11.12.2012 Views

Preferential Adsorption and Co-nonsolvency of ... - au one net

Preferential Adsorption and Co-nonsolvency of ... - au one net

Preferential Adsorption and Co-nonsolvency of ... - au one net

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Macromolecules ARTICLE<br />

(bl,m Kl,m/(n þ nAl þ nBm)). This function is called binding<br />

polynomial in the literature. It is equivalent to the gr<strong>and</strong> partition<br />

function <strong>of</strong> a H-bonding chain in the mixed solvent.<br />

The degree <strong>of</strong> binding for each comp<strong>one</strong>nt is defined by the<br />

average number <strong>of</strong> bound molecules per binding site on the<br />

polymer chain <strong>and</strong> derived from the binding polynomial by<br />

differentiation<br />

θRðyA, yBÞ<br />

1 ∂ ln p<br />

n ∂ ln yR<br />

ðR ¼ A, BÞ ð2.20Þ<br />

In summary, we have found<br />

βΔμ0, 0 ¼ 1 þ ln x - nv S þ ng0, 0 ð2.21aÞ<br />

βΔμ fA ¼ 1 þ ln yA - nAv S þ nAgfA<br />

βΔμ fB ¼ 1 þ ln yB - nBv S þ nBgfB<br />

ð2.21bÞ<br />

ð2.21cÞ<br />

with<br />

v S ¼ φ=n þ yA=nA þ yB=nB ð2.22Þ<br />

Substituting the equilibrium distribution function (2.16) back<br />

into the original free energy, we find<br />

βΔF=Ω ¼ F FH þ F AS ð2.23Þ<br />

where<br />

F FH ¼ φ<br />

n ln φ þ φA ln φA þ<br />

nA<br />

φB ln φB þ gðfφgÞ ð2.24Þ<br />

nB<br />

is the conventional Flory-Huggins free energy, <strong>and</strong><br />

F AS ¼ φ x<br />

ln<br />

n φ þ φA ln<br />

nA<br />

yA<br />

þ<br />

φA φB ln<br />

nB<br />

yB<br />

þðθA þ θBÞφ<br />

φB ð2.25Þ<br />

is the free energy due to the molecular association.<br />

3. PREFERENTIAL ADSORPTION BY POLYMERS IN<br />

MIXED SOLVENTS<br />

The total degree <strong>of</strong> binding is<br />

θ θA þ θB ð3.1Þ<br />

If there is no interaction between the bound molecules, the total<br />

is given by the simple mixing law<br />

ð3.2Þ<br />

where θR° is the degree <strong>of</strong> binding in each pure solvent, <strong>and</strong><br />

xR NR=ðNA þ NBÞ ðR¼A, BÞ ð3.3Þ<br />

are the mole fractions <strong>of</strong> the solvent. The excess binding is then<br />

defined by<br />

Δθ E<br />

θ° θ °<br />

A xA þ θ °<br />

B xB<br />

θ - θ° ¼ θA - θ °<br />

A xA þ θB - θ °<br />

B xB<br />

ð3.4Þ<br />

For cosolvency, the excess is positive, while for co-<strong>nonsolvency</strong><br />

it is negative. There is a possibility that the excess binding<br />

changes its sign at a certain composition <strong>of</strong> the mixed solvent.<br />

The mole fraction <strong>of</strong> the bound molecules at such a particular<br />

concentration takes exactly the same value as the mole fraction <strong>of</strong><br />

the solvent in the bulk outside the coil region. Such a particular<br />

point is called azeotropic binding. 26<br />

In what follows we focus on co-<strong>nonsolvency</strong>, <strong>and</strong> derive Gibbs<br />

matrix for the study <strong>of</strong> phase separation. As for the composition<br />

<strong>of</strong> the solvent mixture, we use its volume fraction<br />

vR nRNR=ðnANA þ nBNBÞ ðR¼A, BÞ ð3.5Þ<br />

as well as the mole fraction. We then have<br />

φA ¼ð1-φÞvA, φB ¼ð1-φÞvB ð3.6Þ<br />

We regard the volume fraction vB <strong>of</strong> the second solvent as the<br />

controlling parameter, <strong>and</strong> write it as vB ξ. We then have vA =1<br />

- ξ.<br />

3.1. Transition Matrix. Let us first relate the variation <strong>of</strong> the<br />

volume fraction yA <strong>and</strong> yB <strong>of</strong> the free solvents by the variation <strong>of</strong><br />

the independent variable φA <strong>and</strong> φB (solvent composition) which<br />

are controlled variables in the experiments. We first define a<br />

matrix JR,β by the equation<br />

d ln yR ¼ X<br />

JR, βdφβ ð3.7Þ<br />

Or, in the matrix form<br />

2 3<br />

dlnyA<br />

4 5 ¼<br />

dlnyB<br />

JA,<br />

2 3<br />

A<br />

4<br />

JB, A<br />

JA, B<br />

5<br />

JB, B<br />

dφ 2 3<br />

A<br />

4 5<br />

dφB ð3.8Þ<br />

By taking the derivatives <strong>of</strong> the material conservation laws<br />

(2.18a) to (2.18c), we have<br />

p dx þ φðθA dlnyA þ θB dlnyBÞ ¼ - ðdφA þ dφBÞ=n ðyA þ nAφθAKA, AÞ dlnyA þ nAφ AθAKA, B dlnyB<br />

2981 dx.doi.org/10.1021/ma102695n |Macromolecules 2011, 44, 2978–2989<br />

β<br />

¼ð1 þ nAθAÞ dφ A þ nAθA dφ B<br />

nBφθBKB, A dlnyB þðyB þ nBφθBKB, BÞ dlnyB<br />

¼ nBθB dφA þð1þ nBθBÞ dφB where the matrix KR,β is defined by<br />

∂ ln θR<br />

KR, β<br />

∂ ln yβ<br />

Solving these equations for d lnyR, we find<br />

JA, A ¼fð1-φB- yAÞ½yB þðφB - yBÞKB, BŠ<br />

- ðφA - yAÞðφB - yBÞKA, Bg=φΦ<br />

ð3.9Þ<br />

ð3.10Þ<br />

JA, B ¼ðφ A - yAÞ½yB - φKA, B þðφ B - yBÞðKB, B - KA, BÞŠ=φΦ<br />

JB, A ¼ðφ B - yBÞ½yA - φKB, A þðφ A - yAÞðKA, A - KB, AÞŠ=φΦ<br />

JB, B ¼fð1-φA- yBÞ½yA þðφA - yAÞKA, AŠ<br />

- ðφB - yBÞðφA - yAÞKB, Ag=φΦ ð3.11Þ<br />

where<br />

ΦðyA, yBÞ yAyB þðφA - yAÞyBKA, A þðφB - yBÞyAKB, B<br />

þðφA - yAÞðφB - yBÞK ð3.12Þ<br />

<strong>and</strong><br />

K KA, AKB, B - KA, BKB, A ð3.13Þ<br />

is the determinant <strong>of</strong> the matrix ^K.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!