05.12.2012 Views

The Shell GTL Process: - DGMK

The Shell GTL Process: - DGMK

The Shell GTL Process: - DGMK

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>The</strong> <strong>Shell</strong> <strong>GTL</strong> <strong>Process</strong>:<br />

Towards a World Scale Project in Qatar:<br />

the Pearl Project<br />

Arend Hoek<br />

<strong>Shell</strong> Global Solutions International, Amsterdam<br />

<strong>DGMK</strong>-Conference “Synthesis Gas Chemistry”<br />

October 4-6, 2006, Dresden


2<br />

Contents<br />

� Introduction<br />

� F-T catalysis<br />

� Hydroprocessing<br />

� Bintulu learning<br />

� Evolution<br />

� <strong>The</strong> Pearl project (Qatar)<br />

� Conclusions


3<br />

Raw<br />

Natural<br />

Gas<br />

What is Gas To Liquids (<strong>GTL</strong>)?<br />

Methane+ Oxygen Hydrogen Carbon +<br />

monoxid<br />

e<br />

Fischer-Tropsch distillates+<br />

Water<br />

Catalyst<br />

Gas<br />

<strong>Process</strong>ing<br />

Ethane<br />

LPG<br />

CH<br />

4<br />

O 2<br />

Condensate<br />

Sulphur<br />

Syngas<br />

Manufacturing<br />

Syngas<br />

CO + 2H 2<br />

Bintulu SMDS<br />

Fischer Tropsch<br />

Synthesis<br />

-CH 2 -<br />

Products<br />

Work-up<br />

Conversion of natural gas to clean, high quality fuels<br />

& products via the Fischer Tropsch process<br />

LPG<br />

<strong>GTL</strong> Naphtha<br />

<strong>GTL</strong> Gas Oil<br />

n-Paraffins<br />

<strong>GTL</strong> Base<br />

Oils


4<br />

SGP Upscaling: Experience + Modelling<br />

Upscaling<br />

based on<br />

design criteria<br />

used for 50<br />

years<br />

Upscaling<br />

evaluated by<br />

fluid flow and<br />

reaction<br />

modelling<br />

• High quality Syngas:<br />

H2/CO 1.8 mol/mol<br />

CH4 slip < 0.5 vol % dry<br />

CO2 content ~ 2 vol % dry<br />

Carbon to CO ~94 vol %<br />

• Modelling tested against Bintulu<br />

• Sufficient reactant mixing time<br />

• Minimum temperature fluctuations<br />

near the refractory wall and no hot<br />

spots<br />

• Dimensioning to achieve long<br />

refractory lifetime<br />

• Burner front design checked by<br />

finite element stress analysis


5<br />

Technical challenges<br />

� Carbon efficiency<br />

- selectivity of catalysts<br />

� Capex<br />

- process intensity<br />

� Availability<br />

- catalyst stability<br />

- robustness<br />

� Materials<br />

- resistance against corrosion, erosion,<br />

metal dusting<br />

� A <strong>GTL</strong> plant is mainly a UTILITY complex<br />

- efficient use of steam


6<br />

Advantages<br />

� All in house technology<br />

� No boundary issues between process<br />

step<br />

� In house catalyst manufacturing<br />

� No secrecy issues


7<br />

Contents<br />

� Introduction<br />

� F-T catalysis<br />

� Hydroprocessing<br />

� Bintulu learning<br />

� Evolution<br />

� <strong>The</strong> Pearl project (Qatar)<br />

� Conclusions


8<br />

Fischer-Tropsch synthesis<br />

� Promoted Co catalyst<br />

� Fixed bed multi-tubular reactors


9<br />

Schulz - Flory FT Kinetics<br />

CO<br />

CH3<br />

α<br />

C2H5<br />

α<br />

α<br />

CnH2n+1<br />

1 − α<br />

1 − α<br />

1 − α<br />

CH4<br />

C2H6<br />

CnH2n+2<br />

α<br />

n-1<br />

α<br />

1−α<br />

Probability<br />

= probability of chain growth<br />

1 - = probability of chain termination<br />

(1 − α)<br />

α (1 − α)<br />

(1 − α)<br />

Cn =<br />

(1 − α)<br />

α<br />

α<br />

n


10<br />

<strong>The</strong> Relevance of Catalyst Selectivity<br />

%m<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

CWax<br />

1-2<br />

C3-4<br />

Fuel gas<br />

C 5-12<br />

LPG<br />

Tops/Naphtha<br />

C 12-19<br />

Gasoil<br />

0.75 0.80 0.85 0.90 0.95<br />

Co (classic)<br />

Probability of chain growth<br />

Fe (classic)<br />

New catalysts<br />

C 20+<br />

Wax<br />

Produce<br />

wax<br />

Crack<br />

back


11<br />

Preferred process lay-out<br />

Producing max. heavy wax (max. chain<br />

growth probability leads to:<br />

� High efficiency (liquid yield)<br />

� High gas oil and base oil yield<br />

� High degree of isomerisation of gas oil<br />

and base oil


12<br />

Liquid selectivity, %w<br />

100<br />

95<br />

90<br />

85<br />

Fischer-Tropsch catalyst R&D<br />

efficiency up<br />

Bintulu<br />

design<br />

1st gen.<br />

capex down<br />

Bintulu<br />

DBN<br />

2nd gen.<br />

Bintulu<br />

Design point<br />

Pearl <strong>GTL</strong><br />

80<br />

0 50 100 150 200 250 300 350<br />

relative reactor productivity<br />

2nd gen.<br />

Pearl <strong>GTL</strong><br />

R&D cat.<br />

Future<br />

<strong>GTL</strong>?


Light<br />

Product<br />

13<br />

<strong>Shell</strong> FT: Heavy Paraffins Synthesis (HPS)<br />

Configuration: Multi-tubular, water/steam cooled<br />

Synthesis gas<br />

Heavy product<br />

Steam<br />

Performance:<br />

Cooling<br />

Water<br />

� Automated, fast catalyst loading, In situ catalyst regeneration<br />

� High productivity: 7,000 - 9,000 bbl/d per reactor<br />

� Liquid Selectivity (CO to liq.): >90%<br />

� Easy operation, including start-up, shut-down and transients


14<br />

Contents<br />

� Introduction<br />

� F-T catalysis<br />

� Hydroprocessing<br />

� Bintulu learning<br />

� Evolution<br />

� <strong>The</strong> Pearl project (Qatar)<br />

� Conclusions


15<br />

Hydroprocessing step<br />

� Dedicated catalyst and conditions<br />

� Hydrogenation of oxygenates and olefins<br />

� Hydrocracking/isomerisation of paraffins<br />

� Bifunctional catalyst: noble metal and acid<br />

function<br />

� Low gas make, product flexibility<br />

� 7.5 years in service


ecovery, %w<br />

16<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

TBP-GLC of hydroprocessing feed and prod.<br />

total feed<br />

total product<br />

0 100 200 300 400<br />

atm.bp, °C<br />

500 600 700 800


17<br />

selectivity, %w<br />

Screening of hydroconversion catalysts<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

catalyst 1<br />

catalyst 2<br />

catalyst 3<br />

catalyst 4<br />

catalyst 5<br />

C1-C4 sel C5-150 sel 150-200 sel 200-370 sel


18<br />

Contents<br />

� Introduction<br />

� F-T catalysis<br />

� Hydroprocessing<br />

� Bintulu learning<br />

� Evolution<br />

� <strong>The</strong> Pearl project (Qatar)<br />

� Conclusions


19<br />

SCOPE<br />

<strong>Shell</strong> MDS in Malaysia<br />

Conversion of 110 mmscf/d NG into<br />

575 kt/a (14,700 b/d) of <strong>GTL</strong><br />

products<br />

Produces clean fuels and speciality<br />

products<br />

Worldwide marketing<br />

PENINSULAR<br />

MALAYSIA<br />

Kuala Lumpur<br />

Head Office<br />

INVESTMENT<br />

Initial capital investment<br />

of US$850 million<br />

2003 debottenecking<br />

investment of US$50<br />

million<br />

STRUCTURE<br />

<strong>Shell</strong> MDS (Malaysia) Sdn.<br />

Bhd.<br />

Shareholders: <strong>Shell</strong>,<br />

Mitsubishi, Petronas,<br />

Sarawak State<br />

SABAH<br />

Bintulu<br />

<strong>Shell</strong> MDS Plant<br />

SARAWAK


20<br />

SMDS - Bintulu - scheme<br />

Natural<br />

Gas<br />

CH4<br />

O 22<br />

ASU<br />

100 MMSCF/d<br />

Syngas Syngas<br />

manufacture<br />

CO + 2H 2<br />

Synthesis Synthesis<br />

SGP HPS<br />

H 2 O<br />

– CH 2 –<br />

Hydrogenation<br />

Hydrocracking<br />

HPC<br />

Solvents<br />

Waxes<br />

Middle<br />

Distillates<br />

Lube oil<br />

feedstock<br />

14,700 bbl/d


21<br />

<strong>Shell</strong> MDS Plant in Bintulu<br />

Bintulu SMDS:<br />

One train of 14,700 b/d<br />

Malaysia LNG:<br />

6 trains, total of 16.5 mln tpa


22<br />

SMDS - Bintulu<br />

Wax plant/<br />

Specialties<br />

HPC/HGU/<br />

Distillation<br />

Boilers<br />

HPS<br />

HMU<br />

ASU<br />

Compressors<br />

Waste water plant<br />

Air coolers<br />

SGP


23<br />

SMDS Bintulu story<br />

• SMDS research started 1973<br />

• Pilot plant 1983<br />

• SMDS-M project approved 1989<br />

• SMDS-M start-up 1993<br />

• ASU explosion: ingress of combustibles 1997<br />

ex forest fires<br />

• Restart 2000<br />

• Debottlenecking 2003<br />

• 1 year of operation without complex trip 2004


24<br />

Bintulu: Invaluable learning for Plant reliability<br />

100<br />

99<br />

98<br />

97<br />

96<br />

95<br />

94<br />

93<br />

92<br />

91<br />

90<br />

Plant Reliability (% onstream)<br />

1994 1995 1996 1997 2001 2002<br />

Air Separation Unit<br />

<strong>Shell</strong> Gasification <strong>Process</strong><br />

FT Synthesis<br />

2003 2004<br />

� Huge challenges at start-up<br />

� “You don’t know what you<br />

don’t know”<br />

� Has proven catalyst &<br />

reactor systems,<br />

procedures for start-up,<br />

shut-down, regeneration,<br />

emergencies and operability<br />

of complex integrated<br />

system


25<br />

Continuous Improvement in S-MDS Bintulu Natural Gas Efficiency<br />

energy consumed/<br />

tonneproduced<br />

(relative scale)<br />

100<br />

95<br />

90<br />

85<br />

80<br />

75<br />

100<br />

96<br />

93<br />

2001 2002 Pre-DBN<br />

(2003)<br />

Overall 18% improvement in NG efficiency<br />

steady state<br />

(no statutory<br />

shutdown)<br />

Achieved by improved utilities integration<br />

88<br />

Post-<br />

DBN **<br />

(2003)<br />

85<br />

2004<br />

** DBN = Debottlenecking<br />

~84<br />

Proj. 2005


26<br />

<strong>GTL</strong> Products, yields and applications<br />

<strong>GTL</strong> plant (<strong>Shell</strong> Bintulu)<br />

<strong>GTL</strong> Base<br />

Oils<br />

(0 – 30%)<br />

<strong>Shell</strong> Helix Ultra: Global<br />

LPG<br />

(0 – 5%)<br />

<strong>GTL</strong><br />

Naphtha<br />

(30 – 40%)<br />

<strong>GTL</strong> Gasoil<br />

(40 – 70%)<br />

<strong>Shell</strong> Pura: Thailand<br />

Cracker complex<br />

<strong>Shell</strong> V-Power:<br />

Germany<br />

�Maximum value from <strong>GTL</strong> products is derived from an<br />

understanding of the fully integrated value chain<br />

�Patent portfolio covering <strong>GTL</strong> products in high-value<br />

applications<br />

�Marketing <strong>GTL</strong> products for 10 years<br />

Plastic products


27<br />

Launch of <strong>Shell</strong>-VW <strong>GTL</strong> Test : Berlin, 6 th May 2003<br />

Synthetic diesel based on SMDS Gasoil - Bintulu


28<br />

<strong>GTL</strong> Fuel can improve air quality in Mega Cities<br />

� Dieselisation will improve the CO2<br />

emissions of the transport sector.<br />

� Reducing other diesel related<br />

emissions will be a key enabler.<br />

� Options available<br />

� Reduced sulphur content in<br />

diesel<br />

� Improved engine management<br />

systems<br />

� Exhaust after treatment<br />

(particle filter or chemical<br />

treatment)<br />

� Introduction of <strong>GTL</strong> fuel<br />

Emission benefits* of <strong>Shell</strong> <strong>GTL</strong> fuel<br />

Growing importance of clean public transport<br />

Based on trial result of 100% <strong>Shell</strong> <strong>GTL</strong><br />

Fuel in 25 Volkswagen Golfs without<br />

any vehicle modifications, Berlin, 2003.<br />

Nitrogen Oxides - 6%<br />

Particulates (PM10) - 20%<br />

Hydrocarbon - 63%<br />

CarbonMonoxides - 91%<br />

*Reference Fuel: Diesel < 10ppm sulphur<br />

Source: VW


29<br />

And…………<strong>GTL</strong> Fuel is by no means slow<br />

� <strong>Shell</strong> worked with Audi to build the first diesel racing car<br />

winning the Le Mans 24 hour race.<br />

� <strong>The</strong> Audi R-10 is fueled by a diesel containing <strong>GTL</strong> Fuel, based<br />

on <strong>Shell</strong> V-Power technology.<br />

Fuel and engine developments together deliver:<br />

� Exceptional Torque<br />

� Very low noise<br />

� Improved fuel<br />

consumption<br />

Audi R-10 during its maiden victory<br />

at the 12 hours of Sebring


30<br />

with the Courtesy<br />

of Volkswagen


31<br />

Contents<br />

� Introduction<br />

� F-T catalysis<br />

� Hydroprocessing<br />

� Bintulu learning<br />

� Evolution<br />

� <strong>The</strong> Pearl project (Qatar)<br />

� Conclusions


Specific Capex, a.u.<br />

Gas to Liquids coming of age<br />

<strong>GTL</strong> Plant Costs<br />

Bintulu<br />

Economies<br />

of Scale<br />

(12,500 bpd)<br />

2 nd generation<br />

catalyst<br />

32 1990 2000<br />

Specific cost, a.u.<br />

Two trains<br />

(140,000 bpd)<br />

3 rd generation<br />

catalyst<br />

Existing<br />

8<br />

Proposed<br />

7<br />

Construction<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

1960 1970 1980 1990 2000 2010<br />

Start-up Year<br />

Brown Field<br />

Expansion<br />

2010 2020<br />

compare: LNG<br />

Train capacity Mtpa


33<br />

Contents<br />

� Introduction<br />

� F-T catalysis<br />

� Hydroprocessing<br />

� Bintulu learning<br />

� Evolution<br />

� <strong>The</strong> Pearl project (Qatar)<br />

� Conclusions


34<br />

Qatar <strong>Shell</strong> <strong>GTL</strong> Project Overview<br />

� Fully integrated project<br />

� Development Production<br />

Sharing Agreement (DPSA),<br />

100% <strong>Shell</strong><br />

� ~1,600 MMscf/d well head gas<br />

� 140,000 b/d <strong>GTL</strong> products<br />

� Two phases, start-up phase 1:<br />

2009/2010<br />

Doha<br />

NORTH FIELD<br />

Ras Laffan<br />

Two multiphase<br />

pipelines<br />

Gas Treating<br />

C2/LPG Extr.<br />

Cond.<strong>Process</strong>.<br />

Sulphur Recov.<br />

<strong>GTL</strong><br />

Utilities<br />

Storage<br />

General Fac.<br />

Two wellhead<br />

platforms<br />

Two onshore phases<br />

Ethane<br />

Propane<br />

Butane<br />

Condens.<br />

Sulphur<br />

Naphtha<br />

Gasoil<br />

n-Paraffins<br />

BaseOils<br />

Water


35<br />

Tangible Progress in Qatar<br />

Seismic<br />

� 800 km 2 3 D seismics completed in 2003<br />

� Providing info for appraisal drilling and for<br />

subsurface modelling of allocated area<br />

Geotechnical Site Investigations<br />

Appraisal Well Drilling<br />

� First phase completed Dec.’03 – April ’04<br />

� First well spud on 14 th February and completed<br />

31st August 2004<br />

� Second well spud on 4 th September and<br />

completed 19 th December 2004


36<br />

Pearl <strong>GTL</strong> Project – Progress Continues…<br />

2002: Statement of Intent<br />

2003: Heads of Agreement (HOA)<br />

2004: Development Production Sharing Agreement (DPSA)<br />

2005: Front End Engineering Design (FEED) completed<br />

Permit to Construct granted<br />

Project Management Contractor (PMC) appointed<br />

All EPC contracts tendered<br />

FT synthesis reactors ordered<br />

Development drilling contract awarded<br />

2006: Submission of Final Development Plan<br />

F-T catalyst production started<br />

Final project approvals<br />

Award EPC contracts<br />

Start site activities<br />

Intense procurement activities


37<br />

Tangible Progress: FEED and Contracting Activities<br />

� Offshore Front-End-Engineering-Design (FEED):<br />

– Conducted in <strong>Shell</strong> offices, Aberdeen during<br />

March 2004 to February 2005<br />

� Onshore FEED:<br />

– Conducted by JGC, primarily in the London<br />

offices of MW Kellogg (joint venture of JGC &<br />

KBR), during March 2004 – May 2005<br />

– Close to 500,000 man-hours<br />

� Investment Decision<br />

– July 2006<br />

� EPC Contracting:<br />

– Multiple contractor strategy<br />

– Several bids awarded (Sep. 2006)


38<br />

Configuration for 70,000 bpd<br />

SMDS capacity build-up configuration<br />

Modular sections<br />

ASUs SGPs HPS reactors<br />

Work-up<br />

incl HPC<br />

Single train<br />

Work-up<br />

incl HPC<br />

Single train<br />

Additional modules to build to capacity of 140,000 bbl/d<br />

Common<br />

Utilities<br />

Storage &<br />

Loading<br />

General<br />

Facilities


39<br />

Pearl project (Qatar <strong>Shell</strong> <strong>GTL</strong>)<br />

Watertreating<br />

Storage<br />

Gas <strong>Process</strong>ing <strong>GTL</strong> <strong>Process</strong><br />

Utilities<br />

ASUs


40<br />

Onshore construction dimensions<br />

1610 meters<br />

Type Quantity<br />

Equipment 2,300 items<br />

Equipment 100,000 tons<br />

Piping 50,000<br />

tons<br />

Structural steel 30,000 tons<br />

Concrete 200,000 m 3<br />

Cables 1,800 km<br />

Insulation 700,000 m 2<br />

Control loops 3,500<br />

1440 meters


41<br />

Pearl will break many records<br />

�<strong>The</strong> world's largest capacity to produce premium quality base oils.<br />

�<strong>The</strong> worlds largest producer of <strong>GTL</strong> based normal paraffin and will be<br />

the worlds lowest cost normal paraffins producer.<br />

�<strong>The</strong> largest single train Hydrocracker in <strong>Shell</strong> and the worlds largest<br />

Hydrocracking capacity in one location.<br />

�<strong>The</strong> worlds largest ASU in terms of high purity Oxygen and the worlds<br />

largest overall Oxygen production on one location.<br />

�<strong>The</strong> worlds largest ever catalyst supply contract.<br />

�<strong>The</strong> worlds largest system for full recovery of industrial process water,<br />

achieving 'zero-liquid discharge‘.<br />

�One of the worlds largest and most advanced Fieldbus instrumentation<br />

and control systems.<br />

�One of the worlds most advanced multipurpose, multi plant dynamic<br />

process simulators.<br />

�<strong>The</strong> largest steam generation capacity of any hydrocarbon processing<br />

plant in the world (or indeed ... in the Petroleum Industry).


42<br />

<strong>GTL</strong> Challenges: ‘From Reservoir to Market’<br />

Upstream:<br />

• Seismics<br />

• Geology<br />

• Petrophysics<br />

• Reservoir<br />

engineering<br />

• Production<br />

technology<br />

• Well engineering<br />

• Well testing<br />

• Offshore structures<br />

• Pipelines<br />

• Materials&Corrosion<br />

• Operations<br />

<strong>GTL</strong> R&D:<br />

• Surface sciences<br />

• Adv. analytical tools<br />

• FT catalyst<br />

development<br />

• Reactor engineering<br />

• CFD modelling<br />

• Syngas<br />

development<br />

• Hydro conversion<br />

• Bench scale testing<br />

• Pilot plant testing<br />

• IP protection<br />

• <strong>Process</strong> modelling<br />

.. excellence over huge span<br />

of skills<br />

Project<br />

Implementation:<br />

• <strong>Process</strong> technology<br />

• Utilities technology<br />

• Offsites technology<br />

• C, M, E, I<br />

engineering<br />

• <strong>Process</strong> control<br />

• Rotating equipment<br />

• QA/QC<br />

• HSE management<br />

• Materials&Corrosion<br />

• Project engineering<br />

• Logistics<br />

• Value engineering<br />

• Contracting&Procur.<br />

• Commissioning& SU<br />

• Operations<br />

LPG<br />

Naphtha<br />

Gasoil<br />

LDF<br />

Baseoils<br />

Commercial etc:<br />

• Economics<br />

• Financing<br />

• Legal<br />

• Taxation<br />

• Authority<br />

engineer.<br />

• Marketing<br />

• Trading<br />

• Shipping<br />

• Accounting<br />

• HR management<br />

• IT management<br />

• Traning&Devel.<br />

• Risk<br />

management<br />

• Project<br />

integration


43<br />

Contents<br />

� Introduction<br />

� F-T catalysis<br />

� Hydroprocessing<br />

� Bintulu learning<br />

� Evolution<br />

� <strong>The</strong> Pearl project (Qatar)<br />

� Conclusions


Why Gas to Liquids?<br />

44<br />

Energy security → Strategic diversification of energy<br />

supply<br />

→ Strategic diversification of gas market<br />

<strong>GTL</strong> Fuel has unique properties:<br />

-Virtually free of sulphur and<br />

aromatics<br />

-High cetane number<br />

→ Biomass and Coal to Liquids<br />

Environment → Trend towards cleaner fuels<br />

Economic development → Remote gas reserves<br />

commercialisation<br />

→ Most cost effective alternative fuel


45<br />

<strong>Shell</strong> <strong>GTL</strong> Development<br />

→ Integrated world scale Qatar project based on proven technology<br />

→ A platform for exciting new industry based on unique new products<br />

Laboratory<br />

1973<br />

Pilot plant<br />

1983<br />

Bintulu Malaysia<br />

14 700 b/d<br />

1993<br />

World-scale plant:<br />

<strong>Shell</strong> Qatar <strong>GTL</strong><br />

140 000 b/d<br />

2009<br />

Long lead times & entry hurdles characterise <strong>GTL</strong><br />

development


46<br />

<strong>The</strong> end<br />

� Thank you for your attention


47<br />

Back-up slides


600<br />

MMSCF/D<br />

48<br />

<strong>GTL</strong> as Alternative to LNG<br />

600 MMSCF/D<br />

LNG Plant<br />

~ 4 mtpa<br />

SMDS<br />

75,000 bbl/day<br />

Fixed Chain<br />

Shipping ~ 3500 nm<br />

3 x 130,000 m3<br />

Unconstrained Market<br />

Product carriersspot/term<br />

Regasification<br />

Distribution/<br />

Blending


49<br />

<strong>GTL</strong> Appeals to Gas Resource Holders<br />

LNG<br />

150 mln tpa<br />

8%<br />

15 tcf gas<br />

over project life<br />

0.6%<br />

<strong>GTL</strong> product slate<br />

2,000 mln tpa<br />

Virtually<br />

unrestricted<br />

Growth of <strong>GTL</strong> is not market constrained and complementary to pipelines and<br />

LNG


50<br />

CP or CFPP, °C<br />

0<br />

-5<br />

-10<br />

-15<br />

-20<br />

-25<br />

Cold flow properties of <strong>Shell</strong> <strong>GTL</strong> fuel (340°C endpoint)<br />

changing<br />

process conditions<br />

-30<br />

78 79 80 81 82 83 84 85 86 87<br />

Cetane number<br />

Cloud<br />

CFPP


PM g/km<br />

51<br />

0.08<br />

0.07<br />

0.06<br />

0.05<br />

0.04<br />

0.03<br />

0.02<br />

0.01<br />

POTENTIAL TO MEET REGULATIONS<br />

M.Benz<br />

VW VWBora Bora<br />

CitroenXantia<br />

Euro III limit<br />

Euro IV limit<br />

0<br />

0 20 40 60 80 100<br />

<strong>Shell</strong> <strong>GTL</strong> fuel content %<br />

CO g/km<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

M.Benz<br />

VWBora<br />

CitroenXantia<br />

Euro III limit<br />

Euro IV limit<br />

0 20 40 60 80 100<br />

<strong>Shell</strong> <strong>GTL</strong> fuel content %


52<br />

Oil & Gas demand<br />

Gas grows faster than oil<br />

mln boed<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Oil<br />

Gas<br />

Gas for Power<br />

Generation<br />

1990 2000 2010 2020<br />

Gas growth driven<br />

by:<br />

� CCGT* economics<br />

and power<br />

liberalisation<br />

� Customer<br />

preference for clean<br />

fuel<br />

� Kyoto and CO 2<br />

constraints<br />

*CCGT = Combined cycle gas<br />

turbine


53<br />

Gas Utilisation<br />

Distance<br />

Pipeline LNG<br />

GtL<br />

Electricity<br />

Chemicals<br />

2000 million scf/d<br />

1000<br />

500<br />

200<br />

100<br />

50<br />

20<br />

1000 2000 3000 4000<br />

10<br />

5000 km<br />

Quantity


Continuous operation of Bintulu complex without unplanned shutdown<br />

Days between complex shutdown<br />

54<br />

450<br />

400<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

15<br />

56<br />

79<br />

141<br />

85<br />

1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004<br />

71<br />

114<br />

157<br />

270<br />

430


55<br />

LNG & <strong>GTL</strong> in comparison<br />

Targetting different markets<br />

• LNG: Dedicated shipping and receiving terminals<br />

Long term contracts<br />

Power generation and gas markets<br />

• GtL: Viable for smaller gas reserves<br />

Potential to substitute for oil imports<br />

High quality, ultra clean fuel applications


56<br />

Life Cycle Analysis – GHG Emissions<br />

� Industry LCA studies show the GHG emissions of a<br />

<strong>GTL</strong> system to be comparable to a complex refinery<br />

system<br />

� Efforts are focused on <strong>GTL</strong> process<br />

efficiency through R&D programs,<br />

targeting up to 20% efficiency<br />

improvements<br />

� Advanced <strong>GTL</strong> engines are being<br />

developed, sponsored by<br />

governments, and targeting up to<br />

10% efficiency improvements<br />

� <strong>The</strong> <strong>GTL</strong> system also has:<br />

– significant lower impact on air<br />

acidification and smog formation<br />

– lower emissions of particulate matter<br />

– less hazardous waste production<br />

100%<br />

0<br />

REFINERY<br />

<strong>GTL</strong><br />

Use of products<br />

Transport to users<br />

Production of products<br />

Extraction of feedstock<br />

Greenhouse Gases<br />

(CO 2 equivalents)<br />

<strong>GTL</strong><br />

System -<br />

Potential<br />

(<strong>Process</strong><br />

Efficiency)<br />

<strong>GTL</strong><br />

System -<br />

Potential<br />

(Engine<br />

Efficiency)


57<br />

Emissionswerte [g/km]<br />

Emissions Performance – Volkswagen Test<br />

0,3<br />

0,2<br />

0,1<br />

0<br />

Grenzwerte EU IV Diesel < 10ppm S<br />

ΔNOx = - 6,4% ΔPart. = - 26%<br />

<strong>Shell</strong> <strong>GTL</strong><br />

ΔHC = - 63% ΔCO = - 91%<br />

EU IV<br />

NO x Partikel·10 HC CO<br />

Berlin Fleet test 2003 - VW Golf with <strong>Shell</strong> <strong>GTL</strong><br />

Fuel


58<br />

Key <strong>Process</strong>es: <strong>Shell</strong> Proprietary Technology<br />

….. Simplified proven in <strong>GTL</strong> Bintulu<br />

<strong>Process</strong> Overview<br />

Natural<br />

Gas Steam<br />

Methane<br />

Reformer<br />

(SMR)<br />

Natural<br />

Gas <strong>Shell</strong><br />

Gasification<br />

<strong>Process</strong><br />

(SGP)<br />

O 2<br />

Air Air<br />

Separation<br />

Unit (ASU)<br />

Hydrogen Manuf.<br />

Unit (HMU) H 2<br />

Heavy<br />

Paraffins<br />

Synthesi<br />

s (HPS)<br />

Light<br />

Detergent<br />

Feedstock unit<br />

(LDF)<br />

Utilities<br />

Heavy<br />

Paraffins<br />

Conversion<br />

(HPC)<br />

Off-sites & Common Facilities<br />

Synthetic<br />

Crude Distiller<br />

(SCD)<br />

Lube Base<br />

Oils Units<br />

(BO)<br />

LPG<br />

Naptha<br />

Gasoil<br />

Lube<br />

Base<br />

Oils<br />

Normal<br />

Paraffins

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!