12.12.2012 Views

DOC vs. Sweep

DOC vs. Sweep

DOC vs. Sweep

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

2010<br />

DAR-20 Áscian Ray<br />

Douglas A. Rieck<br />

AME-481 Aircraft Design<br />

USC Viterbi Engineering<br />

5-14-2010


1.0 Mission Requirements Summary:<br />

The Âscian Ray was designed to fill the role of a 200 passenger, medium range,<br />

medium field length commercial airliner for introduction into the market in early<br />

2020. It has been optimized to minimize direct operating cost under the conditions<br />

and constraints tabulated below.<br />

Passenger Capacity Goal 200<br />

Limited Bulk Cargo 0 - 10000 lbs<br />

TOFL (at MTOGW, standard atmosphere) < 8,400 ft<br />

LFL (at max landing Weight, standard atmosphere)<br />

ROC @ ICA and Max Cruise Altitude > 300 fps<br />

Cruise Altitude Optimized for <strong>DOC</strong><br />

M cruise<br />

2.0 Aircraft Geometry, Performance & Weights Summary<br />

Lifting Surfaces Wing Horizontal Vertical Winglet<br />

Area (ft 2 ) 1,200 396 532 51.2<br />

Span (ft) 114.9 46.6 31 7<br />

AR (n.d.) 11.0 5.5 1.8 0.96<br />

<strong>Sweep</strong> (deg.) 28 35 40 35<br />

Taper Ratio (n.d.) 0.46 0.30 0.30 0.35<br />

Average t/c (n.d.) 0.10 0.09 0.09<br />

Dihedral (deg.) 4 3 75<br />

MAC (in.) 10.9 9.3 18.9<br />

General Shape<br />

Fuselage Length (in.) 1,960<br />

Total Length (in.) 2,068<br />

Diameter (in.) 198.0<br />

Nose Fineness Ratio (n.d.) 1.8<br />

Tail Fineness Ratio (n.d.) 3.1<br />

Weight<br />

OEW 87110 lb<br />

MTOGW 160585 lb<br />

Mission Payload 43000 lb<br />

Bulk Cargo 5000 lb<br />

Design Mission Fuel 23877 lb<br />

Reserve Fuel 1601 lb<br />

Total Usable Fuel 25478 lb<br />

Optimized for <strong>DOC</strong><br />

Flight Conditions<br />

Field Elevation 0 ft<br />

Cruise Altitude 40000 ft<br />

Vc 774 ft/s<br />

0.8 -<br />

M c<br />

Cruise C L<br />

Cruise L / D<br />

0.66 -<br />

16.2 -<br />

Performance<br />

TOFL 8159<br />

LFL 4797<br />

Min ROC @ Crz 398<br />

Vldg Max<br />

138<br />

Vs1 164 kts<br />

Range 3000 nm<br />

P a g e | 2


TOFL (ft)<br />

14,000<br />

12,000<br />

10,000<br />

8,000<br />

6,000<br />

4,000<br />

2,000<br />

Below is a chart depicting FAA Required Runway Length for the Ascian Ray in standard<br />

atmosphere conditions at various altitudes and weight ranging from OEW to MTOGW.<br />

Takeoff Runway Length Requirements<br />

85,000 95,000 105,000 115,000 125,000 135,000 145,000 155,000 165,000<br />

TOGW (lbs)<br />

It can be seen that field length falls just under the 8,400 ft maximum length requirement<br />

(see table above). Only departure from higher altitude airports will result in a higher<br />

TOFL.<br />

P a g e | 3


Payload (lbs)<br />

3.0 Comparison to Competition<br />

80000<br />

70000<br />

60000<br />

50000<br />

40000<br />

30000<br />

20000<br />

10000<br />

The Ascian Ray’s payload capabilities may be marginally lower than the 737 for shorter mission<br />

distances, it makes up for it. For all ranges approximately greater than the design range (3,000<br />

nm) the Ascian Ray has a higher payload capability than the 737.<br />

TOGW/(PaxNmi) Lbs/PaxNmi<br />

0<br />

1.400<br />

1.200<br />

1.000<br />

0.800<br />

0.600<br />

0.400<br />

0.200<br />

0.000<br />

Competing Aircraft Payload-Range Comparison<br />

0 1000 2000 3000 4000 5000 6000 7000 8000 9000<br />

Range (nm)<br />

Commercial Transport, TOGW per passenger mile<br />

Historical Trends 2001/02 AWST Data<br />

1st Generation, Narrow Body TurboJets<br />

Narrow Body Turbofans<br />

Wide Body Turbofans<br />

Supersonic Concorde M=2.0<br />

Âscian Ray<br />

0 2,000 4,000 6,000 8,000 10,000 12,000<br />

Still Air Range (nmi)<br />

Âscian Ray<br />

Max Full Occupancy Range<br />

737-900ER w/ winglets<br />

737-700<br />

767-200<br />

MD-90-30/-30ER<br />

757-200<br />

The Ascian Ray also far outperforms other medium range airliners in weight efficiency.<br />

P a g e | 4


4.0 Configuration Description & Justification<br />

The Acian Ray is a turbofan powered monoplane with wing mounted engines and a<br />

conventional aft tail. The fuselage and wing structures take advantage of recent advances in<br />

composite materials which reduces aircraft’s weight without sacrificing payload. The Ascian<br />

Ray’s low MTOGW benefits L/D efficiency during flight and results in a lower cruise thrust<br />

required. This translates to a reduced engine weight and size, further improving fuel<br />

economy.<br />

Two high bypass ratio turbofans are mounted to the rear edge of the wing struts slightly<br />

inboard of the engine nacelles, each offering 32,000 lbs of SLST. The wings themselves are<br />

swept aft at 28 degrees, to minimize structural weight, while still offering superior cruise<br />

drag performance. The control surfaces on each wing consist of one inboard and one<br />

outboard aileron, running 30% of the chord. High CL is achieved with one inboard and one<br />

outboard single segment flap, and leading edge slats, also running 30% of the chord.<br />

The vertical stabilizer takes advantage of a low mounted, double-hinged rudder to provide<br />

sufficient yaw control for engine-out situations. The horizontal stabilizer is mounted further<br />

aft to provide clearance from the vertical stabilizer’s structural spar and to avoid negatives<br />

due to drag divergence. Both the horizontal and the vertical stabilizer are swept further<br />

than the wing to reduce drag and prevent control reversal during high Mach dive situations.<br />

The aircraft interior is divided into coach and business class, and offers a maximum capacity<br />

of 209 passengers. The business class section takes advantage of a slightly unorthodox 2 by<br />

2 by 1 seating arrangement to avoid wasted space while still adhering to aisle width<br />

guidelines. Coach seating features a 2 by 3 by 2 seating arrangement with two aisles for<br />

efficient navigation of the cabin by the potential 7 person crew. A twin aisle arrangement<br />

also provides for more efficient emergency egress through the six exit doors. Two 42’’x72’’<br />

exits are located at the forward galley and an additional two are located at the aft galley.<br />

Ahead of the wings are two supplementary 24”x54” exits.<br />

The nose of the plane was designed to elevate the pilots to a position where they have<br />

sufficient viewing angles according to Mil-Std 850 guidelines for transport and cargo<br />

aircraft. This is accomplished with a 10” step up to the cockpit floor level.<br />

P a g e | 5


P a g e | 6


5.0 Trade Studies<br />

Cost/ton-nm ($)<br />

TOGW (lbs)<br />

0.600<br />

0.580<br />

0.560<br />

0.540<br />

0.520<br />

0.500<br />

155,000<br />

152,500<br />

150,000<br />

147,500<br />

145,000<br />

142,500<br />

140,000<br />

<strong>DOC</strong> <strong>vs</strong>. Aspect Ratio<br />

8 10 12 14 16 18<br />

TOGW <strong>vs</strong>. Aspect Ratio<br />

8 10 12 14 16 18<br />

AR<br />

AR<br />

TOFL limit<br />

Design Point<br />

TOFL limit<br />

Design Point<br />

P a g e | 7


Cost/ton-nm ($)<br />

TOGW (lbs)<br />

0.700<br />

0.675<br />

0.650<br />

0.625<br />

0.600<br />

0.575<br />

0.550<br />

0.525<br />

0.500<br />

150,000<br />

148,000<br />

146,000<br />

144,000<br />

142,000<br />

140,000<br />

TOFL limit<br />

ROC limit<br />

Design Point<br />

6 8 10<br />

BPR<br />

12 14<br />

TOFL limit<br />

TOGW <strong>vs</strong>. Bypass Ratio<br />

Design Point<br />

<strong>DOC</strong> <strong>vs</strong>. BPR<br />

6 8 10 12 14<br />

BPR<br />

P a g e | 8


Cost/ton-nm ($)<br />

TOGW (lbs)<br />

0.6500<br />

0.6250<br />

0.6000<br />

0.5750<br />

0.5500<br />

0.5250<br />

0.5000<br />

154,000<br />

152,000<br />

150,000<br />

148,000<br />

146,000<br />

144,000<br />

142,000<br />

140,000<br />

<strong>DOC</strong> <strong>vs</strong>. <strong>Sweep</strong><br />

Cruise Buffet<br />

Buffet @ ICA<br />

TOFL limit<br />

ROC limit<br />

Design Point<br />

10 15 20 25 30<br />

<strong>Sweep</strong> (deg.)<br />

35 40 45 50<br />

TOGW <strong>vs</strong>. <strong>Sweep</strong><br />

10 20 30 40 50<br />

<strong>Sweep</strong> (deg.)<br />

Cruise Buffet<br />

Buffet @ ICA<br />

TOFL limit<br />

ROC limit<br />

Design Point<br />

P a g e | 9


This diagram demonstrates optimal sizing for the wing surface area and aspect ratio. The<br />

final wing geometry was selected based upon this plot in conjunction with a number of<br />

constraints, such as those in the previous charts.<br />

Cost/ton-nm ($)<br />

0.600<br />

0.590<br />

0.580<br />

0.570<br />

0.560<br />

0.550<br />

0.540<br />

0.530<br />

0.520<br />

800<br />

900<br />

1000<br />

<strong>DOC</strong> <strong>vs</strong> AR & Wing Area<br />

1100<br />

1200<br />

1300<br />

8<br />

10<br />

12<br />

14<br />

16<br />

18<br />

This snapshot of Jetsizer’s<br />

Mission input page (left) shows<br />

the results of the code and<br />

includes checks for mission<br />

constraints<br />

The image shown shows the<br />

results of an aircraft planform<br />

that was run with intentionally<br />

poor configuration in order to<br />

demonstrate the constraint<br />

checks.<br />

Note: The Ascian Ray PASSED<br />

these checks.<br />

P a g e | 10


C_L Buffet<br />

L/D<br />

18.000<br />

16.000<br />

14.000<br />

12.000<br />

10.000<br />

8.000<br />

6.000<br />

1.40<br />

1.20<br />

1.00<br />

0.80<br />

0.60<br />

0.40<br />

0.20<br />

0.00<br />

L/D <strong>vs</strong>. C_L<br />

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2<br />

C_L Buffet <strong>vs</strong>. Mach<br />

0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900<br />

C_L<br />

Mach<br />

Crz<br />

C_L Buffet<br />

P a g e | 11


6.0 Stability & Control<br />

7.0 Cross-Section Drawing<br />

\<br />

Tail Geometry Horizontal Vertical<br />

Volume Ratio 1.80 0.23<br />

AR 5.5 1.8<br />

<strong>Sweep</strong> (deg.) 5.5 1.8<br />

t/c 0.09 0.09<br />

Moment Arm (in.) 850.0 743.00<br />

P a g e | 12


8.0 Interior Arrangement Diagram<br />

P a g e | 13


9.0 Cockpit Three-View Drawing<br />

P a g e | 14


10.0 Jetsizer Configuration Page<br />

Configuration Layout Image Control<br />

481 Spring 2010<br />

Douglas Rieck 0<br />

Ascian Ray < Notes<br />

< Notes<br />

Plan View<br />

Side View<br />

Front View<br />

Isometric View<br />

Change Red Cells<br />

Wing & Tails Wing Horiz. Vertical Winglet<br />

Wing Area | Tail Volume Ratio, VH | VV = 1,200 1.80 0.236 NA n.d.<br />

Axial Tail Pos'n (Xc/4-Xblkhd) = NA 120 140 NA in.<br />

Aspect Ratio, AR | Winglet Height = 11.00 5.50 1.80 7.0 n.d.<br />

<strong>Sweep</strong> Angle, c/4 = 28.00 35.00 40.00 35 deg<br />

Planform Break Pos'n Ybreak/(b/2) = 0.4 0.00 0.00 NA n.d.<br />

Break Taper Ratio Cbreak/Croot = NA 1.00 1.00 NA n.d.<br />

Tip Taper Ratio, Ctip/Croot = 0.46 0.30 0.30 0.35 n.d.<br />

Glove Extension at SOB, C/CSOB = 0.1 NA NA NA n.d.<br />

Yehudi Extension at SOB, C/CSOB = 0.35 NA NA NA n.d.<br />

Flap Chord Fraction Cflap/Cw = 0.25 0.35 0.35 NA n.d.<br />

Area, total trapezoidal, S = 1,200 396 532 140<br />

Span, b = 114.89 47 31 2<br />

Wing Dihedral Angle, = 4 3.00 NA 75 deg<br />

Vertical Offset, Z = -70 40.00 75.00 NA in.<br />

Airfoil t/c @ SOB = 0.115 NA NA NA n.d.<br />

Airfoil t/c @ Break = 0.100 0.09 0.09 NA n.d.<br />

Airfoil t/c @ Tip = 0.085 NA NA NA n.d.<br />

MAC Incidence Angle = 2.00 -1.00 NA NA deg<br />

Axial Wing pos'n, Xc/4trap@C/L = 880.0 NA NA NA in.<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

-200<br />

-400<br />

-600<br />

-800<br />

P a g e | 15


11.0 General Arrangement Drawing<br />

P a g e | 16


12.0 Aircraft Systems Drawing<br />

P a g e | 17

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!