07.12.2012 Views

MODAL ANALYSIS - the Dept. of Mechanical Engineering at - Vrije ...

MODAL ANALYSIS - the Dept. of Mechanical Engineering at - Vrije ...

MODAL ANALYSIS - the Dept. of Mechanical Engineering at - Vrije ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

3.1.3 Normal Equ<strong>at</strong>ions<br />

Many estim<strong>at</strong>ors used in modal analysis form <strong>the</strong> normal equ<strong>at</strong>ions explicitly, i.e. <strong>the</strong>y compute<br />

Re( J J)<br />

H<br />

explicitly. Note th<strong>at</strong> <strong>the</strong> real part <strong>of</strong> J J<br />

H has to be taken because <strong>the</strong> coefficients are real.<br />

Deriving <strong>the</strong> estim<strong>at</strong>es directly from <strong>the</strong> Jacobian m<strong>at</strong>rix leads to a better-conditioned problem.<br />

However, forming <strong>the</strong> normal equ<strong>at</strong>ions can result in a faster implement<strong>at</strong>ion, as will be <strong>the</strong> case<br />

here too. The normal equ<strong>at</strong>ions can be written as<br />

⎡R1<br />

⎢<br />

0<br />

⎢<br />

⎢ �<br />

⎢<br />

T<br />

⎢S1<br />

⎣<br />

S<br />

0<br />

R<br />

2<br />

T<br />

2<br />

�<br />

�<br />

�<br />

S1<br />

⎤ ⎧<br />

⎪<br />

S<br />

⎥<br />

2 ⎥ ⎪<br />

� ⎥ ⋅ ⎨<br />

⎥ ⎪<br />

Tk<br />

⎥ ⎪<br />

⎦ ⎩⎪<br />

NoN<br />

i<br />

∑<br />

k=<br />

1<br />

�<br />

1<br />

2<br />

N N<br />

o<br />

i<br />

⎫<br />

⎪<br />

⎪<br />

⎬ ≈ 0<br />

⎪<br />

⎪<br />

⎪⎭<br />

H<br />

H<br />

H<br />

with R k = Re( X k X k ) , S k = Re( X k Yk<br />

) , and T k = Re( Yk<br />

Yk<br />

) . The entries <strong>of</strong> <strong>the</strong>se m<strong>at</strong>rices equal<br />

⎛<br />

R ⎜<br />

k ( r,<br />

s)<br />

= Re<br />

⎜<br />

⎝<br />

⎛<br />

T ⎜<br />

k ( r,<br />

s)<br />

= Re<br />

⎜<br />

⎝<br />

N<br />

f<br />

∑<br />

f = 1<br />

⎛<br />

S<br />

⎜<br />

k ( r,<br />

s)<br />

= − Re<br />

⎜<br />

⎝<br />

N<br />

N<br />

f<br />

∑<br />

f<br />

∑<br />

f = 1<br />

W<br />

f = 1<br />

k<br />

W<br />

k<br />

( ω )<br />

k<br />

f<br />

f<br />

f<br />

⋅Ω<br />

k<br />

H<br />

r−1<br />

W ( ω ) H ( ω )<br />

2<br />

( ω )<br />

2<br />

k<br />

f<br />

( ω ) Ω<br />

f<br />

f<br />

⋅Ω<br />

s−1<br />

H ( ω ) ⋅Ω<br />

2<br />

H<br />

r−1<br />

H<br />

r−1<br />

⎞<br />

( ω ⎟ f )<br />

⎟<br />

⎠<br />

( ω ) Ω<br />

( ω ) Ω<br />

f<br />

f<br />

s−1<br />

s−1<br />

⎞<br />

( ω ⎟ f )<br />

⎟<br />

⎠<br />

⎞<br />

( ω ⎟ f )<br />

⎟<br />

⎠<br />

If a discrete time-domain model is used, i.e. Ω j ( ω f ) = exp( −iω<br />

f Ts ⋅ j)<br />

, and if <strong>the</strong> frequencies are<br />

uniformly distributed (i.e. ω f = f ⋅ Δω<br />

, f N f , , 1 � = , with summ<strong>at</strong>ions can be rewritten as<br />

Δ ω = 2π<br />

NTs<br />

), <strong>the</strong>n, <strong>the</strong> above<br />

⎛<br />

R ⎜<br />

k ( r,<br />

s)<br />

= Re<br />

⎜<br />

⎝<br />

⎛<br />

T ⎜<br />

k ( r,<br />

s)<br />

= Re<br />

⎜<br />

⎝<br />

N<br />

f<br />

∑<br />

f = 1<br />

⎛<br />

S<br />

⎜<br />

k ( r,<br />

s)<br />

= − Re<br />

⎜<br />

⎝<br />

N<br />

N<br />

f<br />

∑<br />

f<br />

∑<br />

f = 1<br />

W<br />

f = 1<br />

k<br />

W<br />

k<br />

( ω )<br />

k<br />

f<br />

f<br />

f<br />

⋅ e<br />

k<br />

i2π<br />

( r−s<br />

) f N<br />

W ( ω ) H ( ω )<br />

2<br />

( ω )<br />

2<br />

k<br />

f<br />

f<br />

⋅ e<br />

⎞<br />

⎟<br />

⎠<br />

H ( ω ) ⋅e<br />

2<br />

i2π<br />

( r−s<br />

) f N<br />

i2π<br />

( r−s<br />

) f N<br />

⎞<br />

⎟<br />

⎠<br />

⎞<br />

⎟<br />

⎠<br />

One can readily verify th<strong>at</strong> <strong>the</strong> above m<strong>at</strong>rices have a Toeplitz structure and th<strong>at</strong> <strong>the</strong>ir entries can be<br />

time-efficiently computed with <strong>the</strong> Fast Fourier Transform (FFT) algorithm.<br />

3.1.4 Reduced Normal Equ<strong>at</strong>ions<br />

Although <strong>the</strong> number <strong>of</strong> rows <strong>of</strong> <strong>the</strong> normal m<strong>at</strong>rix in (29) is much smaller than <strong>the</strong> number <strong>of</strong> rows<br />

<strong>of</strong> <strong>the</strong> Jacobian m<strong>at</strong>rix (28), its size is still quite huge (i.e. (n+1)(No Ni +1) rows and columns). As<br />

we are mainly interested in a fast and stable method to construct a stabiliz<strong>at</strong>ion chart (see next<br />

section), only <strong>the</strong> denomin<strong>at</strong>or coefficients (i.e. <strong>the</strong> poles) are in fact required. Elimin<strong>at</strong>ion <strong>of</strong> <strong>the</strong><br />

numer<strong>at</strong>or coefficients<br />

yields<br />

⎡<br />

⎢<br />

⎣<br />

k<br />

−1<br />

= −R<br />

⋅S<br />

⋅<br />

NoN<br />

i<br />

∑<br />

k=<br />

1<br />

k<br />

k<br />

T −1<br />

⎤<br />

Tk − Sk<br />

⋅ R k ⋅ Sk<br />

⎥ ⋅ ≈ 0<br />

⎦<br />

(29)<br />

(30)<br />

(31)<br />

(32)<br />

(33)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!