19.09.2015 Views

Kongsberg Seatex

Kongsberg Seatex

Kongsberg Seatex

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Arctic satellite navigation – lessons learned and new opportunities<br />

by Arne Rinnan, <strong>Kongsberg</strong> <strong>Seatex</strong> AS<br />

WORLD CLASS – through people, technology and dedication


Outline<br />

• Introduction<br />

• Weather conditions<br />

• Satellite coverage<br />

• Aurora impact<br />

• GNSS corrections<br />

• Observations<br />

• New opportunities<br />

• Conclusion<br />

/ 2 / 20-Nov-12


INTRODUCTION<br />

/ 3 / 20-Nov-12


4 / 20-Nov-12<br />

<strong>Kongsberg</strong> <strong>Seatex</strong> AS


<strong>Kongsberg</strong> <strong>Seatex</strong> - Business Areas<br />

DP Reference<br />

Systems<br />

Marine Seismic<br />

Positioning and<br />

Control<br />

Attitude<br />

Determination<br />

Systems<br />

GNSS Systems and<br />

Projects<br />

Load and stability<br />

calculations


KOG Global footprint


Routes of the Viking Explorers<br />

Viking routes<br />

/ 7 / 20-Nov-12<br />

Sundial: the Viking ”sextant”


Monitoring Arctic Navigation from Space<br />

• AISSat-1 – experimental nano satellite with<br />

AIS receiver payload<br />

• Designed for monitoring AIS targets in arctic<br />

regions<br />

• Polar orbit, 600 km altitude<br />

AISSat-1 model<br />

• Providing data from July 2010<br />

Project partners<br />

/ 8 / 20-Nov-12


AISSat-1 observations, 12 July, 2010<br />

Traffic expected to increase in the years to come


WEATHER CONDITIONS<br />

/ 10 / 20-Nov-12


Temperatures in the Arctic<br />

°C °F<br />

Average July<br />

temperatures<br />

Average January<br />

temperatures<br />

-10 to +10°C 14 to 50°F<br />

-40 to +0°C -40 to +32°F<br />

Extreme temperatures ~ -50°C ~ -58°F<br />

Typical GNSS antenna<br />

specifications<br />

-40°C<br />

-40°F<br />

Conclusion:<br />

Most GNSS antennas will work fine<br />

under almost all temperature<br />

conditions in the Arctic<br />

Arctic defined by the 10°C isotherm in July,<br />

Wikipedia, 2010-08-25<br />

/ 11 / 20-Nov-12


Iceload on GNSS Antennas<br />

• Surprisingly little is known about the<br />

effect of ice-load on a GNSS antenna<br />

• Snow does probably not have any<br />

significant effect<br />

• A 1.25 cm wet surface ice loading will<br />

(Ref: O’Keefe et al):<br />

• Reduce the SNR with 3 dB<br />

• Increase the rms position error of 1 m<br />

• Increase the number of cycle slips<br />

significantly<br />

Conclusion:<br />

Ice building up on the GNSS antenna<br />

doesn’t make any good!<br />

Ref: http://farm1.static.flickr.com/35/100361821_5d58d82777.jpg<br />

/ 12 / 20-Nov-12


SATELLITE COVERAGE<br />

/ 13 / 20-Nov-12


Significance of the Orbit Inclination Angle<br />

• The highest latitude a satellite<br />

can pass zenith is equal to the<br />

orbit inclination angle<br />

• Any GPS satellite will eventually<br />

be visible from any position in<br />

the Arctic<br />

• A geostationary satellite cannot<br />

be observed above a latitude of<br />

about 75° with e.g. a 5°<br />

elevation mask constraint. The<br />

longitude position might reduce<br />

this limit.<br />

Glonass satellite<br />

(64.8° inclination)<br />

N<br />

S<br />

GPS satellite<br />

(55° inclination)<br />

GEO satellite<br />

(0° inclination)<br />

Glonass, GPS and GEO satellite inclination angles<br />

/ 14 / 20-Nov-12


GPS Satellite Trajectories at Different Latitudes<br />

Observer’s Latitude: 30°N<br />

No GPS satellites observed below a<br />

certain elevation in a northern<br />

direction leads to less accuracy in<br />

North/South direction<br />

Observer’s Latitude: 55°N<br />

The highest latitude where a GPS<br />

satellites will pass zenith. Some<br />

GPS satellites observed at a very<br />

low elevation angle in a northern<br />

direction<br />

Observer’s Latitude: 75°N<br />

No GPS satellites observed above a<br />

certain elevation angle leads to less<br />

accuracy in height<br />

Plots generated by use of GeoSky II (Fugro)<br />

/ 15 / 20-Nov-12


Visible GNSS Satellites at Different Latitudes<br />

• HDOP and number of visible<br />

satellites improves at high<br />

latitudes<br />

30°N<br />

• PDOP peaks at high latitudes<br />

because of fewer high<br />

elevation satellites and<br />

causes some degradation of<br />

vertical accuracy<br />

55°N<br />

Conclusion:<br />

Satellite coverage in Arctic is<br />

good especially with a<br />

combined satellite constellation<br />

75°N<br />

Plots generated by use of GeoSky II (Fugro)<br />

/ 16 / 20-Nov-12


Availability of Signals from Geo Satellites<br />

• Used for communication and<br />

distribution of differential signals<br />

• Some additional margin needed<br />

due to<br />

• roll movement<br />

• obstructions in a southern direction<br />

• Signal disturbance caused by high<br />

solar activity<br />

Conclusion:<br />

Signals from Geo satellites will be<br />

less available in Arctic regions<br />

Limited visibility of Geo satellites<br />

/ 17 / 20-Nov-12


Influence of the Ionosphere<br />

AURORA IMPACT<br />

/ 18 / 20-Nov-12


A Pioneer, Prof. Kristian Birkeland<br />

• An outstanding Norwegian<br />

physicist, born in 1867<br />

• Demonstrated artificial polar light<br />

in several “terella” experiments<br />

as shown on the Norwegian ”200<br />

kroner” banknote<br />

• Proved several ionospheric effects<br />

that were not verified until about<br />

50 years later<br />

/ 19 / 20-Nov-12


The Sun and the Sunspots<br />

• Sunspots have been observed and counted, more or less<br />

systematically, for thousands of years<br />

• Sunspot activity is known to have an effect on solar wind<br />

and conditions in the ionosphere<br />

• Modern infrastructure is vulnerable to these effects<br />

/ 20 / 20-Nov-12


Different Scales of Ionospheric Effects<br />

• Large-scale:<br />

• Basically the density of charged particles in<br />

the ionosphere<br />

• Medium-scale:<br />

• F-layer patches moving over the auroral<br />

oval<br />

• Small-scale:<br />

• Scintillations within the auroral oval causing<br />

variations over a few km<br />

The auroral oval (www.mssl.ucl.ac.uk)<br />

/ 21 / 20-Nov-12


Effect on GPS signals - Cycle 22<br />

”Single frequency users will have to<br />

rely on a model of the ionospheric<br />

group delay, and the observations<br />

made in this trial verifies that this<br />

model will have a very poor fit for<br />

high latitude data.”<br />

Northern Light<br />

/ 22 / 20-Nov-12


The Effect of Cycle 24?<br />

• Degraded GNSS accuracy during<br />

”bad ionospheric weather”<br />

• Loss of signals from<br />

communication satellites (Geo)<br />

during high ionospheric activity<br />

• Increased risk of knock-out of<br />

electronics and power due to<br />

electromagnetic pulses like in<br />

Quebec in 1989<br />

Cycle 24 is reaching<br />

its maximum!<br />

/ 23 / 20-Nov-12


GNSS CORRECTIONS<br />

/ 24 / 20-Nov-12


GNSS Correction Main Categories<br />

• Local DGPS L1 Service (e.g. IALA)<br />

• Regional SBAS services (e.g. WAAS, EGNOS, MSAS)<br />

• Global orbit/clock services (e.g. Fugro, Veripos, C&C)<br />

/ 25 / 20-Nov-12


Local DGPS L1 Services<br />

IALA beacon coverage in Europe and North America<br />

/ 26 / 20-Nov-12


Local DGPS Services in the Arctic<br />

• Out of range of local DGPS services in most Arctic areas<br />

• Degraded accuracy caused by ionospheric activity to be<br />

expected<br />

• Ionospheric activity might limit GNSS satellite tracking at the<br />

reference stations<br />

/ 27 / 20-Nov-12


28 / 20-Nov-12<br />

Regional SBAS Service Coverage


The SBAS Ionospheric Model<br />

• Calculating Ionospheric Grid<br />

Point Delay tables<br />

• The limitations of the method<br />

will be density of grid points<br />

and ground based monitoring<br />

points<br />

• Compensates for large-scale<br />

and, to some extent, medium<br />

scale effects<br />

• Do not help much for smallscale<br />

effects (scintillations)<br />

/ 29 / 20-Nov-12


Regional SBAS Performance<br />

• Most Arctic areas are outside SBAS service area<br />

• Monitoring stations mostly deployed within service area<br />

• Ionospheric model<br />

• Availability of correction signals from Geo satellites limited<br />

• Ionospheric scintillations will cause degraded accuracy and<br />

integrity<br />

/ 30 / 20-Nov-12


Global Orbit/Clock<br />

• Orbit/clock corrections are global and<br />

will not be degraded in the Arctic<br />

• Small 2nd order effects might cause a<br />

small accuracy degradation of<br />

ionospheric compensation during<br />

scintillations<br />

• GPS L2 will be vulnerable to distortion<br />

of the satellite signal through an<br />

active ionosphere<br />

• Availability of correction signals from<br />

Fugro G2<br />

Geo satellites will be limited<br />

/ 31 / 20-Nov-12


Coverage of Orbit/Clock Corrections<br />

Fugro Orbit/Clock Service Coverage in Arctic Regions<br />

/ 32 / 20-Nov-12


Ionospheric Scintillations<br />

OBSERVATIONS<br />

/ 33 / 20-Nov-12


Northern Light, Oslo 3-4 August 2010<br />

Photo: Ole Ørpen - Fugro Seastar<br />

Northern Light prediction (yr.no)<br />

/ 34 / 20-Nov-12


Loosing Lock on GPS L2, Tromsø<br />

Loss of L2 signal for three high elevation GPS satellites (11, 14, 32),<br />

Caused by ionospheric scintillations<br />

/ 35 / 20-Nov-12


m<br />

Iono Effect on L1 Solution, Tromsø<br />

VBS solution, No Tromsø (700:430 km, 632:787 km, 670:1381 km)<br />

Height Error North Error East Error<br />

3.00<br />

2.50<br />

2.00<br />

1.50<br />

1.00<br />

0.50<br />

0.00<br />

-0.50<br />

-1.00<br />

-1.50<br />

-2.00<br />

00:00:00 01:00:00 02:00:00 03:00:00<br />

Time UTC 4 April 2010<br />

/ 36 / 20-Nov-12


37 / 20-Nov-12<br />

Iono Effect on GPS Orbit/Clock Solution, Tromsø


38 / 20-Nov-12<br />

Iono Effect on GPS/Glonass Orbit/Clock, Tromsø


NEW OPPORTUNITIES<br />

/ 39 / 20-Nov-12


The Geopolitcal Map<br />

October 1, 2007<br />

/ 40 / 20-Nov-12


Galileo Galileo<br />

/ 41 / 20-Nov-12


Galileo launch<br />

Successful launch of the first<br />

four Galileo IOV satellittes<br />

2011-10-21 and 2012-10-12<br />

Photo: ESA<br />

42


43 / 20-Nov-12<br />

WORLD CLASS – through people, technology and dedication


Arctic Test Bed<br />

/ 44 / WORLD CLASS – through people, technology and dedication<br />

20-Nov-12


45 / 20-Nov-12<br />

Challenging Offshore Operations


MARENOR<br />

• Project owner: EMGS<br />

• Project management: Marintek<br />

• Partners: Remøy, Sintef ICT,<br />

KSAT, Telenor, UniS, <strong>Kongsberg</strong><br />

<strong>Seatex</strong><br />

• Financed by the Norwegian<br />

Research Council<br />

• Total budget 21 mill<br />

• Project Period: 2012 -2015<br />

Predicting performance of navigation and communication systems in Arctic<br />

Regions<br />

/ 46 / 20.11.2012


MARPOT<br />

• Project owner: <strong>Kongsberg</strong> <strong>Seatex</strong><br />

• Project management: Sintef F&H<br />

• Partners: <strong>Kongsberg</strong> <strong>Seatex</strong>,<br />

Sintef, KSAT, Simicon, Semekor<br />

• Reference Group: Not formally<br />

established yet<br />

• Financed by the Norwegian<br />

Research Council<br />

• Total budget 11 mill NOK wherof<br />

45% is financed by NRC<br />

• Project Period: 01.01.11 – 31.12.12<br />

KV Barentshav<br />

New technology to improve navigation safety, positioning, surveillance,<br />

emergency response and effectiveness of infrastructure<br />

/ 47 / 20.11.2012


Technology demonstrator KV Barentshav – Aug 2012<br />

• 1 week demonstrations<br />

• Organised under “MARPOT” (KSX)<br />

• Focus on challenges of Arctic operations:<br />

GNSS, communication, surveillance and<br />

SIMOPS


Test equipment<br />

• SIMOPS with new broadband and longrange<br />

radio<br />

•<br />

• DPS 232 including DGNSS demodulator (<br />

G2/RTCM)<br />

• GNSS receiver for scintillation<br />

measurements<br />

• NG AIS «Super AIS» for vessel and<br />

Aerostat/UAS<br />

• Ice Profiler (KM Subsea)<br />

49


Technology demonstrator KV Barentshav – Aug 2012


CONCLUSION<br />

/ 51 / 20-Nov-12


Conclusion<br />

• Satellite navigation will mostly work fine in Arctic areas but<br />

there is still need for improvement<br />

• Some degradation due to ionospheric scintillations has to be<br />

expected but combining GPS and other GNSS solutions will<br />

minimise the problem<br />

• High accuracy GNSS will require better coverage by reliable<br />

communication links<br />

• The political significance of the Arctic is driving the<br />

development of new technology and solutions<br />

/ 52 / 20-Nov-12

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!