11.12.2012 Views

Preferential Adsorption and Co-nonsolvency of ... - au one net

Preferential Adsorption and Co-nonsolvency of ... - au one net

Preferential Adsorption and Co-nonsolvency of ... - au one net

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Macromolecules ARTICLE<br />

between the nearest-neghboring bound water molecules. Smaller<br />

σ R gives a stronger cooperativity.<br />

6.1. One-Mode Approximation. Bec<strong>au</strong>se it is difficult to take<br />

the sum over all possible H-bonding types (jζ A ,jζ B ), let us find the<br />

most probable distribution (referred to as mpd) that minimizes<br />

the free energy F AS eq 2.25 by imposing the conditions<br />

∂F AS<br />

∂jζ A ¼ ∂F AS<br />

¼ 0<br />

∂jζ<br />

B ð6.4Þ<br />

Simple calculation leads to the result<br />

jζ R =n ¼ð1- ~ R<br />

θÞtηζ qR ζ<br />

ðR ¼ A, BÞ ð6.5Þ<br />

for mpd, where<br />

~θ nAθA þ nBθB, v vA þ vB ð6.6Þ<br />

<strong>and</strong><br />

qR yRt nR ðR ¼ A, BÞ ð6.7Þ<br />

t 1 - v=ð1 - ~ θÞ ð6.8Þ<br />

Substituting these results into the definitions, we find<br />

θR<br />

1 X<br />

ζjζ<br />

n<br />

R ¼ð1- ~ θÞtV1 R ðqRÞ ð6.9Þ<br />

ζ<br />

for the degree <strong>of</strong> H-bonding, <strong>and</strong><br />

vR<br />

1 X<br />

jζ<br />

n<br />

R ¼ð1- ~ θÞtV0 R ðqRÞ ð6.10Þ<br />

ζ<br />

for the average number <strong>of</strong> H-bonded sequences, where<br />

Vk R ðqRÞ ¼ Xn R<br />

ζ ¼ 1<br />

ζ k η ζ R qR ζ<br />

ðk ¼ 0, 1, 2, :::Þ ð6.11Þ<br />

(nR* is the maximum integer smaller than or equal to n/nR.) From the definition <strong>of</strong> t, we then find<br />

tðqA, qBÞ ¼1=½1 þ V0 A ðqAÞþV0 B ðqBÞŠ ð6.12Þ<br />

<strong>and</strong><br />

θR ¼ V1 R ðqRÞ=½1 þ V01 A ðqAÞþV01 B ðqBÞŠ ðR ¼ A, BÞ<br />

ð6.13Þ<br />

with V01 R defined by<br />

V01 R ðqRÞ V0 R ðqRÞþnRV1 R ðqRÞ<br />

¼ Xn R<br />

ζ ¼ 1<br />

ð1 þ nRζÞη ζ R qζ R<br />

The coupled equations to find y R in terms <strong>of</strong> φ R are<br />

ð6.14Þ<br />

yA ¼ φ A - nAφθAðqA, qBÞ ð6.15aÞ<br />

yB ¼ φB - nBφθBðqA, qBÞ ð6.15bÞ<br />

Eliminating yR by the substitution <strong>of</strong> these relations into (6.7),<br />

we find the coupled equations for qA <strong>and</strong> qB as<br />

qA ¼½φ A - nAφθAðqA, qBÞŠtðqA, qBÞ nA ð6.16aÞ<br />

qB ¼½φ B - nBφθBðqA, qBÞŠtðqA, qBÞ nB ð6.16bÞ<br />

6.2. Transition Matrix in One-Mode Approximation. From<br />

the form (6.13) for θA, its infinitesimal variation is given by<br />

dlnθA ¼ V2 AðqAÞ V1 AðqAÞ -<br />

V12 AðqAÞ 1 þ V01 AðqAÞþV01 B " #<br />

dlnqA<br />

ðqBÞ<br />

V12 B ðqBÞ<br />

-<br />

1 þ V01 AðqAÞþV01 BðqBÞ dlnqB<br />

¼½ζA- ð1 þ nAζAÞθAŠ dlnqA - ð1 þ nBζBÞθB dlnqBÞ<br />

ð6.17Þ<br />

where<br />

ζ R V2 R ðqRÞ=V1 R ðqRÞ ð6.18Þ<br />

is the average sequence length <strong>of</strong> the R comp<strong>one</strong>nt. Hence we<br />

have<br />

2 3<br />

dlnθA<br />

4 5 ¼<br />

dlnθB<br />

"<br />

ζA - ð1 þ nAζAÞθA, -ð1 þ nBζBÞθB # " #<br />

dlnqA<br />

-ð1 þ nAζAÞθA, ζB - ð1 þ nBζBÞθB dlnqB<br />

ð6.19Þ<br />

Similarly, by taking the derivatives <strong>of</strong> the coupled eqs 6.15a <strong>and</strong><br />

6.15b for qA <strong>and</strong> qB, we find after lengthy calculation<br />

2 3<br />

dlnyA<br />

4 5 ¼<br />

dlnyB<br />

1 þ nAθA=ð1 - ~ θÞ, nAθB=ð1 - ~ θÞ<br />

nBθA=ð1 - ~ θÞ,1þ nBθB=ð1 - ~ " # " #<br />

dlnqA<br />

ð6.20Þ<br />

θÞ dlnqB<br />

Solving these equations for d ln qA <strong>and</strong> d ln qB <strong>and</strong> substituting<br />

the results into eq 6.19, we find for the transition matrix in the<br />

form<br />

KAA ¼½ζ A - ð1 þ nAζ AÞθAŠð1 - nAθAÞþð1 þ nBζ BÞnBθAθB<br />

ð6.21aÞ<br />

KAB ¼ - ½ζ A - ð1 þ nAζ AÞθAŠnAθB<br />

- ð1 þ nBζ BÞθBð1 - nBθBÞ ð6.21bÞ<br />

KBA ¼ - ½ζ B - ð1 þ nBζ BÞθBŠnBθA<br />

- ð1 þ nAζ AÞθAð1 - nAθAÞ ð6.21cÞ<br />

KBB ¼½ζ B - ð1 þ nBζ BÞθBŠð1 - nBθBÞþð1 þ nAζ AÞnAθAθB<br />

The determinant <strong>of</strong> the transition matrix ^K is<br />

ð6.21dÞ<br />

j^Kj ¼ð1- ~ θÞ½ζAζB - ζAð1 þ nBζBÞθB - ζBð1 þ nAζAÞθAŠ ð6.22Þ<br />

In summary, our strategy is as follows. We first solve the coupled<br />

eqs 6.16a <strong>and</strong> 6.16b for qA <strong>and</strong> qB for the given temperature<br />

<strong>and</strong> ternary composition φ, φ A, φ B. Then we substitute the result<br />

2985 dx.doi.org/10.1021/ma102695n |Macromolecules 2011, 44, 2978–2989

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!