11.12.2012 Views

Preferential Adsorption and Co-nonsolvency of ... - au one net

Preferential Adsorption and Co-nonsolvency of ... - au one net

Preferential Adsorption and Co-nonsolvency of ... - au one net

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Macromolecules ARTICLE<br />

3.2. <strong>Preferential</strong> <strong>Adsorption</strong> <strong>Co</strong>efficients. The preferential<br />

adsorption coefficient ΓR,β is defined by the change d ln θR <strong>of</strong> the<br />

adsorbed R-comp<strong>one</strong>nt by an infinitesimal increment dφβ <strong>of</strong> the<br />

β-comp<strong>one</strong>nt solvent. By multiplication <strong>of</strong> K matrix to the<br />

transition J matrix, we find<br />

2 3<br />

dlnθA<br />

4 5 ¼<br />

dlnθB<br />

KA,<br />

2 3<br />

A KA, B<br />

4 5<br />

KB, A KB, B<br />

JA,<br />

2 3<br />

A JA, B<br />

4 5<br />

JB, A JB, B<br />

dφ 2 3<br />

A<br />

4 5<br />

dφB ¼ ΓA,<br />

" # " #<br />

A ΓA, B dφA<br />

ð3.14Þ<br />

ΓB, A ΓB, B dφB where<br />

ΓA, A ¼fð1-φB- yAÞ½yBKA, A þðφB - yBÞKŠ<br />

þðφB - yBÞyAKA, Bg=φΦ<br />

ΓA, B ¼fð1 - φ A - yBÞyAKA, B þðφ A - yAÞyBKA, A<br />

þðφ A - yAÞðφ B - yBÞKg=φΦ<br />

ΓB, A ¼fð1 - φ B - yAÞyBKB, A þðφ B - yBÞyAKB, B<br />

þðφ A - yAÞðφ B - yBÞKg=φΦ<br />

ΓB, B ¼fð1-φA- yBÞ½yAKB, B þðφA - yAÞKŠ<br />

þðφA - yAÞyBKB, Ag=φΦ ð3.15Þ<br />

If the volume fraction φ <strong>of</strong> the polymer is fixed, dφ A <strong>and</strong> dφ B<br />

are not independent, but related by<br />

dφ A ¼ - ð1 - φÞdξ ð3.16aÞ<br />

dφB ¼ð1-φÞdξ ð3.16bÞ<br />

<strong>and</strong> hence the preferential adsorption coefficient is<br />

∂θA<br />

Γ<br />

∂ξ<br />

ð1 - φÞθA<br />

¼<br />

φΦðyA, yBÞ ½ð - yBKA, A þ yAKA, BÞφ - ðφB - yBÞφKŠ<br />

Here yA <strong>and</strong> yB are the solutions <strong>of</strong> the coupled equations<br />

ð3.17Þ<br />

yA þ nAφθAðyA, yBÞ ¼ð1 - φÞð1 - ξÞ ð3.18aÞ<br />

yB þ nBφθBðyA, yBÞ ¼ð1 - φÞξ ð3.18bÞ<br />

4. PHASE SEPARATION IN MIXED SOLVENTS<br />

Although we are ready to find the binodals by using the<br />

chemical potentials, we are involved in many technical difficulties<br />

for numerical calculations <strong>of</strong> three-comp<strong>one</strong>nt systems, in particular<br />

in the presence <strong>of</strong> the cooperativity in the H-binding.<br />

Therefore, we attempt to find spinodal lines only by the calculation<br />

<strong>of</strong> Gibbs matrix.<br />

4.1. <strong>Co</strong>nstruction <strong>of</strong> the Gibbs Matrix. In tertiary systems,<br />

two <strong>of</strong> the three chemical potentials are independent due to the<br />

Gibbs-D€uhem relation. Here we use the chemical potentials<br />

<strong>of</strong> the free solvent molecules. The Gibbs matrix is then defined by<br />

GR, β<br />

∂Δμ f R<br />

∂φ β<br />

Bec<strong>au</strong>se we have<br />

dv S<br />

vA dφA þ vB dφB for the variation <strong>of</strong> ν S , where<br />

<strong>and</strong> also<br />

vA<br />

vB<br />

- 1<br />

n<br />

- 1<br />

n<br />

þ yA<br />

nA<br />

þ yA<br />

nA<br />

JA, A þ yB<br />

JA, B þ yB<br />

JB, A<br />

nB<br />

JB, B<br />

nB<br />

" #<br />

dgfA<br />

¼<br />

dgfB<br />

gA,<br />

" # " #<br />

A gA, B dφA<br />

gB, A gB, B dφB ð4.1Þ<br />

ð4.2Þ<br />

ð4.3aÞ<br />

ð4.3bÞ<br />

ð4.4Þ<br />

for the variation <strong>of</strong> the interaction, we find<br />

" #<br />

dΔμfA ¼<br />

dΔμfB " # " #<br />

JA, A - nAvA þ nAgA, A JA, B - nAvB þ nAgA, B dφA<br />

JB, A - nBvA þ nBgB, A JB, B - nBvB þ nBgB, B dφB ð4.5Þ<br />

for the variation <strong>of</strong> the chemical potentials, where<br />

gA, A - 2χAφ - ðχA - χB þ χABÞφB ð4.6aÞ<br />

gA, B - χ B ðφ - φ BÞ - ðχ A - χ AB Þð1 - φ AÞ ð4.6bÞ<br />

gB, A - χ A ðφ - φ AÞ - ðχ B - χ AB Þð1 - φ BÞ ð4.6cÞ<br />

gB, B - 2χ B φ þðχ A - χ B - χ AB Þφ A ð4.6dÞ<br />

The Gibbs matrix is<br />

^G ¼ JA,<br />

"<br />

A - nAvA þ nAgA, A<br />

JB, A - nBvA þ nBgB, A<br />

#<br />

JA, B - nAvB þ nAgA, B<br />

JB, B - nBvB þ nBgB, B<br />

ð4.7Þ<br />

4.2. Spinodal <strong>Co</strong>ndition. The spinodal condition is given by<br />

|^G| = 0. After lengthy calculation, we finally find<br />

- nnAnB~χφΦ - 2nAnBχABðΦ þ nΨÞ - 2nðχAΦA þ χBΦBÞ þ ΨA þ ΨB þ nð1 þ nAθA þ nBθBÞ 2 φ ¼ 0 ð4.8Þ<br />

where Φ is defined by eq 3.12. The rests are<br />

Ψ yBθAðφA - yAÞþyAθBðφB - yBÞ<br />

þ 1<br />

2 φ2ðθAKA, B þ θBKB, AÞþðφA - yAÞðφB - yBÞ½θAðKB, B - KA, BÞ<br />

<strong>and</strong><br />

þ θBðKA, A - KB, AÞŠ ð4.9Þ<br />

ΨA nAyA þðφ A - yAÞðnAKA, A þ nBKA, BÞ ð4.10aÞ<br />

ΨB nByB þðφ B - yBÞðnBKB, B þ nAKB, AÞ ð4.10bÞ<br />

2982 dx.doi.org/10.1021/ma102695n |Macromolecules 2011, 44, 2978–2989

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!