19.10.2015 Views

Yttrium-90 and Rhenium-188 Radiopharmaceuticals for Radionuclide Therapy

Pub1662web-89688003

Pub1662web-89688003

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

st<strong>and</strong>ards will be imposed with increasing insistence, also in developing<br />

countries, which is a good thing.<br />

<strong>Radionuclide</strong> therapy opens up the possibility of bringing ionizing radiation<br />

directly into tumour tissue to achieve targeted eradication of cancer cells. This is,<br />

<strong>and</strong> will continue to be, an exciting challenge <strong>for</strong> nuclear medicine worldwide.<br />

REFERENCES TO CHAPTER 2<br />

[2.1] FERLAY, J., et al., Estimates of worldwide burden of cancer in 2008: GLOBOCAN<br />

2008, Int. J. Cancer 127 (2010) 12893.<br />

[2.2] PRESTON, R.J., Radiation biology: Concepts <strong>for</strong> radiation protection, Health Phys. 88<br />

(2005) 545.<br />

[2.3] MAIRS, R.J., et al., Targeted radiotherapy: Microgray doses <strong>and</strong> the byst<strong>and</strong>er effect,<br />

Dose Response 5 (2007) 204.<br />

[2.4] BRANS, B., et al., Clinical applications of newer radionuclide therapies, Eur. J. Cancer<br />

42 (2006) 994.<br />

[2.5] KASSIS, A.I., Molecular <strong>and</strong> cellular radiobiological effects of Auger emitting<br />

radionuclides, Radiat. Prot. Dosim. 143 (2011) 241.<br />

[2.6] CREMONESI, M., et al., Recent issues on dosimetry <strong>and</strong> radiobiology <strong>for</strong> peptide<br />

receptor radionuclide therapy, Q. J. Nucl. Med. Mol. Imaging 55 (2011) 155.<br />

[2.7] WIKE, J.S., et al., Chemistry <strong>for</strong> commercial scale production of yttrium-<strong>90</strong> <strong>for</strong><br />

medical research, Int. J. Radiat. Appl. Instrum. A 41 (19<strong>90</strong>) 861.<br />

[2.8] LAMBERT, B., et al., Clinical applications of <strong>188</strong> Re-labelled radiopharmaceuticals <strong>for</strong><br />

radionuclide therapy, Nucl. Med. Commun. 27 (2006) 223.<br />

[2.9] KIM, Y.S., BRECHBIEL, M.W., An overview of targeted alpha therapy, Tumour Biol.<br />

33 (2012) 573.<br />

[2.10] CLAESSON, K., et al., RBE of α-particles from 211 At <strong>for</strong> complex DNA damage <strong>and</strong><br />

cell survival in relation to cell cycle position, Int. J. Radiat. Biol. 87 (2011) 372.<br />

[2.11] MORGENSTERN, A., et al., Targeted alpha therapy with 213 Bi, Curr. Radiopharm.<br />

4 (2011) 295.<br />

[2.12] VAIDYANATHAN, G., ZALUTSKY, M.R., Applications of 211 At <strong>and</strong> 223 Ra in targeted<br />

alpha-particle radiotherapy, Curr. Radiopharm. 4 (2011) 283.<br />

[2.13] HOWELL, R.W., Auger processes in the 21st century, Int. J. Radiat. Biol. 84<br />

(2008) 959.<br />

[2.14] TAVARES, A.A., TAVARES, J.M., Evaluating 99m Tc Auger electrons <strong>for</strong> targeted<br />

tumor radiotherapy by computational methods, Med. Phys. 37 (2010) 3551.<br />

[2.15] WENDISCH, M., et al., 99m Tc reduces clonogenic survival after intracellular uptake in<br />

NIS-positive cells in vitro more than 131 I, Nuklearmed. 49 (2010) 154.<br />

[2.16] DANCEY, G., BEGENT, R.H., MEYER, T., Imaging in targeted delivery of therapy to<br />

cancer, Target Oncol. 4 (2009) 201.<br />

[2.17] PAUWELS, E.K., STOKKEL, M.P., <strong>Radiopharmaceuticals</strong> <strong>for</strong> bone lesions. Imaging<br />

<strong>and</strong> therapy in clinical practice, Q. J. Nucl. Med. 45 (2001) 18.<br />

26

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!