07.12.2012 Views

MODAL ANALYSIS - the Dept. of Mechanical Engineering at - Vrije ...

MODAL ANALYSIS - the Dept. of Mechanical Engineering at - Vrije ...

MODAL ANALYSIS - the Dept. of Mechanical Engineering at - Vrije ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>MODAL</strong> <strong>ANALYSIS</strong><br />

P<strong>at</strong>rick Guillaume, Department <strong>of</strong> <strong>Mechanical</strong> <strong>Engineering</strong>,<strong>Vrije</strong> Universiteit Brussel, Pleinlaan<br />

2, B-1050 Brussel, Belgium.<br />

Keywords: Vibr<strong>at</strong>ion, Estim<strong>at</strong>ion, Frequency domain, Modal analysis, Modal parameters, N<strong>at</strong>ural<br />

frequency, Damping, Mode shapes, Transfer function, SISO, MIMO, <strong>Mechanical</strong> systems, SDOF,<br />

MDOF.<br />

Contents<br />

1. Introduction<br />

2. The “Modal” Model<br />

2.1. Single Degree <strong>of</strong> Freedom<br />

2.2. Multiple Degree <strong>of</strong> Freedom<br />

2.2.1. Mode Shapes and Oper<strong>at</strong>ing Deflection Shapes<br />

2.2.2. Observability and Controllability <strong>of</strong> Modes<br />

3. Frequency-Domain Identific<strong>at</strong>ion <strong>of</strong> Modes<br />

3.1. Least-Squares Estim<strong>at</strong>ion<br />

3.1.1. Common-Denomin<strong>at</strong>or Model<br />

3.1.2. Linearity in <strong>the</strong> Parameters<br />

3.1.3. Normal Equ<strong>at</strong>ions<br />

3.1.4. Reduced Normal Equ<strong>at</strong>ions<br />

3.1.5. Stabiliz<strong>at</strong>ion Chart<br />

3.2. Maximum Likelihood Estim<strong>at</strong>ion<br />

3.2.1. Gauss-Newton Optimiz<strong>at</strong>ion<br />

3.2.2. Confidence Intervals<br />

4. Applic<strong>at</strong>ion<br />

5. Conclusion<br />

Glossary<br />

DOF: Degree <strong>of</strong> freedom.<br />

FRF: Frequency response function.<br />

GTLS: Generalized total least squares.<br />

IQML: Iter<strong>at</strong>ive quadr<strong>at</strong>ic maximum likelihood.<br />

IRF: Impulse response function.<br />

LS: Least squares.<br />

LSCE: Least squares complex exponential.<br />

MDOF: Multiple-degree-<strong>of</strong>-freedom.<br />

ML: Maximum likelihood.<br />

MIMO: Multiple-input-multiple-output<br />

SDOF: Single-degree-<strong>of</strong>-freedom.<br />

SISO: Single-input-single-output.<br />

TLS: Total least squares.


Summary<br />

In this contribution <strong>the</strong> applicability <strong>of</strong> frequency-domain estim<strong>at</strong>ors in <strong>the</strong> field <strong>of</strong> modal analysis<br />

will be illustr<strong>at</strong>ed. The basics <strong>of</strong> vibr<strong>at</strong>ion and modal analysis are briefly summarized. In modal<br />

analysis, mechanical systems with a few inputs and hundreds <strong>of</strong> outputs have to be identified. This<br />

requires adapted frequency-domain estim<strong>at</strong>ors designed to handle large amount <strong>of</strong> d<strong>at</strong>a in a<br />

reasonable amount <strong>of</strong> time. A practical example will be given and finally <strong>the</strong> conclusions will be<br />

drawn.<br />

1. Introduction<br />

It is well known th<strong>at</strong> (mechanical) structures can reson<strong>at</strong>e, i.e. th<strong>at</strong> small forces can result in<br />

important deform<strong>at</strong>ion, and possibly, damage can be induced in <strong>the</strong> structure.<br />

Figure 1: Tacoma Narrows Bridge Disaster.<br />

The Tacoma Narrows bridge disaster (Figure 1) is a typical example <strong>of</strong> this. On November 7, 1940,<br />

<strong>the</strong> Tacoma Narrows suspension bridge collapsed due to wind-induced vibr<strong>at</strong>ion (i.e. flutter).<br />

Situ<strong>at</strong>ed on <strong>the</strong> Tacoma Narrows in Puget Sound, near <strong>the</strong> city <strong>of</strong> Tacoma, Washington, <strong>the</strong> bridge<br />

had only been open for traffic a few months.<br />

Wings <strong>of</strong> airplanes can be subjected to similar flutter phenomena during flight. Before an airplane is<br />

released, flight flutter tests have to be performed to detect possible onset <strong>of</strong> flutter. The classical<br />

flight flutter testing approach is to expand <strong>the</strong> flight envelope <strong>of</strong> a airplane by performing a<br />

vibr<strong>at</strong>ion test <strong>at</strong> constant flight conditions, curve-fit <strong>the</strong> d<strong>at</strong>a to estim<strong>at</strong>e <strong>the</strong> resonance frequencies<br />

and damping r<strong>at</strong>ios, and <strong>the</strong>n to plot <strong>the</strong>se frequencies and damping estim<strong>at</strong>es against flight speed or<br />

Mach number. The damping values are <strong>the</strong>n extrapol<strong>at</strong>ed in order to determine whe<strong>the</strong>r it is save to<br />

proceed to <strong>the</strong> next flight test point. Flutter will occur when one <strong>of</strong> <strong>the</strong> damping values tends to<br />

become neg<strong>at</strong>ive. Before starting <strong>the</strong> flight tests, ground vibr<strong>at</strong>ion tests as well as numerical<br />

simul<strong>at</strong>ions and wind tunnel tests (see Figure 2) are used to get some prior insight into <strong>the</strong> problem.


(a) (b)<br />

Figure 2: Wind tunnel tests on a scaled model <strong>of</strong> (a) a Cessna and (b) an Airbus A380.<br />

The majority <strong>of</strong> structures can be made to reson<strong>at</strong>e, i.e. to vibr<strong>at</strong>e with excessive oscill<strong>at</strong>ory motion.<br />

Resonant vibr<strong>at</strong>ion is mainly caused by an interaction between <strong>the</strong> inertial and elastic properties <strong>of</strong><br />

<strong>the</strong> m<strong>at</strong>erials within a structure. Resonance is <strong>of</strong>ten <strong>the</strong> cause <strong>of</strong>, or <strong>at</strong> least a contributing factor to<br />

many <strong>of</strong> <strong>the</strong> vibr<strong>at</strong>ion and noise rel<strong>at</strong>ed problems th<strong>at</strong> occur in structures and oper<strong>at</strong>ing machinery.<br />

To better understand any structural vibr<strong>at</strong>ion problem, <strong>the</strong> resonant frequencies <strong>of</strong> a structure need<br />

to be identified and quantified. Today, modal analysis has become a widespread means <strong>of</strong> finding<br />

<strong>the</strong> modes <strong>of</strong> vibr<strong>at</strong>ion <strong>of</strong> a machine or structure (Figure 3). In every development <strong>of</strong> a new or<br />

improved mechanical product, structural dynamics testing on product prototypes is used to assess its<br />

real dynamic behavior.<br />

2. The “Modal” Model<br />

Figure 3: Modal analysis <strong>of</strong> a car body.<br />

Modes are inherent properties <strong>of</strong> a structure, and are determined by <strong>the</strong> m<strong>at</strong>erial properties (mass,<br />

damping, and stiffness), and boundary conditions <strong>of</strong> <strong>the</strong> structure. Each mode is defined by a n<strong>at</strong>ural<br />

(modal or resonant) frequency, modal damping, and a mode shape (i.e. <strong>the</strong> so-called “modal<br />

parameters”). If ei<strong>the</strong>r <strong>the</strong> m<strong>at</strong>erial properties or <strong>the</strong> boundary conditions <strong>of</strong> a structure change, its<br />

modes will change. For instance, if mass is added to a structure, it will vibr<strong>at</strong>e differently. To<br />

understand this, we will make use <strong>of</strong> <strong>the</strong> concept <strong>of</strong> single and multiple-degree-<strong>of</strong>-freedom systems.


2.1 Single Degree <strong>of</strong> Freedom<br />

A single-degree-<strong>of</strong>-freedom (SDOF) system (see Figure 4 where <strong>the</strong> mass m can only move along<br />

<strong>the</strong> vertical x-axis) is described by <strong>the</strong> following equ<strong>at</strong>ion<br />

m � x�<br />

( t)<br />

+ cx�<br />

( t)<br />

+ kx(<br />

t)<br />

= f ( t)<br />

(1)<br />

with m <strong>the</strong> mass, c <strong>the</strong> damping coefficient, and k <strong>the</strong> stiffness. This equ<strong>at</strong>ion st<strong>at</strong>es th<strong>at</strong> <strong>the</strong> sum <strong>of</strong><br />

all forces acting on <strong>the</strong> mass m should be equal to zero with f (t)<br />

an externally applied force,<br />

− m�x �(t)<br />

<strong>the</strong> inertial force, − c� x(t)<br />

<strong>the</strong> (viscous) damping force, and − kx(t)<br />

<strong>the</strong> restoring force. The<br />

variable x (t)<br />

stands for <strong>the</strong> position <strong>of</strong> <strong>the</strong> mass m with respect to its equilibrium point, i.e. <strong>the</strong><br />

position <strong>of</strong> <strong>the</strong> mass when f ( t)<br />

≡ 0 . Transforming (1) to <strong>the</strong> Laplace domain (assuming zero initial<br />

conditions) yields<br />

Z ( s)<br />

X ( s)<br />

= F(<br />

s)<br />

(2)<br />

with Z (s)<br />

<strong>the</strong> dynamic stiffness<br />

2<br />

Z ( s)<br />

= ms + cs + k<br />

(3)<br />

The transfer function H (s)<br />

between displacement and force, X ( s)<br />

= H ( s)<br />

F(<br />

s)<br />

, equals <strong>the</strong> inverse<br />

<strong>of</strong> <strong>the</strong> dynamic stiffness<br />

1<br />

H ( s)<br />

= (4)<br />

2<br />

ms + cs + k<br />

Figure 4: SDOF system.<br />

2<br />

The roots <strong>of</strong> <strong>the</strong> denomin<strong>at</strong>or <strong>of</strong> <strong>the</strong> transfer function, i.e. d ( s)<br />

= ms + cs + k , are <strong>the</strong> poles <strong>of</strong> <strong>the</strong><br />

system. In mechanical structures, <strong>the</strong> damping coefficient c is usually very small resulting in a<br />

complex conjug<strong>at</strong>e pole pair<br />

λ = −σ<br />

± iω<br />

(5)<br />

d<br />

with f = ω 2π<br />

<strong>the</strong> damped n<strong>at</strong>ural frequency,<br />

d<br />

d<br />

f = ω 2π<br />

<strong>the</strong> (undamped) n<strong>at</strong>ural frequency where ω = k m = λ , and<br />

n<br />

n<br />

ζ = c 2 mωn<br />

= σ λ <strong>the</strong> damping r<strong>at</strong>io ( f d = f n<br />

2<br />

1 − ζ ).<br />

If, for instance, a mass Δ m is added to <strong>the</strong> original mass m <strong>of</strong> <strong>the</strong> structure, its n<strong>at</strong>ural frequency<br />

decreases to ω n = k ( m + Δm)<br />

. If c = 0 , <strong>the</strong> system is not damped and <strong>the</strong> poles becomes purely<br />

imaginary, λ = ± iωn<br />

.<br />

n


The Frequency Response Function (FRF), denoted by H (ω)<br />

, is obtain by replacing <strong>the</strong> Laplace<br />

variable s in (4) by i ω resulting in<br />

1<br />

1<br />

H ( ω)<br />

= =<br />

(6)<br />

2<br />

2<br />

− mω<br />

+ icω<br />

+ k ( k − mω<br />

) + icω<br />

Clearly, if c = 0 , <strong>the</strong>n H (ω)<br />

goes to infinity for ω → ω k m (see Figure 4).<br />

Although very few practical structures could realistically be modeled by a single-degree-<strong>of</strong>-freedom<br />

(SDOF) system, <strong>the</strong> properties <strong>of</strong> such a system are important because those <strong>of</strong> a more complex<br />

multiple-degree-<strong>of</strong>-freedom (MDOF) system can always be represented as <strong>the</strong> linear superposition<br />

<strong>of</strong> a number <strong>of</strong> SDOF characteristics (when <strong>the</strong> system is linear time-invariant).<br />

2.2 Multiple Degree <strong>of</strong> Freedom<br />

Multiple-degree-<strong>of</strong>-freedom (MDOF) systems are described by <strong>the</strong> following equ<strong>at</strong>ion<br />

M x�<br />

�(<br />

t) + Cx�<br />

( t)<br />

+ Kx(<br />

t)<br />

= f(<br />

t)<br />

(7)<br />

In Figure 5, <strong>the</strong> different m<strong>at</strong>rices are defined for a 2-DOF system with both DOF along <strong>the</strong> vertical<br />

x-axis.<br />

f 1 (t)<br />

k 1<br />

f 2 (t)<br />

k 2<br />

m 2<br />

m 1<br />

c 2<br />

c 1<br />

x 2 (t)<br />

x 1 (t)<br />

⎡m<br />

M =<br />

⎢<br />

⎣<br />

1<br />

0<br />

n =<br />

⎡k1<br />

+ k<br />

K = ⎢<br />

⎣ − k2<br />

⎡c1<br />

+ c<br />

C = ⎢<br />

⎣ − c2<br />

0 ⎤<br />

m<br />

⎥<br />

2⎦<br />

2<br />

2<br />

− k<br />

k<br />

2<br />

− c<br />

Figure 5: 2-DOF system.<br />

c<br />

2<br />

⎤<br />

⎥<br />

⎦<br />

2<br />

⎤<br />

⎥<br />

⎦<br />

2<br />

⎧ f1(<br />

t)<br />

⎫<br />

f(<br />

t)<br />

= ⎨ ⎬<br />

⎩ f2(<br />

t)<br />

⎭<br />

⎧ x1(<br />

t)<br />

⎫<br />

x(<br />

t)<br />

= ⎨ ⎬<br />

⎩x2<br />

( t)<br />

⎭<br />

Transforming (7) to <strong>the</strong> Laplace domain (assuming zero initial conditions) yields<br />

Z( s) X(<br />

s)<br />

= F(<br />

s)<br />

(8)<br />

with Z (s)<br />

<strong>the</strong> dynamic stiffness m<strong>at</strong>rix<br />

2<br />

Z ( s)<br />

= Ms<br />

+ Cs<br />

+ K<br />

(9)<br />

The transfer function m<strong>at</strong>rix H (s)<br />

between displacement and force vectors, X ( s) = H(<br />

s)<br />

F(<br />

s)<br />

,<br />

equals <strong>the</strong> inverse <strong>of</strong> <strong>the</strong> dynamic stiffness m<strong>at</strong>rix<br />

2<br />

−1<br />

N(<br />

s)<br />

H ( s)<br />

= [ Ms<br />

+ Cs<br />

+ K]<br />

=<br />

d(<br />

s)<br />

with <strong>the</strong> numer<strong>at</strong>or polynomial m<strong>at</strong>rix N (s)<br />

given by<br />

2<br />

N ( s ) = adj(<br />

Ms<br />

+ Cs<br />

+ K)<br />

(11)<br />

and <strong>the</strong> common-denomin<strong>at</strong>or polynomial d (s)<br />

, also known as <strong>the</strong> characteristic polynomial,<br />

2<br />

d ( s)<br />

= det( M s + Cs<br />

+ K)<br />

(12)<br />

(10)


When <strong>the</strong> damping is small, <strong>the</strong> roots <strong>of</strong> <strong>the</strong> characteristic polynomial d (s)<br />

are complex conjug<strong>at</strong>e<br />

∗<br />

pole pairs, λ m and λ m , m = 1, �,<br />

N m , with N m <strong>the</strong> number <strong>of</strong> modes <strong>of</strong> <strong>the</strong> system. The transfer<br />

function can be rewritten in a pole-residue form, i.e. <strong>the</strong> so-called “modal” model (assuming all<br />

poles have multiplicity one)<br />

= m N<br />

R R<br />

H ( s)<br />

(13)<br />

∗<br />

m<br />

m<br />

∑ + ∗<br />

m= 1 s − λm<br />

s − λm<br />

The residue m<strong>at</strong>rices R m , m = 1, �,<br />

N m , are defined by<br />

R m lim H(<br />

s)(<br />

s − λm<br />

)<br />

(14)<br />

=<br />

s→λ<br />

m<br />

It can be shown th<strong>at</strong> <strong>the</strong> m<strong>at</strong>rix m R is <strong>of</strong> rank one meaning th<strong>at</strong> R m can be decomposed as<br />

⎧ ψ m ( 1)<br />

⎫<br />

⎪<br />

ψ ( 2)<br />

⎪<br />

T ⎪ m ⎪<br />

R m = m m = ⎨ ⎬⎣ψ<br />

m ( 1)<br />

ψ m ( 2)<br />

� ψ m ( N m ) ⎦<br />

(15)<br />

⎪ � ⎪<br />

⎪⎩<br />

ψ m ( N m ) ⎪⎭<br />

with m a vector representing <strong>the</strong> “mode shape” <strong>of</strong> mode m. From equ<strong>at</strong>ion (13), one concludes<br />

th<strong>at</strong> <strong>the</strong> transfer function m<strong>at</strong>rix <strong>of</strong> a linear time-invariant MDOF system with N m DOFs is <strong>the</strong> sum<br />

<strong>of</strong> N m SDOF transfer functions (“modal superposition”) and th<strong>at</strong> <strong>the</strong> full transfer function m<strong>at</strong>rix is<br />

completely characterized by <strong>the</strong> modal parameters, i.e. <strong>the</strong> poles λ m = −σ<br />

m ± i ωd<br />

, m and <strong>the</strong> mode<br />

shape vectors m , m N m , , = 1 � .<br />

Taking <strong>the</strong> inverse Laplace transform <strong>of</strong> (13) gives <strong>the</strong> Impulse Response Function (IRF)<br />

N<br />

∑<br />

m=<br />

1<br />

∗<br />

m<br />

∗<br />

m<br />

λmt<br />

λ t<br />

h ( t)<br />

R e + R e<br />

(16)<br />

= m<br />

m<br />

which consists <strong>of</strong> a sum <strong>of</strong> complex exponential functions.<br />

2.2.1 Mode Shapes and Oper<strong>at</strong>ing Deflection Shapes<br />

At or near <strong>the</strong> n<strong>at</strong>ural frequency <strong>of</strong> a mode, <strong>the</strong> overall vibr<strong>at</strong>ion shape (“oper<strong>at</strong>ing deflection<br />

shape”) <strong>of</strong> a structure will tend to be domin<strong>at</strong>ed by <strong>the</strong> mode shape <strong>of</strong> <strong>the</strong> resonance. Applying a<br />

harmonic force <strong>at</strong> one <strong>of</strong> <strong>the</strong> DOFs, say r, with angular frequency corresponding to <strong>the</strong> damped<br />

n<strong>at</strong>ural frequency <strong>of</strong> for instance <strong>the</strong> n-th mode, i.e. s = iω<br />

d , n , results in a displacement vector th<strong>at</strong><br />

is approxim<strong>at</strong>ely equal to<br />

nψ<br />

n ( r)<br />

X( ω d , n ) ≈ Fr<br />

( ωd<br />

, n )<br />

(17)<br />

σ<br />

n<br />

The observed displacement <strong>at</strong> angular frequency ω d , n is called an “oper<strong>at</strong>ing deflection shapes” and<br />

is approxim<strong>at</strong>ely proportional to <strong>the</strong> mode shape vector <strong>of</strong> mode n, i.e. n . When σ n is small, <strong>the</strong><br />

proportionality is well s<strong>at</strong>isfied. In reality, <strong>the</strong>re will always be a (small) contribution <strong>of</strong> <strong>the</strong> o<strong>the</strong>r<br />

modes resulting in<br />

⎛<br />

Nm<br />

Nm<br />

∗ ∗ ⎞<br />

⎜ nψ<br />

n ( r)<br />

mψ<br />

m ( r)<br />

mψ<br />

m ( r)<br />

⎟<br />

X ( ω d , n ) = ⎜ + ∑<br />

+ ∑<br />

Fr<br />

( ωd<br />

, n )<br />

σ n m 1 σ m i(<br />

ωn<br />

ωm<br />

) m 1 σ m i(<br />

ωn<br />

ω m )<br />

⎟<br />

(18)<br />

⎜<br />

= + −<br />

= + + ⎟<br />

⎝<br />

m≠n<br />


2.2.2 Observability and Controllability <strong>of</strong> Modes<br />

Assuming, for example, th<strong>at</strong> one force is applied in DOF 1 while <strong>the</strong> displacement is observed in<br />

DOF 2. In th<strong>at</strong> case, <strong>the</strong> multiple-input-multiple-output (MIMO) transfer function m<strong>at</strong>rix simplifies<br />

to <strong>the</strong> following single-input-single-output (SISO) transfer function<br />

H<br />

2,<br />

1<br />

( s)<br />

= m N<br />

ψ<br />

( 2)<br />

⋅ψ<br />

( 1)<br />

ψ<br />

( 2)<br />

⋅ψ<br />

( 1)<br />

∗ ∗<br />

m m<br />

m m<br />

∑ +<br />

∗<br />

m= 1 s − λm<br />

s − λm<br />

If ψ n ( 1)<br />

≠ 0 <strong>the</strong>n mode n will only be “observed” in DOF 2 if ψ n ( 2)<br />

≠ 0 . If ψ n ( 1)<br />

= 0 <strong>the</strong>n it is<br />

clear th<strong>at</strong> <strong>the</strong> terms corresponding to mode n will not appear in <strong>the</strong> sum, i.e. mode n cannot be<br />

excited (or “controlled”) by applying a force in DOF 1. The DOFs where a mode shape vector<br />

equals zero are called nodal points or nodes. In practice, this means th<strong>at</strong> <strong>the</strong> force actu<strong>at</strong>or should<br />

not be positioned in a nodal point <strong>of</strong> <strong>the</strong> modes <strong>of</strong> interest. To reduce <strong>the</strong> risk <strong>of</strong> missing modes, <strong>the</strong><br />

number <strong>of</strong> excit<strong>at</strong>ion points can be increased. The same is true for <strong>the</strong> response measurements. The<br />

number <strong>of</strong> inputs (excit<strong>at</strong>ion points) is typically in <strong>the</strong> order <strong>of</strong> 1 to 10, while <strong>the</strong> number <strong>of</strong> outputs<br />

(response measurements) can reach more than 1000 points when using optical measurement<br />

equipment such as for instance a scanning laser Doppler vibrometer.<br />

3. Frequency-Domain Identific<strong>at</strong>ion <strong>of</strong> Modes<br />

Typical for modal analysis is <strong>the</strong> very large number <strong>of</strong> outputs. This huge amount <strong>of</strong> d<strong>at</strong>a requires<br />

dedic<strong>at</strong>ed algorithms th<strong>at</strong> balance between accuracy and memory/computing needs. In Section 3.1<br />

such a ‘dedic<strong>at</strong>ed’ frequency-domain least-squares estim<strong>at</strong>or will be presented. Based on <strong>the</strong>se<br />

results, it is possible to implement more sophistic<strong>at</strong>ed identific<strong>at</strong>ion methods (see 6.43.8.2<br />

Estim<strong>at</strong>ion with Known Noise Model and 6.43.8.4 Estim<strong>at</strong>ion with Unknown Noise Model) such as<br />

for instance <strong>the</strong> frequency-domain Maximum Likelihood (ML) estim<strong>at</strong>or (Section 3.2).<br />

3.1 Least Squares Estim<strong>at</strong>ion<br />

3.1.1 Common-Denomin<strong>at</strong>or Model<br />

The rel<strong>at</strong>ionship between output o ( o = 1, �,<br />

N o ) and input i ( i = 1, �,<br />

N i ) is modeled in <strong>the</strong><br />

frequency domain by means <strong>of</strong> a common-denomin<strong>at</strong>or transfer function<br />

ˆ N k ( ω)<br />

H k ( ω)<br />

= (20)<br />

d(<br />

ω)<br />

for k = 1, �,<br />

N o N i (where k = ( o −1)<br />

N i + i ) and with<br />

k<br />

n<br />

∑<br />

j=<br />

0<br />

N ( ω ) = Ω ( ω)<br />

B<br />

(21)<br />

j<br />

kj<br />

<strong>the</strong> numer<strong>at</strong>or polynomial between output o and input i and<br />

n<br />

∑<br />

j=<br />

0<br />

d(<br />

ω ) = Ω ( ω)<br />

A<br />

(22)<br />

j<br />

j<br />

<strong>the</strong> common-denomin<strong>at</strong>or polynomial. The real-valued coefficients j A and B kj are <strong>the</strong> parameters<br />

to be estim<strong>at</strong>ed. Several choices are possible for <strong>the</strong> polynomial basis functions Ω j (ω)<br />

. For a<br />

discrete-time domain model, <strong>the</strong> functions Ω j (ω)<br />

are usually given by Ω j ( ω ) = exp( −iωTs<br />

⋅ j)<br />

j<br />

(with T s <strong>the</strong> sampling period) while for a continuous-time domain model Ω ( ω ) = ( iω)<br />

. The bad<br />

j<br />

(19)


numerical conditioning <strong>of</strong> <strong>the</strong> continuous-time domain approach can be improved by using for<br />

instance orthogonal Forsy<strong>the</strong> polynomials (<strong>at</strong> <strong>the</strong> expense <strong>of</strong> an increase <strong>of</strong> <strong>the</strong> comput<strong>at</strong>ion time).<br />

3.1.2 Linearity in <strong>the</strong> Parameters<br />

In modal analysis, measurements <strong>of</strong> Frequency Response Functions (FRFs) are commonly used (see<br />

6.43.8.1 Measurements <strong>of</strong> Frequency response functions). Replacing <strong>the</strong> model H ˆ ( ω)<br />

in (20) by<br />

<strong>the</strong> measured FRFs H k ( ω f ) for f N f , , = 1 � gives, after multiplic<strong>at</strong>ion with <strong>the</strong> denomin<strong>at</strong>or<br />

polynomial,<br />

n<br />

∑ ∑<br />

Ω ( ω ) B − Ω ( ω ) H ( ω ) A ≈ 0<br />

(23)<br />

j f kj<br />

j=<br />

0 j=<br />

0<br />

n<br />

j<br />

f<br />

k<br />

f<br />

j<br />

with o i N N k , , 1 � = and f N f , , = 1 � . Because <strong>the</strong> equ<strong>at</strong>ions (23) are “linear-in-<strong>the</strong>-parameters”,<br />

<strong>the</strong>y can be reformul<strong>at</strong>ed as<br />

with<br />

⎡X<br />

⎢<br />

0<br />

⎢<br />

⎢ �<br />

⎢<br />

⎣<br />

0<br />

1<br />

k<br />

0<br />

X<br />

0<br />

2<br />

�<br />

�<br />

X<br />

⎧Bk<br />

0 ⎫<br />

⎪ ⎪<br />

⎪Bk<br />

1 ⎪<br />

= ⎨ ⎬ ,<br />

⎪ � ⎪<br />

⎪⎩<br />

B ⎪ kn ⎭<br />

0<br />

0<br />

N N<br />

o<br />

i<br />

Y<br />

Y<br />

Y<br />

�<br />

1<br />

2<br />

N N<br />

o<br />

⎧A0<br />

⎫<br />

⎪ ⎪<br />

⎪ A1<br />

⎪<br />

= ⎨ ⎬<br />

⎪ � ⎪<br />

⎪⎩<br />

A ⎪ n ⎭<br />

i<br />

⎧<br />

⎤ ⎪<br />

⎥ ⎪<br />

⎥ ⋅ ⎨<br />

⎥<br />

⎪<br />

⎥<br />

⎦<br />

⎪<br />

⎪⎩<br />

�<br />

1<br />

2<br />

N N<br />

o<br />

i<br />

⎫<br />

⎪<br />

⎪<br />

⎬ ≈ 0<br />

⎪<br />

⎪<br />

⎪⎭<br />

⎡ W<br />

⎤<br />

k ( ω1<br />

)[ Ω0<br />

( ω1<br />

) , Ω1<br />

( ω1<br />

) , �,<br />

Ωn<br />

( ω1<br />

) ]<br />

⎢<br />

⎥<br />

X k = ⎢<br />

�<br />

⎥<br />

(26)<br />

⎢<br />

⎥<br />

⎣<br />

Wk<br />

( ω N )[ Ω0<br />

( ω ) , Ω1<br />

( ) , , Ω ( ) ]<br />

f<br />

N ω<br />

f<br />

N � f<br />

n ω N f ⎦<br />

⎡ −W<br />

⎤<br />

k ( ω1)[<br />

Ω0(<br />

ω1)<br />

H k ( ω1<br />

) , Ω1<br />

( ω1<br />

) H k ( ω1<br />

) , �,<br />

Ωn<br />

( ω1<br />

) H k ( ω1<br />

) ]<br />

⎢<br />

⎥<br />

Y k = ⎢<br />

�<br />

⎥ (27)<br />

⎢<br />

⎥<br />

⎣<br />

−Wk<br />

( ω N )[ Ω0<br />

( ω ) ( ) , Ω1<br />

( ) ( ) , , Ω ( ) ( ) ]<br />

f<br />

N H<br />

f k ω N ω<br />

f<br />

N H<br />

f k ω N � f<br />

n ω N H<br />

f k ω N f ⎦<br />

Note th<strong>at</strong> every equ<strong>at</strong>ion in (23) has been weighted with a frequency-dependent function Wk ( ω f ) .<br />

The quality <strong>of</strong> <strong>the</strong> estim<strong>at</strong>es can <strong>of</strong>ten be improved by using an adequ<strong>at</strong>e weighting function. The<br />

(complex) Jacobian m<strong>at</strong>rix J <strong>of</strong> this least-squares problem<br />

⎡X1<br />

⎢<br />

0<br />

J = ⎢<br />

⎢ �<br />

⎢<br />

⎣<br />

0<br />

0<br />

X<br />

0<br />

2<br />

�<br />

�<br />

X<br />

0<br />

0<br />

N N<br />

o<br />

i<br />

Y<br />

Y<br />

Y<br />

�<br />

1<br />

2<br />

N N<br />

o<br />

⎤<br />

⎥<br />

⎥<br />

⎥<br />

⎥<br />

⎦<br />

i<br />

has Nf No Ni rows and (n+1)(No Ni +1) columns (with Nf >> n, where n is <strong>the</strong> order <strong>of</strong> <strong>the</strong><br />

n = 2N<br />

).<br />

polynomials, m<br />

k<br />

(24)<br />

(25)<br />

(28)


3.1.3 Normal Equ<strong>at</strong>ions<br />

Many estim<strong>at</strong>ors used in modal analysis form <strong>the</strong> normal equ<strong>at</strong>ions explicitly, i.e. <strong>the</strong>y compute<br />

Re( J J)<br />

H<br />

explicitly. Note th<strong>at</strong> <strong>the</strong> real part <strong>of</strong> J J<br />

H has to be taken because <strong>the</strong> coefficients are real.<br />

Deriving <strong>the</strong> estim<strong>at</strong>es directly from <strong>the</strong> Jacobian m<strong>at</strong>rix leads to a better-conditioned problem.<br />

However, forming <strong>the</strong> normal equ<strong>at</strong>ions can result in a faster implement<strong>at</strong>ion, as will be <strong>the</strong> case<br />

here too. The normal equ<strong>at</strong>ions can be written as<br />

⎡R1<br />

⎢<br />

0<br />

⎢<br />

⎢ �<br />

⎢<br />

T<br />

⎢S1<br />

⎣<br />

S<br />

0<br />

R<br />

2<br />

T<br />

2<br />

�<br />

�<br />

�<br />

S1<br />

⎤ ⎧<br />

⎪<br />

S<br />

⎥<br />

2 ⎥ ⎪<br />

� ⎥ ⋅ ⎨<br />

⎥ ⎪<br />

Tk<br />

⎥ ⎪<br />

⎦ ⎩⎪<br />

NoN<br />

i<br />

∑<br />

k=<br />

1<br />

�<br />

1<br />

2<br />

N N<br />

o<br />

i<br />

⎫<br />

⎪<br />

⎪<br />

⎬ ≈ 0<br />

⎪<br />

⎪<br />

⎪⎭<br />

H<br />

H<br />

H<br />

with R k = Re( X k X k ) , S k = Re( X k Yk<br />

) , and T k = Re( Yk<br />

Yk<br />

) . The entries <strong>of</strong> <strong>the</strong>se m<strong>at</strong>rices equal<br />

⎛<br />

R ⎜<br />

k ( r,<br />

s)<br />

= Re<br />

⎜<br />

⎝<br />

⎛<br />

T ⎜<br />

k ( r,<br />

s)<br />

= Re<br />

⎜<br />

⎝<br />

N<br />

f<br />

∑<br />

f = 1<br />

⎛<br />

S<br />

⎜<br />

k ( r,<br />

s)<br />

= − Re<br />

⎜<br />

⎝<br />

N<br />

N<br />

f<br />

∑<br />

f<br />

∑<br />

f = 1<br />

W<br />

f = 1<br />

k<br />

W<br />

k<br />

( ω )<br />

k<br />

f<br />

f<br />

f<br />

⋅Ω<br />

k<br />

H<br />

r−1<br />

W ( ω ) H ( ω )<br />

2<br />

( ω )<br />

2<br />

k<br />

f<br />

( ω ) Ω<br />

f<br />

f<br />

⋅Ω<br />

s−1<br />

H ( ω ) ⋅Ω<br />

2<br />

H<br />

r−1<br />

H<br />

r−1<br />

⎞<br />

( ω ⎟ f )<br />

⎟<br />

⎠<br />

( ω ) Ω<br />

( ω ) Ω<br />

f<br />

f<br />

s−1<br />

s−1<br />

⎞<br />

( ω ⎟ f )<br />

⎟<br />

⎠<br />

⎞<br />

( ω ⎟ f )<br />

⎟<br />

⎠<br />

If a discrete time-domain model is used, i.e. Ω j ( ω f ) = exp( −iω<br />

f Ts ⋅ j)<br />

, and if <strong>the</strong> frequencies are<br />

uniformly distributed (i.e. ω f = f ⋅ Δω<br />

, f N f , , 1 � = , with summ<strong>at</strong>ions can be rewritten as<br />

Δ ω = 2π<br />

NTs<br />

), <strong>the</strong>n, <strong>the</strong> above<br />

⎛<br />

R ⎜<br />

k ( r,<br />

s)<br />

= Re<br />

⎜<br />

⎝<br />

⎛<br />

T ⎜<br />

k ( r,<br />

s)<br />

= Re<br />

⎜<br />

⎝<br />

N<br />

f<br />

∑<br />

f = 1<br />

⎛<br />

S<br />

⎜<br />

k ( r,<br />

s)<br />

= − Re<br />

⎜<br />

⎝<br />

N<br />

N<br />

f<br />

∑<br />

f<br />

∑<br />

f = 1<br />

W<br />

f = 1<br />

k<br />

W<br />

k<br />

( ω )<br />

k<br />

f<br />

f<br />

f<br />

⋅ e<br />

k<br />

i2π<br />

( r−s<br />

) f N<br />

W ( ω ) H ( ω )<br />

2<br />

( ω )<br />

2<br />

k<br />

f<br />

f<br />

⋅ e<br />

⎞<br />

⎟<br />

⎠<br />

H ( ω ) ⋅e<br />

2<br />

i2π<br />

( r−s<br />

) f N<br />

i2π<br />

( r−s<br />

) f N<br />

⎞<br />

⎟<br />

⎠<br />

⎞<br />

⎟<br />

⎠<br />

One can readily verify th<strong>at</strong> <strong>the</strong> above m<strong>at</strong>rices have a Toeplitz structure and th<strong>at</strong> <strong>the</strong>ir entries can be<br />

time-efficiently computed with <strong>the</strong> Fast Fourier Transform (FFT) algorithm.<br />

3.1.4 Reduced Normal Equ<strong>at</strong>ions<br />

Although <strong>the</strong> number <strong>of</strong> rows <strong>of</strong> <strong>the</strong> normal m<strong>at</strong>rix in (29) is much smaller than <strong>the</strong> number <strong>of</strong> rows<br />

<strong>of</strong> <strong>the</strong> Jacobian m<strong>at</strong>rix (28), its size is still quite huge (i.e. (n+1)(No Ni +1) rows and columns). As<br />

we are mainly interested in a fast and stable method to construct a stabiliz<strong>at</strong>ion chart (see next<br />

section), only <strong>the</strong> denomin<strong>at</strong>or coefficients (i.e. <strong>the</strong> poles) are in fact required. Elimin<strong>at</strong>ion <strong>of</strong> <strong>the</strong><br />

numer<strong>at</strong>or coefficients<br />

yields<br />

⎡<br />

⎢<br />

⎣<br />

k<br />

−1<br />

= −R<br />

⋅S<br />

⋅<br />

NoN<br />

i<br />

∑<br />

k=<br />

1<br />

k<br />

k<br />

T −1<br />

⎤<br />

Tk − Sk<br />

⋅ R k ⋅ Sk<br />

⎥ ⋅ ≈ 0<br />

⎦<br />

(29)<br />

(30)<br />

(31)<br />

(32)<br />

(33)


N<br />

T −1 or M ⋅ ≈ 0 with M = ∑ T − ⋅ ⋅<br />

k=<br />

1 k Sk<br />

R k Sk<br />

. The size <strong>of</strong> <strong>the</strong> square m<strong>at</strong>rix M is n+1, and thus<br />

o i N<br />

much smaller than <strong>the</strong> original normal equ<strong>at</strong>ion (29). To remove <strong>the</strong> parameter redundancy <strong>of</strong><br />

transfer function model (20) (and to avoid <strong>the</strong> trivial solution with all coefficient equal to zero), a<br />

constraint has to be imposed on <strong>the</strong> coefficients <strong>of</strong> <strong>the</strong> transfer functions. This can be done, for<br />

instance, by imposing th<strong>at</strong> one <strong>of</strong> <strong>the</strong> coefficients is equal to a non-zero constant value. Assume, for<br />

instance, th<strong>at</strong> <strong>the</strong> last coefficient <strong>of</strong> � is constrained to 1 (i.e. coefficient n+1). In th<strong>at</strong> case, <strong>the</strong><br />

Least Squares (LS) estim<strong>at</strong>e <strong>of</strong> � is given by<br />

ˆ<br />

LS<br />

−1<br />

⎧ − [ M(<br />

1:<br />

n, 1:<br />

n)]<br />

⋅{<br />

M(<br />

1:<br />

n,<br />

n + 1)}<br />

⎫<br />

= ⎨<br />

⎬<br />

⎩<br />

1<br />

⎭<br />

Once ˆ LS is known, (32) can be used to derive all ˆ<br />

LS coefficients. This approach is more time<br />

2 2<br />

efficient th<strong>at</strong> solving (29) directly (approxim<strong>at</strong>ely o i N N times faster). The mode shape vectors are<br />

derived using (14) and (15).<br />

3.1.5 Stabiliz<strong>at</strong>ion chart<br />

In modal analysis, a stabiliz<strong>at</strong>ion chart is an important tool th<strong>at</strong> is <strong>of</strong>ten used to assist <strong>the</strong> user in<br />

separ<strong>at</strong>ing physical poles from ma<strong>the</strong>m<strong>at</strong>ical ones. A stabiliz<strong>at</strong>ion chart is obtained by repe<strong>at</strong>ing <strong>the</strong><br />

analysis for increasing model order n. For each model order, <strong>the</strong> poles are calcul<strong>at</strong>ed from <strong>the</strong><br />

estim<strong>at</strong>ed denomin<strong>at</strong>or coefficients. The stable poles (i.e. <strong>the</strong> poles with a neg<strong>at</strong>ive real part) are<br />

<strong>the</strong>n presented graphically in ascending model order in a so-called “stabiliz<strong>at</strong>ion chart” (see Figure<br />

6). Estim<strong>at</strong>ed poles corresponding to physically relevant system modes tend to appear for each<br />

estim<strong>at</strong>ion order <strong>at</strong> nearly identical loc<strong>at</strong>ions, while <strong>the</strong> so-called ma<strong>the</strong>m<strong>at</strong>ical poles, i.e. poles<br />

resulting from <strong>the</strong> ma<strong>the</strong>m<strong>at</strong>ical solution <strong>of</strong> <strong>the</strong> normal equ<strong>at</strong>ions but meaningless with respect to<br />

<strong>the</strong> physical interpret<strong>at</strong>ion, tend to jump around. These ma<strong>the</strong>m<strong>at</strong>ical poles are mainly due to <strong>the</strong><br />

presence <strong>of</strong> noise on <strong>the</strong> measurements.<br />

(a) (b)<br />

Figure 6. Stabiliz<strong>at</strong>ion chart obtained with (a) a time-domain estim<strong>at</strong>or (LSCE) and<br />

(b) <strong>the</strong> frequency-domain least-squares estim<strong>at</strong>or.<br />

The LSCE estim<strong>at</strong>or (Least Squares Complex Exponential) is probably <strong>the</strong> most frequently used<br />

technique in industry. The LSCE estim<strong>at</strong>or is a time-domain technique th<strong>at</strong> makes use <strong>of</strong> impulse<br />

response functions (16) to derive <strong>the</strong> modal parameters. In Figure 6 <strong>the</strong> stabiliz<strong>at</strong>ion chart <strong>of</strong> <strong>the</strong><br />

LSCE estim<strong>at</strong>or is compared with <strong>the</strong> proposed frequency-domain least squares estim<strong>at</strong>or. It turns<br />

out th<strong>at</strong> in many applic<strong>at</strong>ions, <strong>the</strong> frequency-domain estim<strong>at</strong>or is able to gener<strong>at</strong>e quite clear<br />

stabiliz<strong>at</strong>ion compared to <strong>the</strong> LSCE approach.<br />

(34)


3.2 Maximum Likelihood Estim<strong>at</strong>ion<br />

3.2.1 Gauss-Newton Optimiz<strong>at</strong>ion<br />

Assuming <strong>the</strong> FRFs to be uncorrel<strong>at</strong>ed, <strong>the</strong> (neg<strong>at</strong>ive) log-likelihood function reduces to<br />

NoN<br />

N i f Hˆ<br />

k ( , ω f ) − H k ( ω f )<br />

� ML(<br />

) = ∑∑<br />

(35)<br />

var{ H ( ω )}<br />

k=<br />

1 f = 1<br />

k f<br />

2<br />

T T T T<br />

The Maximum Likelihood (ML) estim<strong>at</strong>e <strong>of</strong> = [ 1 , �,<br />

No<br />

N , ] is obtained by minimizing (35).<br />

i<br />

This can be done by means <strong>of</strong> a Gauss-Newton optimiz<strong>at</strong>ion algorithm, which takes advantage <strong>of</strong><br />

<strong>the</strong> quadr<strong>at</strong>ic form <strong>of</strong> <strong>the</strong> cost function (35). The Gauss-Newton iter<strong>at</strong>ions are given by<br />

(a)<br />

(b)<br />

solve Re( J<br />

set<br />

p+1<br />

=<br />

H<br />

p<br />

p<br />

J<br />

p<br />

+<br />

)<br />

p<br />

p<br />

= − Re( J<br />

with r p = r(<br />

p ) , J = ∂r(<br />

) ∂ and<br />

p<br />

p<br />

H<br />

p<br />

r<br />

p<br />

)<br />

for<br />

p<br />

⎧ Hˆ<br />

⎫<br />

11(<br />

, ω1)<br />

− H11(<br />

ω1)<br />

⎪<br />

⎪<br />

⎪ var{ H11(<br />

ω1)}<br />

⎪<br />

⎪<br />

⎪<br />

r( ) = ⎨<br />

� ⎬<br />

(37)<br />

⎪ Hˆ<br />

N ( , ) − ( ) ⎪<br />

oN<br />

ω<br />

i N H<br />

f NoN<br />

ω i N f<br />

⎪<br />

⎪<br />

⎪ var{ H N ( )}<br />

⎩<br />

oN<br />

ω i N f ⎪⎭<br />

The Jacobian m<strong>at</strong>rix J p has <strong>the</strong> same structure as <strong>the</strong> m<strong>at</strong>rix J given in (28). Also here it is possible<br />

H<br />

H<br />

to form <strong>the</strong> normal equ<strong>at</strong>ions (i.e. Re( J p J p ) and Re( J p rp<br />

) ) in a similar time-efficient way as<br />

presented in Section 3.1. See 6.43.8.2 Estim<strong>at</strong>ion with Known Noise Model and 6.43.8.4 Estim<strong>at</strong>ion<br />

with Unknown Noise Model for more inform<strong>at</strong>ion about frequency-domain ML identific<strong>at</strong>ion.<br />

3.2.2 Confidence Intervals<br />

A good approxim<strong>at</strong>ion <strong>of</strong> <strong>the</strong> covariance m<strong>at</strong>rix <strong>of</strong> <strong>the</strong> ML estim<strong>at</strong>e ˆ<br />

ML is obtained by inverting <strong>the</strong><br />

Fisher inform<strong>at</strong>ion m<strong>at</strong>rix (see 6.43.8. Frequency Domain System Identific<strong>at</strong>ion)<br />

ˆ<br />

cov{<br />

ML<br />

} ≈ [ 2 Re( J J<br />

H<br />

∞<br />

∞<br />

)]<br />

−1<br />

with J ∞ <strong>the</strong> Jacobian m<strong>at</strong>rix evalu<strong>at</strong>ed in <strong>the</strong> last iter<strong>at</strong>ion step <strong>of</strong> <strong>the</strong> Gauss-Newton optimiz<strong>at</strong>ion.<br />

As one is mainly interested in <strong>the</strong> uncertainty on <strong>the</strong> modal frequencies and damping r<strong>at</strong>ios, only <strong>the</strong><br />

covariance m<strong>at</strong>rix <strong>of</strong> <strong>the</strong> denomin<strong>at</strong>or coefficients is in fact required. Starting from (38), one can<br />

show th<strong>at</strong> this m<strong>at</strong>rix is given by<br />

ˆ<br />

cov{<br />

ML<br />

}<br />

⎡<br />

⎢2<br />

⎣<br />

≈ ∑ i oN N<br />

k=<br />

1<br />

−1<br />

(36)<br />

(38)<br />

T −1<br />

⎤<br />

T k − Sk<br />

⋅ R k ⋅ Sk<br />

⎥<br />

(39)<br />

⎦<br />

with R k , S k , and T k as defined in Section 3.1.3 but now applied to Re( J ∞ J ∞ )<br />

H<br />

. Hence, it is not<br />

necessary to invert <strong>the</strong> full m<strong>at</strong>rix occurring in (38). From (39), it is possible to compute <strong>the</strong><br />

uncertainty on <strong>the</strong> modal frequencies and damping r<strong>at</strong>ios. For flight flutter testing – but also for<br />

applic<strong>at</strong>ions such as vibr<strong>at</strong>ion-based fault detection and oper<strong>at</strong>ional modal analysis – <strong>the</strong> availability<br />

<strong>of</strong> reliable estim<strong>at</strong>es toge<strong>the</strong>r with confidence intervals is important.


4. Applic<strong>at</strong>ion<br />

In this section, modal analysis will be applied to a sl<strong>at</strong> track, which is safety critical component <strong>of</strong> a<br />

airplane. Sl<strong>at</strong> tracks (see Figure 7) are loc<strong>at</strong>ed <strong>at</strong> <strong>the</strong> leading edge <strong>of</strong> an aircraft wing and make part<br />

<strong>of</strong> a gliding mechanism th<strong>at</strong> is used to enlarge <strong>the</strong> wing surface. The enlargement <strong>of</strong> <strong>the</strong> wing<br />

surface is needed in order to increase <strong>the</strong> lift force <strong>at</strong> reduced velocity during landing and take <strong>of</strong>f.<br />

A sl<strong>at</strong> track <strong>of</strong> an Airbus A320 airplane is considered here. The A320 airplane has 5 sl<strong>at</strong>s per wing.<br />

The first sl<strong>at</strong> (i.e. <strong>the</strong> inboard sl<strong>at</strong> between fuselage and engine) contains 4 sl<strong>at</strong> tracks. The o<strong>the</strong>r 4<br />

sl<strong>at</strong>s have 2 sl<strong>at</strong> tracks each. Safety critical components such as sl<strong>at</strong> tracks are rigorously tested to<br />

prove <strong>the</strong>ir ability to withstand all safety regul<strong>at</strong>ions. It is commonly accepted th<strong>at</strong> <strong>the</strong> track should<br />

outlive <strong>the</strong> plane by five times. Using computer simul<strong>at</strong>ions, it is possible to predict <strong>the</strong> lifetime <strong>of</strong><br />

a track using Finite Element (FE) models. To valid<strong>at</strong>e <strong>the</strong> dynamic behavior <strong>of</strong> <strong>the</strong>se FE models,<br />

experimentally obtained estim<strong>at</strong>es <strong>of</strong> <strong>the</strong> modal parameters are required.<br />

SLAT TRACK<br />

LEADING<br />

EDGE<br />

OF WING<br />

SLAT TRACK<br />

SLAT<br />

Figure 7: Mounted sl<strong>at</strong> track on an Airbus A320 in extended position.<br />

FORCE SENSOR<br />

STINGER<br />

SHAKER<br />

SHAKER<br />

SCANNING LASER<br />

DOPPLER VIBROMETER<br />

(a) (b) (c)<br />

Figure 8: Measurement setup. (a) Excit<strong>at</strong>ion with a shaker. (b) Response measurements with a<br />

scanning laser Doppler vibrometer. (c) Measurement points on <strong>the</strong> surface <strong>of</strong> <strong>the</strong> sl<strong>at</strong> track.<br />

In Figure 8(a) a shaker is used to excite <strong>the</strong> sl<strong>at</strong> track with a multisine signal. A multisine is a<br />

periodic signal consisting <strong>of</strong> a sum <strong>of</strong> sine waves <strong>at</strong> uniformly distributed frequencies (from 0 Hz to<br />

8192 Hz in this case with a resolution <strong>of</strong> 1 Hz). A force sensor is <strong>at</strong>tached on <strong>the</strong> sl<strong>at</strong> track and is in<br />

contact with <strong>the</strong> shaker through a stinger. The stinger has <strong>the</strong> characteristic <strong>of</strong> being stiff in only<br />

one direction, i.e. th<strong>at</strong> <strong>of</strong> <strong>the</strong> intended excit<strong>at</strong>ion. In this example, one surface <strong>of</strong> <strong>the</strong> track is


measured by means <strong>of</strong> a scanning laser Doppler vibrometer (see Figure 8(b); <strong>the</strong> shaker is <strong>at</strong> <strong>the</strong><br />

backside <strong>of</strong> <strong>the</strong> sl<strong>at</strong> track, which is vertically suspended by means <strong>of</strong> a elastic rope). The FRF<br />

measurements are performed in 500 points uniformly distributed over <strong>the</strong> surface <strong>of</strong> one side <strong>of</strong> <strong>the</strong><br />

sl<strong>at</strong> track (see Figure 8(c)).<br />

Starting from <strong>the</strong> FRF measurements, <strong>the</strong> modal parameters can be estim<strong>at</strong>ed using <strong>the</strong> frequencydomain<br />

estim<strong>at</strong>or given in Section 3. In <strong>the</strong> considered frequency band, a few hundreds <strong>of</strong> modes<br />

are present. Figure 9 shows 4 <strong>of</strong> <strong>the</strong> estim<strong>at</strong>ed mode shapes (with enlarged displacement<br />

amplitudes). The real displacements are <strong>of</strong> <strong>the</strong> order <strong>of</strong> a few micrometers.<br />

(a) (b)<br />

(c) (d)<br />

Figure 9: Mode shapes <strong>of</strong> <strong>the</strong> sl<strong>at</strong> track for a modal frequency <strong>of</strong><br />

(a) 4091 Hz, (b) 4161 Hz, (c) 4739 Hz, and (d) 5169 Hz


5. Conclusions<br />

In this contribution about modal analysis, a ‘dedic<strong>at</strong>ed’ multivariable implement<strong>at</strong>ion for frequencydomain<br />

estim<strong>at</strong>ors, based on a common-denomin<strong>at</strong>or transfer function model, has been given.<br />

Typical for modal analysis is <strong>the</strong> very large number <strong>of</strong> outputs. This huge amount <strong>of</strong> d<strong>at</strong>a requires<br />

dedic<strong>at</strong>ed algorithms th<strong>at</strong> balance between accuracy and memory/computing requirements.<br />

The results given in this contribution can be generalized to o<strong>the</strong>r frequency-domain estim<strong>at</strong>ors such<br />

as <strong>the</strong> Total Least Squares (TLS), Generalized Total Least Squares (GTLS), Iter<strong>at</strong>ive Quadr<strong>at</strong>ic<br />

Maximum Likelihood (IQML), … (see 6.43.8.2 Estim<strong>at</strong>ion with Known Noise Model and 6.43.8.4<br />

Estim<strong>at</strong>ion with Unknown Noise Model).<br />

Bibliography<br />

Ewins D.J. (2000). Modal Testing: Theory, Practice and Applic<strong>at</strong>ion, Hertfordshire: Research<br />

Studies Press. [In this book, all <strong>the</strong> steps involved in planning, executing, interpreting and applying<br />

<strong>the</strong> results from a modal test are described in straightforward terms.]<br />

Ewins D.J. and Inman D.J., Editors (2001). Structural Dynamics @ 2000: Current St<strong>at</strong>us and<br />

Future Directions, Baldock: Research Studies Press. [This book presents an integr<strong>at</strong>ed collection <strong>of</strong><br />

contributions on structural dynamics.]<br />

Heylen W., Lammens S. and Sas P. (1998). Modal Analysis Theory and Testing, KULeuven (ISBN:<br />

90-73802-61-X). [This book gives a good introduction to <strong>the</strong> <strong>the</strong>ory as well as all practical aspects<br />

<strong>of</strong> experimental modal analysis.]<br />

Inman D.J. (1994). <strong>Engineering</strong> Vibr<strong>at</strong>ion, Englewood Cliffs: Prentice Hall. [This book gives an<br />

introduction to mechanical systems and vibr<strong>at</strong>ion.]<br />

Maia N.M.M. and Silva J.M.M., Editors (1997). Theoretical and Experimental Modal Analysis,<br />

Taunton: Research Studies Press. [This book takes an advanced and up-to-d<strong>at</strong>e look <strong>at</strong> modal<br />

analysis. The basics <strong>of</strong> vibr<strong>at</strong>ion <strong>the</strong>ory and signal processing are discussed.]<br />

Pintelon R. and Schoukens J. (2001). System Identific<strong>at</strong>ion: A Frequency Domain Approach, IEEE<br />

Press and John Wiley & Sons (ISBN 0-7803-6000-1). [This book presents a general approach to<br />

system identific<strong>at</strong>ion, with both practical examples and <strong>the</strong>oretical discussions.]

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!