06.12.2012 Views

Natural gas Dry gas / sales gas - NTNU

Natural gas Dry gas / sales gas - NTNU

Natural gas Dry gas / sales gas - NTNU

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

TPG4140 – NATURGASS<br />

<strong>NTNU</strong><br />

Gasstransport<br />

22. oktober 2003<br />

Morten Aamodt<br />

Fagleder system design<br />

STATOIL ASA<br />

morm@statoil.com<br />

1


Gasstransport<br />

� Innhold<br />

� Del 1:<br />

� Innledning<br />

� Gasstransport norsk sokkel<br />

� Maksimal utnyttelse av <strong>gas</strong>s infrastrukturen<br />

� Del 2:<br />

� System design av rørledninger<br />

� Utbygging av nye <strong>gas</strong>sfelt<br />

� Kristin<br />

� Ormen Lange<br />

� Snøhvit<br />

TPG4140 – NATURGASS<br />

<strong>NTNU</strong><br />

2


Remaining Undeveloped Discovered Remaining Undeveloped Discovered <strong>gas</strong>: <strong>gas</strong>: <strong>gas</strong>: 6954 8763 6954 8763 1713 TCF<br />

TCF<br />

TCF<br />

3


Norwegian Pipeline System<br />

� Technical services are provided by Statoil<br />

for the world's most extensive submarine<br />

<strong>gas</strong> pipeline system, which runs from<br />

Norway and its offshore fields to continental<br />

Europe.<br />

� 6000 km pipelines (30” – 42”)<br />

� Transport capacity approx. 270 MSm3/d<br />

� Statoil is a leader in the construction of<br />

large-diameter pipelines in deep water. The<br />

group has developed extensive expertise in<br />

pipeline technology and the operation of<br />

advanced pipeline systems.<br />

� On 1 st January 2002, Gassco became the<br />

operator for most of the <strong>gas</strong> pipeline<br />

systems from the Norwegian continental<br />

shelf.<br />

� On 1 st January 2003, GasLed became the<br />

owner for most of the <strong>gas</strong> pipeline systems<br />

(Statoil share 20.38%).<br />

4


Norwegian Pipeline System<br />

Gas pipeline<br />

system<br />

Size each<br />

leg, inch<br />

Length<br />

km<br />

Depth<br />

m<br />

Statpipe<br />

Oper.<br />

Year<br />

1985 28, 30, 36, 36 880 300<br />

Zeepipe 1993 30, 40 850 80<br />

Europipe 1995 40 670 70<br />

Troll <strong>gas</strong> 1996 36, 36 130 360<br />

Zeepipe II 1996 40, 40 610 370<br />

Haltenpipe 1996 16 250 360<br />

Franpipe 1998 42 840 70<br />

Europipe II 1999 42 660 300<br />

Åsgard Transp 2000 42 700 370<br />

Heidrun/Norne 2001 16 200 350<br />

5


<strong>Natural</strong> <strong>gas</strong><br />

<strong>Natural</strong><br />

<strong>gas</strong><br />

� <strong>Dry</strong> <strong>gas</strong> / <strong>sales</strong> <strong>gas</strong>: Consists mainly of methane, ethane and some LPG. The <strong>gas</strong> will not<br />

condense at normal conditions.<br />

� Rich <strong>gas</strong> / wet <strong>gas</strong>: Consists mainly of methane, ethane, LPG, but has some naphtha<br />

and condensate. The <strong>gas</strong> will condense at normal conditions.<br />

� LNG (Liquefied <strong>Natural</strong> <strong>gas</strong>): <strong>Dry</strong> <strong>gas</strong> cooled to form liquid phase (-163°C).<br />

� LPG: Liquefied Petroleum Gas<br />

� NGL: <strong>Natural</strong> Gas Liquids<br />

Methane CH 4<br />

Ethane C 2 H 6<br />

Propane C 3 H 8<br />

Iso-Butane i-C 4 H 10<br />

Normal Butane n-C 4 H 10<br />

Naphtha<br />

Condensate (C5+)<br />

LPG<br />

NGL<br />

6


Conventional transport to shore<br />

� Oil is transported to shore through pipeline or tanker (e.g. Mongstad)<br />

� Rich <strong>gas</strong> is transported in pipeline to <strong>gas</strong> processing plant for separation<br />

of liquid products and <strong>gas</strong> conditioning to form dry export <strong>gas</strong><br />

� <strong>Dry</strong> <strong>gas</strong> (<strong>sales</strong> <strong>gas</strong>) is exported in pipelines to continental Europe / UK<br />

Kårstø <strong>gas</strong> terminal<br />

• Receives rich <strong>gas</strong> from Statfjord and<br />

Åsgard fields<br />

• Receives Sleipner condensate<br />

• Exports dry <strong>gas</strong> through Statpipe<br />

and Europipe II<br />

• Exports liquid products:<br />

ethane, propane, butane, naphtha<br />

and condensate<br />

7


Europe’s largest <strong>gas</strong> treatment plants<br />

� Kollsnes and Kårstø can<br />

handle 15 per cent of all<br />

European <strong>gas</strong> requirements<br />

� They serve as hubs for <strong>gas</strong><br />

exports by pipeline and<br />

tanker<br />

� Kårstø receives 600 tanker<br />

calls annually<br />

The Kårstø <strong>gas</strong> processing complex.<br />

8


Progress in transport technology<br />

� Wet <strong>gas</strong> (multiphase flow) transport from field to<br />

shore (Troll, Kvitebjørn, Snøhvit, Ormen Lange....)<br />

� Long distance multiphase transport of <strong>gas</strong>,<br />

condensate, water and glycol in the same pipeline<br />

� Removing the process to shore (Snøhvit, OL)<br />

� Flow assurance (hydrate, liquid accumulation,….)<br />

� Control and operation challenges<br />

� Measurement challenges<br />

9


Wet <strong>gas</strong> transport<br />

Troll <strong>gas</strong><br />

� Troll contains 60 % of overall <strong>gas</strong><br />

reserves of Norway<br />

� Troll <strong>gas</strong> comprises Troll A wellhead<br />

platform, two 67 km long wet <strong>gas</strong><br />

pipelines to Kollsnes <strong>gas</strong> process plant<br />

� Liquid is separated from the <strong>gas</strong> at<br />

Kollsnes (DPC process)<br />

� Condensate is exported to Mongstad<br />

� <strong>Dry</strong> <strong>gas</strong> is exported to continental Europe /<br />

UK through the <strong>gas</strong> transport pipelines Zeepipe 2A & 2B<br />

� Kvitebjørn - Kollsnes wet <strong>gas</strong> pipeline will come into production Oct 04. The<br />

Kvitebjørn <strong>gas</strong> will be converted to natural <strong>gas</strong> liquids (NGL) at the extended<br />

Kollsnes plant.<br />

10


Kollsnes<br />

11


Kollsnes som blandebatteri<br />

Felt CO2<br />

Troll A 0.30<br />

Troll B&C 1.00<br />

Kvitebjørn 3.80<br />

Visund 1.25<br />

From DPC 0<br />

0.77 % CO2<br />

Pipeline<br />

Compressor “A”<br />

0 MSm³/sd<br />

Kollsnes - Sleipner<br />

21 MSm³/sd<br />

157.12 bara pipeline inlet pressure<br />

Train No. 1<br />

1.13 % CO2<br />

0.0 MSm³/sd<br />

Pipeline<br />

0.8 % CO2 0.77 % CO2 Compressor “B”<br />

0 MSm³/sd Comp<br />

A<br />

ZpIIA ZpIIB<br />

1 0<br />

Pipeline<br />

B<br />

C<br />

0<br />

1<br />

1<br />

0<br />

0 0.77 % CO2 Compressor “C”<br />

0 MSm³/sd D 0 1<br />

From DPC<br />

E 1 0<br />

Train No. 2<br />

0.0 MSm³/sd<br />

0.8 % CO2 1.13 % CO2<br />

Pipeline<br />

Compressor “D”<br />

21 MSm³/sd<br />

F 0<br />

1: Deliver<br />

0: Closed<br />

1<br />

From DPC<br />

Train No. 3<br />

1 1.13 % CO2<br />

Pipeline<br />

Compressor “E”<br />

21 MSm³/sd<br />

0 MSm³/sd<br />

2.45 % CO2<br />

Each compressor deliver to<br />

only one pipeline<br />

37.0 MSm³/sd 173.01 bara pipeline inlet pressure<br />

0.8 % CO2 Future Pipeline<br />

41 MSm³/sd<br />

1<br />

3.84 % CO2 Compressor “F”<br />

20 MSm³/sd<br />

Kollsnes - Draupner<br />

From new NGL<br />

extraction train<br />

Total 62 MSm³/sd<br />

25.0 MSm³/sd 78 bara<br />

3.84 % CO2 1: Running<br />

0: Down<br />

12


Sleipner – knutepunkt for norsk <strong>gas</strong>s<br />

13


Terminalen i Dunkerque<br />

14


GasLed area A, B, C and D<br />

St Fergus<br />

Dunkerque<br />

Sleipner<br />

Tune<br />

Huldra<br />

Oseberg<br />

Ekofisk<br />

Grane<br />

Kv.b.<br />

Heimdal<br />

Zeebrügge Norsea EMS<br />

Dornum<br />

Kårstø<br />

EXT: Extraction<br />

ERSL: Ethane refinement, incl. storage and loading<br />

CSL: Stabilisation condensate, incl. storage and loading<br />

FE: Fractionation ethane<br />

FSL: Fractionation propane/butanes/naphtha incl. storage and loading<br />

Troll<br />

Kollsnes Sture<br />

Snurrev.<br />

Draupner/<br />

Jotun/<br />

Balder<br />

Vestp.<br />

EXT<br />

Gullfaks<br />

Statfjord<br />

A<br />

Veslefrikk<br />

Brage<br />

ERSL<br />

CSL<br />

FE<br />

FSL<br />

C<br />

D<br />

Mikkel<br />

ÅSG<br />

Draugen<br />

Norne<br />

Heidrun<br />

B<br />

Outside system boundary<br />

Radial entry point<br />

Radial exit point, pay a to b tariff<br />

Rich/dry Rich/dry point, point, pay pay extraction extraction tariff<br />

tariff<br />

Process Process exit exit point, point, pay pay fractionation fractionation tariff<br />

tariff<br />

<strong>Dry</strong> <strong>Dry</strong> <strong>gas</strong> <strong>gas</strong> entry entry point, point, pay pay entry entry tariff<br />

tariff<br />

Gas exit point, pay exit tariff<br />

"Area"<br />

Tjellb.<br />

15


Transport capacity in <strong>gas</strong> pipelines<br />

Terms and conditions<br />

� Hydraulic Capacity (Hyd)<br />

The maximum volume of natural <strong>gas</strong> physically possible to transport through the pipeline<br />

under given conditions<br />

� Available Technical Capacity (ATC)<br />

The capacity may be limited by a system boundary condition, e.g. lack of export<br />

compression to fill the pipeline. The ATC is the actual capacity available for a given period<br />

� Committable Capacity (Com)<br />

The committable capacity takes into account both the fuel consumption and an operational<br />

flexibility factor. The relation between the ATC and the Com is given by:<br />

� Bookable capacity<br />

This capacity defines the maximum allowed booking level. The capacity equals the Com<br />

minus the retained capacity as defined in the Booking Manual<br />

� Booked Capacity<br />

The sum of the converted bookings as of 31.12.02 and later bookings as recorded on<br />

Gasvia<strong>gas</strong>led.com<br />

Q<br />

COM<br />

=<br />

( 1<br />

Q<br />

ATC<br />

Opflex<br />

+ Fuel ) * ( 1+<br />

)<br />

100 100<br />

16


GasLed System Capacity Report<br />

Area D<br />

Exit Point<br />

Zeepipe<br />

Franpipe<br />

Statpipe/ Norpipe<br />

Europipe<br />

Europipe 2<br />

Vesterled<br />

Period/ Contract<br />

Year<br />

Hydraulic<br />

Capacity<br />

Available<br />

Technical<br />

Capacity<br />

Committable<br />

Capacity<br />

[MSm³/d] [MSm³/d] [MSm³/d]<br />

2003 41.9 41.9 40.9<br />

Jan.-March 2004<br />

CY2003<br />

41.9 42.7 41.7<br />

2004 41.9 41.9 40.9<br />

2005-2028 41.9 41.9 40.9<br />

2003 53.8 50 50<br />

2004 53.8 50 50<br />

2005-2028 53.8 50 50<br />

2003 44.9 31.3 30<br />

2004 44.9 31.3 30<br />

2005-2028 44.9 31.3 30<br />

2003 55.2 45.8 44.5<br />

2004 55.2 45.8 44.5<br />

2005-2028 55.2 45.8 44.5<br />

2003 72.6 55.6 54<br />

2004 72.6 56.7 55<br />

2005-2028 72.6 63.2 62.3<br />

2003 39.2 29.2 28.4<br />

2004<br />

January - July<br />

39.2 38.7<br />

37.6<br />

2004<br />

August -<br />

December<br />

39.2 39.2 38.1<br />

2005-2028 39.2 38.7 37.6<br />

17


Reservoar<br />

betingelser<br />

Økt utnyttelse av <strong>gas</strong>srørledningene –<br />

en oversikt !<br />

Rørledningsdesign<br />

Nye design normer<br />

Trykksprang<br />

Optimalisering av system og drift<br />

Redusert operasjonell fleksibilitet<br />

Kapasitetstester<br />

Reduserte operasjonelle marginer<br />

Teknologi utvikling: Flytforbedrer<br />

Forsterkningsløsninger<br />

Markedsbetingelser<br />

Økt utnyttelsesgrad av stålet i rørveggene<br />

Bruke høyere andel av hydraulisk kapasitet<br />

Reell kapasitet/reduserer usikkerhet<br />

Marginer nødvendig for å oppnå høy<br />

regularitet<br />

Utvikling av flytforbedrer for rik<strong>gas</strong>s<br />

ledninger pågår<br />

Midtveis kompresjon og parallelle rør<br />

18


Kapasitetstest gir kunnskap om reell<br />

kapasitet<br />

Forutsetninger for en vellykket test:<br />

�Test avhengig av stabile forhold (volum trykk, temperatur)<br />

�Test bør gjøres med så høy rate som mulig<br />

�Nøyaktig instrumentering (kalibrering)<br />

Kapasitet MSm³/d<br />

p ut1<br />

∆p<br />

q 1<br />

p inn1<br />

p test<br />

q 2<br />

p inn2<br />

Etter kapasitetstest<br />

Design<br />

p<br />

Tunings parametere:<br />

�friksjonsfaktor (ruhet)<br />

�varmeovergang<br />

19


Increased pipeline capacity<br />

Zeepipe IIA<br />

Zeepipe IIB<br />

Europipe II<br />

Europipe<br />

Franpipe<br />

Zeepipe I<br />

Statpipe<br />

Statpipe RG<br />

ÅT<br />

0 10 20 30 40 50 60 70 80 90<br />

Design Today Upgraded potential<br />

20


Utnyttelse av stålet i rørledninger på land<br />

og i sjøen<br />

� Rørledninger skal tradisjonelt ha samme designtrykk langs hele lengden<br />

� Designsituasjonen for <strong>gas</strong>srør er en pakket ledning mot stengt nedstrømsventil<br />

� Lange landrørledninger har relativt lavt designtrykk og mange<br />

kompressorstasjoner<br />

� Kompresjon på land er relativt billig, begrenset trykkfall mellom stasjoner<br />

� God gjennomsnittlig utnyttelse av stålet i røret som trykkbeholder<br />

� Lange sjørørledninger har høyt designtrykk, men ikke kompresjon<br />

underveis<br />

� Utvendig overtrykk krever økt veggtykkelse som kan utnyttes for innvendig trykk<br />

� Kompresjon gjøres oppstrøms, stort trykkfall til nedstrøms ende<br />

� Ikke så god gjennomsnittlig utnyttelse av stålet i røret som trykkbeholder<br />

p d<br />

Landrør<br />

Trykkfallskurve<br />

Lavere utnyttet rørmateriale<br />

p d<br />

Sjørør<br />

Trykkfallskurve<br />

Lavere utnyttet rørmateriale<br />

Oppstrøms ende Nedstrøms ende Oppstrøms ende Nedstrøms ende<br />

21


Dimensjoneringskriterier<br />

� Forenklet kan man si at veggtykkelsen til en undervanns rørledning dimensjoneres<br />

for:<br />

� maksimum innvendig driftstrykk (driftsfasen)<br />

� ytre vanntrykk (installasjonsfasen, tomt rør)<br />

� I seksjoner der det ytre vanntrykket er dimensjonerende, vil veggtykkelsen i røret<br />

være større enn det som er nødvendig for røret som en trykkbærende beholder,<br />

noe som bør utnyttes til å øke innvendig trykk i røret dersom dette er praktisk<br />

mulig.<br />

Nødvendig veggtykkelse<br />

(mm)<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0 200 400 600 800<br />

Vanndybde (m)<br />

Potensial for økt indre trykk<br />

Veggtykkelse for<br />

gitt innvendig<br />

designtrykk<br />

Kollaps<br />

p.g.a.utvendig<br />

overtrykk<br />

22


Høyere utnyttelse av røret som<br />

trykkbeholder<br />

� Kan stålet i rørveggen utnyttes bedre?<br />

� Avanserte verktøy for tilstandsovervåkning under<br />

drift<br />

� God skadestatistikk, overtrykk er ikke skadeårsak<br />

� Bedre stål egenskaper og toleransekontroll ved<br />

fremstilling av rørene<br />

� Bedre sveise og testprosedyrer<br />

� Er det nødvendig at en lang <strong>gas</strong>srørledning skal tåle<br />

samme trykk nedstrøms som oppstrøms?<br />

� Under vanlig drift er trykkfallet betydelig over<br />

lengden av rørledningene<br />

� Nedstrøms enden ser sjelden eller aldri maksimalt<br />

driftstrykk<br />

� Men designstandarder og industripraksis forutsetter<br />

overtrykksbeskyttelse på det stedet der<br />

designtrykket endres<br />

Utvendig diameter De<br />

Innvendig diameter Di<br />

Di < De<br />

23


Trykksprangkonsept - prinsipp<br />

� To eller flere nivåer for designtrykk langs rørledningen<br />

� Ingen lokal overtrykksbeskyttelse der designtrykket reduseres<br />

� Trykk-kontroll og overtrykksbeskyttelse baseres på overføring av driftsdata fra nedstrøms<br />

enden til oppstrøms enden ved hjelp av høypålitelig kommunikasjon<br />

� Sentrale forutsetninger<br />

pd<br />

� Trykkfallskurven skal under normal drift alltid ligge under designtrykk-kurven<br />

� Utjevningstrykket skal under normal drift ikke kunne overstige laveste designtrykk<br />

� Utjevningstrykket skal under unormale driftssituasjoner ikke kunne overstige laveste<br />

maksimum tillatt tilfeldig trykk "maximum incidental pressure” (MIP)<br />

Konstant designtrykk<br />

pd1<br />

To designtrykknivåer<br />

Utjevningstrykk<br />

Trykkfallskurve Trykkfallskurve<br />

Lavere utnyttet rørmateriale Lavere utnyttet rørmateriale<br />

Oppstrøms ende Nedstrøms ende Oppstrøms ende Nedstrøms ende<br />

pd2<br />

24


Trykksprangkonseptet - anvendelser<br />

� Zeepipe IIA (implementert)<br />

� Oppstrøms design trykk økt fra 172 til 191 barg<br />

p.g.a. høyt utvendig trykk på dypt vann<br />

� Kapasiteten økt med 40%<br />

� Europipe II (implementert)<br />

� Landfall forberedt med design trykk 163.4 barg (tunnel<br />

Europipe I)<br />

� Oppstrøms design trykk designet for 191 barg<br />

� Kapasitet økt med 22%<br />

� Forlengelse av Åsgard Transport til Norne/Heidrun<br />

(ikke implementert)<br />

� Åsgard Transport har design trykk 212 barg<br />

� Norne-Heidrun rørledningen har design trykk 280 barg<br />

� Kapasiteten i Åsgard Transport kan opprettholdes<br />

� Oppgradering av Zeepipe IIA/B (godkjent av<br />

myndigheter)<br />

� Basert på DNV OS-F101<br />

� Oppstrøms design trykk økes til<br />

� Zeepipe IIA; 200.3 barg<br />

� Zeepipe IIB: 205.2 barg<br />

� Tre design trykk nivåer for begge rørledningene<br />

� 24% økt totalkapasitet ut fra Kollsnes<br />

191 barg<br />

163 barg<br />

280 barg<br />

212 barg<br />

191 barg<br />

172 barg<br />

Norne<br />

Zeepipe IIA<br />

Kollsnes KP 135 Sleipner<br />

Europipe 2<br />

Kårstø KP 350 Dornum<br />

Åsgard transport<br />

Åsgard Kallstø<br />

25


Zeepipe IIA<br />

Oppgradering basert på DNV OS-F101<br />

Intervensjonsarbeid<br />

ASME B31.3/8<br />

Avvik fra DNV OS-F101<br />

Eksisterende trykksprang<br />

KP 134.8<br />

Design kode<br />

DNV OS-F101 TBK<br />

Test trykk<br />

Design trykk<br />

238.2 barg<br />

200.3 barg<br />

219.1 barg<br />

179.6 barg 172 barg<br />

26


Technology drivers<br />

<strong>Natural</strong> <strong>gas</strong><br />

Snøhvit +<br />

Western<br />

Africa<br />

NCS <strong>gas</strong><br />

Snøhvit<br />

LNG<br />

Expand NCS business:<br />

Expand NCS business:<br />

• Increase capacity of current pipelines<br />

• Increase capacity of current pipelines<br />

• Tie-in of new infrastructure<br />

• Tie-in of new infrastructure<br />

• Extraction of NGL (Kårstø)<br />

• Extraction of NGL (Kårstø)<br />

• CO2 and N2 emissions from processing<br />

• CO2 and N2 emissions from processing<br />

• LNG production (Snøhvit)<br />

• LNG production (Snøhvit)<br />

• Mega-scale methanol production<br />

• Mega-scale methanol production<br />

• Power or combined heat and power production from<br />

• Power or combined heat and power production from<br />

<strong>gas</strong> (Kårstø, Kollsnes, Skogn, others)<br />

<strong>gas</strong> (Kårstø, Kollsnes, Skogn, others)<br />

The<br />

Caspian<br />

New<br />

New<br />

business<br />

business<br />

opportunities:<br />

opportunities:<br />

•<br />

•<br />

Mega-scale<br />

Mega-scale<br />

GTL<br />

GTL<br />

plants<br />

plants<br />

(Iran)<br />

(Iran)<br />

•<br />

•<br />

Floating<br />

Floating<br />

LNG<br />

LNG<br />

production<br />

production<br />

(Nnwa)<br />

(Nnwa)<br />

•<br />

•<br />

Deep<br />

Deep<br />

water<br />

water<br />

pipelines?<br />

pipelines?<br />

•<br />

•<br />

Onshore<br />

Onshore<br />

pipelines?<br />

pipelines?<br />

27


Gasstransport<br />

Del 2<br />

� System design av rørledninger<br />

� Utbygging av nye <strong>gas</strong>sfelt<br />

� Kristin<br />

� Snøhvit<br />

� Ormen Lange<br />

28


Pipeline System Design<br />

Work process<br />

Thermohydraulic<br />

analysis<br />

Internal diameter,<br />

capacity, pressure<br />

and temperature<br />

profile, etc.<br />

Functional<br />

requirements;<br />

<strong>gas</strong> routing,<br />

regularity,<br />

<strong>gas</strong> quality,<br />

agreements<br />

Functional<br />

requirements,<br />

Regularity,<br />

Deliverability<br />

Overall<br />

Operational<br />

Philosophy;<br />

Control and Safety<br />

System,<br />

Environment, etc.<br />

Control and Safety<br />

Philosophy<br />

Boundary conditions and technical interface between platform – pipeline – terminal<br />

QA<br />

System design<br />

concept<br />

Pipeline System<br />

Diagram, Process<br />

Flow Diagram<br />

P&ID’s<br />

29


Pipeline System Design<br />

System definition<br />

� The extent of the pipeline system, its functional requirements and applicable<br />

legislation should be defined and documented.<br />

� The extent of the system should be defined by describing the system,<br />

including the facilities with their general locations and demarcations and<br />

interfaces with other facilities.<br />

� The functional requirements should define the required design life and design<br />

conditions. Foreseeable normal, extreme and shut-in operating conditions with<br />

their possible ranges in flowrates, pressures, temperatures, fluid compositions<br />

and fluid qualities should be identified and considered when defining the<br />

design conditions.<br />

� Terms and definitions<br />

Petroleum and natural <strong>gas</strong> industries<br />

Pipeline transportation systems, ISO 13623<br />

OS F-101: Submarine Pipeline Systems<br />

30


Pipeline System Design<br />

Terms and definitions<br />

� Pipeline system<br />

� A pipeline with compressors or pump stations<br />

� Pressure reduction stations<br />

� Metering<br />

� Tankage<br />

� Supervisory control and data acquisition system (SCADA)<br />

� Safety systems<br />

� Corrosion protection systems<br />

� And other equipment, facility or building used in the transportation of fluids<br />

� Pipeline<br />

� Those facilities through which fluids are conveyed, including pipe, pig traps,<br />

components and appurtenances, up to and including the isolation valve.<br />

Petroleum and natural <strong>gas</strong> industries<br />

Pipeline transportation systems, ISO 13623<br />

31


Pipeline System Design<br />

Design premises<br />

� Pipeline Route<br />

� Length<br />

� Bathymetric profile<br />

� Environmental Conditions<br />

� Air temperature<br />

� Sea bottom temperature<br />

� Ground temperature<br />

� Geo-technical data (soil conditions)<br />

� Pipeline Data<br />

� Design pressure<br />

� Design temperature<br />

� Internal diameter<br />

� Wall thickness<br />

� Internal coating<br />

� Concrete coating<br />

� Insulation<br />

� Trenching/dredging<br />

� Gravel/rock dumping<br />

� Gas composition<br />

� Gas properties<br />

� Equation of state<br />

� Friction equation<br />

� Internal roughness<br />

� Transport specification<br />

� Sales <strong>gas</strong> specifications<br />

� Pressure Control System<br />

� Pressure regulating<br />

� Pressure safety<br />

� Pig trap arrangement<br />

� Pigging philosophy<br />

� Pipeline valve philosophy<br />

� Future requirements<br />

32


Pipeline System Design<br />

Gas value chain<br />

� The objective of the system design is to develop overall transport solutions for<br />

the <strong>gas</strong> chain from the field to the market which will maximize the value of the<br />

liquid- and <strong>gas</strong> products and without any unreasonable external conditions for<br />

any third party (fields or transport systems).<br />

� The main objective in design and operation of <strong>gas</strong> pipeline systems is to<br />

deliver <strong>gas</strong> quantities nominated by the buyers within the desired quality<br />

specifications. Within reasonable technical and economical limits and relevant<br />

agreements, necessary means to ensure high availability and regularity will be<br />

used.<br />

33


Pipeline System Design<br />

Hydraulic analysis<br />

� The hydraulic design of a pipeline system is part of the conceptual<br />

development of a <strong>gas</strong> pipeline project.<br />

� The hydraulics of the pipeline system should be analysed to demonstrate that<br />

the system can safely transport the fluids for the design conditions specified<br />

by the system definition, and to identify and determine the constraints and<br />

requirements for its operation. This analysis should cover steady-state and<br />

transient operating conditions.<br />

� The hydraulic design is an optimisation process of several system parameters:<br />

� Boundary conditions both at upstream and downstream end<br />

� pressure and temperature<br />

� Physical transport properties; <strong>gas</strong> composition<br />

� Design <strong>gas</strong> flowrate<br />

� Internal wall roughness<br />

� Environmental conditions; ambient temperature, overall heat transfer coefficient<br />

34


Pipeline System Design<br />

Hydraulic analysis<br />

� Predict the pipeline capacity and minimize the uncertainty<br />

� Describe the function loads for the pipeline design<br />

� Pressure profile<br />

� Temperature profile<br />

� Density profile (fluid)<br />

� Velocity profile<br />

� Design cases:<br />

� Normal operation, start-up, planned shut-down, etc.<br />

� Not planned operation, emergency shut-down, depressurisation, etc.<br />

� Emergency preparedness analysis; accidents, pipe rupture, leakage etc.<br />

35


Pressure, barg<br />

240<br />

220<br />

200<br />

180<br />

160<br />

140<br />

120<br />

100<br />

Ormen Lange Transport<br />

Pipeline capacity<br />

Ormen Lange - Gass ekport fra Nyhamn via Sleipner til Easington (UK)<br />

Nyhamn exp. press. - Sleipner@151barg Sleipner exp. pressure 42" Sleipner exp. pressure 44"<br />

Sleipner exp. pressure 46" Sleipner exp. pressure 48" Sleipner press. - Nyhamn@248 barg<br />

Sleipner press. - Nyhamn@213 barg Sleipner @149 barg<br />

Easington 73 barg<br />

10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0 110.0<br />

Hydraulic capacity, MSm3/d<br />

42"<br />

Sleipner pressure<br />

varying<br />

42" 42"<br />

42" 44"<br />

46"<br />

48"<br />

36


System design<br />

Flow control<br />

� A single pipeline network system is normally operated on flow control. At the<br />

upstream end(s) the producing fields or other facilities are often aiming to<br />

introduce the <strong>gas</strong> at a steady state. At the downstream end the <strong>gas</strong> off-take<br />

may also be at flow control. The pressure in the system is therefore dependent<br />

on the inventory (packing condition) in the pipeline. If the input to the system<br />

is less than the output, the system would be de-packed, and the system<br />

pressure would decrease. By doing this, the system could be operated both in<br />

packed and de-packed condition, depending on the status of the system.<br />

37


System design<br />

Pressure control<br />

� Because a pipeline system is normally operated on flow control, the pressure<br />

control system is installed to protect the system against overpressurisation<br />

(design and maximum incidental pressure). The pressure control system may<br />

also be used in combination with the flow control system to ensure that the<br />

pressure is kept above a specified minimum pressure either by contractual or<br />

technical matters.<br />

38


System design<br />

Temperature control<br />

� The temperature control system is required to protect the pipeline system<br />

against temperatures above or below the specified design temperatures. The<br />

maximum design temperature may be reached at the compressor outlet due to<br />

the pressure increase. The minimum design temperature may be reached due<br />

to expansion of the <strong>gas</strong> through the pipeline, valves, etc.<br />

Pressure, barg<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Sleipner - Easington pipeline, future Sleipner compression<br />

68M barg 58M barg 48M barg 38M barg 68M Deg C<br />

58M Deg C 48M Deg C 38M Deg C<br />

0 100 200 300 400 500<br />

km from Sleipner<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Temperature, °C<br />

39


System design<br />

Metering<br />

� The <strong>gas</strong> will be fiscally metered both at the <strong>gas</strong> inlet and outlet locations. The<br />

main purpose of the metering system is for tariffs and allocations purposes.<br />

The system will also be a part of the leak detection system<br />

40


System design<br />

Compression and cooling<br />

� At the compressor outlet, the temperature may be too high to allow the <strong>gas</strong><br />

into the pipeline. The <strong>gas</strong> is therefore cooled to a temperature below the<br />

maximum design temperature. The need for a cooling unit downstream the<br />

compressor is normally determined by the compressor pressure ratio.<br />

41


System design<br />

Heating<br />

� During operation of the pipeline system<br />

the minimum design temperature may be<br />

violated due to high utilisation of the<br />

system or high pressure gradients in parts<br />

of the system (Joule-Thomson effect).<br />

During normal operation heating of the<br />

<strong>gas</strong> may be required to avoid the<br />

temperature to drop below the minimum<br />

design temperature or other limitations<br />

(<strong>sales</strong> agreements). In upset situations the<br />

pressure build-up in parts of the system<br />

may cause the temperature to drop below<br />

the minimum design temperature. Heating<br />

of the <strong>gas</strong> may therefore be required in<br />

order to avoid the minimum temperature<br />

to be violated.<br />

42


System design<br />

Gas Quality<br />

� To avoid deposits in a pipeline and to minimise the possibility of any kind of<br />

corrosion, including internal stress corrosion, it is essential that the <strong>gas</strong><br />

should conform to the following:<br />

� The water dew-point, at the working pressure, should at all times be below the<br />

temperatures of the pipeline.<br />

� The hydrocarbon dew-point, at the working pressure, should at all times be<br />

below the temperature of the pipeline – this will also ensure that the calorific<br />

value of the <strong>gas</strong> is not reduced by condensation of hydrocarbons.<br />

� It should be dust-free.<br />

43


Development solutions move forward<br />

1970s and 1980s<br />

2000<br />

2006 . . .<br />

44


Kristin<br />

45


S<br />

R<br />

P<br />

FORE<br />

Template and<br />

well slot ID’s:<br />

S3 S4<br />

STB PORT<br />

S2 S1<br />

R-103/R-201<br />

FORE<br />

AFT<br />

FORE<br />

N-102/N-201<br />

N<br />

S-103/S-201<br />

S-101<br />

S-102<br />

R-101<br />

R-102<br />

P-102/P-201<br />

P-101<br />

Kristin - Subsea & export field layout<br />

N-101<br />

Kristin<br />

Semi<br />

Grid North<br />

P-212 N<br />

P-212 S<br />

18” check<br />

valve with<br />

1” by pass<br />

10" ID prod (13% Cr.) w/ DEH<br />

12" oil export (CS)<br />

18" <strong>gas</strong> export (CS)<br />

Umbilical w/ 2" ID centre line<br />

3.5“ ID service line (CS)<br />

Fibre optical cable (FOC)<br />

Direct el. heating (DEH) risers<br />

Future tie-in hub<br />

SSIV<br />

ROV operated ball valve<br />

Check valve<br />

Diverless hot tap tee<br />

Temporary pig launcher<br />

P-211 P-211 Oil Oil export export<br />

Fibre Fibre optical optical cable cable<br />

Pig Pig direction direction<br />

P-212 Gas export loop<br />

Completed well<br />

Completion ongoing<br />

Drilled and capped well<br />

Drilling commenced<br />

Planned well<br />

Spare well slot<br />

Åsgard C<br />

To Åsgard<br />

FOC-1/B-401<br />

16” check<br />

valve with<br />

1” by pass<br />

(ROV op)<br />

16”<br />

Åsgard Åsgard Transport Transport P-121 P-121<br />

Kristin<br />

Tee<br />

Size Length Installed<br />

Tag [mm ID] [Km] Date<br />

Flowlines:<br />

N-101 254.0 6.0<br />

P-101 254.0 6.8<br />

S-101 254.0 6.0<br />

S-102 254.0 6.1<br />

R-101 254.0 6.7<br />

R-102 254.0 6.7<br />

Total flowline 38.3<br />

* excl. riser lengths (640-670 m)<br />

Service lines:<br />

N-102 90.6 2.6<br />

P-102 90.6* 6.4<br />

S-103 90.6* 5.7<br />

R-103 90.6 2.0<br />

Total service line 16.7<br />

*89.2 in zone 2<br />

Umbilicals:<br />

N-201 2.6<br />

P-201 6.4<br />

S-201 5.7<br />

R-201 2.0<br />

Total umbilical 16.7<br />

Export pipelines:<br />

P-211 294.8 22.7<br />

P-212 411.2 30.0<br />

Fibre optical cable:<br />

FOC 26.4<br />

Structures:<br />

Template N 23.07.03<br />

Template P 27.07.03<br />

Template S 09.05.03<br />

Template R 26.07.03<br />

Manifold N<br />

Manifold P<br />

Manifold S<br />

Manifold R<br />

FRB N-101<br />

FRB P-101<br />

FRB S-101<br />

FRB S-102<br />

FRB R-101<br />

FRB R-102<br />

ERB P-212N<br />

ERB P-212S<br />

Template Heading Depth As installed centre positions<br />

Grid UTM Zone 32 Central Median 9 o E<br />

N 199.6 o<br />

368 m E 381 290.05m N 7 214 135.25m<br />

P 200.6 o<br />

372 m E 379 280.50m N 7 212 712.38m<br />

S 181.1 o<br />

364 m E 378 957.28m N 7 208 585.34m<br />

R 180.3 o<br />

Grid UTM Zone 32 Central Median 9<br />

356 m E 379 050.74m N 7 206 650.42m<br />

o E<br />

N 199.6 o<br />

368 m E 381 290.05m N 7 214 135.25m<br />

P 200.6 o<br />

372 m E 379 280.50m N 7 212 712.38m<br />

S 181.1 o<br />

364 m E 378 957.28m N 7 208 585.34m<br />

R 180.3 o<br />

356 m E 379 050.74m N 7 206 650.42m<br />

Statoil Kristin Subsea & Export: Schematic field layout<br />

46<br />

Drw. No: C074-ZAA-U-XE-0001-04 Date: 180803


Kristin<br />

Subsea pressure protection<br />

Subsea PSD System<br />

PRODUCTION<br />

MASTER VALVE<br />

(PMV)<br />

SCSSV<br />

PRODUCTION<br />

WING VALVE<br />

(PWV)<br />

(located topside)<br />

1<br />

CHOKE<br />

PTx2<br />

TO PRODUCTIONMANIFOLD<br />

2<br />

HIPPS control logic<br />

PT (2x)<br />

(local)<br />

PT (2x)<br />

From Manifold Flowline to SSIV<br />

HIPPS<br />

VALVE(S)<br />

SSIV<br />

Riser PSV<br />

3<br />

47


Ormen Lange Concept Screening<br />

� Gas supply<br />

� Production profile<br />

� Build-up and plateau<br />

� Market scenarios<br />

� Volume<br />

� Market opportunities<br />

� Company based <strong>sales</strong><br />

� Existing infrastructure<br />

� Platforms<br />

� Tie-ins and functional requirements<br />

� Pipelines<br />

� Capacity and ullage<br />

� New infrastructure<br />

48


Ormen Lange Transport<br />

Nyhamna - Easington<br />

U.K.<br />

Easington<br />

KP 537<br />

KP 300<br />

KP KP 350 350<br />

KP KP 400 400<br />

KP KP 450 450<br />

KP KP 500 500<br />

KP KP 550 550<br />

Sleipner<br />

KP 0<br />

KP KP 625 625<br />

KP 50<br />

KP 100<br />

KP 150<br />

KP 200<br />

KP 250<br />

KP 300<br />

KP 350<br />

Sleipner - Easington 42", 537 km<br />

KP 400<br />

KP 450<br />

Nyhamna - Sleipner 42", 625 km<br />

! ! ! !<br />

! ! ! !<br />

!<br />

*<br />

*<br />

! ! ! !<br />

! !<br />

!<br />

!<br />

!<br />

! !<br />

! !<br />

! !<br />

!!<br />

*<br />

*<br />

*<br />

!<br />

**<br />

!<br />

!<br />

! !<br />

!<br />

!<br />

! !<br />

*<br />

!<br />

! !<br />

!<br />

!<br />

! ! ! !! ! ! ! ! !<br />

! !<br />

!<br />

! !<br />

* *<br />

* *<br />

!<br />

!<br />

!<br />

!<br />

! !<br />

!!<br />

!<br />

! !<br />

! !! !<br />

Ormen Lange - Nyhamna 2 x 30", 90 km<br />

ORMEN LANGE<br />

KP 300<br />

! !<br />

KP KP 100 100<br />

KP 150<br />

KP 200<br />

KP 250<br />

Nyhamna<br />

KP 0<br />

KP 150<br />

KP 200<br />

KP 250<br />

! !<br />

!<br />

!<br />

KP KP 50 50<br />

! !<br />

! !<br />

!<br />

!<br />

*<br />

!<br />

! !<br />

*<br />

*<br />

NORWAY<br />

NORWAY<br />

! !<br />

! !<br />

! !<br />

*<br />

*<br />

!<br />

! !<br />

*<br />

! !<br />

!! !<br />

*<br />

*<br />

!<br />

!<br />

*<br />

!<br />

*<br />

*<br />

! !<br />

*<br />

!<br />

! !<br />

!<br />

!!<br />

DENMARK<br />

*<br />

! !<br />

*<br />

*<br />

! *<br />

* *<br />

*<br />

*<br />

*<br />

!<br />

*<br />

*<br />

*<br />

!<br />

*<br />

*<br />

� Largest pipeline project on the Norwegian<br />

Continental Shelf<br />

� The new pipeline will be 1166 km long<br />

� Large volumes and fast build up profiles<br />

give an efficient and flexible transportation<br />

solution<br />

� Northern leg<br />

� 42” pipeline with design pressure 215/250<br />

barg<br />

� Capacity of 70 – 80 MSm3/d of <strong>gas</strong><br />

� Tie-in to Sleipner Riser plt.<br />

� Southern leg<br />

� 44” pipeline with design pressure 156.8<br />

barg<br />

� Capacity of 70 - 74 MSm3/d of <strong>gas</strong><br />

49


Ormen Lange Transport<br />

Nyhamna<br />

� Nyhamna will include a process and<br />

export facility with the capacity to send<br />

a maximum 80 MSm3 <strong>gas</strong> to market<br />

daily. The plant will also have storage<br />

units built into the mountainside and a<br />

shipping facility for condensate.<br />

� The untreated wellstream will be<br />

separated and the <strong>gas</strong> will go through a<br />

drying unit before being compressed for<br />

export.<br />

50


Ormen Lange Transport<br />

Sleipner<br />

� The Ormen Lange Transport will be an<br />

integrated part of the Norwegian <strong>gas</strong><br />

infrastructure system<br />

� The connection to Sleipner Riser plt.<br />

gives flexibility to route <strong>gas</strong> both to the<br />

Continent and to the UK<br />

� Other <strong>gas</strong> sources than Ormen Lange<br />

can also supply <strong>gas</strong> to the UK<br />

51


Ormen Lange Transport<br />

Easington<br />

� Receiving terminal with pressure and<br />

temperature control (4 process trains)<br />

� Fiscal metering station<br />

� Provide a terminal which operates with<br />

high regularity (99,8%)<br />

bcm<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015<br />

Approved Gas Probable Contracted Imports YTF & Technicals LNG Supply Demand (Wood Mackenzie)<br />

52


Sleipner as <strong>gas</strong> centre<br />

SLA<br />

SLT<br />

Kollsnes – Sleipner 70 MSm3/d<br />

Nyhamna – Sleipner 70 MSm3/d<br />

Sleipner <strong>gas</strong> 20 MSm3/d<br />

Total 160 MSm3/d<br />

SLR<br />

53


Sleipner Riser Platform<br />

Blending services<br />

WI (MJ/Sm³)<br />

52.0000<br />

51.8000<br />

51.6000<br />

51.4000<br />

51.2000<br />

51.0000<br />

50.8000<br />

Wobbe Index<br />

50.6000<br />

50 60 70 80 90 100<br />

Ormen Lange Gas (%)<br />

OL1-Troll<br />

OL2-Troll<br />

OL1-SL<br />

OL2-SL<br />

max<br />

� One of the main advantages of tying in<br />

Ormen Lange to the Norwegian <strong>gas</strong><br />

network is to allow for quality<br />

adjustment. The Ormen Lange Wobbe<br />

Index is rather high, and it may be a<br />

challenge to meet UK specifications<br />

without blending with other <strong>gas</strong>.<br />

� On the other hand, the Ormen Lange <strong>gas</strong><br />

has a low CO2-content, giving the<br />

possibility to dilute other Norwegian <strong>gas</strong><br />

to reduce the growing CO2-challenge in<br />

the <strong>gas</strong> delivery network:<br />

� Sleipner <strong>gas</strong><br />

� High CO2<br />

� Troll <strong>gas</strong><br />

� Low CO2<br />

� Ormen Lange<br />

� High Wobbe Index<br />

� Low CO2<br />

54


Process Flow Diagram<br />

Sleipner and Ormen Lange Transport<br />

27-KA01A<br />

27-KA01B<br />

26-KA01<br />

Sleipner T<br />

Nyhamna<br />

XV HV<br />

M<br />

M<br />

Injection<br />

XV EV<br />

42"<br />

16"<br />

EV<br />

EV560<br />

20"<br />

EV<br />

6 metering<br />

tubes<br />

SLA Bridge SLR<br />

PV169<br />

16"<br />

EV171<br />

16"<br />

HIPPS<br />

EV172<br />

EV990<br />

20"<br />

20"<br />

EV994<br />

16" 16"<br />

XV HV HV<br />

FV XV<br />

30" 30"<br />

M<br />

M<br />

FV170<br />

FV197<br />

M<br />

XV201<br />

20"<br />

XV200<br />

XV202<br />

FV138 FV137<br />

FV<br />

XV<br />

M<br />

M<br />

XV196 XV195 XV194<br />

12" 24" 24" 24"<br />

M<br />

16"<br />

EV<br />

EV<br />

20"<br />

20"<br />

XV088<br />

XV087 12" HV098 24"<br />

XV113<br />

XV114<br />

24"<br />

XV151 EV156<br />

XV141 12" HV186 30"<br />

44"<br />

HV136<br />

EV094<br />

EV124<br />

M<br />

XV<br />

M<br />

20" 20"<br />

40"<br />

40"<br />

EV085<br />

XV<br />

FV<br />

EV<br />

30"<br />

FV139<br />

20"<br />

EV150<br />

EV180<br />

EV181<br />

EV115<br />

EV182<br />

HV<br />

XV<br />

Easington<br />

Zeepipe I<br />

Zeebrugge<br />

To / from<br />

Draupner<br />

Zeepipe II A<br />

Kollsnes<br />

XV<br />

55


Pressure, barg<br />

Ormen Lange Transport<br />

Seksjoner med forskjellig design trykk<br />

250<br />

206<br />

200<br />

150<br />

100<br />

50<br />

System design OLT bypass operation<br />

DP @ +30MSL MIP @ +30 MSL 65MSm3/d, 206-77 barg 60MSm3/d, 206-105 barg<br />

60MSm3/d, 191-73 barg PRS Nyhamna PRS Easington<br />

0<br />

100<br />

200<br />

Operation and<br />

settle out pressure<br />

must be 2 bar below<br />

design pressure<br />

300<br />

400<br />

500<br />

600<br />

700<br />

km from Nyhamna<br />

800<br />

900<br />

1000<br />

1100<br />

105<br />

56


Pressure, barg<br />

Ormen Lange Transport<br />

Seksjoner med forskjellig design trykk<br />

250<br />

225<br />

206<br />

200<br />

150<br />

100<br />

System design OLT bypass operation - PSS-2<br />

DP @ +30MSL MIP @ +30 MSL PSS-2 225-125 barg SOP PSS-2<br />

PRS Nyhamna PRS Easington PSS-2 Nyhamna PSS-2 Easington<br />

0<br />

100<br />

200<br />

300<br />

400<br />

500<br />

600<br />

700<br />

km from Nyhamna<br />

800<br />

900<br />

1000<br />

1100<br />

125<br />

105<br />

57


Wet <strong>gas</strong> transport<br />

Snøhvit <strong>gas</strong> field<br />

� Snøhvit is planned to come into production 2006<br />

� Subsea production system transports the multiphase wellstream through a<br />

143 km long pipeline directly to shore at Melkøya<br />

� At Melkøya the wellstream<br />

is separated and the <strong>gas</strong><br />

is cooled to -163 ° C to<br />

produce LNG<br />

� LNG shipments by special<br />

carrier to markets in Europe<br />

and the USA<br />

� Liquid production:<br />

• LNG<br />

• LPG<br />

• Condensate<br />

http://www.statoil.com/snohvit<br />

58


Snøhvit LNG – Melkøya ved Hammerfest<br />

59


Water depth relative LAT [m]<br />

Snøhvit multiphase pipeline -<br />

Pipeline profile Plem-Melkøya (x/y=km/m) operating window<br />

40<br />

-60<br />

-160<br />

-260<br />

-360<br />

Pipeline elevation profile<br />

-460<br />

0 15 30 45 60 75 90 105 120 135 150<br />

horizontal distance from PLEM [km]<br />

Liquid content [m3]<br />

Thousands<br />

25<br />

20<br />

15<br />

10<br />

5<br />

Liquid content in export line<br />

0<br />

0 5 10 15 20 25<br />

Flow rate [MSm3/d]<br />

35 bar<br />

70 bar<br />

60


Snøhvit multiphase pipeline<br />

Diameter selection – 655 mm ID<br />

Inlet pressure (bar)<br />

160<br />

150<br />

140<br />

130<br />

120<br />

110<br />

Snøhvit PLEM pressure - No compression<br />

5 10 15 20 25<br />

Flow rate (MSM3/d)<br />

0.61<br />

0.63<br />

0.65<br />

0.67<br />

0.68<br />

0.69<br />

0.7<br />

61


Snøhvit multiphase pipeline<br />

Pipeline system diagram<br />

Acrobat Document<br />

62


Statfjord senfase<br />

63


<strong>Natural</strong> Gas<br />

64

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!