in <strong>the</strong> seas<strong>on</strong>(resulting in a disproporti<strong>on</strong>ately high number <str<strong>on</strong>g>of</str<strong>on</strong>g> post wing-moult individuals in <strong>the</strong> b<str<strong>on</strong>g>and</str<strong>on</strong>g>edsample), many b<str<strong>on</strong>g>and</str<strong>on</strong>g>ed individuals might have emigrated from botulism study areas before <strong>the</strong><strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> propagati<strong>on</strong> phase <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> disease, thus reducing <strong>the</strong>ir overall level <str<strong>on</strong>g>of</str<strong>on</strong>g> exposure.Alternatively, botulism outbreaks at <strong>the</strong> AB study sites may have been less severe than thoseoccurring at study sites in <strong>the</strong> o<strong>the</strong>r two provinces. It is possible that outbreaks at Kimiwan Lake<str<strong>on</strong>g>and</str<strong>on</strong>g> Frank Lake (both in AB) might have been less severe than initially assumed.To our knowledge, <strong>on</strong>ly <strong>on</strong>e o<strong>the</strong>r study has attempted to quantify effects <str<strong>on</strong>g>of</str<strong>on</strong>g> exposure tobotulism <strong>on</strong> rates <str<strong>on</strong>g>of</str<strong>on</strong>g> late-summer survival in waterfowl. Evelsizer et al. (Part II) deployed radiomarkedmallards <strong>on</strong> <strong>the</strong> same botulism outbreak sites as those used in <strong>the</strong> present study, <str<strong>on</strong>g>and</str<strong>on</strong>g>m<strong>on</strong>itored individual survival for a period <str<strong>on</strong>g>of</str<strong>on</strong>g> 30 days. They found that 30-day survival ratesranged from ~0.15 to >0.70, depending <strong>on</strong> <strong>the</strong> wetl<str<strong>on</strong>g>and</str<strong>on</strong>g> examined. An important distincti<strong>on</strong>


66between <strong>the</strong> present study <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> radio-telemetry investigati<strong>on</strong> is that <strong>the</strong> latter focusedexclusively <strong>on</strong> moulting (i.e., flightless) individuals, so radio-marked birds were essentially“grounded” <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong>refore present at botulism outbreak sites throughout <strong>the</strong> entire 30-daym<strong>on</strong>itoring period. In c<strong>on</strong>trast, our b<str<strong>on</strong>g>and</str<strong>on</strong>g>ed samples included birds in all three major stages <str<strong>on</strong>g>of</str<strong>on</strong>g>wing moult (i.e., pre-moult, moulting, <str<strong>on</strong>g>and</str<strong>on</strong>g> post-moult), <str<strong>on</strong>g>and</str<strong>on</strong>g> it is likely that many birds used inour analyses were present <strong>on</strong> <strong>the</strong> study area (<str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong>refore exposed to <strong>the</strong> outbreak) for a muchshorter period <str<strong>on</strong>g>of</str<strong>on</strong>g> time. That we were able to detect recovery rate differences between outbreak<str<strong>on</strong>g>and</str<strong>on</strong>g> n<strong>on</strong>-outbreak c<strong>on</strong>trol sites despite <strong>the</strong>se c<strong>on</strong>siderati<strong>on</strong>s suggests a str<strong>on</strong>g influence <str<strong>on</strong>g>of</str<strong>on</strong>g>botulism <strong>on</strong> survival probability.Although it seems clear that exposure to botulism can have a measurable impact <strong>on</strong> survival at<strong>the</strong> populati<strong>on</strong> level, several research needs are evident. First, studies are needed to determine<strong>the</strong> extent to which existing results for mallards can be generalized to o<strong>the</strong>r avian species,particularly those <str<strong>on</strong>g>of</str<strong>on</strong>g> potential management c<strong>on</strong>cern (e.g., nor<strong>the</strong>rn pintails [Anas acuta]).Sec<strong>on</strong>d, as indicated earlier, it is unclear why patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> b<str<strong>on</strong>g>and</str<strong>on</strong>g> recoveries from outbreak <str<strong>on</strong>g>and</str<strong>on</strong>g> n<strong>on</strong>outbreakwetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s might vary <strong>on</strong> a regi<strong>on</strong>al basis. In <strong>the</strong> c<strong>on</strong>text <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> present study, it would beinstructive to know why results obtained from AB were so at odds with results obtained from <strong>the</strong>o<strong>the</strong>r two Prairie provinces. Finally, it is important to recognize that effects <str<strong>on</strong>g>of</str<strong>on</strong>g> botulism <strong>on</strong>c<strong>on</strong>tinental populati<strong>on</strong>s will depend not <strong>on</strong>ly <strong>on</strong> <strong>the</strong> mortality rates <str<strong>on</strong>g>of</str<strong>on</strong>g> exposed individuals, butalso <strong>on</strong> <strong>the</strong> proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> individuals in <strong>the</strong> populati<strong>on</strong> that are routinely exposed. While someinformati<strong>on</strong> <strong>on</strong> mortality rates is now available (e.g., Evelsizer et al. 2010), virtually nothing isknown about <strong>the</strong> size <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> populati<strong>on</strong> at risk. Unfortunately, <strong>the</strong> secretive nature <str<strong>on</strong>g>of</str<strong>on</strong>g> moulting<str<strong>on</strong>g>and</str<strong>on</strong>g> staging waterfowl, coupled with challenges associated with predicting botulism outbreaks,will make this informati<strong>on</strong> very difficult to obtain. Never<strong>the</strong>less, such informati<strong>on</strong> is necessaryif we are to fully underst<str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> impact <str<strong>on</strong>g>of</str<strong>on</strong>g> botulism at <strong>the</strong> populati<strong>on</strong> level.Finally, our results provide little compelling evidence to suggest that carcass removal is effectiveat reducing waterfowl mortality due to avian botulism. After c<strong>on</strong>trolling effects <str<strong>on</strong>g>of</str<strong>on</strong>g> potentiallyc<strong>on</strong>founding variables, we were unable to detect measurable differences in direct recovery ratesam<strong>on</strong>g mallards b<str<strong>on</strong>g>and</str<strong>on</strong>g>ed at outbreak sites with <str<strong>on</strong>g>and</str<strong>on</strong>g> without intensive carcass clean-up. Similar toresults <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> present study, findings in Part II indicate no c<strong>on</strong>sistent difference in survival rates<str<strong>on</strong>g>of</str<strong>on</strong>g> birds moulting <strong>on</strong> wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s with <str<strong>on</strong>g>and</str<strong>on</strong>g> without intensive carcass removal. Bollinger et al. (PartI) fur<strong>the</strong>r dem<strong>on</strong>strated that <strong>the</strong> efficiency <str<strong>on</strong>g>of</str<strong>on</strong>g> carcass removal operati<strong>on</strong>s <strong>on</strong> Prairie wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s istypically far from absolute. Using samples <str<strong>on</strong>g>of</str<strong>on</strong>g> marked carcasses, <strong>the</strong>y estimated that <strong>on</strong>ly 7-51%<str<strong>on</strong>g>of</str<strong>on</strong>g> carcasses are actually retrieved, depending <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> size <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> wetl<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> extent <str<strong>on</strong>g>of</str<strong>on</strong>g>vegetati<strong>on</strong>. Collectively, <strong>the</strong>se recent investigati<strong>on</strong>s call into questi<strong>on</strong> <strong>the</strong> viability <str<strong>on</strong>g>of</str<strong>on</strong>g> carcassremoval as a management strategy, at least for large, heavily vegetated wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s in PrairieCanada. Additi<strong>on</strong>al research is needed to identify alternative management strategies <str<strong>on</strong>g>and</str<strong>on</strong>g> toevaluate <strong>the</strong>ir efficacy.


67LITERATURE CITEDAnders<strong>on</strong> DR. 1975. Populati<strong>on</strong> ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Mallard. V. Temporal <str<strong>on</strong>g>and</str<strong>on</strong>g> geographic estimates<str<strong>on</strong>g>of</str<strong>on</strong>g> survival, recovery, <str<strong>on</strong>g>and</str<strong>on</strong>g> harvest rates. U.S. Fish <str<strong>on</strong>g>and</str<strong>on</strong>g> Wildlife Service ResourcePublicati<strong>on</strong> 125.Evelsizer DD, Bollinger TK, Dufour KW, Clark RG. 2010. Survival <str<strong>on</strong>g>of</str<strong>on</strong>g> radio-marked mallards inrelati<strong>on</strong> to management <str<strong>on</strong>g>of</str<strong>on</strong>g> avian botulism. J Wildl Dis. 46, in press.Nichols JD, Williams M, Caithness T. 1990. Survival <str<strong>on</strong>g>and</str<strong>on</strong>g> b<str<strong>on</strong>g>and</str<strong>on</strong>g> recovery rates <str<strong>on</strong>g>of</str<strong>on</strong>g> mallards inNew Zeal<str<strong>on</strong>g>and</str<strong>on</strong>g>. J Wildl Manage. 54:629-636.Samuel MD, Bowers EF, Frans<strong>on</strong> JC. 1992. Lead exposure <str<strong>on</strong>g>and</str<strong>on</strong>g> recovery rates <str<strong>on</strong>g>of</str<strong>on</strong>g> black ducksb<str<strong>on</strong>g>and</str<strong>on</strong>g>ed in Tennessee. J Wildl Dis. 28:555-561.


68Table 1. Number <str<strong>on</strong>g>of</str<strong>on</strong>g> adult (after-hatch-year) mallards trapped <str<strong>on</strong>g>and</str<strong>on</strong>g> released during July-August atselected botulism outbreak sites in Prairie Canada, 1998-2000. Also tabulated are corresp<strong>on</strong>dingtotals for b<str<strong>on</strong>g>and</str<strong>on</strong>g>ing stati<strong>on</strong>s selected for use as n<strong>on</strong>-outbreak c<strong>on</strong>trol sites. Locati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g>coordinates for most* lakes are provided in Figure 1 <str<strong>on</strong>g>and</str<strong>on</strong>g> Table 1 <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> General Introducti<strong>on</strong>.Numbers B<str<strong>on</strong>g>and</str<strong>on</strong>g>edYear Lake, Province TypeMales Females Total1998 Pakowki, AB <str<strong>on</strong>g>Botulism</str<strong>on</strong>g> 490 290 780Brooks, AB C<strong>on</strong>trol 1,725 687 2,412Old Wives, SK <str<strong>on</strong>g>Botulism</str<strong>on</strong>g> 241 36 277Last Mountain, SK C<strong>on</strong>trol 1,823 625 2,4481999 Kimiwan, AB <str<strong>on</strong>g>Botulism</str<strong>on</strong>g> 323 153 476Brooks, AB C<strong>on</strong>trol 1,380 333 1,713Eyebrow, SK <str<strong>on</strong>g>Botulism</str<strong>on</strong>g> 145 65 210Old Wives, SK <str<strong>on</strong>g>Botulism</str<strong>on</strong>g> 475 19 494Last Mountain, SK C<strong>on</strong>trol 449 104 553Whitewater, MB <str<strong>on</strong>g>Botulism</str<strong>on</strong>g> 470 29 499Big Grass Marsh, MB C<strong>on</strong>trol 1,596 293 1,8892000 Frank, AB <str<strong>on</strong>g>Botulism</str<strong>on</strong>g> 155 17 172Brooks, AB C<strong>on</strong>trol 2,413 433 2,846Crane, SK <str<strong>on</strong>g>Botulism</str<strong>on</strong>g> 466 32 498Paysen, SK <str<strong>on</strong>g>Botulism</str<strong>on</strong>g> 764 24 788Kettlehut, SK <str<strong>on</strong>g>Botulism</str<strong>on</strong>g> 1,046 28 1,074Last Mountain, SK C<strong>on</strong>trol 1,074 273 1,347Whitewater, MB <str<strong>on</strong>g>Botulism</str<strong>on</strong>g> 945 381 1,326Big Grass Marsh, MB C<strong>on</strong>trol 1,565 468 2,033Total 17,545 4,290 21,835*Except for Brooks, <strong>the</strong> coordinates for which are 50.35N - 111.53W.aAB = Alberta; SK = Saskatchewan; MB = Manitoba.


69Table 2. Logistic analyses evaluating effects <str<strong>on</strong>g>of</str<strong>on</strong>g> date <str<strong>on</strong>g>of</str<strong>on</strong>g> b<str<strong>on</strong>g>and</str<strong>on</strong>g>ing, sex, <str<strong>on</strong>g>and</str<strong>on</strong>g> treatment (botulism vs.c<strong>on</strong>trol) <strong>on</strong> <strong>the</strong> probability <str<strong>on</strong>g>of</str<strong>on</strong>g> direct recovery for mallards b<str<strong>on</strong>g>and</str<strong>on</strong>g>ed at botulism outbreak <str<strong>on</strong>g>and</str<strong>on</strong>g> n<strong>on</strong>outbreakc<strong>on</strong>trol sites in 1998. Outbreak sites include Pakowki Lake, Alberta (AB) <str<strong>on</strong>g>and</str<strong>on</strong>g> OldWives Lake, Saskatchewan (SK). C<strong>on</strong>trol sites for AB <str<strong>on</strong>g>and</str<strong>on</strong>g> SK were Brooks <str<strong>on</strong>g>and</str<strong>on</strong>g> Last MountainLake, respectively. Sec<strong>on</strong>d-order interacti<strong>on</strong>s were not significant (P > 0.10) <str<strong>on</strong>g>and</str<strong>on</strong>g> were <strong>the</strong>reforeremoved from each model.Province n Source Coefficient χ 2 df PAB 3,192 Date 0.00 0.00 1 0.945Sex 0.78 14.44 1


70Table 3. Logistic analyses evaluating effects <str<strong>on</strong>g>of</str<strong>on</strong>g> date <str<strong>on</strong>g>of</str<strong>on</strong>g> b<str<strong>on</strong>g>and</str<strong>on</strong>g>ing, sex, <str<strong>on</strong>g>and</str<strong>on</strong>g> treatment (botulism vs.c<strong>on</strong>trol) <strong>on</strong> <strong>the</strong> probability <str<strong>on</strong>g>of</str<strong>on</strong>g> direct recovery for mallards b<str<strong>on</strong>g>and</str<strong>on</strong>g>ed at botulism outbreak <str<strong>on</strong>g>and</str<strong>on</strong>g> n<strong>on</strong>outbreakc<strong>on</strong>trol sites in 1999. Outbreak sites included: Kimiwan Lake, Alberta (AB); EyebrowLake, Saskatchewan (SK); Old Wives Lake, SK; <str<strong>on</strong>g>and</str<strong>on</strong>g> Whitewater Lake, Manitoba (MB) (datafrom <strong>the</strong> two SK sites were combined for analysis). C<strong>on</strong>trol sites for AB, SK, <str<strong>on</strong>g>and</str<strong>on</strong>g> MB wereBrooks, Last Mountain Lake, <str<strong>on</strong>g>and</str<strong>on</strong>g> Big Grass Marsh, respectively. Sec<strong>on</strong>d-order interacti<strong>on</strong>swere not significant (P > 0.10) <str<strong>on</strong>g>and</str<strong>on</strong>g> were <strong>the</strong>refore removed from each model.Province n Source Coefficient χ 2 df PAB 2,189 Date 0.01 0.47 1 0.495Sex 0.49 4.10 1 0.043Treatment 0.37 0.57 1 0.451SK / MB 3,645 Date -0.01 1.17 1 0.279Sex 0.36 2.68 1 0.102Province 0.06 0.13 1 0.722Treatment -0.67 5.44 1 0.020


71Table 4. Logistic analyses evaluating effects <str<strong>on</strong>g>of</str<strong>on</strong>g> date <str<strong>on</strong>g>of</str<strong>on</strong>g> b<str<strong>on</strong>g>and</str<strong>on</strong>g>ing, sex, <str<strong>on</strong>g>and</str<strong>on</strong>g> treatment (botulism vs.c<strong>on</strong>trol) <strong>on</strong> <strong>the</strong> probability <str<strong>on</strong>g>of</str<strong>on</strong>g> direct recovery for mallards b<str<strong>on</strong>g>and</str<strong>on</strong>g>ed at botulism outbreak <str<strong>on</strong>g>and</str<strong>on</strong>g> n<strong>on</strong>outbreakc<strong>on</strong>trol sites in 2000. Outbreak sites included: Frank Lake, Alberta (AB); Crane LakeSaskatchewan (SK); Paysen Lake, SK; Kettlehut Lake, SK; <str<strong>on</strong>g>and</str<strong>on</strong>g> Whitewater Lake, Manitoba(MB) (data from <strong>the</strong> three SK sites were combined for analysis). C<strong>on</strong>trol sites for AB, SK, <str<strong>on</strong>g>and</str<strong>on</strong>g>MB were Brooks, Last Mountain Lake, <str<strong>on</strong>g>and</str<strong>on</strong>g> Big Grass Marsh, respectively. Sec<strong>on</strong>d-orderinteracti<strong>on</strong>s were not significant (P > 0.10) <str<strong>on</strong>g>and</str<strong>on</strong>g> were <strong>the</strong>refore removed from each model.Province n Source Coefficient χ 2 df PAB 3018 Date 0.01 1.28 1 0.258Sex 0.41 3.72 1 0.054Treatment 0.58 3.22 1 0.073SK / MB 7066 Date 0.00 0.15 1 0.695Sex 0.63 21.39 1


72Table 5. Direct recovery rates <str<strong>on</strong>g>of</str<strong>on</strong>g> mallards trapped <str<strong>on</strong>g>and</str<strong>on</strong>g> released during late summer (July - earlyAugust) at selected botulism outbreak sites in Prairie Canada, 1998-2000. Managed sites (thosesubject to surveillance <str<strong>on</strong>g>and</str<strong>on</strong>g> carcass removal) are indicated with *.Year Sex Lake, Province a NumberB<str<strong>on</strong>g>and</str<strong>on</strong>g>edNumberRecoveredPercentRecovered1998 Male Pakowki Lake, AB* 490 28 5.7Old Wives Lake, SK 241 12 5.0Female Pakowki Lake, AB* 290 10 3.4Old Wives Lake, SK 36 0 0.01999 Male Kimiwan Lake, AB* 323 26 8.0Eyebrow Lake, SK 145 8 5.5Old Wives Lake, SK 475 21 4.4Whitewater Lake, MB* 470 31 6.6Female Kimiwan Lake, AB* 153 5 3.3Eyebrow Lake, SK 65 2 3.1Old Wives Lake, SK 19 0 0.0Whitewater Lake, MB* 29 1 3.42000 Male Frank Lake, AB* 155 18 11.6Crane Lake, SK 466 37 7.9Paysen Lake, SK* 764 53 6.9Kettlehut Lake, SK 1046 89 8.5Whitewater Lake, MB 945 77 8.1Female Frank Lake, AB* 17 1 5.9Crane Lake, SK 32 1 3.1Paysen Lake, SK* 24 4 16.7Kettlehut Lake, SK 28 0 0.0Whitewater Lake, MB 381 13 3.4aAB = Alberta; SK = Saskatchewan; MB = Manitoba.


73Table 6. Results <str<strong>on</strong>g>of</str<strong>on</strong>g> logistic regressi<strong>on</strong> models evaluating am<strong>on</strong>g-site variati<strong>on</strong> in direct recoveryprobability <str<strong>on</strong>g>of</str<strong>on</strong>g> mallards, after c<strong>on</strong>trolling effects <str<strong>on</strong>g>of</str<strong>on</strong>g> sex (1998 <str<strong>on</strong>g>and</str<strong>on</strong>g> 1999 <strong>on</strong>ly) <str<strong>on</strong>g>and</str<strong>on</strong>g> date <str<strong>on</strong>g>of</str<strong>on</strong>g>b<str<strong>on</strong>g>and</str<strong>on</strong>g>ing. For 2000, models were developed separately by sex because preliminary analysesrevealed a significant sex-by-site interacti<strong>on</strong> (χ 2 = 13.82, df = 4, P = 0.008). No such interacti<strong>on</strong>was evident in ei<strong>the</strong>r 1998 (χ 2 = 0.22, df = 1, P = 0.64) or 1999 (χ 2 = 0.61, df = 3, P = 0.89).Model n Source χ 2 df P1998 - sexes combined 1,057 Date 0.06 1 0.807Sex 3.14 1 0.076Site 0.20 1 0.6511999 - sexes combined 1,679 Date 3.66 1 0.056Sex 4.47 1 0.035Site 1.84 3 0.6062000 - males 3,376 Date 1.61 1 0.205Site 5.64 4 0.2272000 - females 482 Date 0.60 1 0.440Site 5.96 4 0.202


741210C<strong>on</strong>trol<str<strong>on</strong>g>Botulism</str<strong>on</strong>g>Percent Recovered86420AB - Males AB - Females SK - Males SK - FemalesFigure 1. Direct recovery <str<strong>on</strong>g>of</str<strong>on</strong>g> mallards b<str<strong>on</strong>g>and</str<strong>on</strong>g>ed at botulism outbreak <str<strong>on</strong>g>and</str<strong>on</strong>g> n<strong>on</strong>-outbreak c<strong>on</strong>trolsites Alberta (AB) <str<strong>on</strong>g>and</str<strong>on</strong>g> Saskatchewan (SK), 1998. Outbreak <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>trol sites for AB arePakowski Lake <str<strong>on</strong>g>and</str<strong>on</strong>g> Brooks, respectively. Outbreak <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>trol sites for SK are Old Wives Lake<str<strong>on</strong>g>and</str<strong>on</strong>g> Last Mountain Lake, respectively. The number <str<strong>on</strong>g>of</str<strong>on</strong>g> b<str<strong>on</strong>g>and</str<strong>on</strong>g>ed individuals for each site is givenin Table 1.


751210C<strong>on</strong>trol<str<strong>on</strong>g>Botulism</str<strong>on</strong>g>Percent Recovered86420ABMalesABFemalesSKMalesSKFemalesMBMalesMBFemalesFigure 2. Direct recovery rates <str<strong>on</strong>g>of</str<strong>on</strong>g> mallards b<str<strong>on</strong>g>and</str<strong>on</strong>g>ed at botulism outbreak sites <str<strong>on</strong>g>and</str<strong>on</strong>g> n<strong>on</strong>-outbreakc<strong>on</strong>trol sites in each <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> three Prairie provinces, 1999. Outbreak sites include: Kimiwan Lake,Alberta (AB); Eyebrow Lake, Saskatchewan (SK); Old Wives Lake, SK; <str<strong>on</strong>g>and</str<strong>on</strong>g> Whitewater Lake,Manitoba (MB) (data from <strong>the</strong> two SK sites were combined for analysis). C<strong>on</strong>trol sites for AB,SK, <str<strong>on</strong>g>and</str<strong>on</strong>g> MB were Brooks, Last Mountain Lake, <str<strong>on</strong>g>and</str<strong>on</strong>g> Big Grass Marsh, respectively. The number<str<strong>on</strong>g>of</str<strong>on</strong>g> b<str<strong>on</strong>g>and</str<strong>on</strong>g>ed individuals for each site is given in Table 1.


761614C<strong>on</strong>trol<str<strong>on</strong>g>Botulism</str<strong>on</strong>g>12Percent Recovered1086420ABMalesABFemalesSKMalesSKFemalesMBMalesMBFemalesFigure 3. Direct recovery rates <str<strong>on</strong>g>of</str<strong>on</strong>g> mallards b<str<strong>on</strong>g>and</str<strong>on</strong>g>ed at botulism outbreak sites <str<strong>on</strong>g>and</str<strong>on</strong>g> n<strong>on</strong>-outbreakc<strong>on</strong>trol sites in each <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> three Prairie provinces, 2000. Outbreak sites include: Frank Lake,Alberta (AB); Crane Lake, Saskatchewan (SK); Paysen Lake, SK; Kettlehut Lake, SK; <str<strong>on</strong>g>and</str<strong>on</strong>g>Whitewater Lake, Manitoba (MB) (date from <strong>the</strong> three SK sites were combined for analysis).C<strong>on</strong>trol sites for AB, SK, <str<strong>on</strong>g>and</str<strong>on</strong>g> MB were Brooks, Last Mountain Lake, <str<strong>on</strong>g>and</str<strong>on</strong>g> Big Grass Marsh,respectively. The number <str<strong>on</strong>g>of</str<strong>on</strong>g> b<str<strong>on</strong>g>and</str<strong>on</strong>g>ed individuals for each site is given in Table 1.


77PART VIDENTIFICATION OF PRIMARY SUBSTRATE IN THE INITIATION OF AVIANBOTULISM OUTBREAKSCATHERINE SOOS <str<strong>on</strong>g>and</str<strong>on</strong>g> GARY WOBESERThis secti<strong>on</strong> appears, unabridged, in Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Wildlife <str<strong>on</strong>g>Management</str<strong>on</strong>g> 70:43-53, 2006. Pleasec<strong>on</strong>tact Ca<strong>the</strong>rine Soos (ca<strong>the</strong>rine.soos@ec.gc.ca) for a copy <str<strong>on</strong>g>of</str<strong>on</strong>g> this paper.ABSTRACTThe source <str<strong>on</strong>g>of</str<strong>on</strong>g> substrate for initial proliferati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> toxigenesis <str<strong>on</strong>g>of</str<strong>on</strong>g> Clostridium botulinum, type Cprior to outbreaks <str<strong>on</strong>g>of</str<strong>on</strong>g> avian botulism is typically unknown. We investigated factors involved in<strong>the</strong> initiati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> avian botulism outbreaks at Eyebrow Lake, Saskatchewan, focussing <strong>on</strong> <strong>the</strong> role<str<strong>on</strong>g>of</str<strong>on</strong>g> Franklin’s gull (Larus pipixcan) mortality as a source <str<strong>on</strong>g>of</str<strong>on</strong>g> initial substrate for C. botulinum.From 1999 to 2001, hatch-year gull carcasses were <strong>the</strong> predominant source <str<strong>on</strong>g>of</str<strong>on</strong>g> toxin-ladenmaggots found prior to outbreaks <str<strong>on</strong>g>of</str<strong>on</strong>g> avian botulism in waterfowl. Peak carcass density <str<strong>on</strong>g>of</str<strong>on</strong>g> gullsoccurred <strong>on</strong>e to two weeks prior to <strong>the</strong> <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g> botulism outbreaks in waterfowl. Nest density at<strong>the</strong> beginning <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> breeding seas<strong>on</strong> was a significant predictor <str<strong>on</strong>g>of</str<strong>on</strong>g> juvenile gull carcass density.Both <strong>the</strong> proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> gull carcasses developing maggots <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> maggot samplesc<strong>on</strong>taining toxin increased as <strong>the</strong> seas<strong>on</strong> progressed, <str<strong>on</strong>g>and</str<strong>on</strong>g> carcasses were 22.7 times more likely todevelop toxin-laden maggots at mean daily water temperatures ≥20 C than at


78INTRODUCTION<str<strong>on</strong>g>Avian</str<strong>on</strong>g> botulism (Clostridium botulinum, type C) is an important disease <str<strong>on</strong>g>of</str<strong>on</strong>g> wild waterfowlthroughout <strong>the</strong> world, particularly in North America. The disease is caused by ingesti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>neuroparalytic toxin produced by type C C. botulinum, an anaerobic bacterium that requiresprotein-rich substrate for growth. C. botulinum produces toxin <strong>on</strong>ly when infected with abacteriophage c<strong>on</strong>taining <strong>the</strong> genetic code for type C 1 toxin (Eklund et al. 1971). Hightemperatures <str<strong>on</strong>g>and</str<strong>on</strong>g> shallow, stagnant, saline water with low dissolved oxygen were believed to befavourable for outbreaks (Bell et al. 1955). However, many wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s with <strong>the</strong>se characteristicshave no history <str<strong>on</strong>g>of</str<strong>on</strong>g> botulism, <str<strong>on</strong>g>and</str<strong>on</strong>g> outbreaks <str<strong>on</strong>g>of</str<strong>on</strong>g>ten occur <strong>on</strong> deep, well-oxygenated lakes, or in latewinter or early spring (Rocke et al. 1999). Water temperature, pH, salinity, redox potential, <str<strong>on</strong>g>and</str<strong>on</strong>g>invertebrate biomass influence <strong>the</strong> occurrence <str<strong>on</strong>g>of</str<strong>on</strong>g> outbreaks (Rocke et al. 1999, Rocke <str<strong>on</strong>g>and</str<strong>on</strong>g>Samuel 1999), but some factors have not been c<strong>on</strong>sistently different between lakes with <str<strong>on</strong>g>and</str<strong>on</strong>g>without outbreaks (Rocke et al. 1999).<str<strong>on</strong>g>Botulism</str<strong>on</strong>g> outbreaks have been described as having an ‘initiati<strong>on</strong> phase’, during which toxinproduced within unknown substrate becomes available to birds, <str<strong>on</strong>g>and</str<strong>on</strong>g> a ‘propagati<strong>on</strong> phase’,during which carcasses <str<strong>on</strong>g>of</str<strong>on</strong>g> birds killed by botulism (see below) become substrate for producti<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> fur<strong>the</strong>r toxin that reaches healthy birds via <strong>the</strong> carcass-maggot cycle (Ball et al. 1998). Theoccurrence <str<strong>on</strong>g>of</str<strong>on</strong>g> botulism is likely not limited by <strong>the</strong> availability <str<strong>on</strong>g>of</str<strong>on</strong>g> spores or susceptible birds, both<str<strong>on</strong>g>of</str<strong>on</strong>g> which are abundant <strong>on</strong>wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s (Smith <str<strong>on</strong>g>and</str<strong>on</strong>g> Young1980; Smith 1982; Williams<strong>on</strong> etal. 1999), but by <strong>the</strong> availability<str<strong>on</strong>g>of</str<strong>on</strong>g> suitable protein-rich substratefor bacterial growth <str<strong>on</strong>g>and</str<strong>on</strong>g> toxinproducti<strong>on</strong> (Ball et al. 1998).Vertebrate carcasses are optimalsubstrate for C. botulinumtoxigenesis, <str<strong>on</strong>g>and</str<strong>on</strong>g> for <strong>the</strong>development <str<strong>on</strong>g>of</str<strong>on</strong>g> blowfly larvaethat provide a vehicle for <strong>the</strong>transfer <str<strong>on</strong>g>of</str<strong>on</strong>g> botulinum toxin wheningested by susceptible birds(Bell et al. 1955).The primary sources <str<strong>on</strong>g>of</str<strong>on</strong>g> substrate that initiate outbreaks remain unknown, although hundreds <str<strong>on</strong>g>of</str<strong>on</strong>g>botulism outbreaks have been documented in North America since <strong>the</strong> early 1900s. Suddenavailability <str<strong>on</strong>g>of</str<strong>on</strong>g> carcasses as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> hailstorms (Ball et al. 1998), blue-green algal(Cyanobacteria spp.) blooms (Murphy et al. 2000), or fishkills (Ball et al. 1998) might providesubstrate to initiate some botulism outbreaks. However, many wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s experience botulismannually, suggesting that a predictable source <str<strong>on</strong>g>of</str<strong>on</strong>g> initial substrate exists <strong>on</strong> <strong>the</strong>se wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s.Identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an associati<strong>on</strong> between substrate availability (or abundance) <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g>botulism would allow predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> outbreaks <strong>on</strong> such wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s, <str<strong>on</strong>g>and</str<strong>on</strong>g> development <str<strong>on</strong>g>of</str<strong>on</strong>g> methods forsurveillance <str<strong>on</strong>g>and</str<strong>on</strong>g> preventi<strong>on</strong>.


79During <strong>the</strong> mid-1990s, extensive mortality <str<strong>on</strong>g>of</str<strong>on</strong>g> Franklin’s gulls (Larus pipixcan) (FGs) wasobserved <strong>on</strong> several <strong>Canadian</strong> marshes, preceding or coincident with botulism outbreaks inwaterfowl (T. Bollinger, <strong>Canadian</strong> Cooperative Wildlife Health Centre [CCWHC], pers<strong>on</strong>alcommunicati<strong>on</strong>). The dead FGs were predominantly hatch-year (HY) birds that had died <str<strong>on</strong>g>of</str<strong>on</strong>g>starvati<strong>on</strong>, bacterial or parasitic infecti<strong>on</strong>s, or predati<strong>on</strong> (CCWHC, unpublished data). It washypo<strong>the</strong>sized that FG carcasses might provide substrate to initiate outbreaks <str<strong>on</strong>g>of</str<strong>on</strong>g> botulism <strong>on</strong><strong>the</strong>se wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s.The focus <str<strong>on</strong>g>of</str<strong>on</strong>g> this study was to determine <strong>the</strong> role <str<strong>on</strong>g>of</str<strong>on</strong>g> FG mortality in <strong>the</strong> initiati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> avianbotulism at Eyebrow Lake, Saskatchewan, a wetl<str<strong>on</strong>g>and</str<strong>on</strong>g> in which botulism is c<strong>on</strong>sidered enzootic(Wobeser et al. 1983, Wobeser 1997a). Our objectives were to determine: (1) <strong>the</strong> density <str<strong>on</strong>g>of</str<strong>on</strong>g>nests within <strong>the</strong> FG col<strong>on</strong>y; (2) <strong>the</strong> extent <str<strong>on</strong>g>and</str<strong>on</strong>g> pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> mortality <str<strong>on</strong>g>of</str<strong>on</strong>g> FGs <str<strong>on</strong>g>and</str<strong>on</strong>g> o<strong>the</strong>r species priorto botulism outbreaks; (3) <strong>the</strong> suitability <str<strong>on</strong>g>of</str<strong>on</strong>g> HY FG carcasses for producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> C. botulinumtoxin; <str<strong>on</strong>g>and</str<strong>on</strong>g> (4) <strong>the</strong> possible role <str<strong>on</strong>g>of</str<strong>on</strong>g> temperature in <strong>the</strong> development <str<strong>on</strong>g>of</str<strong>on</strong>g> maggots <str<strong>on</strong>g>and</str<strong>on</strong>g> toxin-ladenmaggots within HY FG carcasses.STUDY AREAEyebrow Lake is a 900 ha wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>, managed by Ducks Unlimited Canada, in <strong>the</strong> mid-grassPrairie regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> south-central Saskatchewan. Created in <strong>the</strong> early 1970s by c<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>impoundments <str<strong>on</strong>g>and</str<strong>on</strong>g> water c<strong>on</strong>trol structures (Saige<strong>on</strong> 1995), <strong>the</strong> lake has three basins (A, B, Cin box a <str<strong>on</strong>g>of</str<strong>on</strong>g> Figure 1) in which water levels can be c<strong>on</strong>trolled. The study took place in basin C,which was maintained at full supply level (FSL) each year <str<strong>on</strong>g>of</str<strong>on</strong>g> this study. Maximum water depth<str<strong>on</strong>g>of</str<strong>on</strong>g> basin C at FSL is approximately 1 m in late spring or early summer. Predominant emergentplants are bulrush (Scirpus spp.) <str<strong>on</strong>g>and</str<strong>on</strong>g> cattail (Typha spp.). The lake is utilized by thous<str<strong>on</strong>g>and</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g>FGs, waterfowl, shorebirds, <str<strong>on</strong>g>and</str<strong>on</strong>g> o<strong>the</strong>r species for breeding, moulting, or staging, <str<strong>on</strong>g>and</str<strong>on</strong>g> is anati<strong>on</strong>ally significant site for c<strong>on</strong>gregatory species according to <strong>the</strong> Important Bird AreasCriteria (Important Bird Areas <str<strong>on</strong>g>of</str<strong>on</strong>g> Canada, http://www.ibacanada.com). <str<strong>on</strong>g>Botulism</str<strong>on</strong>g> has occurredannually at Eyebrow Lake for at least <strong>the</strong> last two decades, with intermittent large epizootics(Wobeser 1997a).METHODSTransectsLine transect methods (Gates 1979; Burnham et al. 1980) were used to estimate density <str<strong>on</strong>g>of</str<strong>on</strong>g> FGnests <str<strong>on</strong>g>and</str<strong>on</strong>g> density <str<strong>on</strong>g>of</str<strong>on</strong>g> vertebrate carcasses. From 1999 to 2001, parallel transects were placed100 m apart using colour-coded wooden stakes to demarcate each line (Figure 1). Transectswere established before FGs chose nest sites each year, but were placed in areas where gulls hadnested in <strong>the</strong> past. Total length <str<strong>on</strong>g>of</str<strong>on</strong>g> transects (L) for 1999, 2000, <str<strong>on</strong>g>and</str<strong>on</strong>g> 2001 was 18.7, 6.9, <str<strong>on</strong>g>and</str<strong>on</strong>g>3.8 km, respectively, as measured with Arcview 3.1 (Envir<strong>on</strong>mental Systems Research Institute,New York) from coordinates obtained al<strong>on</strong>g each transect, using Global Positi<strong>on</strong>ing System


80(GPS) receivers (eTrex Venture, eTrex, or Garmin 38, Opa<strong>the</strong>, Kansas). A canoe or kayak wasused to search transects during annual nest surveys <str<strong>on</strong>g>and</str<strong>on</strong>g> weekly mortality surveys.Estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> density <str<strong>on</strong>g>and</str<strong>on</strong>g> abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> FG nestsSurveys to count FG nests were performed after nest-building was complete each year, <strong>on</strong>19-27 May in 1999, 23-30 May in 2000, <str<strong>on</strong>g>and</str<strong>on</strong>g> 31 May in 2001. Nests within 5 m <strong>on</strong> both sides <str<strong>on</strong>g>of</str<strong>on</strong>g>each transect line were counted, <str<strong>on</strong>g>and</str<strong>on</strong>g> were excluded if more than half <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>ir diameter extendedbey<strong>on</strong>d 5 m. Hence, <strong>the</strong> strip half-width, denoted as w, was 5 m for nest density estimati<strong>on</strong>,giving rise to a total strip width (2w) <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 m. Perpendicular distance to each nest from <strong>the</strong>centre <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> transect (or ‘centreline’) was recorded in 2001. In each year, area <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> FG col<strong>on</strong>ywas estimated in Arcview 3.1 using GPS coordinates <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> col<strong>on</strong>y perimeter. Nest density wasestimated using <strong>the</strong> strip transect method (Burnham <str<strong>on</strong>g>and</str<strong>on</strong>g> Anders<strong>on</strong> 1984), a modificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>line transect method, which assumes that all objects are detected within <strong>the</strong> strip width. Thisassumpti<strong>on</strong> was initially believed to be appropriate because <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> narrow strip half-width <str<strong>on</strong>g>of</str<strong>on</strong>g> 5 m<str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> large size <str<strong>on</strong>g>of</str<strong>on</strong>g> FG nests (1-1.5 m in diameter above water surface). To test thisassumpti<strong>on</strong>, <strong>the</strong> line transect method, which accounts for reduced detectability with increasingdistances from <strong>the</strong> centerline (Burnham et al. 1980), was employed in 2001 to estimate <strong>the</strong>probability <str<strong>on</strong>g>of</str<strong>on</strong>g> nest detecti<strong>on</strong> ( Pˆ anest) <str<strong>on</strong>g>and</str<strong>on</strong>g> nest density (see below). Pˆ anestobtained for 2001 wassubsequently used to adjust estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> nest density <str<strong>on</strong>g>and</str<strong>on</strong>g> abundance for 1999 <str<strong>on</strong>g>and</str<strong>on</strong>g> 2000, usingmethods described by Buckl<str<strong>on</strong>g>and</str<strong>on</strong>g> et al. (2001). It was assumed that <strong>the</strong>re was little variati<strong>on</strong> inPˆanestam<strong>on</strong>g years because nests were counted by <strong>the</strong> same primary observers during <strong>the</strong> sametime <str<strong>on</strong>g>of</str<strong>on</strong>g> year, <str<strong>on</strong>g>and</str<strong>on</strong>g> under similar wea<strong>the</strong>r c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> vegetati<strong>on</strong> density. Variance wasestimated using <strong>the</strong> Delta method, st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard error was obtained with <strong>the</strong> square root <str<strong>on</strong>g>of</str<strong>on</strong>g> variance,<str<strong>on</strong>g>and</str<strong>on</strong>g> 95% c<strong>on</strong>fidence intervals were calculated using z α = 1.96 (see Buckl<str<strong>on</strong>g>and</str<strong>on</strong>g> et al. 2001).During <strong>the</strong> nest survey in 1999, GPS coordinates <str<strong>on</strong>g>of</str<strong>on</strong>g> nests al<strong>on</strong>g transects were recorded.Arcview maps <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se nest coordinates were used to divide <strong>the</strong> study area into discrete secti<strong>on</strong>s,referred to as ‘sub-areas’, based <strong>on</strong> a qualitative assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> nest density (i.e., zero, light,medium, or high nest density) (box b in Figure 1). Each transect line was divided into discretesegments based <strong>on</strong> whe<strong>the</strong>r segments were within or outside (i.e., zero nest density) <strong>the</strong> gullcol<strong>on</strong>y. To quantitatively assess this subjective method <str<strong>on</strong>g>of</str<strong>on</strong>g> sub-area classificati<strong>on</strong>, nest density(with measures <str<strong>on</strong>g>of</str<strong>on</strong>g> precisi<strong>on</strong>) for each sub-area was estimated using <strong>the</strong> strip transect method, <str<strong>on</strong>g>and</str<strong>on</strong>g>adjusted with Pˆanestfor 2001 as described above. Area <str<strong>on</strong>g>and</str<strong>on</strong>g> L (<strong>the</strong> sum <str<strong>on</strong>g>of</str<strong>on</strong>g> all transect segmentlengths) for each sub-area were employed in <strong>the</strong>se estimati<strong>on</strong>s. These sub-areas weresubsequently employed to examine <strong>the</strong> relati<strong>on</strong>ship between nest density <str<strong>on</strong>g>and</str<strong>on</strong>g> carcass density(see below).Estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> carcass density <str<strong>on</strong>g>and</str<strong>on</strong>g> abundanceTransects were searched for carcasses weekly from mid-May to late July each year (i.e., weeks<str<strong>on</strong>g>of</str<strong>on</strong>g> 23 May – 25 July in 1999, weeks <str<strong>on</strong>g>of</str<strong>on</strong>g> 21 May – 23 July in 2000, <str<strong>on</strong>g>and</str<strong>on</strong>g> weeks <str<strong>on</strong>g>of</str<strong>on</strong>g> 20 May – 22 Julyin 2001). Searches were c<strong>on</strong>centrated within, but not restricted to, 5 m <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> centerline. For


81each dead or sick animal found, species, date, GPS coordinates, stage <str<strong>on</strong>g>of</str<strong>on</strong>g> carcass decompositi<strong>on</strong>,<str<strong>on</strong>g>and</str<strong>on</strong>g> perpendicular distance from centerline (rounded to <strong>the</strong> nearest m) were recorded. Stage <str<strong>on</strong>g>of</str<strong>on</strong>g>carcass decompositi<strong>on</strong> was described as: fresh (i.e., recently dead); sodden (i.e., intact but rottencarcass, usually wet); early maggot development (i.e., early larval fly stages that have notpenetrated <strong>the</strong> carcass); or pr<str<strong>on</strong>g>of</str<strong>on</strong>g>use maggot development (i.e., large numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> plump larvalstages that have penetrated <strong>the</strong> carcass abdomen, occupying >50% <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> abdominal cavity). Forspecies with a sufficiently large sample size (n > 60), probability <str<strong>on</strong>g>of</str<strong>on</strong>g> carcass detecti<strong>on</strong> ( Pˆ ) <str<strong>on</strong>g>and</str<strong>on</strong>g>carcass density were estimated using line transect methods as described below. Althoughproviding c<strong>on</strong>servative estimates, <strong>the</strong> strip transect method (which assumes that Pˆacarc= 1) wasused to compare carcass density estimates am<strong>on</strong>g all species (including those with smallersample sizes) <str<strong>on</strong>g>and</str<strong>on</strong>g> to examine weekly trends in mortality. All estimates were calculated usingprogram Distance 4.0, release 2 (Thomas et al. 2003), as described below.acarcLine transect methods using Distance 4.0To estimate FG nest density in 2001 <str<strong>on</strong>g>and</str<strong>on</strong>g> carcass density in 1999-2001, Distance 4.0 was used tomodel <strong>the</strong> detecti<strong>on</strong> functi<strong>on</strong> (Burnham et al. 1980). Data sets for nest density estimati<strong>on</strong> in2001 <str<strong>on</strong>g>and</str<strong>on</strong>g> carcass density estimati<strong>on</strong> for 1999-2001 were treated similarly. Nest density wasestimated using data obtained from a single visit to transects in 2001, whereas data from weeklyvisits to transects were pooled to estimate overall carcass density each year. Distance data weretruncated to remove outliers where relevant (carcass data <strong>on</strong>ly), <str<strong>on</strong>g>and</str<strong>on</strong>g> were grouped to reduceeffects <str<strong>on</strong>g>of</str<strong>on</strong>g> heaping (rounding errors) or violati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> assumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> complete censusing <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>centerline as recommended by Buckl<str<strong>on</strong>g>and</str<strong>on</strong>g> et al. (2001). The shape <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> detecti<strong>on</strong> curve wasestimated by fitting grouped distance data to models (e.g., uniform + cosine, uniform + simplepolynomial, half-normal + cosine, half-normal + hermite polynomial, hazard rate + cosine, <str<strong>on</strong>g>and</str<strong>on</strong>g>hazard rate + simple polynomial) recommended by Buckl<str<strong>on</strong>g>and</str<strong>on</strong>g> et al. (2001). The best-fittingmodel was chosen to estimate nest or carcass density <str<strong>on</strong>g>and</str<strong>on</strong>g> abundance, primarily using Akaike’sInformati<strong>on</strong> Criteri<strong>on</strong> (AIC). χ 2 goodness <str<strong>on</strong>g>of</str<strong>on</strong>g> fit <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> model was employed to assess <strong>the</strong>adequacy <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> fitted model. To improve measures <str<strong>on</strong>g>of</str<strong>on</strong>g> precisi<strong>on</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g> estimate weekly carcassdensity, models for each year were modified to include post-stratificati<strong>on</strong> analysis by week.Density estimates for each stratum (week) were obtained using <strong>the</strong> global detecti<strong>on</strong> functi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g>Pˆacarc<str<strong>on</strong>g>of</str<strong>on</strong>g> pooled strata, while weekly c<strong>on</strong>fidence intervals were a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>carcass density am<strong>on</strong>g transects within each stratum. To calculate total carcass density up to <strong>the</strong>first detected cases <str<strong>on</strong>g>of</str<strong>on</strong>g> botulism in waterfowl, Pˆacarc<str<strong>on</strong>g>and</str<strong>on</strong>g> st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard error <str<strong>on</strong>g>of</str<strong>on</strong>g> Pˆacarcobtained for <strong>the</strong>entire seas<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> each year were employed as multipliers in a model using a uniform key functi<strong>on</strong>with zero adjustment terms (Buckl<str<strong>on</strong>g>and</str<strong>on</strong>g> et al. 2001; Thomas et al. 2003). Methods to calculatetotal <str<strong>on</strong>g>and</str<strong>on</strong>g> weekly carcass density for each species using <strong>the</strong> strip transect method in Distance 4.0were similar to those described above, except that a uniform key functi<strong>on</strong>, with zero adjustmentterms <str<strong>on</strong>g>and</str<strong>on</strong>g> no multipliers (<strong>the</strong>reby setting Pˆ to 1), was employed.acarcFor 1999 data <strong>on</strong>ly, FG carcass density was estimated for each sub-area categorized by nestdensity. Procedures were similar to those described for nest density, except values were adjustedusing Pˆacarcobtained for 1999. For each transect segment within <strong>the</strong> col<strong>on</strong>y, an index <str<strong>on</strong>g>of</str<strong>on</strong>g> FG


82mortality rate was calculated by dividing <strong>the</strong> detected number <str<strong>on</strong>g>of</str<strong>on</strong>g> sick <str<strong>on</strong>g>and</str<strong>on</strong>g> dead HY FGs by <strong>the</strong>product <str<strong>on</strong>g>of</str<strong>on</strong>g> hatch rate <str<strong>on</strong>g>and</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> nests counted (i.e., estimated number <str<strong>on</strong>g>of</str<strong>on</strong>g> hatched chicks).A hatch rate <str<strong>on</strong>g>of</str<strong>on</strong>g> 2.48 chicks per nest (C. Soos, unpublished data) was used in <strong>the</strong> calculati<strong>on</strong>s.Sampling from carcasses <str<strong>on</strong>g>and</str<strong>on</strong>g> sick birds <strong>on</strong> transectsSamples <str<strong>on</strong>g>of</str<strong>on</strong>g> maggots were collected from all pr<str<strong>on</strong>g>of</str<strong>on</strong>g>usely maggot-laden carcasses found <strong>on</strong>transects, <str<strong>on</strong>g>and</str<strong>on</strong>g> were frozen at -20 C until processed for detecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> C. botulinum toxin.Carcasses with early maggot development were not tested because toxin is unlikely to be foundin earlier larval stages that have not penetrated <strong>the</strong> carcass abdomen. To promptly detect <strong>the</strong><strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g> botulism <strong>on</strong> Eyebrow Lake, all sick waterfowl or o<strong>the</strong>r birds detected anywhere withinbasin C were tested for botulism. Prior to euthanasia by cervical dislocati<strong>on</strong>, blood samples werecollected by jugular venipuncture, <str<strong>on</strong>g>and</str<strong>on</strong>g> placed into CaEDTA or lithium heparin tubes. Tubeswere centrifuged, <str<strong>on</strong>g>and</str<strong>on</strong>g> serum or plasma samples were harvested <str<strong>on</strong>g>and</str<strong>on</strong>g> frozen at -20 C or -75 Cei<strong>the</strong>r immediately or following temporary storage in liquid nitrogen (-196 C), until tested for C.botulinum toxin. With <strong>the</strong> excepti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> carcasses referred to in <strong>the</strong> following secti<strong>on</strong>, alleuthanized birds <str<strong>on</strong>g>and</str<strong>on</strong>g> fresh carcasses found <strong>on</strong> transects were collected, weighed <str<strong>on</strong>g>and</str<strong>on</strong>g> processedfor necropsy <str<strong>on</strong>g>and</str<strong>on</strong>g> histopathology as part <str<strong>on</strong>g>of</str<strong>on</strong>g> a related study (Soos 2004). Carcasses that were notfresh were not collected for necropsy, but, if still relatively buoyant, were marked with brightpaint or removed to avoid recounting <strong>the</strong>m <strong>the</strong> following week.Fate <str<strong>on</strong>g>of</str<strong>on</strong>g> FG carcassesFrom late May to late July each year, recently dead HY FG carcasses collected from transectsurveys (1999 <str<strong>on</strong>g>and</str<strong>on</strong>g> 2000), <str<strong>on</strong>g>and</str<strong>on</strong>g> apparently healthy HY FGs captured <str<strong>on</strong>g>and</str<strong>on</strong>g> euthanized by cervicaldislocati<strong>on</strong> (2001) were placed within <strong>the</strong> marsh, in an area adjacent to <strong>the</strong> nesting col<strong>on</strong>youtside <strong>the</strong> transect area. Each carcass was te<strong>the</strong>red to a flagged bamboo pole with a 1-1.5 mlength <str<strong>on</strong>g>of</str<strong>on</strong>g> cott<strong>on</strong> thread (breaking strength 50% <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> carcassabdomen to become laden with maggots), <str<strong>on</strong>g>and</str<strong>on</strong>g> time to sinking were recorded every <strong>on</strong>e to fourdays in 1999 <str<strong>on</strong>g>and</str<strong>on</strong>g> 2000, <str<strong>on</strong>g>and</str<strong>on</strong>g> daily in 2001. Maggot samples were collected <str<strong>on</strong>g>and</str<strong>on</strong>g> frozen at -20 Cuntil tested for <strong>the</strong> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> C. botulinum toxin.Identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> C. botulinum toxinFor each maggot sample, 1 g was ground with 9 ml <str<strong>on</strong>g>of</str<strong>on</strong>g> a penicillin-streptomycin soluti<strong>on</strong> (10,000IU/ml penicillin, 10,000 µl/ml streptomycin). Following centrifugati<strong>on</strong> at 4,000-5,000 rpm for10 min, <strong>the</strong> supernatant was frozen until tested for toxin. Adult male CD1 mice (20-30 g),housed individually or in pairs in 15 x 25 cm cages c<strong>on</strong>taining corn cob litter (Bed-O’Cobs, TheAnders<strong>on</strong>s, Maumee, Ohio, USA), were provided with food (Purina Rodent Chow 3000, Ralst<strong>on</strong>Purina, St. Louis, Missouri, USA) <str<strong>on</strong>g>and</str<strong>on</strong>g> water ad libitum. In 1999, two mice (test <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>trol)were employed for each maggot or serum/plasma sample tested as described by Quortrup <str<strong>on</strong>g>and</str<strong>on</strong>g>


83Sudheimer (1943). The c<strong>on</strong>trol mouse was injected intraperit<strong>on</strong>eally with 0.1 ml <str<strong>on</strong>g>of</str<strong>on</strong>g> type C C.botulinum antitoxin (Nati<strong>on</strong>al Wildlife Health Center, Madis<strong>on</strong>, Wisc<strong>on</strong>sin, USA) 30-60 minprior to injecting both mice with ei<strong>the</strong>r 0.1 ml <str<strong>on</strong>g>of</str<strong>on</strong>g> maggot soluti<strong>on</strong> or 0.5-1 ml <str<strong>on</strong>g>of</str<strong>on</strong>g> serum or plasmaintraperit<strong>on</strong>eal injecti<strong>on</strong>. Following injecti<strong>on</strong>, mice were m<strong>on</strong>itored for four to five days. Asample was c<strong>on</strong>sidered to be positive if <strong>the</strong> test mouse died or had signs <str<strong>on</strong>g>of</str<strong>on</strong>g> paresis or respiratorydistress while <strong>the</strong> corresp<strong>on</strong>ding c<strong>on</strong>trol did not (Quortrup <str<strong>on</strong>g>and</str<strong>on</strong>g> Sudheimer 1943). For samplesobtained in 2000 <str<strong>on</strong>g>and</str<strong>on</strong>g> 2001, a single mouse was used initially for each sample; c<strong>on</strong>trol mice wereemployed <strong>on</strong>ly for those samples in which <strong>the</strong> first mouse tested positive. Mice with respiratorydistress were euthanized immediately with halothane in an enclosed chamber. All mice wereeuthanized at <strong>the</strong> end <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> trial.Water temperatureWater temperature in basin C was recorded hourly with <strong>the</strong>rmistors (Optic StowAway Temploggers, Onset, Bourne, Massachusetts, USA) submerged within 10-20 cm <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> water surface,in densely vegetated areas within <strong>the</strong> marsh.Statistical AnalysesThe z-test was employed for comparis<strong>on</strong>s between two density estimates (e.g., comparingestimates <str<strong>on</strong>g>of</str<strong>on</strong>g> carcass density within <str<strong>on</strong>g>and</str<strong>on</strong>g> outside <strong>the</strong> FG col<strong>on</strong>y). The generalized χ 2 statistic(Sauer <str<strong>on</strong>g>and</str<strong>on</strong>g> Williams 1989) was employed using program CONTRAST (Sauer <str<strong>on</strong>g>and</str<strong>on</strong>g> Hines 1989)to compare estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> nest density or carcass density am<strong>on</strong>g nest density categories assigned in1999. For 1999 <strong>on</strong>ly, a multilevel model was used to evaluate <strong>the</strong> relati<strong>on</strong>ship between nestdensity <str<strong>on</strong>g>and</str<strong>on</strong>g> HY FG carcass density using MLwiN versi<strong>on</strong> 1.1 (Rasbash et al. 2002). For thisanalysis, uncorrected nest <str<strong>on</strong>g>and</str<strong>on</strong>g> carcass density estimates for each transect segment wereemployed, <str<strong>on</strong>g>and</str<strong>on</strong>g> segments with zero nesting <strong>on</strong> <strong>the</strong> same transect line were combined. Transectwas employed as a r<str<strong>on</strong>g>and</str<strong>on</strong>g>om effect in <strong>the</strong> model, to account for <strong>the</strong> possibility that segments from<strong>the</strong> same transect were not independent <str<strong>on</strong>g>of</str<strong>on</strong>g> each o<strong>the</strong>r. The value for R 2 was calculated asdescribed by Snijders <str<strong>on</strong>g>and</str<strong>on</strong>g> Bosker (1999) for multilevel models. A Kruskall-Wallis test wasperformed to compare mortality rate indices <str<strong>on</strong>g>of</str<strong>on</strong>g> transect segments am<strong>on</strong>g low, medium, <str<strong>on</strong>g>and</str<strong>on</strong>g> highnest density categories (Norušis 2002).Logistic regressi<strong>on</strong> was employed with a r<str<strong>on</strong>g>and</str<strong>on</strong>g>om intercept model, using trial <str<strong>on</strong>g>and</str<strong>on</strong>g> year as r<str<strong>on</strong>g>and</str<strong>on</strong>g>omeffects to determine <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> temperature <strong>on</strong> <strong>the</strong> likelihood <str<strong>on</strong>g>of</str<strong>on</strong>g> FG carcasses developingmaggots c<strong>on</strong>taining C. botulinum toxin (Rasbash et al. 2002). Analyses were repeated toexamine <strong>the</strong> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> water temperature <strong>on</strong> probability <str<strong>on</strong>g>of</str<strong>on</strong>g> maggot development al<strong>on</strong>e, <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>on</strong>probability <str<strong>on</strong>g>of</str<strong>on</strong>g> toxin c<strong>on</strong>centrati<strong>on</strong> within maggot samples. For <strong>the</strong>se analyses, <strong>the</strong> mean <str<strong>on</strong>g>of</str<strong>on</strong>g> dailymean temperatures <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> first seven days <str<strong>on</strong>g>of</str<strong>on</strong>g> each trial was employed as a dichotomizedcategorical variable using 20 C as a cut-<str<strong>on</strong>g>of</str<strong>on</strong>g>f value (≥20 C = ‘1’ <str<strong>on</strong>g>and</str<strong>on</strong>g>


84samples from FG carcasses collected <strong>on</strong> transects prior to <str<strong>on</strong>g>and</str<strong>on</strong>g> following <strong>the</strong> <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g> botulism,logistic regressi<strong>on</strong> was employed with a r<str<strong>on</strong>g>and</str<strong>on</strong>g>om intercept model using year as a r<str<strong>on</strong>g>and</str<strong>on</strong>g>om effect(Rasbah et al. 2002). Results were c<strong>on</strong>sidered statistically significant at P ≤ 0.05.RESULTSDensity <str<strong>on</strong>g>and</str<strong>on</strong>g> abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> FG nestsThe area <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> FG col<strong>on</strong>y was 172, 141, <str<strong>on</strong>g>and</str<strong>on</strong>g> 156 ha in 1999, 2000, <str<strong>on</strong>g>and</str<strong>on</strong>g> 2001, respectively(Figure 1). In 2000 <str<strong>on</strong>g>and</str<strong>on</strong>g> 2001, transects were located exclusively within <strong>the</strong> col<strong>on</strong>y, whereas in1999, 9.3 km <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> 12 transects (<str<strong>on</strong>g>and</str<strong>on</strong>g> 8.7 km <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> 11 transects surveyed for carcasses)overlapped <strong>the</strong> col<strong>on</strong>y (Figure 1). The number <str<strong>on</strong>g>of</str<strong>on</strong>g> nests counted <strong>on</strong> transects was 1,091, 1,508,<str<strong>on</strong>g>and</str<strong>on</strong>g> 637, <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> estimated nest density <strong>on</strong> <strong>the</strong> col<strong>on</strong>y (using <strong>the</strong> strip transect method withw = 5 m) was 117,243, <str<strong>on</strong>g>and</str<strong>on</strong>g> 170 nests/ha in <strong>the</strong> three years, respectively. For 2001, <strong>the</strong> detecti<strong>on</strong>functi<strong>on</strong> estimated with a uniform + cosine model provided <strong>the</strong> best fit for grouped distance data,based <strong>on</strong> <strong>the</strong> lowest AIC <str<strong>on</strong>g>and</str<strong>on</strong>g> highest goodness <str<strong>on</strong>g>of</str<strong>on</strong>g> fit P (χ 2 = 0.28, P = 0.6). According to thismodel, Pˆ anestin 2001 was 0.88 (95% CI = 0.80-0.98); hence, <strong>on</strong> average, 12% <str<strong>on</strong>g>of</str<strong>on</strong>g> nests were notdetected when counting nests within <strong>the</strong> 10 m strip width. Although adjusted nest density <str<strong>on</strong>g>and</str<strong>on</strong>g>abundance appeared higher in 2000 <str<strong>on</strong>g>and</str<strong>on</strong>g> lower in 1999, c<strong>on</strong>fidence intervals overlapped(Table 1).There was a significant difference in nest density am<strong>on</strong>g sub-areas subjectively classified as zero(0 nests/ha, SE = 0), low (18 nests/ha, SE = 10), medium (68 nests/ha, SE = 25), <str<strong>on</strong>g>and</str<strong>on</strong>g> high nestdensity (238 nests/ha, SE = 107; χ 2 = 15.6, df = 3, P = 0.0014; Figure1), supporting <strong>the</strong> use <str<strong>on</strong>g>of</str<strong>on</strong>g><strong>the</strong>se nest density categories in fur<strong>the</strong>r analyses.Species compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> carcasses <strong>on</strong> transectsA botulism outbreak occurred in waterfowl beginning within <strong>the</strong> first week <str<strong>on</strong>g>of</str<strong>on</strong>g> July in each year<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> study. FGs comprised 85-93% <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> carcasses observed <strong>on</strong> <strong>the</strong> gull col<strong>on</strong>y prior to <strong>the</strong>recogniti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> botulism outbreaks (Table 2). Most <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> FG carcasses were HY birds (97.3%,93.3%, <str<strong>on</strong>g>and</str<strong>on</strong>g> 80% in 1999, 2000, <str<strong>on</strong>g>and</str<strong>on</strong>g> 2001, respectively). Few American coots (Fulicaamericana) <str<strong>on</strong>g>and</str<strong>on</strong>g> eared grebes (Podiceps nigricollis) were found dead prior to botulism outbreaks(Table 2). Within <strong>the</strong> nesting col<strong>on</strong>y, carcasses c<strong>on</strong>taining maggots were predominantly FGs(61/69 or 88%; Table 2), 93% (57/61) <str<strong>on</strong>g>of</str<strong>on</strong>g> which were HY. Carcasses found outside <strong>the</strong> col<strong>on</strong>y in1999 were predominantly eared grebes (Table 2), almost all <str<strong>on</strong>g>of</str<strong>on</strong>g> which were HY (11/12); nomaggot-laden HY grebes were detected. Only five maggot-laden carcasses were found outside<strong>the</strong> col<strong>on</strong>y prior to <strong>the</strong> botulism outbreak in 1999 (Table 2).


85Carcass densityModelling <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> distance data for species o<strong>the</strong>r than FGs was not performed because <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>small number <str<strong>on</strong>g>of</str<strong>on</strong>g> carcasses found (Table 2). To compare total <str<strong>on</strong>g>and</str<strong>on</strong>g> weekly carcass densitiesam<strong>on</strong>g species, unadjusted estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> density (using <strong>the</strong> strip transect method with w = 10 m)were employed. The total number <str<strong>on</strong>g>of</str<strong>on</strong>g> carcasses found per ha (including all species) prior to <strong>the</strong>botulism outbreak in 1999 was markedly higher within (166 carcasses <strong>on</strong> 8.7 km = 9.5/ha) thanoutside (19 carcasses <strong>on</strong> 8.1 km = 1.2/ha) <strong>the</strong> FG col<strong>on</strong>y, primarily a result <str<strong>on</strong>g>of</str<strong>on</strong>g> higher carcassdensity <str<strong>on</strong>g>of</str<strong>on</strong>g> HY FGs within compared to outside <strong>the</strong> col<strong>on</strong>y (Table 3, z = 5.45, P < 0.001). Thedensity <str<strong>on</strong>g>of</str<strong>on</strong>g> American coot <str<strong>on</strong>g>and</str<strong>on</strong>g> eared grebe carcasses did not differ within versus outside <strong>the</strong>col<strong>on</strong>y (Table 3; z amco = -0.25, P = 0.80; z eagr = -0.17; P = 0.87). Each year, carcass density <str<strong>on</strong>g>of</str<strong>on</strong>g>HY FGs within <strong>the</strong> col<strong>on</strong>y was significantly higher than carcass density <str<strong>on</strong>g>of</str<strong>on</strong>g> American coots(1999: z = 5.29, P < 0.001; 2000: z = 7.06, P < 0.001; 2001: z = 3.56, P = 0.0004) <str<strong>on</strong>g>and</str<strong>on</strong>g> earedgrebes (1999: z = 5.01, P < 0.001; 2000: z = 7.22, P < 0.001; 2001: z = 3.66, P < 0.001). Weassumed that probability <str<strong>on</strong>g>of</str<strong>on</strong>g> carcass detecti<strong>on</strong> within <strong>the</strong> 10 m strip half-width was identicalam<strong>on</strong>g species. The observed magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> difference between <strong>the</strong> density <str<strong>on</strong>g>of</str<strong>on</strong>g> FG carcasses <str<strong>on</strong>g>and</str<strong>on</strong>g>that <str<strong>on</strong>g>of</str<strong>on</strong>g> o<strong>the</strong>r species likely would be affected minimally by incorporating Pˆacarcfor each speciesin <strong>the</strong>se calculati<strong>on</strong>s.Temporal pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> HY FG mortalityThe pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> HY FG mortality <strong>on</strong> <strong>the</strong> col<strong>on</strong>y was similar in each year (Figure 2). Mortality <str<strong>on</strong>g>of</str<strong>on</strong>g>HY birds began with <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g> hatching, <str<strong>on</strong>g>and</str<strong>on</strong>g> peaked in mid-June. In 1999, <strong>the</strong>re appeared to be asec<strong>on</strong>d peak in mortality in late June (box a in Figure 2), which occurred primarily in recentlyfledged FGs (Soos 2004). Carcass density during peak mortality appeared higher in 2000 than in1999 <str<strong>on</strong>g>and</str<strong>on</strong>g> 2001 (Figure 2, <str<strong>on</strong>g>and</str<strong>on</strong>g> see below). Each year, <strong>the</strong> apparent decline in mortality <str<strong>on</strong>g>of</str<strong>on</strong>g> HYFGs after late June coincided with fledging, <str<strong>on</strong>g>and</str<strong>on</strong>g> with a rapid decline in <strong>the</strong> number <str<strong>on</strong>g>of</str<strong>on</strong>g> FGspresent as <strong>the</strong>y began southward migrati<strong>on</strong>. <str<strong>on</strong>g>Botulism</str<strong>on</strong>g> am<strong>on</strong>g waterfowl was first detected within<strong>on</strong>e to two weeks after peak mortality <str<strong>on</strong>g>of</str<strong>on</strong>g> HY FGs each year (7, 4, <str<strong>on</strong>g>and</str<strong>on</strong>g> 3 July in 1999, 2000, <str<strong>on</strong>g>and</str<strong>on</strong>g>2001, respectively; Figure 2).Estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> HY FG carcass density using Distance 4.0Sample sizes <str<strong>on</strong>g>of</str<strong>on</strong>g> sick <str<strong>on</strong>g>and</str<strong>on</strong>g> dead HY FGs were sufficient to model <strong>the</strong> detecti<strong>on</strong> functi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g>estimate Pˆacarc<str<strong>on</strong>g>and</str<strong>on</strong>g> carcass density for each year (n = 210, 222, <str<strong>on</strong>g>and</str<strong>on</strong>g> 69 within a 20 m strip halfwidthin 1999, 2000, <str<strong>on</strong>g>and</str<strong>on</strong>g> 2001, respectively). For each year, <strong>the</strong> best model to estimate <strong>the</strong>detecti<strong>on</strong> functi<strong>on</strong> for grouped distance data, truncated to 10 m from <strong>the</strong> centerline, was <strong>the</strong>hazard rate key functi<strong>on</strong> + cosine adjustment term (1999: χ 2 = 0.0013, P = 0.97; 2000: χ 2 =0.0008, P = 0.98; <str<strong>on</strong>g>and</str<strong>on</strong>g> 2001: χ 2 = 0.0053, P = 0.94). Based <strong>on</strong> <strong>the</strong>se models, <strong>on</strong> average 54-66%<str<strong>on</strong>g>of</str<strong>on</strong>g> HY FG carcasses were undetected within <strong>the</strong> 10 m strip half-width <strong>on</strong> transects each year(Table 4). Estimated overall carcass density <str<strong>on</strong>g>of</str<strong>on</strong>g> HY FGs <strong>on</strong> <strong>the</strong> col<strong>on</strong>y for <strong>the</strong> entire prefledglingperiod (early June to late July) was similar in each year (Table 4; χ 2 = 1.231, P = 0.54).There also was no difference in total carcass density <str<strong>on</strong>g>of</str<strong>on</strong>g> HY FGs up to <strong>the</strong> <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g> botulism


86outbreaks in waterfowl (Table 4; χ 2 = 4.29, P = 0.12). Estimated peak density <str<strong>on</strong>g>of</str<strong>on</strong>g> FG carcasses<strong>on</strong>e to two weeks prior to <strong>the</strong> recogniti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> botulism (Figure 2) was nearly significantlydifferent am<strong>on</strong>g <strong>the</strong> three years (Table 4; χ 2 = 5.84, P = 0.054), primarily because density in2000 was higher than that observed in ei<strong>the</strong>r 1999 (χ 2 = 5.03, P = 0.025) or 2001 (χ 2 = 4.29,P = 0.038).In 1999, estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> total density <str<strong>on</strong>g>of</str<strong>on</strong>g> HY FG carcasses prior to botulism outbreaks weresignificantly different am<strong>on</strong>g sub-areas classified as zero (0.18 carcasses/ha, SE = 13.8), low (3.5carcasses/ha, SE = 2.9), medium (9.7 carcasses/ha, SE = 5.4), <str<strong>on</strong>g>and</str<strong>on</strong>g> high (43.9 carcasses/ha, SE =9.0; χ 2 = 18.52, df = 3, P = 0.003) nest density. Nest density was a significant predictor <str<strong>on</strong>g>of</str<strong>on</strong>g> HYFG carcass density (χ 2 = 43.69, df = 1, P < 0.001, R 2 = 0.61), <str<strong>on</strong>g>and</str<strong>on</strong>g> transect line had no significantclustering effect <strong>on</strong> transect segments (χ 2 = 0.014, df = 1, P = 0.906). Mortality rate index wasnot significantly different am<strong>on</strong>g nest density categories (Kruskall-Wallis χ 2 = 5.15, df = 2, P =0.076).Maggot samples from transectsOf <strong>the</strong> maggot samples collected from HY FG carcasses prior to botulism outbreaks inwaterfowl, 0/12, 2/6, <str<strong>on</strong>g>and</str<strong>on</strong>g> 2/8 were positive for C. botulinum toxin in 1999, 2000, 2001,respectively, whereas 3/4, 5/6, <str<strong>on</strong>g>and</str<strong>on</strong>g> 13/17 <str<strong>on</strong>g>of</str<strong>on</strong>g> samples c<strong>on</strong>tained toxin after <strong>the</strong> <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g> botulismin each year, respectively. Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> pooled data employing year as a r<str<strong>on</strong>g>and</str<strong>on</strong>g>om effect revealedthat maggots collected after <strong>the</strong> final week <str<strong>on</strong>g>of</str<strong>on</strong>g> June were 19.3 times more likely to c<strong>on</strong>tain toxinthan maggots collected prior to that time period (95% CL = 4.8-78.1, χ 2 = 17.17, df = 1,P < 0.001). In 2000 <str<strong>on</strong>g>and</str<strong>on</strong>g> 2001, toxin was present in FG carcasses at least 10-11 days prior to <strong>the</strong>first detected cases <str<strong>on</strong>g>of</str<strong>on</strong>g> botulism in waterfowl. N<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> maggot samples collected from o<strong>the</strong>rspecies prior to botulism outbreaks tested negative for toxin (Table 2 lists total numbers <str<strong>on</strong>g>of</str<strong>on</strong>g>carcasses with early or pr<str<strong>on</strong>g>of</str<strong>on</strong>g>use maggot development for each species; however, <strong>on</strong>ly carcasseswith pr<str<strong>on</strong>g>of</str<strong>on</strong>g>use maggot development were tested for toxin, i.e. four American coots (<strong>on</strong>e within <str<strong>on</strong>g>and</str<strong>on</strong>g>three outside col<strong>on</strong>y) <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>on</strong>e eared grebe (outside col<strong>on</strong>y) in 1999, <strong>on</strong>e black-crowned nigh<strong>the</strong>r<strong>on</strong> in 2000, <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>on</strong>e muskrat in 2001 were tested).Fate <str<strong>on</strong>g>of</str<strong>on</strong>g> FG carcassesOnly two <str<strong>on</strong>g>of</str<strong>on</strong>g> 120 HY FG carcasses placed in <strong>the</strong> marsh were removed by a scavenger (nor<strong>the</strong>rnharrier [Circus cyaneus]), <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>on</strong>e carcass disappeared following a windy day (Table 5). Allo<strong>the</strong>r carcasses remained in positi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> sank, <strong>on</strong> average, 9.1 days after placement (SD = 3.4,range = 2-20 days). Mean time required for pr<str<strong>on</strong>g>of</str<strong>on</strong>g>use maggot development was 4.6 days (SD =1.7, range = 1-8 days). Time to maggot development <str<strong>on</strong>g>and</str<strong>on</strong>g> to carcass sinking both decreased withwater temperature (β = -0.60 day/ C, 95% CI = -0.83 to -0.37, df = 54, P < 0.001; <str<strong>on</strong>g>and</str<strong>on</strong>g> β = -0.95day/ C, 95% CI = -1.35 to -0.55, df = 103, P < 0.001, respectively).Overall, 56.0%, 23.3%, <str<strong>on</strong>g>and</str<strong>on</strong>g> 67.5% <str<strong>on</strong>g>of</str<strong>on</strong>g> carcasses became maggot-laden in 1999, 2000, <str<strong>on</strong>g>and</str<strong>on</strong>g> 2001,respectively, <str<strong>on</strong>g>and</str<strong>on</strong>g> 12.5%, 60%, <str<strong>on</strong>g>and</str<strong>on</strong>g> 74.1% <str<strong>on</strong>g>of</str<strong>on</strong>g> maggot samples tested were positive for C.botulinum toxin each year (Table 5). Carcasses were 22.7 times more likely to develop toxin-


87laden maggots when mean daily water temperatures were ≥20 C than when temperatures were


88birds <str<strong>on</strong>g>and</str<strong>on</strong>g> toxic material, C, <str<strong>on</strong>g>and</str<strong>on</strong>g> proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tacts resulting in intoxicati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> death, P i(Wobeser 1997a). If R o >1, <strong>the</strong>n a botulism outbreak may occur (Wobeser 1997a). For example,during <strong>the</strong> week prior to <strong>the</strong> first detected cases <str<strong>on</strong>g>of</str<strong>on</strong>g> botulism in 2001, HY FG carcasses had a0.9 (9/10) probability (P m ) <str<strong>on</strong>g>of</str<strong>on</strong>g> developing maggots, which had a 0.67 (6/9) probability (P tox ) <str<strong>on</strong>g>of</str<strong>on</strong>g>c<strong>on</strong>taining toxin (see Table 5, trial initiated 30 June 2001). R o for HY FG carcasses was<strong>the</strong>refore (0.9)(0.67)(β) or 0.6β, hence for R o to be >1, β was >1.7. If each c<strong>on</strong>tact resulted indeath, >1.7 c<strong>on</strong>tacts per HY FG carcass (<strong>on</strong> average) would have been required to initiate abotulism outbreak in 2001. C<strong>on</strong>tact rate was likely high during <strong>the</strong> week prior to botulism in2001 because <strong>the</strong>re was approximately 93 kg <str<strong>on</strong>g>of</str<strong>on</strong>g> toxic maggot-laden carcass material from HYFGs within <strong>the</strong> col<strong>on</strong>y (estimated using <strong>the</strong> product <str<strong>on</strong>g>of</str<strong>on</strong>g> adjusted carcass density[4.6 carcasses/ha], mean carcass mass [214 g/carcass], P m [0.9], P tox [0.67], <str<strong>on</strong>g>and</str<strong>on</strong>g> col<strong>on</strong>y area[156 ha]), c<strong>on</strong>current with a high density <str<strong>on</strong>g>of</str<strong>on</strong>g> susceptible birds.For a given lake <str<strong>on</strong>g>and</str<strong>on</strong>g> populati<strong>on</strong> density <str<strong>on</strong>g>of</str<strong>on</strong>g> susceptible birds, <strong>the</strong>re may be a ‘threshold’ carcassdensity, below which botulism outbreaks are unlikely to occur. We could not assess this becausea botulism outbreak (preceded by high FG carcass density) occurred every year <str<strong>on</strong>g>of</str<strong>on</strong>g> this study. Ifcarcass density is a key factor initiating botulism outbreaks, attempts should be made toinvestigate <strong>the</strong> relati<strong>on</strong>ship between populati<strong>on</strong> density <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> density <str<strong>on</strong>g>of</str<strong>on</strong>g> toxic material (hencetaking into account P m , P tox , <str<strong>on</strong>g>and</str<strong>on</strong>g> carcass mass). O<strong>the</strong>r factors such as aquatic invertebrateabundance, temperature, redox potential, pH, <str<strong>on</strong>g>and</str<strong>on</strong>g> salinity should be c<strong>on</strong>sidered; however, fur<strong>the</strong>rresearch is required to evaluate <strong>the</strong>ir relati<strong>on</strong>ship with density <str<strong>on</strong>g>of</str<strong>on</strong>g> toxic material, or <strong>the</strong> effects <str<strong>on</strong>g>of</str<strong>on</strong>g>abiotic factors <strong>on</strong> P m <str<strong>on</strong>g>and</str<strong>on</strong>g> P tox .Temperature is important in <strong>the</strong> ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> botulism outbreaks because it influences C.botulinum type C proliferati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> toxigenesis, as well as blowfly (Calliphora spp.) activity.Optimal temperatures for proliferati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> toxigenesis are >30 C (Cato et al. 1986; Smith <str<strong>on</strong>g>and</str<strong>on</strong>g>Turner 1987); however, low levels <str<strong>on</strong>g>of</str<strong>on</strong>g> toxin producti<strong>on</strong> may occur at 12.5 C (Haagsma 1973). In<strong>the</strong> current study, gull carcasses were 22.2 times more likely to develop maggots when averagewater temperature was ≥20 C than when it was


89While we did not assess all possible sources <str<strong>on</strong>g>of</str<strong>on</strong>g> initial substrate (e.g., invertebrate carcasses orproteinaceous material), we believe that HY FG carcasses increased <strong>the</strong> risk <str<strong>on</strong>g>of</str<strong>on</strong>g> botulismoutbreaks at Eyebrow Lake in 1999-2001, given; <strong>the</strong>ir extensive mortality; <strong>the</strong>ir suitability assubstrate for C. botulinum proliferati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> toxigenesis; <strong>the</strong> substantial biomass <str<strong>on</strong>g>of</str<strong>on</strong>g> toxic materialprovided by <strong>the</strong>ir carcasses; <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> c<strong>on</strong>sistent timing <str<strong>on</strong>g>of</str<strong>on</strong>g> mortality <str<strong>on</strong>g>and</str<strong>on</strong>g> availability <str<strong>on</strong>g>of</str<strong>on</strong>g> toxin-ladenmaggots prior to botulism outbreaks.<str<strong>on</strong>g>Management</str<strong>on</strong>g> Implicati<strong>on</strong>sThe most widely used technique to manage avian botulism has been collecti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> disposal <str<strong>on</strong>g>of</str<strong>on</strong>g>carcasses during <strong>the</strong> propagati<strong>on</strong> phase <str<strong>on</strong>g>of</str<strong>on</strong>g> outbreaks. Carcass removal is labour-intensive, costly(Ball et al. 1998), inefficient at reducing carcass densities (Cliplef <str<strong>on</strong>g>and</str<strong>on</strong>g> Wobeser 1993), <str<strong>on</strong>g>and</str<strong>on</strong>g>ineffective at reducing duck mortality rates due to botulism (Evelsizer 2002). Once botulismoutbreaks have progressed to <strong>the</strong> propagati<strong>on</strong> phase, mortality is likely to exceed <strong>the</strong> rate atwhich carcasses can be collected. Carcass removal might be more successful if performedduring <strong>the</strong> initiati<strong>on</strong> phase <str<strong>on</strong>g>of</str<strong>on</strong>g> outbreaks, when carcass density <str<strong>on</strong>g>and</str<strong>on</strong>g> mortality are lower. Thisrequires early surveillance. Outbreaks <str<strong>on</strong>g>of</str<strong>on</strong>g> botulism <strong>on</strong> Eyebrow Lake from 1988-1992 were firstdetected between 14-28 July, with a median date <str<strong>on</strong>g>of</str<strong>on</strong>g> 21 July (Saige<strong>on</strong> 1995). However, duringeach year <str<strong>on</strong>g>of</str<strong>on</strong>g> this study, <strong>the</strong> first cases <str<strong>on</strong>g>of</str<strong>on</strong>g> botulism were detected within <strong>the</strong> first week <str<strong>on</strong>g>of</str<strong>on</strong>g> July, <str<strong>on</strong>g>and</str<strong>on</strong>g>mortality had exp<str<strong>on</strong>g>and</str<strong>on</strong>g>ed into a large outbreak by mid to late July. If management is deemednecessary <strong>on</strong> lakes where botulism occurs frequently, intensive surveillance should begin prior to<strong>the</strong> anticipated <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g> botulism, <str<strong>on</strong>g>and</str<strong>on</strong>g> should c<strong>on</strong>centrate <strong>on</strong> identifying sources <str<strong>on</strong>g>of</str<strong>on</strong>g> substrate <str<strong>on</strong>g>and</str<strong>on</strong>g>locating areas with high carcass densities, such as nesting areas <str<strong>on</strong>g>of</str<strong>on</strong>g> col<strong>on</strong>ial species. Such areascould be targeted for carcass removal l<strong>on</strong>g before <strong>the</strong> expected <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g> botulism outbreaks.<str<strong>on</strong>g>Management</str<strong>on</strong>g> strategies might also focus <strong>on</strong> preventing birds from nesting in high densities, or <strong>on</strong>reducing hatch rate in abundant species that generate high juvenile carcass densities. Suchstrategies should be evaluated for <strong>the</strong>ir effectiveness in reducing mortality caused by botulism,prior to being incorporated into management plans.


90LITERATURE CITEDBall G, Bollinger T, C<strong>on</strong>ly M, MacFarlane B, Murkin H, Murphy T, Pybus MJ, Rocke T, SamuelM, Sharp D, Wobeser G. 1998. Report to <strong>the</strong> Prairie Habitat Joint Venture by <strong>the</strong> workinggroup <strong>on</strong> avian botulism. Saskato<strong>on</strong>: <strong>Canadian</strong> Cooperative Wildlife Health Centre.Bell JF, Sciple GW, Hubert AA. 1955. A microenvir<strong>on</strong>ment c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> epizootiology <str<strong>on</strong>g>of</str<strong>on</strong>g>avian botulism. J Wildl Manage. 19:352-357.Buckl<str<strong>on</strong>g>and</str<strong>on</strong>g> ST, Anders<strong>on</strong> DR, Burnham KP, Laake JL, Borchers AT, Thomas L. 2001.Introducti<strong>on</strong> to distance sampling: estimating <strong>the</strong> abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> biological populati<strong>on</strong>s.Oxford: Oxford University Press.Burnham KP, Anders<strong>on</strong> DR. 1984. The need for distance data in transect counts. J WildlManage. 48:1248-1254.Burnham KP, Anders<strong>on</strong> DR, Laake JL. 1980. Estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> density from line transect sampling<str<strong>on</strong>g>of</str<strong>on</strong>g> biological populati<strong>on</strong>s. Wildl M<strong>on</strong>ographs. 72:8-202.Cato EP, Sciple GW, Hubert AA. 1986. Genus Clostridium Prazmowski 1880, 23 AL . In: Bergey'smanual <str<strong>on</strong>g>of</str<strong>on</strong>g> systematic bacteriology, Vol 2. (Sneath PHA, editor). Maryl<str<strong>on</strong>g>and</str<strong>on</strong>g>: Williams <str<strong>on</strong>g>and</str<strong>on</strong>g>Wilkins. p 1141-1220.Cliplef DJ, Wobeser G. 1993. Observati<strong>on</strong>s <strong>on</strong> waterfowl carcasses during a botulism epizootic.J Wildl Dis. 29:8-14.Eklund MW, F. T. Poysky FT, Reed SM, Smith CA. 1971. Bacteriophages <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> toxicity <str<strong>on</strong>g>of</str<strong>on</strong>g>Clostridium botulinum type C. Science. 172:480-482.Evelsizer DD. 2002. <str<strong>on</strong>g>Management</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> avian botulism <str<strong>on</strong>g>and</str<strong>on</strong>g> survival <str<strong>on</strong>g>of</str<strong>on</strong>g> molting mallards. MSc<strong>the</strong>sis, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Saskatchewan, 59 p.Gates CE. 1979. Line transects <str<strong>on</strong>g>and</str<strong>on</strong>g> related issues. In: Sampling biological populati<strong>on</strong>s (CormackRM, Patil GP, Robs<strong>on</strong> DS, editors). Maryl<str<strong>on</strong>g>and</str<strong>on</strong>g>: Internati<strong>on</strong>al Cooperative. p 71-154.Haagsma J. 1973. De etiologie en epidemiologie van botuliismus bij watervogels in Nederl<str<strong>on</strong>g>and</str<strong>on</strong>g>.Dissertati<strong>on</strong>, Faculteit de Diergeneeskunde, Rijkuniversiteit, Utrecht, Ne<strong>the</strong>rl<str<strong>on</strong>g>and</str<strong>on</strong>g>s.Murphy T, Laws<strong>on</strong> A, Nalewajko C, Murkin H, Ross L, Oguma K, McIntyre T. 2000. Algaltoxins - Initiators <str<strong>on</strong>g>of</str<strong>on</strong>g> avian botulism? Envir<strong>on</strong> Toxicol. 15:558-567.Norušis MJ. 2002. SPSS for Windows: base system user's guide. Release 11.5. Illinois: SPSS.Quortrup ER, Sudheimer RL. 1943. Detecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> botulinus toxin in <strong>the</strong> blood stream <str<strong>on</strong>g>of</str<strong>on</strong>g> wildducks. J Amer Vet Med Assoc. 102:264-266.


91Rasbah J, Browne W, Goldstein H, Yang M, Plewis I, Healy M, Woodhouse G, Draper D,Langford I, Lewis T. 2002. A user's guide to MLwiN. L<strong>on</strong>d<strong>on</strong>: Centre for MultilevelModelling, Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Educati<strong>on</strong>, University <str<strong>on</strong>g>of</str<strong>on</strong>g> L<strong>on</strong>d<strong>on</strong>.Reed TM, Rocke TE. 1992. The role <str<strong>on</strong>g>of</str<strong>on</strong>g> avian carcasses in botulism epizootics. Wildl Soc Bull.20:175-182.Rocke TE, Euliss NH Jr, Samuel MD. 1999. Envir<strong>on</strong>mental characteristics associated with <strong>the</strong>occurrence <str<strong>on</strong>g>of</str<strong>on</strong>g> avian botulism in wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> a nor<strong>the</strong>rn California refuge. J Wildl Manage.63:358-368.Rocke TE, Samuel MD. 1999. Water <str<strong>on</strong>g>and</str<strong>on</strong>g> sediment characteristics associated with avian botulismoutbreaks in wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s. J Wildl Manage. 63:1249-1260.Saige<strong>on</strong> LW. 1995. <str<strong>on</strong>g>Avian</str<strong>on</strong>g> botulism within Eyebrow Marsh, Saskatchewan: 1988-1992. BlueJay. 53:44-48.SAS Institute. 2001. SAS/STAT user's guide. Release 8.2. North Carolina: SAS Institute.Sauer JR, Hines JE. 1989. Testing for differences am<strong>on</strong>g survival or recovery rates usingprogram CONTRAST. Wildl Soc Bull. 17:549-550.Sauer JR, Williams BK. 1989. Generalized procedures for testing hypo<strong>the</strong>ses about survival orecovery rates. J Wildl Manage. 53:137-142.Smith GR. 1982. <str<strong>on</strong>g>Botulism</str<strong>on</strong>g> in waterfowl. Symp Zool Soc L<strong>on</strong>d. 50:97-119.Smith GR, Turner A. 1987. Factors affecting <strong>the</strong> toxicity <str<strong>on</strong>g>of</str<strong>on</strong>g> rotting carcasses c<strong>on</strong>tainingClostridium botulinum type C. Epidemiol & Infect 98:345-351.Smith GR, Young AM. 1980. Clostridium botulinum in British soil. J Hygiene. 85:271-274.Snijders TAB, Bosker RJ. 1999. Multilevel analysis: An introducti<strong>on</strong> to basic <str<strong>on</strong>g>and</str<strong>on</strong>g> advancedmultilevel modeling. L<strong>on</strong>d<strong>on</strong>: Sage Publicati<strong>on</strong>s.Soos C. 2004. A link between avian botulism outbreaks in waterfowl <str<strong>on</strong>g>and</str<strong>on</strong>g> life history trade-<str<strong>on</strong>g>of</str<strong>on</strong>g>fs<str<strong>on</strong>g>of</str<strong>on</strong>g> prefledgling Franklin’s gulls (Larus pipixcan): role <str<strong>on</strong>g>of</str<strong>on</strong>g> hatching asynchr<strong>on</strong>y? PhD <strong>the</strong>sis,University <str<strong>on</strong>g>of</str<strong>on</strong>g> Saskatchewan.Thomas L., Laake JL, Strindberg S, Marques F, Buckl<str<strong>on</strong>g>and</str<strong>on</strong>g> ST, Borchers DL, Anders<strong>on</strong> DR,Burnham KP, Hedley SL, Pollard JH. 2003. Distance 4.0. Release 2. Research Unit forWildlife Populati<strong>on</strong> Assessment, University <str<strong>on</strong>g>of</str<strong>on</strong>g> St. Andrews, Scotl<str<strong>on</strong>g>and</str<strong>on</strong>g>, United Kingdom,http://www.ruwpa.st-<str<strong>on</strong>g>and</str<strong>on</strong>g>.ac.uk/distance/.


92Williams<strong>on</strong> JL, Rocke TE, Aiken JM. 1999. In situ detecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Clostridium botulinum typeC1 toxin gene in wetl<str<strong>on</strong>g>and</str<strong>on</strong>g> sediments with a nested PCR assay. Appl Envir<strong>on</strong> Microbiol.65:3240-3243.Wobeser G. 1997a. <str<strong>on</strong>g>Avian</str<strong>on</strong>g> botulism - ano<strong>the</strong>r perspective. J Wildl Dis. 33:181-186.Wobeser G. 1997. Diseases <str<strong>on</strong>g>of</str<strong>on</strong>g> wild waterfowl, 2nd editi<strong>on</strong>. New York: Plenum Press.Wobeser G, Galmut EA. 1984. Internal temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> decomposing duck carcasses in relati<strong>on</strong> tobotulism. J Wildl Dis. 20:267-271.Wobeser G, Rainnie DJ, Smith-Windsor TB, Bogdan G. 1983. <str<strong>on</strong>g>Avian</str<strong>on</strong>g> botulism during lateautumn <str<strong>on</strong>g>and</str<strong>on</strong>g> early spring in Saskatchewan. J Wildl Dis. 19:90-94.


93Table 1. Adjusted estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> Franklin’s gull nest density (nests/ha) <str<strong>on</strong>g>and</str<strong>on</strong>g> abundance in late May<str<strong>on</strong>g>of</str<strong>on</strong>g> 1999, 2000, <str<strong>on</strong>g>and</str<strong>on</strong>g> 2001. Estimates for 2001 were obtained from <strong>the</strong> model created in DistancePˆ ) for 2001 (0.88) was employed to adjust nest4.0. The probability <str<strong>on</strong>g>of</str<strong>on</strong>g> nest detecti<strong>on</strong> ( anestdensity estimates for 1999 <str<strong>on</strong>g>and</str<strong>on</strong>g> 2000. Surveys were performed <strong>on</strong> 19-27 May in 1999, 23-30May in 2000, <str<strong>on</strong>g>and</str<strong>on</strong>g> 31 May in 2001.YearAdjusted nest densityAdjusted no. <str<strong>on</strong>g>of</str<strong>on</strong>g> nestsCVDˆ SE 95% CL Nˆ SE 95% CL1999 133 48 61 - 290 22,789 8,204 10,433 - 49,777 0.362000 276 41 207 - 367 38,949 5,726 29,249 - 51,864 0.152001 192 22 147 - 252 30,056 3,499 22,984 - 39,302 0.12


94Table 2. Species compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> carcasses found within a 10 m strip half-width <strong>on</strong> transectsprior to botulism outbreaks each year, from surveys c<strong>on</strong>ducted during <strong>the</strong> weeks <str<strong>on</strong>g>of</str<strong>on</strong>g> 23 May – 27Jun in 1999, 21 May – 25 Jun in 2000, <str<strong>on</strong>g>and</str<strong>on</strong>g> 20 May – 24 Jun in 2001. Number <str<strong>on</strong>g>of</str<strong>on</strong>g> carcasses wi<strong>the</strong>arly or pr<str<strong>on</strong>g>of</str<strong>on</strong>g>use maggot development are indicated in paren<strong>the</strong>ses for each species.SpeciesOff col<strong>on</strong>yWithin col<strong>on</strong>y1999 1999 2000 2001Franklin’s gull 1 (1) 149 (26) 223 (26) 60 (9)American coot 6 (3) 5 (4) 10 (1) 3 (0)Eared grebe 12 (1) 11 (1) 6 (0) 2 (0)O<strong>the</strong>r a 0 (0) 1(0) 1 (1) 6 (1)Total 19 (5) 166 (31) 240 (28) 71 (10)aO<strong>the</strong>r species c<strong>on</strong>sisted <str<strong>on</strong>g>of</str<strong>on</strong>g> a redhead (Aythya americana) in 1999, a black-crowned night her<strong>on</strong> (Nycticoraxnycticorax) in 2000, <str<strong>on</strong>g>and</str<strong>on</strong>g> a comm<strong>on</strong> tern (Sterna hirundo), a yellow-headed blackbird (Xanthocephalusxanthocephalus), <str<strong>on</strong>g>and</str<strong>on</strong>g> four muskrats (Ondatra zibethicus) (<str<strong>on</strong>g>of</str<strong>on</strong>g> which <strong>on</strong>e was maggot-laden) in 2001.


95Table 3. Unadjusted estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> total carcass density (carcasses/ha) within Franklin’s gull (FG)col<strong>on</strong>y <strong>on</strong> Eyebrow Lake, Saskatchewan, prior to <strong>the</strong> discovery <str<strong>on</strong>g>of</str<strong>on</strong>g> botulism in waterfowl, fromsurveys c<strong>on</strong>ducted during <strong>the</strong> weeks <str<strong>on</strong>g>of</str<strong>on</strong>g> 23 May – 27 Jun in 1999, 21 May – 25 Jun in 2000, <str<strong>on</strong>g>and</str<strong>on</strong>g>20 May – 24 Jun in 2001. Estimates were calculated with <strong>the</strong> strip transect method, using a 10 mhalf-strip width. The 95% c<strong>on</strong>fidence limits are shown in paren<strong>the</strong>ses.SpeciesOff col<strong>on</strong>yWithin col<strong>on</strong>y1999 1999 2000 2001Hatch-year FG0.058(0.005-0.7)8.4(5.8-12.1)15.1(11.5-19.9)6.4(3.7-11.1)American coot0.35(0.1-1.0)0.29(0.1-0.7)0.73(0.4-1.4)0.40(0.08-2.0)Eared grebe0.69(0.3-1.4)0.63(0.3-1.4)0.44(0.2-0.9)0.27(0.06-1.1)


96Table 4. Estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> carcass detecti<strong>on</strong> probability ( Pˆacarc) <str<strong>on</strong>g>and</str<strong>on</strong>g> carcass density (carcasses/ha) <str<strong>on</strong>g>of</str<strong>on</strong>g>hatch-year Franklin’s gulls (HY FG) within a col<strong>on</strong>y <strong>on</strong> Eyebrow Lake in 1999, 2000, <str<strong>on</strong>g>and</str<strong>on</strong>g> 2001using Distance 4.0. The 95% c<strong>on</strong>fidence limits are shown in paren<strong>the</strong>ses.YearPˆacarcOverall carcassdensity 1Total carcass density tobotulism outbreak bPeak carcassdensity c19990.34(0.29-0.41)35.1(25.2-48.9)24.3(16.2-36.3)9.0(5.1-15.9)20000.46(0.41-0.51)35.1(26.5-46.6)32.9(24.4-44.5)18.7(12.4-28.2)20010.35(0.27-0.45)26.4(15.8-44.0)18.3(10.0-33.8)8.4(3.2-21.9)a This is an estimate <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> ‘cumulative’ density <str<strong>on</strong>g>of</str<strong>on</strong>g> HY FG carcasses detected throughout <strong>the</strong> entire fledgling periodfrom early June to late July (i.e., during <strong>the</strong> weeks <str<strong>on</strong>g>of</str<strong>on</strong>g> 6 Jun – 15 Jul in 1999, 4 Jun – 23 Jul in 2000, <str<strong>on</strong>g>and</str<strong>on</strong>g> 3 Jun – 22Jul in 2001). The word cumulative is in quotati<strong>on</strong>s to emphasize that carcasses do not persist throughout <strong>the</strong> entireperiod, but sink <strong>on</strong> average 9.1 days (SD = 3.4) after death.b Includes all HY FGs detected from early June to <strong>the</strong> first detected case <str<strong>on</strong>g>of</str<strong>on</strong>g> botulism each year, (i.e., 23 May – 27Jun in 1999, 21 May – 25 Jun in 2000, <str<strong>on</strong>g>and</str<strong>on</strong>g> 20 May – 24 Jun in 2001).cEstimates <str<strong>on</strong>g>of</str<strong>on</strong>g> peak carcass density corresp<strong>on</strong>d to peaks in Figure 2 (i.e., weeks <str<strong>on</strong>g>of</str<strong>on</strong>g> 27 Jun in 1999, 18 Jun in 2000,<str<strong>on</strong>g>and</str<strong>on</strong>g> 17 Jun in 2001). These estimates may be c<strong>on</strong>servative because <strong>the</strong>y represent newly detected carcasses in asingle week, <str<strong>on</strong>g>and</str<strong>on</strong>g> do not include carcasses from <strong>the</strong> have persisted had <strong>the</strong>y not been collected.


97Table 5. Fate <str<strong>on</strong>g>of</str<strong>on</strong>g> recently dead hatch-year Franklin’s gull carcasses (HY FG) placed in EyebrowLake in 1999, 2000, <str<strong>on</strong>g>and</str<strong>on</strong>g> 2001. Ten carcasses were employed for each trial unless o<strong>the</strong>rwisestated.YearStartdateEarly maggotdevelopment<strong>on</strong>lyMaggotinfestedNo. positive/no. tested fortoxinNo. days tomaggotinfestati<strong>on</strong>x (range)No. days tosinkingx (range)Temperature (C)Average Daily ax Max1999 15 June b 5 0 0/0 NA c 8.7 (6-10) 22.3 26.029 June d 1 0 0/0 NA 9.8 (7-13) 19.5 22.56 July 2 8 0/6 5.3 (3-6) 7.6 (6-8) 22.6 27.915 July 0 10 0/5 4.8 (4-5) 7.0 (7) 21.8 25.919 July 0 10 2/5 2.2 (1-4) 5.0 (4-6) 24.3 29.32000 14 June 0 0 0/0 NA 13.9 (8-20) 16.5 18.419 June 1 3 1/1 8 (8) 14.5 (10-15) 17.2 19.121 June 3 4 2/4 6.5 (3-8) 11.3 (7-13) 17.2 19.32001 15 June 0 0 0/0 NA 6.1 (2-7) 19.5 22.822 June 1 9 6/9 4.7 (4-7) 7.9 (7-8) 21.3 25.830 June e 0 9 6/9 4.7 (3-6) 8.7 (6-9) 20.8 28.06 July e 0 9 8/9 4.0 (3-7) 8.7 (7-10) 22.8 26.7a Temperatures represent average daily mean or maximum temperatures <str<strong>on</strong>g>of</str<strong>on</strong>g> first seven days <str<strong>on</strong>g>of</str<strong>on</strong>g> each trial.b Eleven carcasses were employed in this trial; four were put out <strong>on</strong> 17 June. One carcass disappeared followingwindy day.c Not applicable (i.e., carcasses did not become maggot-infested).d Nine carcasses were employed in this trial.e One carcass from each <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> latter two trials in 2001 was removed by a nor<strong>the</strong>rn harrier (Circus cyaneus) within<strong>on</strong>e day <str<strong>on</strong>g>of</str<strong>on</strong>g> placement in <strong>the</strong> marsh.


98iiviiiii1 0 1 2 km1 0 1 21 0 1 21 0 1 2Figure 1. Map <str<strong>on</strong>g>of</str<strong>on</strong>g> Eyebrow Lake, Saskatchewan, showing locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> basins (A, B, C divided bydykes) <str<strong>on</strong>g>and</str<strong>on</strong>g> Franklin’s gull col<strong>on</strong>y in 1999, 2000, <str<strong>on</strong>g>and</str<strong>on</strong>g> 2001. Solid outermost outline represents<strong>the</strong> shoreline <str<strong>on</strong>g>of</str<strong>on</strong>g> Eyebrow Lake, <str<strong>on</strong>g>and</str<strong>on</strong>g> shaded area <strong>on</strong> lake represents <strong>the</strong> area <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> gull col<strong>on</strong>y.Parallel lines indicate locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> transects surveyed each year. Box with dashed outline in (a)represents <strong>the</strong> area <strong>on</strong> <strong>the</strong> lake shown in (b) through (d). In (b), numerals i, ii, iii, <str<strong>on</strong>g>and</str<strong>on</strong>g> ivrepresent sub-areas within <strong>the</strong> study area categorized as light, medium, high, <str<strong>on</strong>g>and</str<strong>on</strong>g> zero nestdensity, respectively. The border between sub-areas ii <str<strong>on</strong>g>and</str<strong>on</strong>g> iii was located between <strong>the</strong> 6 th <str<strong>on</strong>g>and</str<strong>on</strong>g> 7 thtransects (from east to west). Western-most transect (1.9 km) in 1999 was not included insurveys for mortality. Nor<strong>the</strong>rn-most transect (0.7 km) in 2000 was not included in nest survey.


Figure 2. Weekly pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> mortality <str<strong>on</strong>g>of</str<strong>on</strong>g> hatch-year Franklin’s gulls, American coots, <str<strong>on</strong>g>and</str<strong>on</strong>g>dabbling ducks <strong>on</strong> <strong>the</strong> gull col<strong>on</strong>y in (a) 1999, (b) 2000, <str<strong>on</strong>g>and</str<strong>on</strong>g> (c) 2001. Number <str<strong>on</strong>g>of</str<strong>on</strong>g> sick or deadbirds per ha (+ 1 SE) was estimated with strip transect methods, using a 10 m half-strip width.Black arrows indicate weeks during which <strong>the</strong> first botulism cases in waterfowl were detectedwithin <strong>the</strong> study area. The first case <str<strong>on</strong>g>of</str<strong>on</strong>g> botulism was detected al<strong>on</strong>g a transect line approximately100 m outside <strong>the</strong> gull col<strong>on</strong>y in 1999, within <strong>the</strong> col<strong>on</strong>y but between transects in 2000, <str<strong>on</strong>g>and</str<strong>on</strong>g>within <strong>the</strong> col<strong>on</strong>y al<strong>on</strong>g a transect line in 2001.99


100PART VIVARIABILITY OF TYPE C CLOSTRIDIUN BOTULINUM TOXIN PRODUCTION ONCANADIAN PRAIRIE LAKES: A PREDICTOR OF MALLARD SURVIVALTRENT K. BOLLINGER, DANIEL D. EVELSIZER, MARNIE ZIMMER <str<strong>on</strong>g>and</str<strong>on</strong>g>CLAIRE JARDINEABSTRACTMaggots c<strong>on</strong>taining Clostridium botulinum, type C toxin play an important role in <strong>the</strong>propagati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> botulism outbreaks in wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s. To evaluate factors c<strong>on</strong>tributing to <strong>the</strong>development <str<strong>on</strong>g>of</str<strong>on</strong>g> toxin in bird carcasses, we collected samples <str<strong>on</strong>g>of</str<strong>on</strong>g> maggots from lakes with <str<strong>on</strong>g>and</str<strong>on</strong>g>without botulism outbreaks, <str<strong>on</strong>g>and</str<strong>on</strong>g> tested for presence <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> C. botulinum toxin.Carcasses from lakes with a history <str<strong>on</strong>g>of</str<strong>on</strong>g> previous botulism outbreaks were ~15 times more likelyto produce type C toxin than were carcasses <strong>on</strong> lakes without previous botulism outbreaks.Carcasses <str<strong>on</strong>g>of</str<strong>on</strong>g> birds that died <str<strong>on</strong>g>of</str<strong>on</strong>g> botulism were 4.7 times more likely to produce toxin than werebirds, from <strong>the</strong> same lake, that died <str<strong>on</strong>g>of</str<strong>on</strong>g> gunshot. In additi<strong>on</strong>, we used logistic regressi<strong>on</strong> to model<strong>the</strong> relati<strong>on</strong>ship between moulting mallard survival rate <str<strong>on</strong>g>and</str<strong>on</strong>g> carcass density, probability carcassesc<strong>on</strong>tain spores (produce toxin, P S ), probability carcasses produce high toxin c<strong>on</strong>centrati<strong>on</strong>s (P T )<str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> probability carcasses persist <str<strong>on</strong>g>and</str<strong>on</strong>g> produce maggots (P M ). Carcass density, P S , P T <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong>interacti<strong>on</strong> term P S *P T were significant predictors <str<strong>on</strong>g>of</str<strong>on</strong>g> survival. The odds ratio for <strong>the</strong> risk factordensity was 1.77 (95% CI = 1.15-2.73), indicating that <strong>the</strong> additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e carcass/ha increased<strong>the</strong> odds <str<strong>on</strong>g>of</str<strong>on</strong>g> botulism mortality by ~1.8 times. Based <strong>on</strong> comparis<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> pseudo-R 2 values, <strong>the</strong>rewas a 23% relative improvement in model fit by adding <strong>the</strong> P S <str<strong>on</strong>g>and</str<strong>on</strong>g> P T terms, including <strong>the</strong>irinteracti<strong>on</strong> term, compared to a model c<strong>on</strong>taining density al<strong>on</strong>e. Underst<str<strong>on</strong>g>and</str<strong>on</strong>g>ing <strong>the</strong> ecologicalfactors that affect spore density, distributi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> persistence <strong>on</strong> wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s may lead to more costeffective measures for managing avian botulism.


101INTRODUCTION<str<strong>on</strong>g>Avian</str<strong>on</strong>g> botulism is an important disease <str<strong>on</strong>g>of</str<strong>on</strong>g> waterfowl worldwide. In North America, die-<str<strong>on</strong>g>of</str<strong>on</strong>g>fstypically occur during summer <str<strong>on</strong>g>and</str<strong>on</strong>g> early fall, under hot c<strong>on</strong>diti<strong>on</strong>s, <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong>y <str<strong>on</strong>g>of</str<strong>on</strong>g>ten coincide withlarge aggregati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> birds during moult <str<strong>on</strong>g>and</str<strong>on</strong>g> pre-migrati<strong>on</strong> staging. <str<strong>on</strong>g>Botulism</str<strong>on</strong>g> outbreaks <strong>on</strong> suchlakes can result in losses <str<strong>on</strong>g>of</str<strong>on</strong>g> thous<str<strong>on</strong>g>and</str<strong>on</strong>g>s to hundreds <str<strong>on</strong>g>of</str<strong>on</strong>g> thous<str<strong>on</strong>g>and</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> birds during a single seas<strong>on</strong>(<strong>Canadian</strong> Cooperative Wildlife Health Centre database), although smaller outbreaks als<str<strong>on</strong>g>of</str<strong>on</strong>g>requently occur.<str<strong>on</strong>g>Avian</str<strong>on</strong>g> botulism is caused by ingesti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a paralytic neurotoxin produced by type C Clostridiumbotulinum, which exists in two forms. The spore or resting form is found in soils associated withwetl<str<strong>on</strong>g>and</str<strong>on</strong>g> envir<strong>on</strong>ments, where it resists envir<strong>on</strong>mental degradati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> can persist for decades.The vegetative form occurs under anaerobic c<strong>on</strong>diti<strong>on</strong>s, with a nutrient rich substrate <str<strong>on</strong>g>and</str<strong>on</strong>g>elevated temperatures. Type C toxin is produced by rapidly dividing Clostridial organisms thatc<strong>on</strong>tain a plasmid with <strong>the</strong> gene for <strong>the</strong> toxin. Decaying vertebrate carcasses provide a highlysuitable substrate for vegetative growth <str<strong>on</strong>g>and</str<strong>on</strong>g> toxin producti<strong>on</strong>. Decomposing carcasses alsoprovide a substrate for growth <str<strong>on</strong>g>and</str<strong>on</strong>g> development <str<strong>on</strong>g>of</str<strong>on</strong>g> sarcophageous fly larvae, which accumulatehigh c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> type C toxin if present <str<strong>on</strong>g>and</str<strong>on</strong>g> can transfer <strong>the</strong> toxin to o<strong>the</strong>r vertebrates thatfeed <strong>on</strong> <strong>the</strong>se maggots. This is frequently referred to as <strong>the</strong> carcass-maggot cycle <str<strong>on</strong>g>and</str<strong>on</strong>g> is a widelyaccepted mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> botulism occurrence (Rocke <str<strong>on</strong>g>and</str<strong>on</strong>g> Bollinger 2007).Causes <str<strong>on</strong>g>of</str<strong>on</strong>g> waterbird mortality that may precipitate a botulism outbreak are varied, <str<strong>on</strong>g>and</str<strong>on</strong>g> includedisease <str<strong>on</strong>g>and</str<strong>on</strong>g> wea<strong>the</strong>r-related mortality, particularly due to hail storms during <strong>the</strong> summer m<strong>on</strong>ths(Stout <str<strong>on</strong>g>and</str<strong>on</strong>g> Cornwell 1976). Powerline collisi<strong>on</strong>s over wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s (Malcolm 1982) <str<strong>on</strong>g>and</str<strong>on</strong>g> mortality <str<strong>on</strong>g>of</str<strong>on</strong>g>juvenile Franklin’s gulls (Larus pipixcan) <strong>on</strong> nesting col<strong>on</strong>ies (Soos <str<strong>on</strong>g>and</str<strong>on</strong>g> Wobeser 2006) are twoexamples where direct links to subsequent botulism outbreaks have been dem<strong>on</strong>strated. It isfrequently stated that C. botulinum type C spores are abundant <strong>on</strong> wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s <str<strong>on</strong>g>and</str<strong>on</strong>g> are unlikely to belimiting factors in botulism outbreaks (Soos <str<strong>on</strong>g>and</str<strong>on</strong>g> Wobeser 2006).A review <str<strong>on</strong>g>of</str<strong>on</strong>g> botulism stated that: “Spores <str<strong>on</strong>g>of</str<strong>on</strong>g> type C botulism strains are widely distributed inwetl<str<strong>on</strong>g>and</str<strong>on</strong>g> sediments; <strong>the</strong>y can be found in <strong>the</strong> tissues <str<strong>on</strong>g>of</str<strong>on</strong>g> most wetl<str<strong>on</strong>g>and</str<strong>on</strong>g> inhabitants, includingaquatic insects, mollusks, <str<strong>on</strong>g>and</str<strong>on</strong>g> crustacea <str<strong>on</strong>g>and</str<strong>on</strong>g> many vertebrates, including healthy birds” <str<strong>on</strong>g>and</str<strong>on</strong>g> thatbecause “botulinum spores <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> phages that carry <strong>the</strong> toxin gene are so prevalent in wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s,<strong>the</strong>y are not c<strong>on</strong>sidered to be a limiting factor in <strong>the</strong> occurrence <str<strong>on</strong>g>of</str<strong>on</strong>g> outbreaks in waterbirds”(Rocke <str<strong>on</strong>g>and</str<strong>on</strong>g> Friend 1999). However, <strong>the</strong>re are few data to support <strong>the</strong>se statements <str<strong>on</strong>g>and</str<strong>on</strong>g> somereports suggest that <strong>the</strong> occurrence <str<strong>on</strong>g>and</str<strong>on</strong>g> prevalence <str<strong>on</strong>g>of</str<strong>on</strong>g> type C spores in wetl<str<strong>on</strong>g>and</str<strong>on</strong>g> sediments ishighly variable. For instance, Wobeser et al. (1987) summarized <strong>the</strong> literature <strong>on</strong> <strong>the</strong> occurrence<str<strong>on</strong>g>of</str<strong>on</strong>g> C. botulinum type C in wetl<str<strong>on</strong>g>and</str<strong>on</strong>g> soils, noting that its prevalence ranged from zero to as high as78% across studies. Although <strong>the</strong> factors resp<strong>on</strong>sible for this high variability are unknown, <strong>the</strong>yreported a str<strong>on</strong>g associati<strong>on</strong> between <strong>the</strong> occurrence or prior history <str<strong>on</strong>g>of</str<strong>on</strong>g> avian botulism <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong>detecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> C. botulinum type C. They also detected spores in wetl<str<strong>on</strong>g>and</str<strong>on</strong>g> basins that had been dryfor several years, dem<strong>on</strong>strating <strong>the</strong> persistence <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se bacteria. S<str<strong>on</strong>g>and</str<strong>on</strong>g>ler et al (1993) reported52% prevalence <str<strong>on</strong>g>of</str<strong>on</strong>g> C. botulinum type C in sediment samples from botulism-pr<strong>on</strong>e wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>swithin <strong>on</strong>e Wildlife Refuge in California. Although <strong>the</strong>y found no difference in prevalencebetween wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s with or without botulism mortality, or between wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s with a history <str<strong>on</strong>g>of</str<strong>on</strong>g> highor low levels <str<strong>on</strong>g>of</str<strong>on</strong>g> botulism occurrence, <strong>the</strong>y did detect higher prevalence in permanent versus


102seas<strong>on</strong>al wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s. Williams<strong>on</strong> et al. (1999) found <strong>the</strong> toxin gene in 16 <str<strong>on</strong>g>of</str<strong>on</strong>g> 18 wetl<str<strong>on</strong>g>and</str<strong>on</strong>g> sediments<str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>firmed its presence in both outbreak <str<strong>on</strong>g>and</str<strong>on</strong>g> n<strong>on</strong>-outbreak wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s. However, <strong>the</strong> botulismhistory for n<strong>on</strong>-outbreak marshes was not given, <str<strong>on</strong>g>and</str<strong>on</strong>g> too few samples were analyzed fromindividual wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s to make comparis<strong>on</strong>s am<strong>on</strong>g <strong>the</strong>m.Wobeser (1997) proposed a simple model to account for transfer <str<strong>on</strong>g>of</str<strong>on</strong>g> toxin to susceptible hosts.Making an analogy to infectious diseases, he suggested that <strong>the</strong> basic reproductive rate (R; <strong>the</strong>average number <str<strong>on</strong>g>of</str<strong>on</strong>g> sec<strong>on</strong>dary infecti<strong>on</strong>s arising from a single infecti<strong>on</strong> in a naïve populati<strong>on</strong>)could be used to describe <strong>the</strong> number <str<strong>on</strong>g>of</str<strong>on</strong>g> sec<strong>on</strong>dary intoxicati<strong>on</strong>s attributed to a single carcass as:R = M 2 /M 1 ,where M 2 is <strong>the</strong> number <str<strong>on</strong>g>of</str<strong>on</strong>g> individuals dying <str<strong>on</strong>g>of</str<strong>on</strong>g> sec<strong>on</strong>dary intoxicati<strong>on</strong>s arising from M 1, <str<strong>on</strong>g>and</str<strong>on</strong>g> M 1is <strong>the</strong> number <str<strong>on</strong>g>of</str<strong>on</strong>g> carcasses <strong>on</strong> a wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>. Disease incidence increases if R > 1, whereas itdeclines if R < 1. Fur<strong>the</strong>rmore, M 2 was defined as:M 2 = M 1 (P s )(P m )(β),where P s is <strong>the</strong> proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> carcasses that c<strong>on</strong>tain spores <str<strong>on</strong>g>of</str<strong>on</strong>g> toxigenic C. botulinum, <str<strong>on</strong>g>and</str<strong>on</strong>g> P m is<strong>the</strong> proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> carcasses that become infested with maggots <str<strong>on</strong>g>and</str<strong>on</strong>g> persist until toxin-ladenmaggots emerge. The β term is an intoxicati<strong>on</strong> coefficient that c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> two comp<strong>on</strong>ents: 1)<strong>the</strong> frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tacts between live birds <str<strong>on</strong>g>and</str<strong>on</strong>g> toxic material (C) <str<strong>on</strong>g>and</str<strong>on</strong>g> 2) <strong>the</strong> proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> suchc<strong>on</strong>tacts that result in intoxicati<strong>on</strong> (P i ). In this model, <strong>the</strong> proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> carcasses that c<strong>on</strong>tainspores is a key determinant <str<strong>on</strong>g>of</str<strong>on</strong>g> botulism outbreaks.Our objectives were to determine: 1) whe<strong>the</strong>r <strong>the</strong> prevalence <str<strong>on</strong>g>of</str<strong>on</strong>g> toxin-laden carcasses <str<strong>on</strong>g>and</str<strong>on</strong>g> levels<str<strong>on</strong>g>of</str<strong>on</strong>g> toxin varied am<strong>on</strong>g wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s, during botulism outbreaks <str<strong>on</strong>g>and</str<strong>on</strong>g> between years, <str<strong>on</strong>g>and</str<strong>on</strong>g> 2) if, duringan outbreak, birds that died <str<strong>on</strong>g>of</str<strong>on</strong>g> botulism had a higher probability <str<strong>on</strong>g>of</str<strong>on</strong>g> producing type C than birdsthat died for o<strong>the</strong>r reas<strong>on</strong>s (e.g., gunshot). This would suggest that <strong>the</strong> bacterium is“transmitted” al<strong>on</strong>g with <strong>the</strong> toxin, leading to fur<strong>the</strong>r objectives to determine: 3) whe<strong>the</strong>r ducksfrom wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s with a previous history <str<strong>on</strong>g>of</str<strong>on</strong>g> botulism were more likely to produce type C toxin th<str<strong>on</strong>g>and</str<strong>on</strong>g>ucks from wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s with no previous history <str<strong>on</strong>g>of</str<strong>on</strong>g> botulism (i.e., whe<strong>the</strong>r <strong>the</strong> bacterium isacquired locally) <str<strong>on</strong>g>and</str<strong>on</strong>g> 4) <strong>the</strong> role that factors such as P S <str<strong>on</strong>g>and</str<strong>on</strong>g> P M play in determining <strong>the</strong>occurrence <str<strong>on</strong>g>of</str<strong>on</strong>g> botulism outbreaks <str<strong>on</strong>g>and</str<strong>on</strong>g> survival <str<strong>on</strong>g>of</str<strong>on</strong>g> waterfowl.METHODSWork was c<strong>on</strong>ducted from 1999 to 2003 at wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s or lakes <strong>on</strong> <strong>the</strong> <strong>Canadian</strong> <strong>Prairies</strong>. Allwetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s provided habitat for dabbling ducks during <strong>the</strong> summer m<strong>on</strong>ths <str<strong>on</strong>g>and</str<strong>on</strong>g> were used tovarying degrees for brood rearing, moulting <str<strong>on</strong>g>and</str<strong>on</strong>g> migrati<strong>on</strong>. They were chosen because <strong>the</strong>y hadsufficient numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> ducks for our sampling efforts <str<strong>on</strong>g>and</str<strong>on</strong>g> because <strong>the</strong>y were subjected to <strong>on</strong>goingm<strong>on</strong>itoring, which enabled us to determine if <strong>the</strong>y had previously experienced botulismoutbreaks. From 1999 to 2001 inclusive, this research was part <str<strong>on</strong>g>of</str<strong>on</strong>g> a larger study evaluatingaspects <str<strong>on</strong>g>of</str<strong>on</strong>g> botulism management <str<strong>on</strong>g>and</str<strong>on</strong>g> impacts, including clean-up efficiency, estimating


103mortality, effects <strong>on</strong> populati<strong>on</strong>s, <str<strong>on</strong>g>and</str<strong>on</strong>g> survivalrates. In 2003, samples were collectedspecifically for this research.Sample collecti<strong>on</strong> during botulism outbreaksWhile undertaking line transect surveys using anairboat (see left), maggot samples were collectedfrom decomposing carcasses throughout July <str<strong>on</strong>g>and</str<strong>on</strong>g>August from 1999 to 2003. These birds wereassumed to have died <str<strong>on</strong>g>of</str<strong>on</strong>g> botulism, becausebotulism was c<strong>on</strong>firmed to be present <strong>on</strong> <strong>the</strong>wetl<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> was <strong>the</strong> leading cause <str<strong>on</strong>g>of</str<strong>on</strong>g> mortality(also see Part II). Maggot samples werecollected from carcasses <strong>on</strong> wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s at <strong>the</strong>maximum stage <str<strong>on</strong>g>of</str<strong>on</strong>g> maggot infestati<strong>on</strong>, whenmaggots were large <str<strong>on</strong>g>and</str<strong>on</strong>g> found throughout <strong>the</strong>carcass. A minimum <str<strong>on</strong>g>of</str<strong>on</strong>g> 3 g <str<strong>on</strong>g>of</str<strong>on</strong>g> maggots wascollected into small bags, <strong>the</strong>n placed in a coolerwith ice-packs <str<strong>on</strong>g>and</str<strong>on</strong>g> frozen at 10 to 20 C within 12hours <str<strong>on</strong>g>of</str<strong>on</strong>g> collecti<strong>on</strong>.Sampling healthy mallards for presence <str<strong>on</strong>g>of</str<strong>on</strong>g> sporesMoulting mallards were collected from lakes with various histories <str<strong>on</strong>g>of</str<strong>on</strong>g> botulism, <strong>on</strong> <strong>the</strong> same dayin early August, by trapping <str<strong>on</strong>g>and</str<strong>on</strong>g> shooting. These mallards were <strong>the</strong>n placed <strong>on</strong> <strong>the</strong> shore <str<strong>on</strong>g>of</str<strong>on</strong>g> awetl<str<strong>on</strong>g>and</str<strong>on</strong>g>, where <strong>the</strong>y were individually placed in shallow plastic-lined cardboard boxes <str<strong>on</strong>g>and</str<strong>on</strong>g>allowed to decompose. An electric fence enclosed <strong>the</strong>se carcasses to deter scavengers; avianscavengers were rare <str<strong>on</strong>g>and</str<strong>on</strong>g> did not disturb <strong>the</strong> carcasses. Carcasses were visited daily, at whichtime cloacal temperatures were taken <str<strong>on</strong>g>and</str<strong>on</strong>g> maggot samples were collected as described above.Testing for toxinMaggot samples were thawed <str<strong>on</strong>g>and</str<strong>on</strong>g> 1 g was placed in a stomacher bag (Seward Model 80 bag)al<strong>on</strong>g with 10 ml <str<strong>on</strong>g>of</str<strong>on</strong>g> Penicillin <str<strong>on</strong>g>and</str<strong>on</strong>g> Streptomycin soluti<strong>on</strong> (0.5 g penicillin G potassium 10 MUplus 5 g Streptomycin B sulfate in 500 ml 0.85% saline). Maggots <str<strong>on</strong>g>and</str<strong>on</strong>g> soluti<strong>on</strong> were maceratedfor 1-2 min using a Stomacher (Seward Model 80). The resulting slurry was placed, by pipette,into 15 ml centrifuge tubes <str<strong>on</strong>g>and</str<strong>on</strong>g> centrifuged for 10 min @ 4343 G. The supernatant, c<strong>on</strong>sidered a1/10 diluti<strong>on</strong>, was collected <str<strong>on</strong>g>and</str<strong>on</strong>g> frozen at 20 C or tested immediately for type C botulism toxinusing a mouse bioassay (Quortrup <str<strong>on</strong>g>and</str<strong>on</strong>g> Sudheimer 1943). Each initial 1/10 diluti<strong>on</strong> sample wastested <strong>on</strong> two adult CD1 mice <str<strong>on</strong>g>of</str<strong>on</strong>g> similar size. One mouse was given 0.1 ml <str<strong>on</strong>g>of</str<strong>on</strong>g> type C antitoxin byintraperit<strong>on</strong>eal injecti<strong>on</strong>. After 30 min, both mice were injected intraperit<strong>on</strong>eally with 0.1 ml <str<strong>on</strong>g>of</str<strong>on</strong>g><strong>the</strong> maggot antibiotic supernatant soluti<strong>on</strong>. Mice were m<strong>on</strong>itored regularly for 4 days to detect


104clinical signs <str<strong>on</strong>g>of</str<strong>on</strong>g> botulism (i.e., use <str<strong>on</strong>g>of</str<strong>on</strong>g> abdominal muscles for respirati<strong>on</strong>). Mice that wererecumbent <str<strong>on</strong>g>and</str<strong>on</strong>g> showing advanced signs <str<strong>on</strong>g>of</str<strong>on</strong>g> botulism were euthanized with an overdose <str<strong>on</strong>g>of</str<strong>on</strong>g>halothane. Although <strong>the</strong>se mice were euthanized, we assumed <strong>the</strong>y would have died <str<strong>on</strong>g>of</str<strong>on</strong>g> botulism.A subset <str<strong>on</strong>g>of</str<strong>on</strong>g> samples c<strong>on</strong>taining toxin was titrated with sterile normal saline <str<strong>on</strong>g>and</str<strong>on</strong>g> tested <strong>on</strong> pairs <str<strong>on</strong>g>of</str<strong>on</strong>g>CD1 mice as follows (Duncan <str<strong>on</strong>g>and</str<strong>on</strong>g> Jensen 1976). If both mice died at 1/10,000 diluti<strong>on</strong>, <strong>the</strong>minimum lethal dose (MLD) was c<strong>on</strong>sidered to be > 10,000 MLD/g <str<strong>on</strong>g>of</str<strong>on</strong>g> larvae. This wasclassified as a high c<strong>on</strong>centrati<strong>on</strong> in results. If both mice died at 1/1000, but not 1/10,000diluti<strong>on</strong>, <strong>the</strong> c<strong>on</strong>centrati<strong>on</strong> was c<strong>on</strong>sidered to be between 1,000 <str<strong>on</strong>g>and</str<strong>on</strong>g> 10,000 MLD/g <str<strong>on</strong>g>of</str<strong>on</strong>g> larvae <str<strong>on</strong>g>and</str<strong>on</strong>g>was classified as a medium c<strong>on</strong>centrati<strong>on</strong>. Finally, if both mice did not die at <strong>the</strong> 1/1000diluti<strong>on</strong>, <strong>the</strong> c<strong>on</strong>centrati<strong>on</strong> was c<strong>on</strong>sidered to be 10,000 MLD 100 /g <str<strong>on</strong>g>of</str<strong>on</strong>g> larvae was c<strong>on</strong>sidered to be high in our analysis, given <strong>the</strong> smallamount <str<strong>on</strong>g>of</str<strong>on</strong>g> ingested larvae that would cause death.Proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> carcasses that develop fly larvaeTo determine <strong>the</strong> proporti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> carcasses removed by scavengers <str<strong>on</strong>g>and</str<strong>on</strong>g> clean-up operati<strong>on</strong>s, <str<strong>on</strong>g>and</str<strong>on</strong>g>to m<strong>on</strong>itor rates <str<strong>on</strong>g>of</str<strong>on</strong>g> decompositi<strong>on</strong>, radio-transmitters (both Mauser <str<strong>on</strong>g>and</str<strong>on</strong>g> intra-abdominal types)were firmly attached to freshly dead carcasses <str<strong>on</strong>g>and</str<strong>on</strong>g> left <strong>on</strong> wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s during clean-up operati<strong>on</strong>s aswell as <strong>on</strong> four wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s without clean-up. Radio-marked carcasses were m<strong>on</strong>itored daily, atwhich time <strong>the</strong>ir rate <str<strong>on</strong>g>of</str<strong>on</strong>g> decompositi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> fate were recorded. Clean-up crews collected -radiomarkedcarcasses if found.Estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> carcass densitiesCarcass densities <strong>on</strong> each lake were estimated <strong>on</strong> a 5-14 day cycle beginning no later than <strong>the</strong>first week <str<strong>on</strong>g>of</str<strong>on</strong>g> July <str<strong>on</strong>g>and</str<strong>on</strong>g> ending no earlier than 15 August, which spanned <strong>the</strong> period over whichradio-marked mallards were m<strong>on</strong>itored. The excepti<strong>on</strong> was Frank Lake in 2000, where surveysdid not commence until 23 July. Five to 12 estimates (cycles) <str<strong>on</strong>g>of</str<strong>on</strong>g> carcass density were obtainedfor each lake over <strong>the</strong> summer. Fixed line transects were established at 100-500 m spacingdepending <strong>on</strong> vegetati<strong>on</strong> type <str<strong>on</strong>g>and</str<strong>on</strong>g> occurrence <str<strong>on</strong>g>of</str<strong>on</strong>g> carcasses, with <strong>the</strong> first transect r<str<strong>on</strong>g>and</str<strong>on</strong>g>omlychosen at <strong>the</strong> beginning <str<strong>on</strong>g>of</str<strong>on</strong>g> each cycle. Using a Global Positi<strong>on</strong>ing System (GPS) unit (GarminInc.), an airboat was driven down <strong>the</strong> center <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se transects while <strong>on</strong>e or two observersstood at <strong>the</strong> fr<strong>on</strong>t <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> boat, counting all carcasses. For each carcass, <strong>the</strong> UTM coordinate <str<strong>on</strong>g>of</str<strong>on</strong>g><strong>the</strong> boat was determined using <strong>the</strong> GPS, <str<strong>on</strong>g>and</str<strong>on</strong>g> perpendicular distance between <strong>the</strong> center <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>boat (i.e., <strong>the</strong> transect) <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> carcass was estimated.Density estimates were derived using <strong>the</strong> s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware DISTANCE (Thomas et al. 2006).Perpendicular distance data were grouped into various intervals based <strong>on</strong> frequency histograms,<str<strong>on</strong>g>and</str<strong>on</strong>g> right truncated if outliers were present. Depending <strong>on</strong> lake <str<strong>on</strong>g>and</str<strong>on</strong>g> cycle, <strong>the</strong> following modelswere used to derive detecti<strong>on</strong> functi<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> estimate densities: half normal adjusted with cosine


105series or simple polynomial series; hazard rate adjusted with cosine series; <str<strong>on</strong>g>and</str<strong>on</strong>g> uniform adjustedwith cosine series. Models were selected based <strong>on</strong> likelihood ratio tests (Buckl<str<strong>on</strong>g>and</str<strong>on</strong>g> et al. 1993).Estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> 30-day survival rateResults <str<strong>on</strong>g>of</str<strong>on</strong>g> this work <str<strong>on</strong>g>and</str<strong>on</strong>g> detailed methodology are published elsewhere (Part II; Evelsizer et al.2010). Briefly, adult moulting mallards were captured using bait traps <str<strong>on</strong>g>and</str<strong>on</strong>g> drive-trapping, from1 July to <strong>the</strong> sec<strong>on</strong>d week <str<strong>on</strong>g>of</str<strong>on</strong>g> August. Visibly healthy mallards were equipped with a backmounted,pr<strong>on</strong>g <str<strong>on</strong>g>and</str<strong>on</strong>g> suture style radio-transmitter (172-174 MHz) using st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard techniques(Mauser <str<strong>on</strong>g>and</str<strong>on</strong>g> Jarvis 1991), under local anes<strong>the</strong>tic (1 ml Marcaine), <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong>n released within 30min to reduce stress (Cox <str<strong>on</strong>g>and</str<strong>on</strong>g> Aft<strong>on</strong> 1998). A small temperature-sensitive probe encased inflexible plastic tubing ran underneath <strong>the</strong> stainless steel anchor; when a drop (≥4 C) occurred inbody temperature <strong>the</strong> transmitter pulse rate increased, indicating death.Survival was determined by tracking mallards daily (04:00 - 09:00 CST), sometimes morefrequently, for 30 days after release. After 30 days, surviving birds could not be tracked withcertainty because most had completed moult <str<strong>on</strong>g>and</str<strong>on</strong>g> became mobile. Bird locati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> status (deador alive) were recorded each morning by tracking with a receiver linked to truck or towermountedantennas. If <strong>the</strong> transmitter pulse rate had increased, indicating death, <strong>the</strong> carcass wasretrieved usually within 2-6 hours with <strong>the</strong> aid <str<strong>on</strong>g>of</str<strong>on</strong>g> a h<str<strong>on</strong>g>and</str<strong>on</strong>g>-held tracking system from an airboat.The locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> each dead bird was determined with a GPS unit <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> carcass was frozen fornecropsy. When signals were lost, this could have occurred because birds regained flight <str<strong>on</strong>g>and</str<strong>on</strong>g>left <strong>the</strong> wetl<str<strong>on</strong>g>and</str<strong>on</strong>g> near <strong>the</strong> end <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> tracking period, or because <strong>the</strong> transmitter was shed or failed.Statistical AnalysisLogistic regressi<strong>on</strong> was used to evaluate <strong>the</strong> associati<strong>on</strong> between carcasses developing toxin <strong>on</strong> aparticular lake <str<strong>on</strong>g>and</str<strong>on</strong>g> that lake’s history <str<strong>on</strong>g>of</str<strong>on</strong>g> prior botulism occurrence. Similarly, logistic regressi<strong>on</strong>was used to determine <strong>the</strong> associati<strong>on</strong> between carcasses developing toxin <str<strong>on</strong>g>and</str<strong>on</strong>g> whe<strong>the</strong>r <strong>the</strong>carcasses were a result <str<strong>on</strong>g>of</str<strong>on</strong>g> death due to botulism or some o<strong>the</strong>r cause <str<strong>on</strong>g>of</str<strong>on</strong>g> death. Logisticregressi<strong>on</strong> analysis was used to evaluate <strong>the</strong> associati<strong>on</strong> between botulism mortality <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong>following potential risk factors: carcass density; probability <str<strong>on</strong>g>of</str<strong>on</strong>g> a carcass <strong>on</strong> a wetl<str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>tainingtoxin (P S ); probability <str<strong>on</strong>g>of</str<strong>on</strong>g> a carcass <strong>on</strong> a wetl<str<strong>on</strong>g>and</str<strong>on</strong>g> having high levels <str<strong>on</strong>g>of</str<strong>on</strong>g> toxin (P T ); <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong>probability <str<strong>on</strong>g>of</str<strong>on</strong>g> a carcass <strong>on</strong> a wetl<str<strong>on</strong>g>and</str<strong>on</strong>g> persisting to <strong>the</strong> stage <str<strong>on</strong>g>of</str<strong>on</strong>g> maggot development (P M ). Onlylakes with measured carcass densities <str<strong>on</strong>g>and</str<strong>on</strong>g> survival rates were used in this analysis. Backwardseliminati<strong>on</strong> techniques were used <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> variable P M was rejected due to a lack <str<strong>on</strong>g>of</str<strong>on</strong>g> variability in<strong>the</strong> parameter. With <strong>the</strong> remaining variables, a biologically relevant two-way interacti<strong>on</strong> termwas added to <strong>the</strong> model. To compare models, a pseudo R 2 term was derived, comparing <strong>the</strong> fit<str<strong>on</strong>g>of</str<strong>on</strong>g> selected models to that <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> intercept-<strong>on</strong>ly model (Dohoo et al. 2003). All analyses wereperformed using SPSS versi<strong>on</strong>s 16.0 (SPSS Inc., Chicago). Methods were approved by <strong>the</strong>University <str<strong>on</strong>g>of</str<strong>on</strong>g> Saskatchewan’s Committee <strong>on</strong> Animal Care (Protocol 19980040) <strong>on</strong> behalf <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><strong>Canadian</strong> Council <str<strong>on</strong>g>of</str<strong>on</strong>g> Animal Care.


106RESULTSThe proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> carcasses producing type C toxin varied from 0 to 100% prevalence acrosslakes (Table 1). Although <strong>the</strong> prevalence <str<strong>on</strong>g>of</str<strong>on</strong>g> toxin producti<strong>on</strong> <strong>on</strong> a particular wetl<str<strong>on</strong>g>and</str<strong>on</strong>g> wasgenerally similar am<strong>on</strong>g years, <strong>the</strong>re was <strong>on</strong>e notable excepti<strong>on</strong>. In 2000, Kettlehut Lake had aprevalence <str<strong>on</strong>g>of</str<strong>on</strong>g> toxin producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 93% for botulism carcasses <str<strong>on</strong>g>and</str<strong>on</strong>g> 87% for carcasses <str<strong>on</strong>g>of</str<strong>on</strong>g>euthanized mallards that were allowed to decompose. This is in sharp c<strong>on</strong>trast to 2001, when<strong>the</strong>re was no botulism outbreak detected <strong>on</strong> Kettlehut Lake <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> prevalence <str<strong>on</strong>g>of</str<strong>on</strong>g> toxinproducti<strong>on</strong> from euthanized mallards was <strong>on</strong>ly 15%. Water levels were low in Kettlehut Lake in2001 compared to 2000, reducing <strong>the</strong> surface area covered by water from an average <str<strong>on</strong>g>of</str<strong>on</strong>g> 304.8 hain 2000 to 252.5 ha in 2001. This would have altered <strong>the</strong> areas <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> lake used by waterfowl <str<strong>on</strong>g>and</str<strong>on</strong>g>perhaps reduced <strong>the</strong>ir exposure to C. botulinum spores in wetl<str<strong>on</strong>g>and</str<strong>on</strong>g> sediments in 2001.There was a significant difference, in <strong>the</strong> proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> euthanized bird carcasses that producedtoxin, between lakes with a history <str<strong>on</strong>g>of</str<strong>on</strong>g> botulism outbreaks <str<strong>on</strong>g>and</str<strong>on</strong>g> those with no previous history <str<strong>on</strong>g>of</str<strong>on</strong>g>botulism occurrence (Wald’s chi-square 30.68; P< 0.0001). The prevalence <str<strong>on</strong>g>of</str<strong>on</strong>g> toxin producti<strong>on</strong><strong>on</strong> n<strong>on</strong>-botulism lakes ranged from 0 to 38% (median = 17%) <str<strong>on</strong>g>and</str<strong>on</strong>g> toxin c<strong>on</strong>centrati<strong>on</strong>s were<str<strong>on</strong>g>of</str<strong>on</strong>g>ten low (Table 1); however, <strong>the</strong>re was no difference in <strong>the</strong> proporti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> carcasses thatproduced high levels <str<strong>on</strong>g>of</str<strong>on</strong>g> toxin between botulism <str<strong>on</strong>g>and</str<strong>on</strong>g> n<strong>on</strong>-botulism lakes (Pears<strong>on</strong>’s chi-square =2.45, P = 0.12). The prevalence <str<strong>on</strong>g>of</str<strong>on</strong>g> toxin producti<strong>on</strong> <strong>on</strong> lakes with a history <str<strong>on</strong>g>of</str<strong>on</strong>g> botulism rangedfrom 15 to 100% (median = 71%). Waterfowl dying <strong>on</strong> a lake with a recent history <str<strong>on</strong>g>of</str<strong>on</strong>g> botulismwere ~15 times more likely (odds ratio = 15.3, 95% CI = 5.8 to 40.0) to produce type C botulinaltoxin than were birds dying <strong>on</strong> a lake without a previous history <str<strong>on</strong>g>of</str<strong>on</strong>g> botulism.There was also a significant difference, in <strong>the</strong> probability <str<strong>on</strong>g>of</str<strong>on</strong>g> developing toxin, between carcasses<str<strong>on</strong>g>of</str<strong>on</strong>g> birds that died <str<strong>on</strong>g>of</str<strong>on</strong>g> botulism <str<strong>on</strong>g>and</str<strong>on</strong>g> those that were euthanized <strong>on</strong> <strong>the</strong> same botulism-pr<strong>on</strong>e lakes(Wald’s chi-square = 7.05; P


1072.73), indicating that <strong>the</strong> additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e carcass/ha increased <strong>the</strong> odds <str<strong>on</strong>g>of</str<strong>on</strong>g> botulism mortality by~1.8 times. Based <strong>on</strong> comparis<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> pseudo-R 2 values, <strong>the</strong>re was a 23% relative improvementin model fit by adding <strong>the</strong> P S <str<strong>on</strong>g>and</str<strong>on</strong>g> P T terms, including <strong>the</strong>ir interacti<strong>on</strong> term, compared to a modelc<strong>on</strong>taining density al<strong>on</strong>e (Table 4).DISCUSSIONAn underst<str<strong>on</strong>g>and</str<strong>on</strong>g>ing <str<strong>on</strong>g>of</str<strong>on</strong>g> factors that precipitate <str<strong>on</strong>g>and</str<strong>on</strong>g> perpetuate botulism outbreaks is required toprevent <str<strong>on</strong>g>and</str<strong>on</strong>g> manage this disease. Previous research has shown that <strong>the</strong> carcass-maggot cycle is<str<strong>on</strong>g>of</str<strong>on</strong>g>ten <strong>the</strong> most significant factor in <strong>the</strong> spread <str<strong>on</strong>g>of</str<strong>on</strong>g> botulism <strong>on</strong> a wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>. Our researchdem<strong>on</strong>strated that carcass density is a significant predictor <str<strong>on</strong>g>of</str<strong>on</strong>g> moulting mallard survival <strong>on</strong>wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s, with each additi<strong>on</strong>al mean carcass per ha increasing <strong>the</strong> odds <str<strong>on</strong>g>of</str<strong>on</strong>g> botulism mortality by1.8 times. The additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> P S, P T <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> interacti<strong>on</strong> term improved <strong>the</strong> model by 23%. Logistics<str<strong>on</strong>g>and</str<strong>on</strong>g> costs prevent carcass clean-up from being an effective management resp<strong>on</strong>se to botulismoutbreaks <strong>on</strong> most wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s with significant botulism die-<str<strong>on</strong>g>of</str<strong>on</strong>g>fs (Parts I <str<strong>on</strong>g>and</str<strong>on</strong>g> II) despite <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>survival benefits <str<strong>on</strong>g>of</str<strong>on</strong>g> lower carcass densities (see Part III).Given <strong>the</strong> important role <str<strong>on</strong>g>of</str<strong>on</strong>g> fly larvae in <strong>the</strong> spread <str<strong>on</strong>g>of</str<strong>on</strong>g> botulism, researchers have investigated <strong>the</strong>prevalence <str<strong>on</strong>g>and</str<strong>on</strong>g> levels <str<strong>on</strong>g>of</str<strong>on</strong>g> toxin in maggots collected from carcasses during outbreaks. Duncan<str<strong>on</strong>g>and</str<strong>on</strong>g> Jensen (1976) found 120/142 or 84.5% <str<strong>on</strong>g>of</str<strong>on</strong>g> fly larvae samples from carcasses c<strong>on</strong>tained typeC toxin <str<strong>on</strong>g>and</str<strong>on</strong>g>, from 15 July to 2 October, 92% c<strong>on</strong>tained toxin with <strong>the</strong> c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> toxinincreasing dramatically after 15 July. Twenty-<strong>on</strong>e (15%, n = 142) <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se samples had aminimum lethal dose <str<strong>on</strong>g>of</str<strong>on</strong>g> > 100,000 MLD 50 /g <str<strong>on</strong>g>of</str<strong>on</strong>g> larvae. Haagsma et al. (1972) reported that~96% <str<strong>on</strong>g>of</str<strong>on</strong>g> fly larvae samples c<strong>on</strong>tained toxin during a type C botulism outbreak in <strong>the</strong>Ne<strong>the</strong>rl<str<strong>on</strong>g>and</str<strong>on</strong>g>s. Reed <str<strong>on</strong>g>and</str<strong>on</strong>g> Rocke (1992) placed previously frozen carcasses <strong>on</strong> a wetl<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g>m<strong>on</strong>itored fly larvae <str<strong>on</strong>g>and</str<strong>on</strong>g> toxin development, <str<strong>on</strong>g>and</str<strong>on</strong>g> found <strong>on</strong> average 41% (SE = 9%) <str<strong>on</strong>g>of</str<strong>on</strong>g> maggotsdeveloped toxin <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>on</strong> average 16% (SE = 6%) <str<strong>on</strong>g>of</str<strong>on</strong>g> maggots from euthanized birds <str<strong>on</strong>g>and</str<strong>on</strong>g> 10% <str<strong>on</strong>g>of</str<strong>on</strong>g>maggots from botulism-intoxicated birds had levels <str<strong>on</strong>g>of</str<strong>on</strong>g> toxin > 100 MLD/g <str<strong>on</strong>g>of</str<strong>on</strong>g> maggots.For botulism to spread, ingested maggots must also c<strong>on</strong>tain sufficient c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> toxin tokill a bird. For botulism to spread bey<strong>on</strong>d this newly intoxicated bird, <strong>the</strong> bacterium with <strong>the</strong>type C gene must ei<strong>the</strong>r be transmitted with <strong>the</strong> maggots or <strong>the</strong> bird must already c<strong>on</strong>tainpreviously ingested spores <str<strong>on</strong>g>of</str<strong>on</strong>g> C. botulinum. Our research shows that between zero <str<strong>on</strong>g>and</str<strong>on</strong>g> 38% <str<strong>on</strong>g>of</str<strong>on</strong>g>carcasses that decompose <strong>on</strong> lakes without a history <str<strong>on</strong>g>of</str<strong>on</strong>g> botulism produce toxin; <str<strong>on</strong>g>and</str<strong>on</strong>g> becausemany <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se carcasses produce low levels <str<strong>on</strong>g>of</str<strong>on</strong>g> toxin (as determined by <strong>the</strong> MLD from maggots),<strong>the</strong> probability <str<strong>on</strong>g>of</str<strong>on</strong>g> a decomposing carcass producing significant amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> toxin drops tobetween 0 <str<strong>on</strong>g>and</str<strong>on</strong>g> 7% (Table 3). Of <strong>the</strong> six lakes that fit this category in our study, three would havehad a probability <str<strong>on</strong>g>of</str<strong>on</strong>g> 0%, <strong>on</strong>e with 5% <str<strong>on</strong>g>and</str<strong>on</strong>g> two with 7% probability. This is in sharp c<strong>on</strong>trast to<strong>the</strong> proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> carcasses that c<strong>on</strong>tain toxin at high levels <strong>on</strong> wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s experiencing botulismoutbreaks. When comparing lakes with differing histories <str<strong>on</strong>g>of</str<strong>on</strong>g> botulism, <strong>the</strong> odds ratio indicatesthat carcasses <str<strong>on</strong>g>of</str<strong>on</strong>g> waterfowl dying <strong>on</strong> lakes with a recent history <str<strong>on</strong>g>of</str<strong>on</strong>g> botulism are 15 times morelikely to produce type C toxin than <strong>the</strong>y would if birds had died <strong>on</strong> a lake without a history <str<strong>on</strong>g>of</str<strong>on</strong>g>botulism. These findings indicate that most mallards, <str<strong>on</strong>g>and</str<strong>on</strong>g> likely o<strong>the</strong>r waterfowl, are ingestingspores locally during <strong>the</strong> course <str<strong>on</strong>g>of</str<strong>on</strong>g> feeding activities. The high level <str<strong>on</strong>g>of</str<strong>on</strong>g> spore c<strong>on</strong>taminati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>


108sediments in basins <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se botulism lakes has been dem<strong>on</strong>strated by Wobeser et al. (1987). In<strong>the</strong> wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s that <strong>the</strong>y studied, 59% <str<strong>on</strong>g>of</str<strong>on</strong>g> soil samples collected from marshes with a known history<str<strong>on</strong>g>of</str<strong>on</strong>g> botulism produced toxin, whereas <strong>on</strong>ly 6% <str<strong>on</strong>g>of</str<strong>on</strong>g> soil samples from marshes with no history <str<strong>on</strong>g>of</str<strong>on</strong>g>botulism produced toxin.Our studies also suggest that exposure to spores in <strong>the</strong> envir<strong>on</strong>ment can change significantlyfrom <strong>on</strong>e year to <strong>the</strong> next. During a botulism die-<str<strong>on</strong>g>of</str<strong>on</strong>g>f <strong>on</strong> Kettlehut Lake in 2000, 87% <str<strong>on</strong>g>of</str<strong>on</strong>g>carcasses from euthanized birds produced toxin compared to <strong>on</strong>ly 15% <str<strong>on</strong>g>of</str<strong>on</strong>g> carcasses fromeuthanized birds in 2001. In 2001, carcasses were infrequently observed <strong>on</strong> Kettlehut Lakedespite intensive surveillance efforts similar to those in 2000. Sick birds were not observed in2001 <str<strong>on</strong>g>and</str<strong>on</strong>g> botulism was never c<strong>on</strong>firmed. Water levels were low <strong>on</strong> Kettlehut in 2001 comparedto 2000, changing <strong>the</strong> total surface area <str<strong>on</strong>g>and</str<strong>on</strong>g> likely <strong>the</strong> feeding areas used by waterfowl. Thus,distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> spores <str<strong>on</strong>g>of</str<strong>on</strong>g> C. botulinum type C within a wetl<str<strong>on</strong>g>and</str<strong>on</strong>g> may vary spatially <str<strong>on</strong>g>and</str<strong>on</strong>g> over time.Factors affecting distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> spores in wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s warrants fur<strong>the</strong>r investigati<strong>on</strong>.


109LITERATURE CITEDCox JRR, Aft<strong>on</strong> AD. 1998. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> capture <str<strong>on</strong>g>and</str<strong>on</strong>g> h<str<strong>on</strong>g>and</str<strong>on</strong>g>ling <strong>on</strong> survival <str<strong>on</strong>g>of</str<strong>on</strong>g> female nor<strong>the</strong>rnpintails. J Field Orn. 69:276-287.Dohoo I, Martin W, Stryhn H. 2003. Veterinary Epidemiologic Research. Prince Edward Isl<str<strong>on</strong>g>and</str<strong>on</strong>g>:Atlantic Veterinary College.Duncan RM, Jensen WI. 1976. A relati<strong>on</strong>ship between avian carcasses <str<strong>on</strong>g>and</str<strong>on</strong>g> living invertebrates in<strong>the</strong> epizootiology <str<strong>on</strong>g>of</str<strong>on</strong>g> avian botulism. J Wildl Dis. 12:116-126.Evelsizer DD. 2002. <str<strong>on</strong>g>Management</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> avian botulism <str<strong>on</strong>g>and</str<strong>on</strong>g> survival <str<strong>on</strong>g>of</str<strong>on</strong>g> molting mallards. MSc<strong>the</strong>sis, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Saskatchewan. 59 p.Haagsma J, Over HJ, Smit T, Hoekstra J. 1972. <str<strong>on</strong>g>Botulism</str<strong>on</strong>g> in waterfowl in <strong>the</strong> Ne<strong>the</strong>rl<str<strong>on</strong>g>and</str<strong>on</strong>g>s in1970. Neth J Vet Sci. 5:11-33.Malcolm JM. 1982. Bird collisi<strong>on</strong>s with a power transmissi<strong>on</strong> line <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong>ir relati<strong>on</strong> to botulismat a M<strong>on</strong>tana wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>. Wildl Soc Bull. 10:297-3043.Mauser DM, Jarvis RL. 1991. Attaching radio transmitters to 1-day-old mallard ducklings. JWildl Manage. 55:488-491.Quortrup ER, Sudheimer RL. 1943. Detecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> botulinus toxin in <strong>the</strong> blood stream <str<strong>on</strong>g>of</str<strong>on</strong>g> wildducks. J Amer Vet Med Assoc. 102:264-266.Reed TM, Rocke TE. 1992. The role <str<strong>on</strong>g>of</str<strong>on</strong>g> avian carcasses in botulism epizootics. Wildl Soc Bull.20:175-182.Rocke T, Friend M. 1999. <str<strong>on</strong>g>Avian</str<strong>on</strong>g> <str<strong>on</strong>g>Botulism</str<strong>on</strong>g>. In: Field Manual <str<strong>on</strong>g>of</str<strong>on</strong>g> Wildlife Diseases: General FieldProcedures <str<strong>on</strong>g>and</str<strong>on</strong>g> Diseases <str<strong>on</strong>g>of</str<strong>on</strong>g> Birds (Friend M, Frans<strong>on</strong> CJ, editors). USGS BiologicalResources Divisi<strong>on</strong>: 271-282.Rocke TE, Bollinger TK. 2007. <str<strong>on</strong>g>Avian</str<strong>on</strong>g> botulism. In: Infectious Diseases <str<strong>on</strong>g>of</str<strong>on</strong>g> Wild Birds (ThomasNJ, Hunter DB, Atkins<strong>on</strong> CT, editors). Iowa: Blackwell Publishing. p 377-416.S<str<strong>on</strong>g>and</str<strong>on</strong>g>ler,RJ, Rocke TE, Samuel MD, Yuill TM. 1993. Seas<strong>on</strong>al prevalence <str<strong>on</strong>g>of</str<strong>on</strong>g> Clostridiumbotulinum type C in sediments <str<strong>on</strong>g>of</str<strong>on</strong>g> a nor<strong>the</strong>rn California wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>. J Wildl Dis. 29:533-539.Soos C, Wobeser G. 2006. Identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> primary substrate in <strong>the</strong> initiati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> avian botulismoutbreaks. J Wildl Manage. 70:43-53.Stout IJ, Cornwell GW. 1976. N<strong>on</strong>hunting mortality <str<strong>on</strong>g>of</str<strong>on</strong>g> fledged North American waterfowl. JWildl Manage. 40:681-693.


110Williams<strong>on</strong> JL, Rocke TE, Aiken JM. 1999. In situ detecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Clostridium botulinum typeC1 toxin gene in wetl<str<strong>on</strong>g>and</str<strong>on</strong>g> sediments with a nested PCR assay. Appl Envir<strong>on</strong> Microbiol.65:3240-3243.Wobeser G. 1997. <str<strong>on</strong>g>Avian</str<strong>on</strong>g> botulism - ano<strong>the</strong>r perspective. J Wildl Dis. 33:181-186.Wobeser G, Marsden S, MacFarlane RJ. 1987. Occurence <str<strong>on</strong>g>of</str<strong>on</strong>g> toxigenic Clostridium botulinumtype C in <strong>the</strong> soil <str<strong>on</strong>g>of</str<strong>on</strong>g> wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s in Saskatchewan. J Wildl Dis. 23:67-76.Wobeser G. 1997. Diseases <str<strong>on</strong>g>of</str<strong>on</strong>g> wild waterfowl, 2nd editi<strong>on</strong>. New York: Plenum Press.


111Table 1. Prevalence <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> type C botulism toxin in maggots collected fromwaterfowl carcasses dying from botulism versus collecti<strong>on</strong> via shooting at selected wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s.Also shown are percentages <str<strong>on</strong>g>of</str<strong>on</strong>g> birds by categories (Low, Medium, High) <str<strong>on</strong>g>of</str<strong>on</strong>g> toxin c<strong>on</strong>centrati<strong>on</strong>determined by minimum lethal dose to mice (see Methods). Locati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> coordinates <str<strong>on</strong>g>of</str<strong>on</strong>g> lakeswith botulism are shown in Figure 1 <str<strong>on</strong>g>and</str<strong>on</strong>g> Table 1 <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> General Introducti<strong>on</strong>, while <strong>the</strong>coordinates for those with no previous history <str<strong>on</strong>g>of</str<strong>on</strong>g> botulism (*) are listed below <strong>the</strong> table.a Cause <str<strong>on</strong>g>of</str<strong>on</strong>g>Year Lake, ProvinceDeathProporti<strong>on</strong>with toxin(%)Toxin c<strong>on</strong>centrati<strong>on</strong> (%)Low Medium High1998 Old Wives, SK botulism 21/25 (84) 12/20 (60) 4/20 (20) 4/20 (20)Whitewater, MB botulism 52/55 (95) 7/30 (23) 6/30 (20) 17/30 (57)Pakowki, AB botulism 11/11 (100) 2/10 (20) 1/10 (10) 7/10 (70)1999 Old Wives, SK botulism 19/21 (90) 11/19 (58) 7/19 (37) 1/19 (5)euthanized 11/25 (44) 8/11 (73) 2/11 (18) 1/11 (9)Whitewater, MB botulism 21/21 4/20 (20) 3/20 (15) 13/20 (65)Eyebrow, SK botulism 22/22 10/19 (53) 6/19 (31) 3/19 (16)euthanized 18/25 (72) 9/18 (50) 4/18 (22) 5/18 (28)Lucky*, SK euthanized 4/15 (26) 3/4 1/42000 Kettlehut, SK botulism 28/30 (93) 11/15 (73) 1/15 (7) 3/15 (20)euthanized 26/30 (87) 9/20 (45) 8/20 (40) 3/20 (15)Paysen, SK botulism 15/18 (83) 7/15 (47) 5/15 (33) 3/15 (20)euthanized 23/26 (88) 12/20 (60) 4/20 (20) 4/20 (20)Crane, SK botulism 12/13 (92) 6/12 (50) 4/12 (33) 2/12 (17)euthanized 30/30 11/20 (55) 9/20 (45)Frank, AB botulism 15/20 (75) 5/15 5/15 5/15Whitewater, MB botulism 10/10 3/10 5/10 2/10Boulder*, SK euthanized 6/30 (20) 4/6 (67) 2/6 (33)Barber*, SK euthanized 1/9 (11) 1/1Eyebrow, SK euthanized 2/3 (67) 2/22001 Kettlehut b , SK euthanized 3/20 (15) 3/3Paysen, SK botulism 20/20 2/20 (10) 8/20 (40) 10/20 (50)euthanized 14/20 (70) 11/14 (79) 3/14 (21) 0/14


112Chaplin, SK botulism 3/5 (60) 1/3 0/3 2/3euthanized 8/20 (40) 7/8 (88) 1/8 (12) 0/8Frank, AB botulism 16/20 (80) 9/16 (56) 3/16 (19) 4/16 (25)Whitewater, MB botulism 19/20 (95) 12/19 (63) 6/19 (32) 1/19 (5)Barber*, SK euthanized 0/5Indi*, SK euthanized 0/202003 Eyebrow, SK euthanized 28/28 17/20 (85) 3/20 (15)Brightwater*, MB euthanized 6/16 (38) 6/6Indi*, SK euthanized 4/24 (17) 4/4Whitewater, MB euthanized 44/47 (94) 19/22 (86) 3/22 (14)Pakowki, AB euthanized 25/29 (86) 13/20 (65) 7/20 (35)* Lucky Lake = 51.06880N -107.08844W; Boulder Lake = 51.59974N -105.23776W; Barber Lake = 51.36800N-107.65903; Indi Marsh = 51.69440N -106.51620W; Brightwater Reservoir = 51.59660N -106.53740W.abSK = Saskatchewan; MB = Manitoba; AB = Alberta.<str<strong>on</strong>g>Botulism</str<strong>on</strong>g>-pr<strong>on</strong>e lake but no botulism in current year.


113Table 2. Numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> carcasses developing maggots at selected <strong>Canadian</strong> prairie wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s in2000-2001. The “c<strong>on</strong>trol” treatment indicates no carcass cleanup was undertaken whereas“managed” treatment indicates intensive surveillance <str<strong>on</strong>g>and</str<strong>on</strong>g> carcass cleanup occurred. Fresh duckcarcasses were marked with radio transmitters, placed where <strong>the</strong>y were initially found <str<strong>on</strong>g>and</str<strong>on</strong>g>m<strong>on</strong>itored daily until <strong>the</strong>y sank, disappeared or were recovered <strong>on</strong> managed lakes <strong>on</strong>ly bycleanup crews.Year Lake, Province a TreatmentNumber <str<strong>on</strong>g>of</str<strong>on</strong>g>markedcarcassesNumber (%)developingmaggotsComments re: carcasses2000 Crane, SK C<strong>on</strong>trol 29 29 (100)Kettlehut, SK C<strong>on</strong>trol 36 36 (100)Frank, AB Managed 30 23 (77) 7 collectedPaysen, SK Managed 30 13 (43) 2 scavenged; 15 collected2001 Chaplin, SK Managed 2 1 (50) 1 scavengedFrank, AB C<strong>on</strong>trol 11 11 (100)Paysen, SK C<strong>on</strong>trol 21 20 (95) 1 scavengedaSK = Saskatchewan; MB = Manitoba; AB = Alberta.


114Table 3. Annual <str<strong>on</strong>g>and</str<strong>on</strong>g> lake-specific probability estimates for presence <str<strong>on</strong>g>of</str<strong>on</strong>g> spores (PS), producti<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> botulinum toxin (PT a ) <str<strong>on</strong>g>and</str<strong>on</strong>g> maggots (PM), <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> product <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se three probabilities(PS*PT*PM). Also shown are density <str<strong>on</strong>g>of</str<strong>on</strong>g> toxic carcasses <strong>on</strong> a wetl<str<strong>on</strong>g>and</str<strong>on</strong>g> (corrected carcass density)<str<strong>on</strong>g>and</str<strong>on</strong>g> survival probability for radio-marked moulting mallards.Lake, Province Year PS PT PM PS*PT*PMCorrectedcarcass densitySurvivalprobabilityWhitewater, MB 1999 1.0 0.80 1.0 0.80 3.94 0.0462000 1.0 0.70 1.0 0.70 Not known Not known2001 0.95 0.37 1.0 0.35 Not known Not knownKettlehut, SK 2000 0.93 0.27 1.0 0.25 3.23 0.5972001 0.15 0.33 1.0 0.05 0 1.0Paysen, SK 2000 0.83 0.53 0.43 0.19 1.23 0.5762001 0.70 0.21 0.95 0.14 0.77 0.886Frank, AB 2000 0.75 0.67 0.77 0.39 4.56 0.3692001 0.80 0.44 1.0 0.35 2.14 0.860Chaplin, SK 2001 0.40 0.12 0.5 0.02 0 0.962Boulder*, SK 2000 0.20 0.33 1.0 0.07 0 ~1.0Lucky*, SK 1999 0.26 0.25 1.0 0.07 0 ~1.0Indi*, SK 2001 0 0 1.0 0.00 0 ~1.02003 0.17 0 1.0 0.00 0 ~1.0Brightwater*, SK 2003 0.38 0 1.0 0.00 0 ~1.0Old Wives, SK 1999 0.90 0.41 1.0 0.37 6.57 0.043Eyebrow, SK 1999 1.0 0.47 1.0 0.47 2.97 0.3862003 1.0 0.15 1.0 0.15 Not known Not knownCrane, SK 2000 0.92 0.50 1.0 0.46 3.41 0.486abProporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> toxic carcasses that c<strong>on</strong>tain maggots with c<strong>on</strong>centrati<strong>on</strong>s > 1000 minimum lethal dose.MB = Manitoba; SK = Saskatchewan; AB = Alberta.* Lakes with no previous history <str<strong>on</strong>g>of</str<strong>on</strong>g> botulism.


115Table 4. Lake-adjusted associati<strong>on</strong>s between risk factors <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> 30-day probability <str<strong>on</strong>g>of</str<strong>on</strong>g> dying<str<strong>on</strong>g>of</str<strong>on</strong>g> botulism.VariableRegressi<strong>on</strong>coefficient (β)95% C<strong>on</strong>fidenceInterval for βLowerUpperP-valueQuasi LikelihoodunderIndependenceModel Criteri<strong>on</strong>(QIC value)Unc<strong>on</strong>diti<strong>on</strong>almodels:PS 4.87 1.80 7.95 0.002PT 3.20 1.07 8.71 0.003Carcass Density 0.50 0.15 0.84 0.005Main effects <str<strong>on</strong>g>and</str<strong>on</strong>g>interacti<strong>on</strong> (#1:) 514PS -0.93 -5.02 3.16 0.660PT -8.28 -18.34 1.79 0.110Carcass Density 0.57 0.14 1.00 0.010PS*PT 13.22 3.05 23.39 0.011Main effect(#2): 1,535Density 0.90 0.47 1.33 0.000Intercept <strong>on</strong>ly 4,912Pseudo R 2 for model #1: (4,912-514)/4,912 = 0.90Pseudo R 2 for model #2: (4,912-1,535)/4,912 = 0.69Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Pseudo R 2 : (0.90-0.69)/0.90 = 0.23


116MAIN CONCLUSIONS AND RECOMMENDATIONSA. Evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> effectiveness <str<strong>on</strong>g>of</str<strong>on</strong>g> carcass clean-upThe ability <str<strong>on</strong>g>of</str<strong>on</strong>g> search crews to discover dead ducks was severely hampered by dense vegetati<strong>on</strong>,as indicated by low recovery rates <str<strong>on</strong>g>of</str<strong>on</strong>g> marked carcasses (Part 1). Primarily as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> thislimitati<strong>on</strong>, <strong>the</strong> number <str<strong>on</strong>g>of</str<strong>on</strong>g> carcasses remained high in many areas <str<strong>on</strong>g>of</str<strong>on</strong>g> wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s after crews hadfinished thoroughly searching targeted areas. Therefore, despite intensive effort, it was notpossible to enhance survival <str<strong>on</strong>g>of</str<strong>on</strong>g> radio-marked mallards (Anas platyrhynchos) <strong>on</strong> moderate tolarge vegetated wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s (Part II). Fur<strong>the</strong>rmore, results <str<strong>on</strong>g>of</str<strong>on</strong>g> direct recovery analyses <str<strong>on</strong>g>of</str<strong>on</strong>g> b<str<strong>on</strong>g>and</str<strong>on</strong>g>edmallards generally c<strong>on</strong>firmed <strong>the</strong> findings obtained from radio-marked birds; recovery rates weresimilar for birds b<str<strong>on</strong>g>and</str<strong>on</strong>g>ed <strong>on</strong> botulism wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s with <str<strong>on</strong>g>and</str<strong>on</strong>g> without clean-up operati<strong>on</strong>s (Part IV).Finally, we discovered that <strong>the</strong> assumpti<strong>on</strong> underlying <strong>the</strong> rati<strong>on</strong>ale for carcass clean-up wasvalid; risk <str<strong>on</strong>g>of</str<strong>on</strong>g> mortality was higher for mallards exposed to higher carcass densities (Part III). But,even with intensive carcass removal operati<strong>on</strong>s, it was not possible to reduce carcass densities tolow levels needed to improve survival rates in a cost-effective manner. However, this result doesimply that carcass removal could potentially be more cost-effective in situati<strong>on</strong>s where carcassesare easily found <str<strong>on</strong>g>and</str<strong>on</strong>g> can be removed quickly <strong>on</strong> a frequent basis.Recommendati<strong>on</strong> 1:It was recommended that <strong>the</strong> Prairie Habitat Joint Venture (PHJV) stop routine clean-upoperati<strong>on</strong>s, <str<strong>on</strong>g>and</str<strong>on</strong>g> this was adopted in 2001.Recommendati<strong>on</strong> 2:If botulism becomes a significant threat to shorebirds (especially species at risk), a botulismworking group (with a renewed m<str<strong>on</strong>g>and</str<strong>on</strong>g>ate; see below) should c<strong>on</strong>sider <str<strong>on</strong>g>and</str<strong>on</strong>g> evaluate shorelineclean-ups to reduce carcass densities in <strong>the</strong>se areas (see Part III).B. <str<strong>on</strong>g>Botulism</str<strong>on</strong>g> Impacts <strong>on</strong> Populati<strong>on</strong>sResults <str<strong>on</strong>g>of</str<strong>on</strong>g> this study lend c<strong>on</strong>siderable support to <strong>the</strong> suggesti<strong>on</strong> that, for mallards, exposure tobotulism during <strong>the</strong> post-breeding seas<strong>on</strong> can have a measurable impact <strong>on</strong> survival at <strong>the</strong>populati<strong>on</strong> level (Part IV). However, <strong>the</strong>se results also provided little evidence that carcassremoval resulted in any measurable impact <strong>on</strong> direct recovery rates <str<strong>on</strong>g>of</str<strong>on</strong>g> mallards from outbreaksites with <str<strong>on</strong>g>and</str<strong>on</strong>g> without clean-up (i.e., c<strong>on</strong>trary to expectati<strong>on</strong>, <strong>the</strong>re was no increase in latesummersurvival). It remains unclear how differences in toxin toxicity, amount <str<strong>on</strong>g>of</str<strong>on</strong>g> availabletoxin, envir<strong>on</strong>mental characteristics, live bird density, or o<strong>the</strong>r as yet unidentified factors likelyc<strong>on</strong>tributed to differences in risk. Any additi<strong>on</strong>al work arising from <strong>the</strong> recommendati<strong>on</strong>s belowcould be pursued by individual agencies or universities based <strong>on</strong> <strong>the</strong>ir respective m<str<strong>on</strong>g>and</str<strong>on</strong>g>ates.Recommendati<strong>on</strong> 3:Studies are needed to determine <strong>the</strong> extent to which existing results for mallards can begeneralized to o<strong>the</strong>r avian species, particularly those <str<strong>on</strong>g>of</str<strong>on</strong>g> potential management c<strong>on</strong>cern (e.g.,nor<strong>the</strong>rn pintails [Anas acuta]).


117Recommendati<strong>on</strong> 4:Populati<strong>on</strong> modeling work that assesses <strong>the</strong> impact <str<strong>on</strong>g>of</str<strong>on</strong>g> reduced survival due to disease (such asbotulism) should be undertaken <str<strong>on</strong>g>and</str<strong>on</strong>g>/or c<strong>on</strong>tinued, particularly <strong>on</strong> species <str<strong>on</strong>g>of</str<strong>on</strong>g> management c<strong>on</strong>cern(e.g., nor<strong>the</strong>rn pintails).Recommendati<strong>on</strong> 5:It is important to recognize that effects <str<strong>on</strong>g>of</str<strong>on</strong>g> botulism <strong>on</strong> c<strong>on</strong>tinental populati<strong>on</strong>s will depend not<strong>on</strong>ly <strong>on</strong> <strong>the</strong> mortality rates <str<strong>on</strong>g>of</str<strong>on</strong>g> exposed individuals, but also <strong>on</strong> <strong>the</strong> proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> individuals in <strong>the</strong>populati<strong>on</strong> that are routinely exposed. Acquiring informati<strong>on</strong> <strong>on</strong> <strong>the</strong> size <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> populati<strong>on</strong> at riskis essential.C. <str<strong>on</strong>g>Ecology</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> botulismThe most probable sources <str<strong>on</strong>g>of</str<strong>on</strong>g> C. botulinum toxin prior to <str<strong>on</strong>g>and</str<strong>on</strong>g> during botulism outbreaks weremaggots produced in bird carcasses (e.g., gull [Larus] <str<strong>on</strong>g>and</str<strong>on</strong>g> grebe [Podiceps] chicks; ducks).C<strong>on</strong>sistent with earlier published reports, likelihood <str<strong>on</strong>g>of</str<strong>on</strong>g> maggot development was positivelyrelated to air <str<strong>on</strong>g>and</str<strong>on</strong>g> water temperatures (Part V). Fur<strong>the</strong>rmore, botulism producti<strong>on</strong> risk was alsorelated to a wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>’s history <str<strong>on</strong>g>of</str<strong>on</strong>g> botulism <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> potency <str<strong>on</strong>g>of</str<strong>on</strong>g> botulism toxin (Part VI). Anyadditi<strong>on</strong>al work arising from <strong>the</strong> recommendati<strong>on</strong>s below could be pursued by individualagencies or universities based <strong>on</strong> <strong>the</strong>ir respective m<str<strong>on</strong>g>and</str<strong>on</strong>g>ates.Recommendati<strong>on</strong> 6:Fur<strong>the</strong>r work is needed to determine how spore <str<strong>on</strong>g>and</str<strong>on</strong>g> toxin producti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> potency interact toaffect bird survival rates, <str<strong>on</strong>g>and</str<strong>on</strong>g> to ascertain whe<strong>the</strong>r <strong>the</strong>se factors could be managed to reduceoccurrence or severity <str<strong>on</strong>g>of</str<strong>on</strong>g> botulism outbreaks.Recommendati<strong>on</strong> 7:Quantitative evaluati<strong>on</strong>s should be undertaken <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> relative importance <str<strong>on</strong>g>of</str<strong>on</strong>g> different risk factorsthat could c<strong>on</strong>tribute to <strong>the</strong> initiati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> perpetuati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> botulism outbreaks.D. Communicati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> next stepsOver <strong>the</strong> course <str<strong>on</strong>g>of</str<strong>on</strong>g> this study, c<strong>on</strong>siderable effort was put into communicating why work wasbeing undertaken <str<strong>on</strong>g>and</str<strong>on</strong>g> regularly reporting study results. As findings became available, immediatedecisi<strong>on</strong>s were made <str<strong>on</strong>g>and</str<strong>on</strong>g> acti<strong>on</strong>s were taken to affect botulism management decisi<strong>on</strong>s.Therefore, some <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> recommendati<strong>on</strong>s listed above were rapidly implemented. Since <strong>the</strong>decisi<strong>on</strong> was made to cease carcass clean-up operati<strong>on</strong>s, to our knowledge, <strong>the</strong>re has been noadverse reacti<strong>on</strong> (in Canada or in <strong>the</strong> U.S.) to <strong>the</strong> lack <str<strong>on</strong>g>of</str<strong>on</strong>g> clean-up. In view <str<strong>on</strong>g>of</str<strong>on</strong>g> all study findings,in future, a thorough review <str<strong>on</strong>g>of</str<strong>on</strong>g> new knowledge would help to guide alternative approaches tobotulism management.


Recommendati<strong>on</strong> 8:The model <str<strong>on</strong>g>of</str<strong>on</strong>g> botulism ecology, as formulated for <strong>the</strong> 1998 botulism report, should be reviewed<str<strong>on</strong>g>and</str<strong>on</strong>g> used as a basis for guiding future management <str<strong>on</strong>g>and</str<strong>on</strong>g> research. New models should also betested <str<strong>on</strong>g>and</str<strong>on</strong>g> updated periodically as new informati<strong>on</strong> becomes available. In future, botulismresearch should evaluate alternative management strategies for reducing risks <str<strong>on</strong>g>of</str<strong>on</strong>g> avian botulism(e.g., manipulating wetl<str<strong>on</strong>g>and</str<strong>on</strong>g> water levels), based <strong>on</strong> relative costs <str<strong>on</strong>g>and</str<strong>on</strong>g> benefits <str<strong>on</strong>g>of</str<strong>on</strong>g> each approach.118


119ACKNOWLEDGEMENTSLeadership <str<strong>on</strong>g>and</str<strong>on</strong>g> critical instituti<strong>on</strong>al support were provided by M.G. Anders<strong>on</strong>, B. Batt, B. Gray, B.Gummer, G. McKeating, R.M. McL<str<strong>on</strong>g>and</str<strong>on</strong>g>ress, <str<strong>on</strong>g>and</str<strong>on</strong>g> H.R. Murkin. The initial working group wasinstrumental in development <str<strong>on</strong>g>of</str<strong>on</strong>g> this program, <str<strong>on</strong>g>and</str<strong>on</strong>g> was composed <str<strong>on</strong>g>of</str<strong>on</strong>g> G. Wobeser (Chair), G. Ball, M.C<strong>on</strong>ly, J. Kadlec, T. Murphy, M. Samuel, D. Sharp <str<strong>on</strong>g>and</str<strong>on</strong>g> T. Rocke. Support to program development<str<strong>on</strong>g>and</str<strong>on</strong>g> implementati<strong>on</strong> was led by K. Cash, K. Irvine, D. Caswell, J. Leafloor, B. Hepworth, D. Clayt<strong>on</strong><str<strong>on</strong>g>and</str<strong>on</strong>g> USFWS pilots. Efforts <str<strong>on</strong>g>of</str<strong>on</strong>g> D. Dix<strong>on</strong>, N. Hnatiuk <str<strong>on</strong>g>and</str<strong>on</strong>g> D. Morris<strong>on</strong> were crucial to development <str<strong>on</strong>g>of</str<strong>on</strong>g>effective communicati<strong>on</strong> products.Funding <str<strong>on</strong>g>and</str<strong>on</strong>g> logistical support were provided by <strong>the</strong> <strong>Canadian</strong> Wildlife Service (Envir<strong>on</strong>mentCanada), <strong>Canadian</strong> Cooperative Wildlife Health Centre, Ducks Unlimited Canada, CaliforniaWaterfowl Associati<strong>on</strong>, Institute for Waterfowl <str<strong>on</strong>g>and</str<strong>on</strong>g> Wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s <str<strong>on</strong>g>Management</str<strong>on</strong>g>, Alberta NaturalResource Service (Fish <str<strong>on</strong>g>and</str<strong>on</strong>g> Wildlife), Alberta Sport, Recreati<strong>on</strong>, Parks, <str<strong>on</strong>g>and</str<strong>on</strong>g> Wildlife Foundati<strong>on</strong>,Manitoba Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Natural Resources, U. S. Geological Survey, U. S. Fish <str<strong>on</strong>g>and</str<strong>on</strong>g> WildlifeService, Delta Waterfowl Foundati<strong>on</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> University <str<strong>on</strong>g>of</str<strong>on</strong>g> Saskatchewan (Departments <str<strong>on</strong>g>of</str<strong>on</strong>g> Biology<str<strong>on</strong>g>and</str<strong>on</strong>g> Veterinary Pathology; Wildlife Health Fund <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Western College <str<strong>on</strong>g>of</str<strong>on</strong>g> Veterinary Medicine).We sincerely thank site leaders S. Adams, B. Fletcher, S. Leach, T. Kowalchuk, M. Paskaruk. We aregrateful to I. Shirley <str<strong>on</strong>g>and</str<strong>on</strong>g> B. Hepworth. Many <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> fine <str<strong>on</strong>g>and</str<strong>on</strong>g> dedicated field <str<strong>on</strong>g>and</str<strong>on</strong>g> laboratory assistantswho made this study possible are listed in <strong>the</strong> acknowledgements to papers by Soos <str<strong>on</strong>g>and</str<strong>on</strong>g> Wobeser(2006) <str<strong>on</strong>g>and</str<strong>on</strong>g> Evelsizer et al. (2010), but we thank any<strong>on</strong>e whose name we may have missed <str<strong>on</strong>g>and</str<strong>on</strong>g> weapologise now for any such oversight. Research was approved by <strong>the</strong> University Committee <strong>on</strong>Animal Care <str<strong>on</strong>g>and</str<strong>on</strong>g> Supply (UCACS protocols #19990036 <str<strong>on</strong>g>and</str<strong>on</strong>g> #19980040) <strong>on</strong> behalf <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>Canadian</strong>Council <strong>on</strong> Animal Care.


120APPENDIX 1AVIAN BOTULISM IN ALBERTA: A HISTORYPYBUS, M. J.


121<str<strong>on</strong>g>Avian</str<strong>on</strong>g> botulism in Alberta: a historybyM.J. PybusWildlife Disease SpecialistWildlife <str<strong>on</strong>g>Management</str<strong>on</strong>g> BranchOccasi<strong>on</strong>al Paper Number 21Fish <str<strong>on</strong>g>and</str<strong>on</strong>g> Wildlife Divisi<strong>on</strong>


122July 15, 2002ISBN: 0-7785-0962-1Pub. No.: T/511Copies <str<strong>on</strong>g>of</str<strong>on</strong>g> this report are available from:Informati<strong>on</strong> CentreMain Floor, Great West Life Building9920-108 StreetEdm<strong>on</strong>t<strong>on</strong>, AlbertaT5K 2M4(780)422-2079


1231AVIAN BOTULISM IN ALBERTA: A HISTORYcompiled by M.J. Pybusfrom records provided by Fish <str<strong>on</strong>g>and</str<strong>on</strong>g> Wildlife Divisi<strong>on</strong>,<strong>Canadian</strong> Wildlife Service <str<strong>on</strong>g>and</str<strong>on</strong>g> Ducks Unlimited CanadaSummary: Mortality <str<strong>on</strong>g>of</str<strong>on</strong>g> wild waterfowl has been reported <strong>on</strong> at least 33 different lakes in Albertasince 1924. Some <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se lakes no l<strong>on</strong>ger exist or currently do not support c<strong>on</strong>diti<strong>on</strong>s suitable forinitiati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> die<str<strong>on</strong>g>of</str<strong>on</strong>g>fs. Between 1980 <str<strong>on</strong>g>and</str<strong>on</strong>g> 1993, losses occurred repeatedly <strong>on</strong> 5 lakes (Beaverhill,Grantham, San Francisco, Utikuma, <str<strong>on</strong>g>and</str<strong>on</strong>g> Whitford); however, reported botulism problemsoccurred <strong>on</strong> at least <strong>on</strong>e lake in all but 5 years (1982, 1983, 1985, 1987, 1993). From 1994 to2002, <strong>the</strong> pattern changed markedly with significant numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> dead waterfowl found <strong>on</strong>ly <strong>on</strong>Pakowki Lake from 1994 to 1997, followed by widespread losses <strong>on</strong> various lakes (but notPakowki) from 1998 to 2000 <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>on</strong>ly <strong>on</strong>e lake in 2001. The mid 1980s were relatively dry years in<strong>the</strong> prairie regi<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> losses were relatively minor. In <strong>the</strong> early 1990s, <strong>the</strong> prairies entered a wetphase <str<strong>on</strong>g>and</str<strong>on</strong>g> record high numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> May p<strong>on</strong>ds were observed. In particular, Pakowki Lake filledwith spring run<str<strong>on</strong>g>of</str<strong>on</strong>g>f <str<strong>on</strong>g>and</str<strong>on</strong>g> was used by migrant <str<strong>on</strong>g>and</str<strong>on</strong>g> resident waterfowl. In <strong>the</strong> late 1990s, <strong>the</strong> prairiesagain were relatively dry. <str<strong>on</strong>g>Botulism</str<strong>on</strong>g> losses decreased in <strong>the</strong> prairies <str<strong>on</strong>g>and</str<strong>on</strong>g> increased in <strong>the</strong> parkl<str<strong>on</strong>g>and</str<strong>on</strong>g><str<strong>on</strong>g>and</str<strong>on</strong>g> boreal areas. An apparent increase in disease losses in nor<strong>the</strong>rn areas in recent years mayreflect increased surveillance <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>trol effort.Estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> actual losses per lake are extremely difficult to assess <str<strong>on</strong>g>and</str<strong>on</strong>g> are thought to becompletely unreliable. As such, this report c<strong>on</strong>tains <strong>on</strong>ly <strong>the</strong> raw numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> dead birds collectedor observed at each lake. Generally, observed losses range from 700 to 2500 birds per lake,primarily dabbling ducks. There are a few notable excepti<strong>on</strong>s where losses greatly exceeded thisrange. Pakowki, Hay Zama, <str<strong>on</strong>g>and</str<strong>on</strong>g> Utikuma are large staging lakes for a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> waterfowl <str<strong>on</strong>g>and</str<strong>on</strong>g><strong>the</strong>y tend to have large problems whenever mortality occurs. Kimiwan is an anomaly in that it hada large mortality in 1998, but little or no mortality in o<strong>the</strong>r years. Losses generally begin in mid tolate July <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>tinue until early or mid- September, particularly in periods <str<strong>on</strong>g>of</str<strong>on</strong>g> prol<strong>on</strong>ged hot drywea<strong>the</strong>r. Blue-green algae toxins in <strong>the</strong> south <str<strong>on</strong>g>and</str<strong>on</strong>g> Newcastle Disease Virus in <strong>the</strong> north arec<strong>on</strong>founding factors in some die<str<strong>on</strong>g>of</str<strong>on</strong>g>fs <str<strong>on</strong>g>and</str<strong>on</strong>g> likely cause losses additive to those caused by botulismpois<strong>on</strong>ing.In 1992, Alberta began implementing a provincial Waterfowl Disease C<strong>on</strong>tingency Plan(An<strong>on</strong>ymous 1992) that provided an overall approach to disease cleanup. It identified acommunicati<strong>on</strong>s network <str<strong>on</strong>g>and</str<strong>on</strong>g> general resp<strong>on</strong>sibilities <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> three primary agencies c<strong>on</strong>cernedwith waterfowl management/ c<strong>on</strong>servati<strong>on</strong> in Alberta (Envir<strong>on</strong>ment Canada, Alberta Fish <str<strong>on</strong>g>and</str<strong>on</strong>g>Wildlife, <str<strong>on</strong>g>and</str<strong>on</strong>g> Ducks Unlimited Canada). In 1999, <strong>the</strong> Alberta C<strong>on</strong>servati<strong>on</strong> Associati<strong>on</strong> joined asa full partner to <strong>the</strong> provincial c<strong>on</strong>tingency plan. In <strong>the</strong> late 1990s, regi<strong>on</strong>al surveillance plans<str<strong>on</strong>g>and</str<strong>on</strong>g> specific c<strong>on</strong>tingency plans for problem lakes were developed cooperatively am<strong>on</strong>g <strong>the</strong>partners. A plan for dealing with disease <strong>on</strong> Pakowki Lake (Pybus et al. 1995) was used as amodel for o<strong>the</strong>r lakes.


1242BackgroundMunro (1927) provides <strong>the</strong> earliest record <str<strong>on</strong>g>of</str<strong>on</strong>g> what appears to be botulism pois<strong>on</strong>ing inwaterfowl <str<strong>on</strong>g>and</str<strong>on</strong>g> shorebirds in Alberta. Large numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> dead birds were seen at Lake Newellin <strong>the</strong> summer m<strong>on</strong>ths <str<strong>on</strong>g>of</str<strong>on</strong>g> 1924 <str<strong>on</strong>g>and</str<strong>on</strong>g> 1925. The clinical signs, distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> carcasses, <str<strong>on</strong>g>and</str<strong>on</strong>g>species compositi<strong>on</strong> were c<strong>on</strong>sistent with botulism intoxicati<strong>on</strong>. Blue-green algae also werepresent in large amounts. Unfortunately it seems we did not progress much in <strong>the</strong>intervening 70 years, for a die<str<strong>on</strong>g>of</str<strong>on</strong>g>f at Pakowki Lake in 1994 (Pybus 1994) appeared to bealmost identical to <strong>the</strong> <strong>on</strong>e at Lake Newell. However, since 1994, <strong>the</strong>re has beenc<strong>on</strong>siderable effort expended in trying to underst<str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> underlying causes <str<strong>on</strong>g>of</str<strong>on</strong>g> avian botulism,to assess <strong>the</strong> potential management resp<strong>on</strong>ses, <str<strong>on</strong>g>and</str<strong>on</strong>g> to estimate <strong>the</strong> impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> botulism <strong>on</strong>local <str<strong>on</strong>g>and</str<strong>on</strong>g> flyway populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> waterfowl. In 1995, <strong>the</strong> partners to <strong>the</strong> provincialc<strong>on</strong>tingency plan in Alberta established <strong>the</strong> Pakowki Lake Working Group. Representativesfrom various disciplines associated with wetl<str<strong>on</strong>g>and</str<strong>on</strong>g> management <str<strong>on</strong>g>and</str<strong>on</strong>g> ecology reviewed currentinformati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> management opti<strong>on</strong>s for potentially limiting avian losses at Pakowki Lake(Pybus 1997). It became apparent that lack <str<strong>on</strong>g>of</str<strong>on</strong>g> informati<strong>on</strong> was itself a limiting factor inassessing various opti<strong>on</strong>s. In 1997, <strong>the</strong> Prairie Habitat Joint Venture <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> North AmericanWaterfowl <str<strong>on</strong>g>Management</str<strong>on</strong>g> Plan established an <str<strong>on</strong>g>Avian</str<strong>on</strong>g> <str<strong>on</strong>g>Botulism</str<strong>on</strong>g> Working Group withinterprovincial <str<strong>on</strong>g>and</str<strong>on</strong>g> internati<strong>on</strong>al representati<strong>on</strong>. At <strong>the</strong> time <str<strong>on</strong>g>of</str<strong>on</strong>g> writing (July 2002) this grouphas provided an interrim report <str<strong>on</strong>g>and</str<strong>on</strong>g> recommendati<strong>on</strong>s (PHJV 1998) <str<strong>on</strong>g>and</str<strong>on</strong>g> finalrecommendati<strong>on</strong>s relating to <strong>the</strong> lack <str<strong>on</strong>g>of</str<strong>on</strong>g> evidence that carcass cleanup made any differencein <strong>the</strong> survival <str<strong>on</strong>g>of</str<strong>on</strong>g> radio-marked moulting mallards (Bollinger et al. In prep)The current report is provided as background to <strong>the</strong>se initiatives. It c<strong>on</strong>tains a summary <str<strong>on</strong>g>of</str<strong>on</strong>g>available informati<strong>on</strong> provided by Ducks Unlimited Canada (DUC), Envir<strong>on</strong>ment Canada(CWS), <str<strong>on</strong>g>and</str<strong>on</strong>g> Alberta Fish <str<strong>on</strong>g>and</str<strong>on</strong>g> Wildlife (F&W) up to July 2002. The document updates aprevious review (Pybus 1995) with a few additi<strong>on</strong>al early records plus a summary <str<strong>on</strong>g>of</str<strong>on</strong>g>documented losses through to 2001.Early records referring to 'waterfowl sickness' may include disease agents o<strong>the</strong>r thanbotulism. Starting in 1980, <strong>on</strong>ly those problems known or c<strong>on</strong>sidered likely to be avianbotulism intoxicati<strong>on</strong> are included.


125Alberta Records <str<strong>on</strong>g>of</str<strong>on</strong>g> Waterfowl Sickness 1924-1979.from materials provided by Wm. Wishart, Wildlife Biologist Emeritus, Alberta Fish <str<strong>on</strong>g>and</str<strong>on</strong>g> Wildlife.LOCATION DATE SOURCEL. Newell ("c<strong>on</strong>siderable losses") 1924, 1925 Augustbotulism + bl-gr algaeMunro, J.A. 1927. Can Field Nat. 41:77-84.Many Isl<str<strong>on</strong>g>and</str<strong>on</strong>g> L., Pakowki L. 1928 R.C. Duthie, Vet. Surge<strong>on</strong>, general rpt., Oct. 6, 1934Namaka L.("1000s <str<strong>on</strong>g>of</str<strong>on</strong>g> birds"),Stobart L.Stobart L. Kings L.Welstead L.(WBNP)1933, July, Aug botulismc<strong>on</strong>firmedDuthie, R.C., Oct 18, 1933: general rpt. Also: Shaw, R.M. & G.S.Simps<strong>on</strong>. 1936. J. Bact. 32:79-88.1934, July, Sept Sciple, G.W.. <str<strong>on</strong>g>Avian</str<strong>on</strong>g> <str<strong>on</strong>g>Botulism</str<strong>on</strong>g>. Sp. Sci. Rpt (Wildl.) #23, USFWS,Aug 1953.Stirling L. 1935 Lethbridge Herald, Sept 15, 1958.Namaka L., L. NewellStobart L.1938, July, Aug DUC Rpt, 1939. Duck Disease Outbreaks in Western Canada.Fincastle Lakes 1938, Aug McLeod <str<strong>on</strong>g>and</str<strong>on</strong>g> B<strong>on</strong>dar. 1952. Can. J. Publ. Hlth 43: 347-350.Big Hay Lake (1000s <str<strong>on</strong>g>of</str<strong>on</strong>g>B<strong>on</strong>apartes gulls)Aug 1938 & 39Soper, J.D. 1939. Report <strong>on</strong> Big Hay Lake Public Shooting Ground,Alberta. Nati<strong>on</strong>al Parks Bureau, OttawaGambling L., Stobart L. 1939, Aug DUC Rpt, 1939. Duck Disease Outbreaks in Western Canada.San Francisco L 1948 ? Turner, Sharp, J<strong>on</strong>esMilo L. 1950, June (algae?) Sharp, Freeman, GollopStobart L.1951, Aug1952, AugGeo. Freeman, DUCFrank L. 1954, Aug Geo. Freeman, DUCMany Isl<str<strong>on</strong>g>and</str<strong>on</strong>g> L. 1955, Aug Geo. Mitchell F&WKings L. 1958, July, Aug C. Sawyer, F&WLac la BicheHay L.Murray LakesStobart L.Beaverhill L. ,Big Hay L.Cygnet L., Smoky L.Watt L., Whitford/RushJessie L.Woods L.Smoky L. (14,723)Big Hay L.1958, Septbl/gr algae at LLB?1959, Aug1960, July, AugSharp, DUCWebb, F&WBertelsen, F&WGeo. Freeman, DUC1961, Aug Wishart, F&WWebb & Vet Lab1962, Aug Bradshaw, F&WAdams, F&W1963, Aug Schmitke, F&WSmoky L. (.4000) 1965 botulism Presidente, F&W12 Mile Cr (Leth) 1966 botulism Armstr<strong>on</strong>g, F&WBeaverhill L.Smoky L. (2488)1967 botulism Novak, F&WPakowki 1975, Aug 16 Windberg memo, F&W 132 carcasses/100 yd al<strong>on</strong>g Rge Rd 885;15/100 yd <strong>on</strong> north shoreBeaverhill 1975, Aug 25 Hans<strong>on</strong>, AB Agriculture lab. RptBeaverhillWhitford1976, Aug botulismc<strong>on</strong>firmedCole memo, F&W A few hundred ducks & shorebirds in NEBeaverhill. A few birds <strong>on</strong> Whitford.Buffalo 1979 AB Agric. lab rpt. Hundreds <str<strong>on</strong>g>of</str<strong>on</strong>g> dead birds <str<strong>on</strong>g>of</str<strong>on</strong>g> different species. 256carcasses <strong>on</strong> isl<str<strong>on</strong>g>and</str<strong>on</strong>g>.3


1264SUMMARY OF ALBERTA BOTULISM OUTBREAKS 1980-2001YEAR # LAKES LOCATION # collected/seen1980 5 Beaverhill 3003Buffalo 1990Rush


1275Literature reporting waterfowl mortality in AlbertaAn<strong>on</strong>ymous. 1992. Waterfowl Disease C<strong>on</strong>tingency Plan for Alberta. 22pp.Arbuckle, R.G., M. Heckbert, <str<strong>on</strong>g>and</str<strong>on</strong>g> M.J. Pybus. 1999. Waterfowl Disease at Kimiwan <str<strong>on</strong>g>and</str<strong>on</strong>g> WinagamiLakes, 1998. Int. Rpt. Ducks Unlimited Canada, Gr<str<strong>on</strong>g>and</str<strong>on</strong>g>e Prairie <str<strong>on</strong>g>and</str<strong>on</strong>g> Alberta NRS - Fish <str<strong>on</strong>g>and</str<strong>on</strong>g>Wildlife, High Prairie <str<strong>on</strong>g>and</str<strong>on</strong>g> Edm<strong>on</strong>t<strong>on</strong>. 25pp.Armstr<strong>on</strong>g, G. 1966. <str<strong>on</strong>g>Botulism</str<strong>on</strong>g> outbreak at 12 Mile Creek, Alberta. Int. Rpt.W-1-66. Alberta Fish& Wildlife. 6pp.Barr, M.T. 2000. Beaverhill Lake 1999 botulism summary. Int. Rpt. Ducks Unlimited Canada,Camrose. 2pp.-----, <str<strong>on</strong>g>and</str<strong>on</strong>g> M.J. Pybus. 1999. <str<strong>on</strong>g>Avian</str<strong>on</strong>g> botulism at Beaverhill Lake (1998). Int. Rpt. Ducks UnlimitedCanada, Camrose <str<strong>on</strong>g>and</str<strong>on</strong>g> Alberta NRS - Fish <str<strong>on</strong>g>and</str<strong>on</strong>g> Wildlife, Edm<strong>on</strong>t<strong>on</strong>. 12pp.Bjorge, R. 1986. Bird kill at Miquel<strong>on</strong> Lake. Int. Memo, August 14, 1986. Alberta Fish & Wildlife.1p.Calverley, B. 1980. Alberta botulism report - 1980. Int. Rpt. Ducks Unlimited. 16pp.-----. 1981. Alberta botulism summary - 1981. Int. Rpt. Ducks Unlimited.33pp.-----. 1985. Alberta <str<strong>on</strong>g>Botulism</str<strong>on</strong>g> summary - 1984. Int. Rpt. Ducks Unlimited. 6pp.-----. 1990. <str<strong>on</strong>g>Botulism</str<strong>on</strong>g> cleanup - 1990. Int. Memo. Ducks Unlimited. 1pp.Clark, J. 1981. <str<strong>on</strong>g>Botulism</str<strong>on</strong>g> at Kings Lake <str<strong>on</strong>g>and</str<strong>on</strong>g> Hay Lakes. Int. Memo, September 15, 1981.AlbertaFish & Wildlife.Cole, D. 1976. <str<strong>on</strong>g>Botulism</str<strong>on</strong>g> <strong>on</strong> Beaverhill <str<strong>on</strong>g>and</str<strong>on</strong>g> Whitford Lakes. Int. Memo, August 23, 1976. AlbertaFish & Wildlife. 1p.Dube, L.A. 1991. <str<strong>on</strong>g>Botulism</str<strong>on</strong>g> (Clostridium botulinum) <strong>on</strong> Grantham <str<strong>on</strong>g>and</str<strong>on</strong>g> San Francisco Lakes,Sou<strong>the</strong>rn Regi<strong>on</strong>, 1990. Int. Rpt. Alberta Fish & Wildlife. 22pp.Ducks Unlimited Rpt. 1939. Duck Disease Outbreaks in Western Canada.Duthie, R.C., Oct 18, 1933: general rpt.Duthie, R.C., Vet. Surge<strong>on</strong>, general rpt., Oct. 6, 1934.Hans<strong>on</strong>, J.A. 1975. Probable botulism Type C at Beaverhills Lake. Alberta Agriculture, Lab. Rpt.P75-2063. 1p.Heckbert. M.D., <str<strong>on</strong>g>and</str<strong>on</strong>g> M.J. Pybus. 1999. Waterfowl disease at Utikuma Lake, 1998. Int. Rpt. AlbertaNRS - Fish <str<strong>on</strong>g>and</str<strong>on</strong>g> Wildlife, High Prairie <str<strong>on</strong>g>and</str<strong>on</strong>g> Edm<strong>on</strong>t<strong>on</strong>. 27pp.H<str<strong>on</strong>g>of</str<strong>on</strong>g>fman, D.E. 1983. <str<strong>on</strong>g>Botulism</str<strong>on</strong>g> problem (update). Int. Memo, [no date].Alberta Fish & Wildlife.Howell, J. 1979. Probable botulism at Buffalo Lake.Lab. Rpt. P79-2446-2452. AlbertaAgriculture, Veterinary Services Divisi<strong>on</strong>. 1p.Kalmbach, E.R. 1934. Western duck sickness: a form <str<strong>on</strong>g>of</str<strong>on</strong>g> botulism. US Dept. Agric., Tech. Bull.411. 81 pp.Lungle, K. 1989. Waterfowl disease report - 1989. Alberta Fish & Wildlife Memo. 2pp,McLeod,J.A., <str<strong>on</strong>g>and</str<strong>on</strong>g> G.F. B<strong>on</strong>dar. 1952. A case <str<strong>on</strong>g>of</str<strong>on</strong>g> suspected algal pois<strong>on</strong>ing in Manitoba. Can. J.Publ. Hlth 43: 347-350.Moore, D.A. 2000. Disease m<strong>on</strong>itoring <str<strong>on</strong>g>and</str<strong>on</strong>g> cleanup at Whitford Lake, 1999. Int. Rpt. Alberta NRS- Fish <str<strong>on</strong>g>and</str<strong>on</strong>g> Wildlife, Vermili<strong>on</strong>. 16pp.-----, <str<strong>on</strong>g>and</str<strong>on</strong>g> M.J. Pybus. 1999. Disease m<strong>on</strong>itoring <str<strong>on</strong>g>and</str<strong>on</strong>g> cleanup at Whitford Lake, 1998. Int. Rpt.Alberta NRS - Fish <str<strong>on</strong>g>and</str<strong>on</strong>g> Wildlife, Vermili<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Edm<strong>on</strong>t<strong>on</strong>. 16pp.


128Moyles, D. 1989. <str<strong>on</strong>g>Avian</str<strong>on</strong>g> botulism outbreak at Zama Lake - 1989. Int. Rpt. Alberta Fish & Wildlife,Peace River. 31pp.-----. 1990. <str<strong>on</strong>g>Avian</str<strong>on</strong>g> disease in Peace River Regi<strong>on</strong> - 1990. Int. Rpt. Alberta Fish & Wildlife, PeaceRiver. 18pp.-----. 1998. Lac Cardinal avian botulism cleanup - 1998. Int. Rpt. Alberta NRS - Fish <str<strong>on</strong>g>and</str<strong>on</strong>g> Wildlife,Peace River. 1p.-----, <str<strong>on</strong>g>and</str<strong>on</strong>g> W.A. Johns<strong>on</strong>. 1991. <str<strong>on</strong>g>Avian</str<strong>on</strong>g> botulism c<strong>on</strong>trol, Peace River Regi<strong>on</strong> - 1991. Int. RptAlberta Fish & Wildlife, Peace River. 8pp.-----, <str<strong>on</strong>g>and</str<strong>on</strong>g> -----. 1992. <str<strong>on</strong>g>Avian</str<strong>on</strong>g> Disease C<strong>on</strong>trol in Peace River Regi<strong>on</strong> - 1992. Alberta Fish &Wildlife Int. Rpt. 13pp.Munro, J.A. 1927. The waterfowl sickness at Lake Newell, Alberta, 1925-1926. Can Field Nat.41:77-84.Novak, M. 1967. <str<strong>on</strong>g>Avian</str<strong>on</strong>g> botulism <strong>on</strong> Smoky Lake, Alberta, with a literature survey.Int. Rpt.Alberta Fish & Wildlife. 25pp.Peers, B. 1999. Waterfowl disease at Pakowki Lake, 1998. Int. Rpt. Ducks Unlimited Canada,Hanna. 41pp.-----.2000 . Waterfowl disease at Frank Lake 1999. Int. Rpt. Ducks Unlimited Canada, Hanna. 8pp.-----, C. Anders<strong>on</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g> M.J. Pybus. 1998. Waterfowl disease at Pakowki Lake, 1997.Int. Rpt. DucksUnlimited Canada, Brooks <str<strong>on</strong>g>and</str<strong>on</strong>g> Alberta Fish & Wildlife, Edm<strong>on</strong>t<strong>on</strong>. 59pp.PHJV. 1998. Report to <strong>the</strong> Prairie Habitat Joint Venture by <strong>the</strong> Working Group <strong>on</strong> <str<strong>on</strong>g>Avian</str<strong>on</strong>g> <str<strong>on</strong>g>Botulism</str<strong>on</strong>g>.Unpub. Rpt. <strong>Canadian</strong> Cooperative Wildlife Health Centre, Saskato<strong>on</strong>. 44pp.Presidente, P.J. 1966. Smoky Lake botulism report. Int. Rpt., file 5000-64. Alberta Fish &Wildlife. 4pp.Pugh, K. And M. Heckbert. 2001. <str<strong>on</strong>g>Avian</str<strong>on</strong>g> botulism at Utikuma Lake 1999. Int. Rpt. Alberta Fish &Wildlife, High Prairie. 11pp.Pybus, M.J. 1994. <str<strong>on</strong>g>Botulism</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> blue-green algae pois<strong>on</strong>ing at Pakowki Lake, 1994. Int. Rpt.Alberta Fish & Wildlife. 23pp.-----. 1995. Summary <str<strong>on</strong>g>of</str<strong>on</strong>g> botulism in Alberta. Int. Rpt. Alberta Fish & Wildlife. 10pp.-----. 1997. Pakowki Lake Working Group - Final Report. Alberta Natural Resources, Wildlife<str<strong>on</strong>g>Management</str<strong>on</strong>g> Divisi<strong>on</strong>, Edm<strong>on</strong>t<strong>on</strong>. 30pp.-----, <str<strong>on</strong>g>and</str<strong>on</strong>g> M. Anders<strong>on</strong>. 1997. Waterfowl disease at Pakowki Lake, 1996. Int. Rpt. Alberta Fish &Wildlife, Edm<strong>on</strong>t<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Ducks Unlimited Canada, Brooks. 30pp.-----, <str<strong>on</strong>g>and</str<strong>on</strong>g> D. Eslinger 1996.Waterfowl disease at Pakowki Lake, 1995. Int. Rpt. Alberta Fish &Wildlife, Edm<strong>on</strong>t<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Medicine Hat. 31pp.-----, <str<strong>on</strong>g>and</str<strong>on</strong>g> J. Girvan. 1998. <str<strong>on</strong>g>Avian</str<strong>on</strong>g> mortality at Joseph Lake, 1998. Int. Rpt. Alberta NRS - Fish <str<strong>on</strong>g>and</str<strong>on</strong>g>Wildlife, Edm<strong>on</strong>t<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Leduc. 3pp.-----, <str<strong>on</strong>g>and</str<strong>on</strong>g> K. Mort<strong>on</strong>. 1998. <str<strong>on</strong>g>Botulism</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> Hay/Zama Complex, 1998. Int. Rpt. Alberta NaturalResources Service - Fish <str<strong>on</strong>g>and</str<strong>on</strong>g> Wildlife, Edm<strong>on</strong>t<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> High Level. 15pp.-----, W. Spencer, <str<strong>on</strong>g>and</str<strong>on</strong>g> G. Stewart. 1995. A c<strong>on</strong>tingency plan to deal with waterfowl disease atPakowki Lake. Int. Rpt.Alberta Fish & Wildlife, Edm<strong>on</strong>t<strong>on</strong>. 9pp.-----, <str<strong>on</strong>g>and</str<strong>on</strong>g> H. Wollis. 1999. <str<strong>on</strong>g>Avian</str<strong>on</strong>g> mortality at Lac Ste Anne, 1998. Int. Rpt. Alberta NRS - Fish <str<strong>on</strong>g>and</str<strong>on</strong>g>Wildlife, Edm<strong>on</strong>t<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Barrhead. 2pp.Sadler, T.S. 1998a. Waterfowl disease at Frank Lake, 1998. Ducks Unlimited Canada, Strathmore.3pp.6


129-----. 1998b. Waterfowl disease at Stobart Lake, 1998. Ducks Unlimited Canada, Strathmore. 17pp.Sciple, G.W. 1953. <str<strong>on</strong>g>Avian</str<strong>on</strong>g> botulism. Special Scientific Report (Wildlife) #23. US Dept. Interior,USFWS. 12pp.Shaw, R.M. <str<strong>on</strong>g>and</str<strong>on</strong>g> G.S. Simps<strong>on</strong>. 1936. Clostridium botulinum Type C in relati<strong>on</strong> to duck sickness in<strong>the</strong> province <str<strong>on</strong>g>of</str<strong>on</strong>g> Alberta. J. Bact. 32:79-88.Spencer, W. 1992. Waterfowl disease outbreaks <str<strong>on</strong>g>and</str<strong>on</strong>g> envir<strong>on</strong>mental emergencies involvingmigratory birds - Alberta 1992. Int. Rpt. <strong>Canadian</strong> Wildlife Service, Edm<strong>on</strong>t<strong>on</strong>. 10pp.Tiege, S., <str<strong>on</strong>g>and</str<strong>on</strong>g> M.J. Pybus. 1999. <str<strong>on</strong>g>Avian</str<strong>on</strong>g> botulism cleanup: Kimiwan <str<strong>on</strong>g>and</str<strong>on</strong>g> Winagami Lakes, 1999. Int.Rpt. Alberta NRS - Fish <str<strong>on</strong>g>and</str<strong>on</strong>g> Wildlife, High Prairie <str<strong>on</strong>g>and</str<strong>on</strong>g> Edm<strong>on</strong>t<strong>on</strong>.37pp.Webb, R. 1958. Waterfowl mortality at Lac la Biche. Int. Rpt.Alberta Fish & Wildlife. 5pp.Windberg, L.A. 1975. <str<strong>on</strong>g>Botulism</str<strong>on</strong>g>- Pakowki Lake. Int. Memo. September 30, 1975. Alberta Fish &Wildlife. 2pp.7


13081) 1980 (Calverley 1980)Appendix 1: detailed informati<strong>on</strong> from unpublished reports.( Additi<strong>on</strong>al informati<strong>on</strong> is available in <strong>the</strong> identified reports)LakeDetecti<strong>on</strong>Date# observed/collectedassessmentmethodsprimary species (%)Beaverhill Aug. 28 3003 cleanup widge<strong>on</strong>, gadwall,mallard, shovelerBuffalo Aug 5 1990 cleanup widge<strong>on</strong>, mallard,shoveler, bl-wing tealPakowki Aug18 8300 cleanup gr-wing teal, shoveler,pintail, malardRush Aug 5 26 aerialWhitford Aug 5 129 aerial1980 TOTAL 13,293 86.5202244.52) 1981 (Calverley 1981)LakeDetecti<strong>on</strong>Date# observed/collectedassessmentmethodsBeaverhill Aug 18 610 aerial &cleanupprimary species (%)gr-win teal (48) pintail(15) shoveler (11)Buffalo Aug 19 821 cleanup 18Hay Lks Sept 2 1430 cleanup 8King's Sept 2 1550 cleanup pintail (40) gr-wingteal (30) mallard (20)Smoky Lk Sept 2 1010 aerial &cleanupWhitford Aug 27 1550 aerial &cleanupgadwall(23) bl-wingteal (20) shoveler(19)pintail(27) mallard(19)gr-wing teal(17)#m<str<strong>on</strong>g>and</str<strong>on</strong>g>ays#m<str<strong>on</strong>g>and</str<strong>on</strong>g>ays1981TOTAL 6971 69.551093) 1982, 1983 DUC systematic m<strong>on</strong>itoring not implemented due to low potential for botulism(high water levels). No problems were identified through o<strong>the</strong>r channels. However, <strong>the</strong>re isa report <str<strong>on</strong>g>of</str<strong>on</strong>g> possible botulism <strong>on</strong> Lost Lake (H<str<strong>on</strong>g>of</str<strong>on</strong>g>fman memo, F&W: 300+ dead birds inAugust).


13194) 1984 (Calverley 1985)LakeDetecti<strong>on</strong>Date# observed/collectedassessmentmethodsprimary species (%)Beaverhill Aug 29 11 aerial


1321010) 1990 (F&W files)LakeDetecti<strong>on</strong>Date# observed/collectedassessmentmethodsprimary species (%)Grantham July 30 837 cleanup gr-wing teal (30)pintail (25) coot (14)Hay Zama Aug 14 3159 cleanup gr-wing teal (34)mallard(30) pintail(20)San Francisco July 31 592 cleanup 10Utikuma Aug 7 754* cleanup 191990 TOTAL 5342* low search efficiency. <str<strong>on</strong>g>Botulism</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> NDV.NOTE: Pakowki allegedly affected but not substantiated (Dube 1990)11) 1991 (F&W files)LakeDetecti<strong>on</strong>Date# observed/collectedassessmentmethodsprimary species (%)Beaverhill Aug 9 3400 cleanup pintail, gr-wing tealBig Lake Aug 5 50-60 cleanupGrantham few visual3531Utikuma Aug 16 4000 cleanup 401991 TOTAL 745512) 1992 (F&W files)LakeDetecti<strong>on</strong>Date# observed/collectedassessmentmethodsBeaverhill .Aug 25 220 cleanupBig Hay .Aug 25 30 cleanupprimary species (%)Grantham Aug 10 237 cleanup mallard (30) gr-wingteal (19) pintail (15)Magloire Aug 11 100 cleanup 2Utikuma July 9 7242* cleanup mallard, widge<strong>on</strong>,lesser scaup, gadwall1992 TOTAL 7829* Newcastle Disease Virus also c<strong>on</strong>firmed <strong>on</strong> Utikuma.13) 1993 no reported botulism#m<str<strong>on</strong>g>and</str<strong>on</strong>g>ays#m<str<strong>on</strong>g>and</str<strong>on</strong>g>ays#m<str<strong>on</strong>g>and</str<strong>on</strong>g>ays1458


1331114) 1994 to 1997 Pakowki Lake (<strong>the</strong> <strong>on</strong>ly lake with identified mortality)YEARDetecti<strong>on</strong>Date# observed/collectedassessmentmethods1994 Aug 19 31,517 cleanup1995 July 10 100,825 cleanup1996 July 19 12,342 cleanup1997 July 16 45,048 cleanupprimary species (%) #m<str<strong>on</strong>g>and</str<strong>on</strong>g>aysreferencemallard (22) gadwall (21)shoveler (19) 195 Pybus 1994gr-wing teal (52) pintail(20) shoveler (10) 691shoveler (20) gr-wing teal(19) pintail (18) 239Pybus <str<strong>on</strong>g>and</str<strong>on</strong>g> Eslinger1996Pybus <str<strong>on</strong>g>and</str<strong>on</strong>g> Anders<strong>on</strong>1997gr-wing teal (35) pintail(20) shoveler (12) 339 Peers et al. 199815) 1998Lake Locati<strong>on</strong> Detecti<strong>on</strong>Date#CollectedPrimary Species Diagnosis ReferenceBeaverhill 53E27'N 112E32'W Aug. 12 15,372 dabbling ducks avian botulism Barr <str<strong>on</strong>g>and</str<strong>on</strong>g> Pybus 1999Cardinal 56E18'N 117E54'W Aug. 23 .200 dabbling ducks probable botulism 1 Moyles 1998Frank 50E14'N 113EW Aug. 17 460 dabbling ducks avian botulism Sadler 1998aHay Zama 58E40'N 119EW Aug. 10 .4,000 dabbling ducks avian botulism Pybus <str<strong>on</strong>g>and</str<strong>on</strong>g> Mort<strong>on</strong> 1998Joseph 53E00'N 113E.3'W Aug. 26 .100 ring-billed gulls probable botulism 1 Pybus <str<strong>on</strong>g>and</str<strong>on</strong>g> Girvan 1998Kimiwan 55E45'N 116E55'W Aug. 28 44,510 dabbling ducks probable botulism 1 Arbuckle et al. 1999Lac Ste Anne 53E42'N 114E25'W Aug. 23 .140 various gulls undetermined 2 Pybus <str<strong>on</strong>g>and</str<strong>on</strong>g> Wollis 1999Namaka 50E50'N 113E11'N Sept 23 .50 dabbling ducks blue-green algae 3 Sadler pers. comm.Pakowki 49E20'N 111EW July 22 4,943 dabbling ducks avian botulism Peers 1999Stobart 50E50'N 113E10'W Aug. 18 10,939 dabbling ducks avian botulism Sadler 1998bUtikuma 55E55'N 115E25'W Aug. 10 80,000 diving ducks avian botulism Heckbert <str<strong>on</strong>g>and</str<strong>on</strong>g> Pybus 1999Whitford 53E53'N 112E15'W Aug. 12 790 dabbling ducks avian botulism Moore <str<strong>on</strong>g>and</str<strong>on</strong>g> Pybus 1999Winagami 55E38'N 116E45'W Aug. 30? 760 dabbling ducks probable botulism 1 Arbuckle et al. 1999cumulative total 162,2641 based <strong>on</strong> field evidence <str<strong>on</strong>g>and</str<strong>on</strong>g> clinical signs/recovery <str<strong>on</strong>g>of</str<strong>on</strong>g> sick birds; 2 probably NOT avian botulism;


134123 probable blue-green algal pois<strong>on</strong>ing based <strong>on</strong> field evidence16) 1999Lake Locati<strong>on</strong> Detecti<strong>on</strong>Date#CollectedPrimary Species Diagnosis ReferenceBeaverhill 53E27'N 112E32'W Sept. 8 235 dabbling ducks avian botulism Barr 2000Frank 50E14'N 113EW July 30 441 dabbling ducks avian botulism Peers 2000Kimiwan 55E45'N 116E55'W April 28 113 dabbling ducks avian botulism Tiege <str<strong>on</strong>g>and</str<strong>on</strong>g> Pybus 1999June 29 1867 dabbling ducks avian botulismUtikuma 55E55'N 115E25'W July 20 15,128 diving ducks avian botulism Pugh & Heckbert 2001Whitford 53E53'N 112E15'W July 15 400 dabbling ducks avian botulism Moore 2000Winagami 55E38'N 116E45'W Aug. 31 354 dabbling ducks avian botulism Tiege <str<strong>on</strong>g>and</str<strong>on</strong>g> Pybus 1999cumulative total 18,53817) 2000Lake Locati<strong>on</strong> Detecti<strong>on</strong>Date#CollectedPrimary Species Diagnosis ReferenceBeaverhill 53E27'N 112E32'W July 26 .800 dabbling ducks avian botulismBuffalo 52E30'N 112E45'W Aug 14 .2000 dabbling ducks avian botulismFrank 50E14'N 113EW July 18 2351 dabbling ducks avian botulismHay Zama 58E40'N 119EW Aug 3/4 .60,000 dabbling ducks avian botulismUtikuma 55E55'N 115E25'W July 18 7291 dabbling ducks avian botulismWhitford 53E53'N 112E15'W July 25


1351318) 2001Lake Locati<strong>on</strong> Detecti<strong>on</strong>Date#SeenPrimary Species Diagnosis ReferenceBuffalo 52E30'N 112E45'W July 26 .600 dabbling ducks avian botulism Bjorge 2001


136APPENDIX 2EXPOSURE OF MALLARD DUCKLINGS TO MICROCYSTIN-LRWOBESER, G <str<strong>on</strong>g>and</str<strong>on</strong>g> MURPHY, T.


137INTRODUCTIONAlthough blue-green algae (cyanobacteria spp.) are very comm<strong>on</strong> in wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s, <str<strong>on</strong>g>and</str<strong>on</strong>g> mortality <str<strong>on</strong>g>of</str<strong>on</strong>g>waterfowl has been attributed to toxicity from algae, <strong>the</strong>re is very little informati<strong>on</strong> <strong>on</strong> <strong>the</strong>toxicity <str<strong>on</strong>g>of</str<strong>on</strong>g> specific toxins for birds, including waterfowl. Algal toxins are <str<strong>on</strong>g>of</str<strong>on</strong>g> two general types:neurotoxins <str<strong>on</strong>g>and</str<strong>on</strong>g> hepatotoxins. In general, hepatotoxic blooms occur more comm<strong>on</strong>ly than d<strong>on</strong>eurotoxic blooms (Carmichael et al. 1985). Neurotoxins are associated with Anabaena <str<strong>on</strong>g>and</str<strong>on</strong>g>Aphanizomen<strong>on</strong> spp. cyanobacteria. One neurotoxin (anatoxin-a) is known to be toxic formallards (Anas platyrhynchos) (Carmichael <str<strong>on</strong>g>and</str<strong>on</strong>g> Biggs 1978) <str<strong>on</strong>g>and</str<strong>on</strong>g> produces clinical signs similarto those produced by cholinesterase-inhibiting insecticides. However, this toxin is not reportedcomm<strong>on</strong>ly in Prairie lakes (e.g., Kotak et al. (1993) did not find it in any <str<strong>on</strong>g>of</str<strong>on</strong>g> 39 bloom samplescollected from Alberta lakes <str<strong>on</strong>g>and</str<strong>on</strong>g> dug-outs). Hepatotoxins are produced by a number <str<strong>on</strong>g>of</str<strong>on</strong>g> differentalgae. The most comm<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se are a group <str<strong>on</strong>g>of</str<strong>on</strong>g> toxins called microcystins that are produced byMicrocystis spp., as well as by some o<strong>the</strong>r cyanobacteria. Microcystin-LR is likely <strong>the</strong> mostcomm<strong>on</strong> form <str<strong>on</strong>g>of</str<strong>on</strong>g> microcystin. Kotak et al. (1993) detected microcystin-LR in 37 <str<strong>on</strong>g>of</str<strong>on</strong>g> 39 algalbloom samples collected in Alberta. Microcystin-LR is highly toxic for mammals, causingvery rapid liver damage <str<strong>on</strong>g>and</str<strong>on</strong>g> death within a few hours. The toxic dose for mice byintraperit<strong>on</strong>eal injecti<strong>on</strong> is approximately 50-100 µg/kg. There is very little informati<strong>on</strong> <strong>on</strong>toxicity <str<strong>on</strong>g>of</str<strong>on</strong>g> microcystins for birds, <str<strong>on</strong>g>and</str<strong>on</strong>g> liver damage <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> type that occurs in mammals has notbeen described in this group. Gorham (1960) <str<strong>on</strong>g>and</str<strong>on</strong>g> K<strong>on</strong>st et al. (1965) reported that domesticducks were very resistant to toxins produced by M. aeruginosa. Takahashi <str<strong>on</strong>g>and</str<strong>on</strong>g> Kaya (1993)reported that ano<strong>the</strong>r microcystin (microcystin-RR) was toxic for quail when injectedintraperit<strong>on</strong>eally, but it caused enlargement <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> spleen ra<strong>the</strong>r than causing <strong>the</strong> liver damagethat occurs in mammals.The associati<strong>on</strong> between <strong>the</strong>se toxins <str<strong>on</strong>g>and</str<strong>on</strong>g> pois<strong>on</strong>ing <str<strong>on</strong>g>of</str<strong>on</strong>g> birds is c<strong>on</strong>fusing, because comm<strong>on</strong>lyoccurring hepatotoxins have not been clearly linked with toxicity in birds, but at least <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>less comm<strong>on</strong>ly occurring neurotoxins is known to be toxic for ducks. There are about 20 reportsin <strong>the</strong> literature in which death <str<strong>on</strong>g>of</str<strong>on</strong>g> waterfowl has been associated with a blue-green algal bloom(Wobeser 1997). The cyanobacteria present were characterized poorly in many <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>seoccurrences, but in 12 <str<strong>on</strong>g>of</str<strong>on</strong>g> 20 occurrences ei<strong>the</strong>r Anabaena or Aphanizomen<strong>on</strong> spp. weredescribed, so that neurotoxins may have been present. Microcystis spp. were described in seveninstances, but in three <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se cases, Anabaena or Aphanizomen<strong>on</strong> spp. were also present. Theobjective <str<strong>on</strong>g>of</str<strong>on</strong>g> this pilot study was to determine <strong>the</strong> toxicity <str<strong>on</strong>g>of</str<strong>on</strong>g> purified microcystin-LR(Calbiochem catalogue # 475815) for mallard (Anas platyrhynchos) ducklings.EXPERIMENT 1MethodsDay-old ducklings were obtained from a commercial supplier (Whistling Wings, Hanover,Illinois), held in <strong>the</strong> laboratory for <strong>on</strong>e week for acclimati<strong>on</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong>n divided into groups <str<strong>on</strong>g>of</str<strong>on</strong>g> fivebirds for exposure to toxin. Although Microcystin-LR had been successfully isolated fromculture, <strong>the</strong> yield was less than expected so commercial supplies were used to expedite <strong>the</strong> study.


138Toxin was administered orally using a stomach tube. The dosages tested were 0 (c<strong>on</strong>trols, whichreceived water), 62.5, 125, 250, 500 <str<strong>on</strong>g>and</str<strong>on</strong>g> 1000 µg/kg body weight. Birds were: tagged; weighedbefore receiving toxin; m<strong>on</strong>itored for four days after receiving toxin; euthanized; <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong>nnecropsied. Weight gain over <strong>the</strong> four-day period, as well as liver weight <str<strong>on</strong>g>and</str<strong>on</strong>g> spleen weight as aproporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> body weight, were calculated. Tissues (liver, spleen, lung, kidney, bursa <str<strong>on</strong>g>of</str<strong>on</strong>g>Fabricius) were fixed, processed <str<strong>on</strong>g>and</str<strong>on</strong>g> examined histologically.ResultsThere was no evidence <str<strong>on</strong>g>of</str<strong>on</strong>g> any clinical disease in ducklings that received toxin. Their rate <str<strong>on</strong>g>of</str<strong>on</strong>g>growth, liver mass, <str<strong>on</strong>g>and</str<strong>on</strong>g> spleen mass were not different from c<strong>on</strong>trol ducklings, <str<strong>on</strong>g>and</str<strong>on</strong>g> nomicroscopic lesi<strong>on</strong>s were detected in <strong>the</strong>ir tissues.To ensure that <strong>the</strong> toxin administered to <strong>the</strong> ducklings was actually toxic, mice were exposed to100 µg/kg by intraperit<strong>on</strong>eal injecti<strong>on</strong>. The mice became sick within 20 min <str<strong>on</strong>g>and</str<strong>on</strong>g> died in lessthan two hours. They had significantly increased liver mass <str<strong>on</strong>g>and</str<strong>on</strong>g> severe acute liver necrosis,typical <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> lesi<strong>on</strong>s described in mammals exposed to this toxin.EXPERIMENT 2MethodsTo test <strong>the</strong> toxicity <str<strong>on</strong>g>of</str<strong>on</strong>g> microcystin-LR by intraperit<strong>on</strong>eal injecti<strong>on</strong> for ducklings, additi<strong>on</strong>al toxinwas ordered from <strong>the</strong> supplier. It was administered to groups <str<strong>on</strong>g>of</str<strong>on</strong>g> five 21-day-old ducklings.Because <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> size <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> ducklings (∼500g) <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> cost <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> toxin (C$300.90 for 500µg),<strong>on</strong>ly two levels <str<strong>on</strong>g>of</str<strong>on</strong>g> toxin (50 <str<strong>on</strong>g>and</str<strong>on</strong>g> 100 µg/kg) were administered, <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>trol birds were injectedwith sterile saline. The birds were followed for four days <str<strong>on</strong>g>and</str<strong>on</strong>g> h<str<strong>on</strong>g>and</str<strong>on</strong>g>led as described above.ResultsThere was no evidence <str<strong>on</strong>g>of</str<strong>on</strong>g> any effect <strong>on</strong> growth <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> ducklings, or <strong>on</strong> any organ, comparedwith c<strong>on</strong>trols.DISCUSSIONAll that can be c<strong>on</strong>cluded from <strong>the</strong>se trials is that ducks are less sensitive than mice tomicrocystin-LR. It is likely that <strong>the</strong> material is toxic for ducks at some level, <str<strong>on</strong>g>and</str<strong>on</strong>g> fur<strong>the</strong>r trialsusing larger doses <str<strong>on</strong>g>of</str<strong>on</strong>g> toxin could be performed to test this. However, it is unrealistic to do thisusing commercially available toxin, given its cost, particularly if adult-sized birds were to be


139used, as would be more appropriate for assessing field pois<strong>on</strong>ing. K<strong>on</strong>st et al. (1965) suggestedthat <strong>the</strong> toxic oral dose <str<strong>on</strong>g>of</str<strong>on</strong>g> microcystin in mice is ~40x larger than <strong>the</strong> intraperit<strong>on</strong>eal dose. From<strong>the</strong> trial, we know that 100 µg/kg is not toxic for mallards by <strong>the</strong> intraperit<strong>on</strong>eal route,suggesting that <strong>the</strong> oral dose would be >4,000µg/kg. A dose <str<strong>on</strong>g>of</str<strong>on</strong>g> that size would cost aboutC$2,400 for a single adult mallard.Ano<strong>the</strong>r approach to resolve <strong>the</strong> toxicity <str<strong>on</strong>g>of</str<strong>on</strong>g> algal blooms for ducks would be to collect <str<strong>on</strong>g>and</str<strong>on</strong>g>preserve large amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> suspected toxic algal material from <strong>the</strong> field, in an area where ducksare dying. The material could be tested for toxicity in mice first. If toxicity is detected usingmice, <strong>the</strong>n it could be tested for toxicity in ducks by oral dosing. If it proved to be toxic, <strong>the</strong>toxin(s) present could <strong>the</strong>n be identified by laboratory analysis. A potential problem with thistechnique is that a mixture <str<strong>on</strong>g>of</str<strong>on</strong>g> toxins will likely be present, so it will be difficult to establishwhich toxins are important.The toxicity <str<strong>on</strong>g>of</str<strong>on</strong>g> algae to ducks could also be resolved with laboratory isolati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> algal toxinsfrom cultures <str<strong>on</strong>g>and</str<strong>on</strong>g> fur<strong>the</strong>r bioassays. A significant advantage <str<strong>on</strong>g>of</str<strong>on</strong>g> this approach is that experimentscan be repeated with changing variables to resolve <strong>the</strong> details <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> pathology. Field trialswould be difficult to replicate <str<strong>on</strong>g>and</str<strong>on</strong>g> may not be effective in determining whe<strong>the</strong>r o<strong>the</strong>r,unmeasured toxins are influencing results. In additi<strong>on</strong>, field trials cannot resolve complexitiessuch as synergism or bioavailability. Ideally, both field <str<strong>on</strong>g>and</str<strong>on</strong>g> laboratory approaches shouldbe used.


140LITERATURE CITEDCarmichael WW, Biggs DF. 1978. Muscle sensitivity differences in two avian species toanatoxin-a produced by <strong>the</strong> freshwater cyanophyte Anabaena flos-aquae NRC-44-1. Can JMicrobiol. 56:510Carmichael WW, J<strong>on</strong>es CLA, Mahmood NA, Theiss WC, Krogh P. 1985. Algal toxins <str<strong>on</strong>g>and</str<strong>on</strong>g>water-based diseases. Crit Rev Envir<strong>on</strong> Sci & Tech. 15:275.Gorham PR. 1960. Toxic waterblooms <str<strong>on</strong>g>of</str<strong>on</strong>g> blue-green algae. Can Vet J. 1:235K<strong>on</strong>st H, Mckercher PD, Gorham PR, Roberts<strong>on</strong> A, Howell J. 1965. Symptoms <str<strong>on</strong>g>and</str<strong>on</strong>g> pathologyproduced by toxic Microcystis aeruginosa NRC-1 in laboratory <str<strong>on</strong>g>and</str<strong>on</strong>g> domestic animals. CanJ Comp Med Vet Sci. 29:221Kotak BG, Kenefick SL, Fritz DL, Rousseaux CG, Prepas EE, Hrudey SE. 1993. Occurrence <str<strong>on</strong>g>and</str<strong>on</strong>g>toxicological evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cyanobacterial toxins in Alberta lakes <str<strong>on</strong>g>and</str<strong>on</strong>g> farm dugouts. WaterRes. 27:495.Takahashi S, Kaya K. 1993. Quail spleen is enlarged by microcystin RR as a blue-green algalhepatotoxin. Nat Toxins. 1:283Wobeser G. 1997. Diseases <str<strong>on</strong>g>of</str<strong>on</strong>g> wild waterfowl, 2nd editi<strong>on</strong>. New York: Plenum Press.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!